
Efficiently Escaping Saddle Points under Generalized
Smoothness via Self-Bounding Regularity

Daniel Yiming Cao∗ August Y. Chen∗ Karthik Sridharan∗ Benjamin Tang∗
Department of Computer Science, Cornell University
{dyc33, ayc74, ks999, bt283}@cornell.edu

Abstract
We study the optimization of non-convex functions that are not necessarily smooth
(gradient and/or Hessian are Lipschitz) using first order methods. Smoothness
is a restrictive assumption in machine learning in both theory and practice, moti-
vating significant recent work on finding first order stationary points of functions
satisfying generalizations of smoothness with first order methods. We develop
a novel framework that lets us systematically study the convergence of a large
class of first-order optimization algorithms (which we call decrease procedures)
under generalizations of smoothness. We instantiate our framework to analyze the
convergence of first order optimization algorithms to first and second order station-
ary points under generalizations of smoothness. As a consequence, we establish
the first convergence guarantees for first order methods to second order stationary
points under generalizations of smoothness. We demonstrate that several canonical
examples fall under our framework, and highlight practical implications.

1 Introduction
A widely studied problem in machine learning (ML) and optimization is finding a First Order
Stationary Point (FOSP) of a generic function F with domain Rd, defined as follows:

Given a tolerance ε > 0, findwww such that ∥∇F (www)∥ ≤ ε. (1)

The methods of choice in theory and practice for this task are Gradient Descent (GD), Stochastic
Gradient Descent (SGD), and variants thereof. Under the additional assumption of (second-order)
smoothness on F , i.e. that the gradient ∇F is Lipschitz with parameter L > 0, this task is well-
understood. In several settings – such as with access to exact gradients, stochastic gradients, Hessian-
Vector Products, and the exact Hessian – we have matching upper and lower bounds. The literature on
this problem is extensive; for a subset see e.g. Ghadimi and Lan (2013); Johnson and Zhang (2013);
Fang et al. (2018, 2019); Foster et al. (2019); Arjevani et al. (2020); Carmon et al. (2020, 2021).

However, for many non-convex functions F , FOSPs are uninformative. A significant and difficult
problem established in the literature for over a decade – which carries strong theoretical and practical
implications in optimization for machine learning – is establishing efficient rates for finding a Second
Order Stationary Point (SOSP). In many non-convex optimization problems such as Phase Retrieval
and Matrix Square Root (Ge et al., 2015; Jin et al., 2017; Ge et al., 2017; Sun et al., 2018), SOSPs
are global minima. Finding a SOSP is defined as follows:

Given a tolerance ε > 0, findwww such that ∥∇F (www)∥ ≤ ε,∇2F (www) ⪰ −
√
εIII, (2)

where ⪰ denotes the PSD order, III is the d × d identity matrix, and ∇2F (www) is the Hessian of F .2

Under the additional Hessian Lipschitz assumption, that the operator norm of the Hessian ∇2F in
addition to the gradient ∇F is Lipschitz, this task is also well-understood. Under these regularity
∗Authors are listed in alphabetical order.
2There are several definitions of a SOSP; see Remark 5 for why we use this definition here.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



assumptions, finding SOSPs is classical under exact oracle access to the full Hessian ∇2F . Decades
ago, it was shown that cubic regularization and trust region methods succeed (Nesterov and Polyak,
2006; Conn et al., 2000), with a matching lower bound in Arjevani et al. (2020). Motivated by the
success of non-convex optimization in ML via first order methods, solving this problem (2) with
first order methods has seen much recent study (Ge et al., 2015; Jin et al., 2017; Fang et al., 2019;
Arjevani et al., 2020; Jin et al., 2021a). We have matching upper and lower bounds in several cases,
such as for SGD which is perhaps most relevant to ML (Fang et al., 2019; Arjevani et al., 2020).

However, in many optimization problems in ML, the gradient and Hessian of the loss function is
not Lipschitz. This was observed empirically through extensive experiments of Zhang et al. (2019)
on LSTMs and of Crawshaw et al. (2022) on transformers. We provide theoretical examples in
Subsection 3.6. As such, a line of work began in Zhang et al. (2019) on studying finding FOSPs
under weaker regularity assumptions, see e.g. (Zhang et al., 2020; Jin et al., 2021b; Crawshaw
et al., 2022; Reisizadeh et al., 2023; Li et al., 2023b; Wang et al., 2024; Hong and Lin, 2024; Gaash
et al., 2025; Yu et al., 2025). The regularity assumption generally made is (L0, L1)-smoothness:
∥∇2F (www)∥

op
≤ L0 + L1∥∇F (www)∥ for all www ∈ Rd for some L0, L1 ≥ 0. This allows for arbitrarily

polynomial growth rates of F in ∥www∥. The guarantees in Zhang et al. (2019) and follow-up works
generally hold for adaptive methods, presented as theoretical justification for gradient clipping.

The authors of Li et al. (2023a), under a milder regularity assumption than Zhang et al. (2019),
studied finding FOSPs via fixed-step-size GD and SGD rather than adaptive methods. In particular,
Li et al. (2023a) demonstrated clipping is not necessary for (L0, L1)-smooth functions. Related
works extended this analysis to Nesterov’s Accelerated Gradient Descent (Li et al., 2023b; Hong
and Lin, 2024). Xie et al. (2024) studied finding SOSPs under (L0, L1)-smoothness and a similar
assumption that for allwww, in a small neighborhood ofwww, the Hessian of F is Lipschitz with parameter
M0+M1∥∇F (www)∥. However, their algorithm is second-order and requires the full Hessian, analogous
to classical work (Nesterov and Polyak, 2006; Conn et al., 2000). This contrasts with recent
developments of finding SOSPs using first order methods when F has Lipschitz gradient and Hessian,
which are more pertinent to ML where first-order algorithms are the only tractable method (Ge et al.,
2015; Jin et al., 2017; Fang et al., 2019; Arjevani et al., 2020; Jin et al., 2021a).

1.1 Our Contributions
In this work, we develop a novel framework to study non-asymptotic guarantees finding FOSPs
and SOSPs via first-order methods, for functions whose gradient and/or Hessian are not Lipschitz.
Central to our work is the following regularity assumption:

Assumption 1.1 (Second-Order Self-Bounding Regularity). F is twice differentiable, and there exists
a non-decreasing function ρ1 ∶ R≥0 ↦ R≥0 such that ∥∇2F (www)∥

op
≤ ρ1(F (www)) for allwww ∈ Rd.

This assumption implies the relevant Hessian operator norm is upper bounded by a function of
the function value. It was also made in De Sa et al. (2022) for the different task of studying
global convergence of GD/SGD, where it was shown that Assumption 1.1 holds for many canonical
non-convex optimization problems. Some quantitative control of the Hessian is necessary for non-
asymptotic guarantees of finding FOSPs (Kornowski et al., 2024). In Example 1, we show these
prior assumptions are not satisfied by a natural univariate function. We show in Proposition A.1 that
Assumption 1.1 generalizes (L0, L1)-smoothness and its extension from Li et al. (2023a), and that

(L0, L1)-smoothness (∥∇2F ∥
op
≤ L0+L1∥∇F ∥) Ô⇒ Assumption 1.1 with ρ1(x) = 3

2
L0+4L2

1x.

For finding SOSPs, we impose the following additional regularity assumption:

Assumption 1.2 (Third-Order Self-Bounding Regularity). F satisfies Assumption 1.1, and either:

• F is three-times differentiable everywhere, and for some non-decreasing function ρ2 ∶ R≥0 →
R≥0, ∥∇3F (www)∥

op
≤ ρ2(F (www)) for allwww ∈ Rd.

• Or for some constant δ > 0 and some non-decreasing function ρ2 ∶ R≥0 → R≥0, for all
www,www′ ∈ Rd with ∥www −www′∥ ≤ δ, we have ∥∇2F (www) − ∇2F (www′)∥

op
≤ ρ2(F (www))∥www −www′∥.

Assumption 1.2 naturally extends Assumption 1.1, and generalizes the Hessian Lipschitz assumption
ubiquitous in the literature on non-asymptotic rates for finding SOSPs. (We note that the works Lee
et al. (2016, 2019) established asymptotic guarantees for GD finding SOSPs without the Hessian

2



Lipschitz assumption, and note their proof strategy uses Lipschitzness of the gradient in a crucial way.)
In Subsection 3.6, we show several canonical non-convex losses with non-Lipschitz gradient and
Hessian satisfy Assumption 1.2. Assumption 1.2 covers several growth rates of interest (e.g. univariate
self-concordant functions satisfying Assumption 1.1). It also subsumes that of Xie et al. (2024),
which to our knowledge is the only other result on finding SOSPs under generalized smoothness (but
uses the full Hessian). Under the assumptions of Xie et al. (2024), an explicit, simple form for ρ2(⋅)
can be found. We detail all of this in Example 2.

Furthermore, Assumption 1.2 encompasses several examples of Distributionally Robust Optimization
(DRO) problems. Xie et al. (2024) very interestingly demonstrates that under mild assumptions, the
objective of DRO satisfies their Assumption 3, see Theorem 3 therein. Assumption 3 of Xie et al.
(2024) is subsumed by Assumption 1.2 as per our Example 2. Thus our results apply to DRO. DRO
is a general optimization problem that has significant applications in fairness in machine learning and
in learning under distribution shifts; see Xie et al. (2024) for more discussion.

We now introduce the following standard definition, which, when combined with Assumption 1.1
and Assumption 1.2, forms the core of our argument, as we explain in Subsection 2.1.

Definition 1.1. For a function F and threshold α, the α-sublevel set of F is LF,α = {www ∶ F (www) ≤ α}.
Now, our contributions are as follows:

1. We develop a novel, systematic framework detailed in Section 2 and Theorem 2.1 to
study the convergence of first order methods to FOSPs and SOSPs under Assumption 1.1
and Assumption 1.2 respectively. The core idea is in Subsection 2.1. Our framework lets
us systematically analyze existing practical, and widely used first-order optimization
algorithms in the challenging generalized smooth setting.

2. Main Results, non-asymptotic convergence to SOSPs: Under Assumption 1.2, we estab-
lish efficient rates for first-order optimization algorithms finding SOSPs. See Theorem 3.4
for Perturbed GD (Jin et al., 2017) and Theorem 3.5 for Restarted SGD (Fang et al., 2019).
The dependence on ε, d matches that in the smooth setting, and in particular is polylogarith-
mic in d. This is particularly pertinent for ML applications, where the ambient dimension is
so large that the second-order methods of Xie et al. (2024) are not feasible.

3. Non-asymptotic convergence to FOSPs: Under Assumption 1.1, we establish efficient rates
for GD, Adaptive GD, and SGD finding FOSPs. See Theorem 3.1, Theorem 3.2, and
Theorem 3.3 respectively. The dependence on ε, d again matches that in the smooth setting.

4. We provide examples and practical implications in Subsection 3.6. Our examples are direct
corollaries of Theorem 3.4, Theorem 3.5. They show variants of GD/SGD globally optimize
non-convex ‘strict-saddle’ losses from ML with non-Lipschitz gradient and Hessian.

Notation: B(ppp,R) denotes the Euclidean l2 ball centered at ppp ∈ Rd with radius R ≥ 0, with boundary.
By shifting, we assume WLOG that F attains a minimum value of 0. We follow the convention
that F is smooth, specifically L-smooth, if ∥∇2F ∥ ≤ L holds globally. We always letwww0 denote the
initialization of a given algorithm (which is clear from context) unless stated otherwise.

2 Main Idea
2.1 High Level Idea
One classic analysis of GD on smooth functions to converge to a FOSP goes by establishing decrease
per iterate, via the so-called ‘Descent Lemma’ (Bubeck et al., 2015). For L-smooth functions, setting
the step size η = 1

L
in GD,

F (wwwt+1) ≤ F (wwwt) − η(1 −
1

2
Lη)∥∇F (wwwt)∥2 = F (wwwt) −

1

2L
∥∇F (wwwt)∥2. (3)

Such an analysis fails if F is not L-smooth. Following the above recipe under Assumption 1.1, as
such a bound L < ∞ need not exist, one must set η = 0 and does not obtain any convergence rate.

Core Insight 1: The first simple but powerful insight in our work is that many optimization
algorithms such as GD decrease the function value at each iterate (with high probability) when η is
appropriately chosen as a function of the smoothness (Hessian operator norm) at the current iterate.

3



Specifically, consider iterates of GD initialized at some www0. For step size η small enough in terms
of ∥∇2F (www0)∥, the next iterate www1 of GD is sufficiently ‘local’ (see Corollary 1). This lets us
upper bound ∥∇2F ∥ along the segmentwww0www1 by an increasing function L1(F (www0)) of F (www0) (see
Lemma 3.2). Thus, for appropriate η in terms of F (www0), we obtain F (www1) ≤ F (www0), and sowww1 lies
in the F (www0)-sublevel set LF,F (www0).

Core Insight 2: Crucially, we can ‘chain together’ this decrease. By Assumption 1.1, the afore-
mentioned argument goes through at any www in the F (www0)-sublevel set LF,F (www0) – in particular, at
www1. Consequently, this same step size η is small enough to ensure F (www2) ≤ F (www1) ≤ F (www0), and
so forth through all the iterates of GD. Moreover, this argument yields a convergence rate. As each
iterate is in LF,F (www0), if the gradient norm is at least ε at each iterate, we obtain decrease of at least

ε2

2L1(F (www0)) per iterate analogously to (3). Too many iterations contradicts that F is lower bounded by

0 (recall Notation), so we must reach an iteratewwwt which is a FOSP within 2L1(F (www0))F (www0)
ε2

iterates.

Generalizing the argument: This idea is powerful enough to readily analyze SGD and variants of
GD/SGD which find SOSPs. Rather than a single iterate where decrease need not hold, we consider a
sequence of consecutive tthres iterates. We show with high probability, the last iterate in this sequence
decreases function value forwww ∈ LF,F (www0). To do so, recall the analyses of first-order optimization
algorithms often establish decrease by considering ‘local’ behavior. Locally aroundwww ∈ LF,F (www0),
Assumption 1.1 and Assumption 1.2 give enough control over the relevant derivatives to do so.

Then the above argument still goes through, with a fixed step size defined in terms of F (www0). We
group the iterates of the algorithm into ‘blocks’ of length tthres, and establish F (wwwtthres) ≤ F (www0) and
so forth (rather than establishing F (www2) ≤ F (www1) ≤ F (www0) for consecutive iterates).

2.2 The Formal Framework
Consider a set of interest S , e.g. FOSPs or SOSPs with tolerance ε. We begin by presenting a simpler
version of our formal framework. Consider a deterministic update procedure A ∶ Rd → Rd, where the
output of A denotes the future iterate of the algorithm. For example, A(www) =www − η∇F (www) for GD.
Following Subsection 2.1, we consider algorithms that decrease function value in the F (www0)-sublevel
set LF,F (www0) if they have not reached S . The following definition formalizes this property:

Definition 2.1 (Special case of Decrease Procedure in Definition 2.2). Consider a set of interest S , a
decrease threshold ∆ > 0, a point uuu0, and a deterministic procedure A to compute the next iteration.
We say A forms a (S, toracle(uuu0),∆(uuu0),uuu0)-decrease procedure if computing A(uuu0) takes at most
toracle(uuu0) oracle calls, and one of the following holds:

1) F (A(uuu0)) < F (uuu0) −∆(uuu0), or 2) A(uuu0) ∩ S ≠ {}.

Here 1) means that the subsequent iterate has smaller function value, and 2) means that the rule of
output A2 outputs a sequence of candidate vectors, one of which is in S .

Then, Theorem 2.1 states that if A is a decrease procedure for all uuu0 in LF,F (www0), we can bound the
number of oracle calls for A to output a candidate vector in S, e.g. for GD to output a FOSP. We
prove it arguing as in Subsection 2.1, ‘chaining together’ the decrease per iterate in LF,F (www0). Then
as F is lower bounded, 1) in Definition 2.2 cannot occur too often, so 2) must occur at some point.

We now generalize this to randomized procedures A which can output several candidate vectors.

Framework in full generality. Consider an update procedureA ∶ Rd → Rd×⋃∞n=0(Rd)n (possibly
randomized). We now consider a map A = (A1,A2), A ∶ Rd → Rd ×⋃∞n=0(Rd)n defined as follows:

For all uuu ∈ Rd,A(uuu) = (ppp1,ppp2) for ppp1 ∈ Rd,ppp2 ∈
∞
⋃
n=0
(Rd)n, and define A1(uuu) ∶= ppp1,A2(uuu) ∶= ppp2.

Intuitively, A1 computes a future iterate A1(uuu). A2 outputs a sequence of candidate vectors in Rd,
among which we hope one lies in S (e.g. different candidate models in statistical learning).

However, the output of A1 need not correspond to the ‘next iterate’ in the traditional sense. For SGD,
A1 does not output the next iterate of SGD, but rather the iterate produced by SGD after K0 > 1
steps. This is necessary to guarantee decrease; a single step of SGD need not decrease the value of F ,
but with high probability and large enough K0, a consecutive ‘block’ of K0 iterates will. We will lay
this out concretely next in Subsection 2.3.

4



Remark 1. Often A2 will output a single vector in Rd, which we hope lies in S, but this is not
always the case. Consider guarantees for GD or SGD, which upper bound 1

T ∑
T
t=1∥∇F (wwwt)∥

2 ≤ ε2
or 1

T ∑
T
t=1∥∇F (wwwt)∥ ≤ ε. This only ensures a singlewwwt ∈ S,1 ≤ t ≤ T where S is the set of FOSPs to

tolerance ε (e.g. Zhang et al. (2019), Jin et al. (2021b), Li et al. (2023b), Xie et al. (2024) and many
others). Consequently (www1, . . . ,wwwT ) is our sequence of candidate vectors, and the guarantee obtained
is thatwwwt ∈ S for some 1 ≤ t ≤ T . We thus allow for A2 to output multiple candidate vectors.

The following definition formalizes a common property of optimization algorithms we study:

Definition 2.2 (Decrease Procedure). Consider a set of interest S, a confidence parameter δ > 0, a
decrease threshold ∆ > 0, a point uuu0, and a procedure A to compute the next iteration. We say A
forms a (S, toracle(uuu0),∆(uuu0), δ(uuu0),uuu0)-decrease procedure if with probability at least 1 − δ(uuu0)
over the randomness in A to compute A(uuu0) from uuu0, computing A(uuu0) takes at most toracle(uuu0)
oracle calls, and one of the following holds:

1) F (A1(uuu0)) < F (uuu0) −∆(uuu0), or 2) A2(uuu0) ∩ S ≠ {}.

Here 1) means that the subsequent iterate has smaller function value, and 2) means that the
rule of output A2 outputs a sequence of candidate vectors, one of which is in S. A forms a
(S, toracle(uuu0),∆(uuu0), δ(uuu0),uuu0)-decrease procedure if 1) or 2) occurs with high probability.

Informal Theorem: For analogous reasons as before, we will establish that if A is a decrease
procedure for all uuu0 in LF,F (www0), we can bound the number of oracle calls for A2 to output a
candidate vector lying in S. Formally, this is Theorem 2.1.

2.3 Examples Subsumed by Framework
We demonstrate that a host of first-order optimization algorithms are covered in our framework, and
highlight the general recipe for using our framework.

GD: Starting from uuu, the next iterate of GD with step size η > 0 is uuu − η∇F (uuu).
1. For ε > 0, let S = {www ∶ ∥∇F (www)∥ ≤ ε}, the set of FOSPs.

2. For all uuu0 ∈ Rd, let A(uuu0) = (uuu0 − η∇F (uuu0),uuu0). Hence, A1(uuu0) = uuu0 − η∇F (uuu0),
A2(uuu0) = uuu0, and toracle(uuu0) = 1.

3. In Claim 1, we establish that if F is satisfies Assumption 1.1, then A is a decrease
procedure for all uuu0 ∈ LF,F (www0), for suitable η depending on F (www0). Our result for GD,
Theorem 3.1, subsequently follows by our general framework Theorem 2.1.

Adaptive GD: Starting from uuu, the next iterate of Adaptive GD is uuu − ηuuu∇F (uuu), where ηuuu > 0 is
an adaptive step size that depends on uuu.

1. For ε > 0, let S = {www ∶ ∥∇F (www)∥ ≤ ε}, the set of FOSPs.

2. For all uuu0 ∈ Rd, let A(uuu0) = (uuu0 − ηuuu0∇F (uuu0),uuu0). Hence, A1(uuu0) = uuu0 − η∇F (uuu0),
A2(uuu0) = uuu0, and toracle(uuu0) = 1.

3. In Claim 4, we establish that if F is satisfies Assumption 1.1, then A is a decrease
procedure for all uuu0 ∈ LF,F (www0), for suitable ηuuu depending on F (www0) and ∥∇F (uuu)∥.
Our result for Adaptive GD, Theorem 3.2, then follows by Theorem 2.1.

However, for SGD and other randomized algorithms involving randomness, 1) in Definition 2.2 does
not hold deterministically. This is where the generality in our framework is powerful. For SGD, by
concentration inequalities we show that 1) is true with high probability over a long enough ‘block’ of
subsequent iterates, as long as none of the iterates in the block have small gradient. We then define A
so that A1 outputs the composition of the SGD steps in the block, and A2 outputs all the iterates of
the block. The resulting guarantee is that one of the points among all the blocks lies in S.

SGD: Starting from uuu, letting ∇f(uuu;ζζζ) be a stochastic gradient oracle where ζζζ is a minibatch
sample, the next iterate of SGD is uuu − η∇f(uuu;ζζζ) where η > 0 is the step size.

1. For ε > 0, let S = {www ∶ ∥∇F (www)∥ ≤ ε}, the set of FOSPs.

5



2. Consider any K0 ≥ 1. For all uuu0 ∈ Rd, let ppp0 = uuu0, and define a sequence (pppi)0≤i≤K0 via
pppi = pppi−1 −η∇f(pppi−1;ζζζi), where the ζζζi are i.i.d. minibatch samples. Note this sequence can
be equivalently defined by repeatedly composing the function uuu→ uuu − η∇f(uuu;ζζζ). We then
define A(uuu0) = (pppK0 , (pppi)0≤i≤K0−1), hence A1(uuu0) = pppK0 , A2(uuu0) = (pppi)0≤i≤K0−1. Note
all the pppi are a function of uuu0 and the randomness in the stochastic gradient oracle ∇f(⋅; ⋅).
We let toracle(uuu0) = K0, which need not equal 1. This procedure is clearly SGD, with its
iterates divided into blocks of length K0.

3. In Claim 5, we establish that if F is satisfies Assumption 1.1 and ∇f(⋅; ⋅) satisfies
Assumption 3.1, then A is a decrease procedure for all uuu0 ∈ LF,F (www0) for suitable
algorithm parameters. Our result for SGD, Theorem 3.3, then follows by Theorem 2.1.

SOSP-finding algorithms: We now study finding SOSPs using first order methods under our
regularity assumptions. We analyze two algorithms to achieve this under exact and stochastic
gradients, respectively Perturbed GD (Algorithm 1, Jin et al. (2017)) and Restarted SGD (Algorithm 2,
Fang et al. (2019)). We remark that our framework likely subsumes many other algorithms.

Perturbed GD: This algorithm, formally written in Algorithm 1, Section D, is as follows. At uuu,

• If ∥∇F (uuu)∥ > gthres for some appropriate gthres, the algorithm simply runs a step of GD.

• Else, Algorithm 1 adds uniform noise from a ball with particular radius and runs GD for
tthres iterations for suitably chosen tthres, yielding uuu′. We check if F (uuu′) − F (uuu) ≤ −fthres
for some appropriate fthres. If decrease does not occur, we return uuu; if decrease occurred, we
go back to the If/Else with uuu′ in place of uuu.

Notice now that the oracle complexity toracle, probability δ, and amount of decrease ∆ depend on the
location uuu. Our framework readily subsumes this example as follows.

1. For ε > 0, let S = {www ∶ ∥∇F (www)∥ ≤ ε,∇2F (www) ⪰ −√εIII}, the set of SOSPs.

2. For all uuu0 ∈ Rd, if ∥∇F (uuu0)∥ > gthres, we let

A(uuu0) = (uuu0 − η∇F (uuu0),uuu0), hence A1(uuu0) = uuu0 − η∇F (uuu0),A2(uuu0) = uuu0.

Otherwise if ∥∇F (uuu0)∥ ≤ gthres, we let ppp0 = uuu0 + ξξξ where ξξξ is uniform from B(0⃗00, r), and
define a sequence (pppi)0≤i≤tthres via pppi = pppi−1 − η∇F (pppi−1). We then define

A(uuu0) = (ppptthres ,uuu0), hence A1(uuu0) = ppptthres ,A2(uuu0) = uuu0.
Thus

toracle(uuu0) = {
tthres ∶ ∥∇F (uuu0)∥ ≤ gthres

1 ∶ ∥∇F (uuu0)∥ > gthres.

This is identical to Algorithm 1, and highlights why toracle, δ,∆ need to depend on uuu0.

3. In Claim 2, we establish that if F satisfies Assumption 1.2, then A is a decrease
procedure for all uuu0 ∈ LF,F (www0) for suitable algorithm parameters. Our result for
Perturbed GD, Theorem 3.4, then follows by Theorem 2.1.

Restarted SGD: This algorithm, formally written in Algorithm 2, Section E, works as follows.
Take B = Θ̃(ε0.5), K0 = Θ̃(ε−2). Consider an anchor point uuu, first taken to be the initializationwww0.
The algorithm runs SGD until its iterates first escape the ball B(uuu,B), tracking at most K0 iterations.

• If an escape occurs within K0 iterations, letting uuu′ be the first iterate that escaped B(uuu,B),
the algorithm sets uuu′ to be the anchor point and runs the same procedure.

• If these K0 iterates do not escape within K0 iterations, return their average.

We cover Restarted SGD in our framework as follows.

1. For ε > 0, let S = {www ∶ ∥∇F (www)∥ ≤ ε,∇2F (www) ⪰ −√εIII}, the set of SOSPs.

2. For all uuu0 ∈ Rd, let ppp0 = uuu0. We define a sequence (pppi)0≤i≤K0 via pppi = pppi−1 −
η(∇f(pppi−1;ζζζi) + σ̃Λi), where ∇f(⋅; ⋅) is our stochastic gradient oracle, the ζζζi are i.i.d.
minibatch samples, the Λi ∼ B(0⃗00,1) are i.i.d., and σ̃ is a parameter governing the noise
level. Note this sequence can be equivalently defined by repeatedly composing the function

6



uuu → uuu − η(∇f(uuu;ζζζ) + σ̃Λ). If it exists, let i,1 ≤ i ≤ K0 be the minimal index such that
∥pppi − ppp0∥ > B. Otherwise let i =K0. In either case, we define

A(uuu0) = (pppi,
1

i

i−1
∑
t=0
pppt), hence A1(uuu0) = pppi,A2(uuu0) =

1

i

i−1
∑
t=0
pppt.

We let toracle(uuu0) =K0.3 This is clearly identical to Algorithm 2.

3. In Claim 7, we establish that if F satisfies Assumption 1.2 and ∇f(⋅; ⋅) satisfies Assump-
tion 3.1 and Assumption 3.2, then A is a decrease procedure for all uuu0 ∈ LF,F (www0) for
suitable algorithm parameters. Our result for Restarted GD, Theorem 3.5, then follows by
Theorem 2.1.

Theorem 2.1 (General Framework). Consider a given initialization www0 of A and a desired set S.
Define a sequence (wwwt)t≥0 recursively by wwwt+1 = A1(wwwt). Suppose that for all uuu0 ∈ LF,F (www0), A
forms a (S, toracle(uuu0),∆(uuu0), δ(uuu0),uuu0)-decrease procedure. Define ∆ = infuuu∈LF,F (www0)

∆(uuu)
toracle(uuu) .

Then with probability at least

1 − sup
uuu∈LF,F (www0)

δ(uuu) ⋅ sup
uuu∈LF,F (www0)

{F (www0)
∆(uuu) }, upon making N = F (www0)

∆
+ sup
uuu∈LF,F (www0)

toracle(uuu)

oracle calls, there exists wwwt ∈ (wwwt)t≥0 such that A2(wwwt) ∩ S ≠ {}. I.e. for some wwwt, A2(wwwt) will
output a sequence of candidate vectors, one of which is in S. Furthermore, if the output of A2 has
length at most S, then the number of candidate vectors outputted is at most S ⋅supuuu∈LF,F (www0)

{F (www0)
∆(uuu) }.

Our full proof is in Section B.4 The proof formalizes the main idea from Subsection 2.1, by ‘chaining
together’ the decrease per iterate in LF,F (www0). Then as F is lower bounded, 1) in Definition 2.2
cannot occur too many times, so 2) must occur at some point.

Remark 2. To verify A is a decrease procedure in LF,F (www0), we can systematically port over
analyses in the literature. As discussed in Subsection 2.1, uuu0 being in LF,F (www0) allows us to show
the algorithm is ‘local’, crucially giving us quantitative control over the relevant derivatives. We view
this as a core strength of our work; our framework allows us to systematically extend results from the
smooth setting to generalizations of smoothness.

3 Convergence Results
Here we systematically obtain our convergence results for the algorithms listed in Subsection 2.3,
by formally showing that they are decrease procedures. Our main results are Theorem 3.4,
Theorem 3.5: that under Assumption 1.2, variants of GD/SGD can find SOSPs. We note our
dependence on ε, d for Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.5 match lower
bounds for smooth functions (Carmon et al., 2020, 2021; Arjevani et al., 2020), and hence are optimal
in this setting too.5 We present examples and implications of our results in Subsection 3.6.

Remark 3 (Dependence on Initialization). In our results, the step size η here depends only on
ρ1(F (www0)), a fixed value depending only on initialization. Moreover, the expressions on η depending
on ρ1(F (www0)) in our results and proofs to follow are only an upper bound for working step sizes.
We do not need to know these exact values. Therefore, all that is needed is an upper bound on fixed
quantities such as ρ1(F (www0)); hence a working step size η for our algorithms in practice and theory
can be found using cross validation or binary search.

Letting η(www0) be an upper bound on the step size η needed to guarantee convergence, we note by
searching over log(η(www0)) with binary search, we will find an η with a constant factor 2 of η(www0).
This log factor will be logarithmic in ε, d, and will only change the claimed iteration complexity by a
universal constant factor. The latter is because the amount of decrease in the definition of Decrease
Procedure will in turn only change by a universal constant multiple.

3Defining i as above, note that we can compute A(uuu0) using i rather than K0 oracle calls, but this change
does not affect runtime beyond constant factors.

4The extra second term in the sum defining N occurs as toracle,∆, δ have uuu0-dependence.
5Dependence on ε in Theorem 3.3 and on ε, d in Theorem 3.5 are tight up to log factors.

7



Remark 4 (On Adaptivity). Our results hold for non-adaptive versions of GD/SGD and their variants.
That said, one can interpret cross validation or binary search over η as adaptive algorithms in their
own right. As mentioned above, it is relatively straightforward to obtain analogous results to our
current ones for cross validation or binary search. In the learning from data setting, one can make the
cross validation result formal using classic techniques.

3.1 Gradient Descent
Theorem 3.1 (GD for FOSP). Suppose F satisfies Assumption 1.1. Run GD initialized atwww0, with
step size η = 1

L1(www0) where L1(www0) is defined in (4). Then letting

T = 2F (www0)L1(www0)
ε2

, within T + 1 oracle calls to ∇F (⋅),

GD will output T candidate vectors (ppp1, . . . ,pppT ), one of which satisfies ∥∇F (pppt)∥ ≤ ε.
We prove Theorem 3.1 here to show our strategy’s simplicity. The following Lemmas, proved in
Subsection A.3, help show GD is ‘local’ forwww ∈ LF,F (www0).

Corollary 1. For F satisfying Assumption 1.1, we have ∥∇F (www)∥ ≤ ρ0(F (www)), where ρ0 ∶ R≥0 →
R≥0 is a non-decreasing function given by ρ0(x) = ρ1(x)

√
2θ(x), where θ(x) = ∫

x
0

1
ρ1(v)dv.

Lemma 3.1. Under Assumption 1.1, for xxx,yyy with ∥yyy −xxx∥ ≤ 1
ρ0(F (xxx)+1) , F (yyy) − F (xxx) ≤ 1.

Combining the above with Assumption 1.1 immediately gives:

Lemma 3.2. Suppose F satisfies Assumption 1.1. Defining ρ0 as in Corollary 1, let

L1(www0) =max{1, ρ0(F (www0) + 1), ρ0(F (www0))ρ0(F (www0) + 1), ρ1(F (www0) + 1)}. (4)

Then for allwww ∈ LF,F (www0), ∥∇2F (uuu)∥
op
≤ L1(www0) for all uuu ∈ B(www,ρ0(F (www0) + 1)−1).

Proof of Theorem 3.1. Use Theorem 2.1 with S = {www ∶ ∥∇F (www)∥ ≤ ε}, defining A as in
Subsection 2.3. Upon applying Theorem 2.1, the following Claim directly proves Theorem 3.1:

Claim 1. For any uuu0 in LF,F (www0), A is a (S,1, ε2

2L1(www0) ,0,uuu0)-decrease procedure.

To prove Claim 1, note for uuu0 ∈ S, by definition of A2 that A2(uuu0) = (uuu0) ∈ S. Now if uuu0 /∈ S (i.e.
∥∇F (uuu0)∥ > ε), consider uuu1 = A1(uuu0) = uuu0 − η∇F (uuu0). By Corollary 1 and as F (uuu0) ≤ F (www0),
∥∇F (uuu0)∥ ≤ ρ0(F (uuu0)) ≤ ρ0(F (www0)), so by choice of η,

∥uuu1 −uuu0∥ = η∥∇F (uuu0)∥ ≤ ηρ0(F (www0)) ≤ ρ0(F (www0) + 1)−1.

By Lemma 3.2, for all ppp in the line segment uuu0uuu1, ∥∇2F (ppp)∥
op
≤ L1(www0). By Lemma A.1, which

only depends on the smoothness constant in the segment between the two iterates (see Subsection A.1),

F (uuu1) ≤ F (uuu0) − η∥∇F (uuu0)∥2 + L1(www0)η2
2

⋅ ∥∇F (uuu0)∥2 < F (uuu0) − ε2

2L1(www0) ,

as ∥∇F (uuu0)∥ > ε and by our choice of η. This proves Claim 1, completing the proof.

Note it is critical here that uuu0 is in the F (www0)-sublevel set. Also, to satisfy Corollary 1, ρ0(x) just
needs to be a non-decreasing pointwise upper bound of ρ1(x)

√
2θ(x). For example when F is

(L0, L1)-smooth, we show in Proposition A.2 that we can take ρ0(x) = 2L1/2
0 x1/2 + 5L2

1L
−1/2
0 x3/2.

3.2 Adaptive Gradient Descent
Our proof and framework readily adapt to Adaptive GD, as discussed Subsection 2.3. It is even easier
as Adaptive GD is automatically ‘local’ via gradient clipping. Our proof is in Subsection C.1.

Theorem 3.2 (GD for FOSP). Suppose F satisfies Assumption 1.1. Run Adaptive GD initialized atwww0,
with adaptive step size ηwwwt =min{ 1

L′1(www0) ,
1

ρ0(F (www0)+1)∥∇F (wwwt)∥} where L′1(www0) = ρ1(F (www0) + 1).
Let T = 2F (www0)

min{ L′
1
(www0)

ρ0(F (www0)+1)2
, ε2

L′
1
(www0)

}
. Within T + 1 oracle calls to ∇F (⋅), Adaptive GD will output T

candidate vectors (ppp1, . . . ,pppT ), one of which satisfies ∥∇F (pppt)∥ ≤ ε.

8



3.3 Stochastic Gradient Descent
We make the following assumption on the stochastic gradient oracle:

Assumption 3.1. The stochastic gradient oracle ∇f(⋅; ⋅) is unbiased (i.e. Eζζζ[∇f(⋅;ζζζ)] = ∇F (⋅)),
and for a non-decreasing function σ ∶ R+ ↦ R+ and allwww, ζζζ, ∥∇f(www;ζζζ) − ∇F (www)∥2 ≤ σ(F (www))2.

In many problems of interest in ML, noise scales with function value (Wojtowytsch, 2023, 2024);
Assumption 3.1 captures this setting. Note we do not assume a global bound on ∥∇F ∥ or F , thus noise
is unbounded. We show in Remark 7 that one can extend Theorem 3.3 to when ∥∇f(www;ζζζ) − ∇F (www)∥
is sub-Gaussian with parameter σ(F (www)) with a longer technical argument. We also note that
bounding L2 gradient error in terms of function value has been studied – denoted by the expected
smoothness assumption – in Gower et al. (2019, 2021).

Theorem 3.3 (SGD for FOSP). Suppose F satisfies Assumption 1.1 and that the stochastic gradient
oracle ∇f(⋅; ⋅) satisfies Assumption 3.1. For any δ ∈ (0,1), run SGD initialized at www0, for a given
fixed step size η ≤ Õ(ε2) depending on ε, δ, and F (www0). Then with probability at least 1 − δ, within

T = Õ( 1
ε4
⋅ polylog(1/ε,1/δ)) oracle calls to ∇f(⋅; ⋅),

SGD will output T candidate vectorswww, one of which satisfies ∥∇F (www)∥ ≤ ε.

Here Õ(⋅) hides additional F (www0)-dependence. Our full proof is in Subsection C.2. As discussed
in Subsection 2.3, the idea is similar to the proof of Theorem 3.1, except we now establish high-
probability decrease over blocks of consecutive iterates using concentration inequalities.

3.4 Perturbed Gradient Descent
Theorem 3.4 (Perturbed GD for SOSP). Suppose F satisfies Assumption 1.2. For any δ ∈ (0,1), run
Perturbed GD (Algorithm 1, from Jin et al. (2017)) initialized atwww0, with appropriate step size η and
other parameters depending on ε, δ, d, and F (www0). Then with probability at least 1 − δ, within

T = O( 1
ε2

log4( d
εδ
)) oracle calls to ∇F (⋅),

Perturbed GD outputs T candidateswww, one of which satisfies ∥∇F (www)∥ ≤ ε,∇2F (www) ⪰ −√εIII .

Remark 5. Here we findwww with∇2F (www) ⪰ −√εIII , which is most sensible without Lipschitz Hessian.

For Perturbed GD here in Subsection 3.4, asymptotic notation hides universal constants and depen-
dence on F (www0). The full proof is in Section D; here we give the main ideas. DefineA, toracle(uuu0),S
as in Subsection 2.3 for Perturbed GD. Consider gthres = Θ̃(ε), fthres = Θ̃(ε1.5) defined in Algorithm 1.
Let

∆(uuu0) = {
fthres ∶ ∥∇F (uuu0)∥ ≤ gthres
η
2
⋅ g2thres ∶ ∥∇F (uuu0)∥ > gthres.

The central Claim is as follows, from which Theorem 3.4 follows directly via Theorem 2.1:

Claim 2. For all uuu0 ∈ LF,F (www0), A is a (S, toracle(uuu0),∆(uuu0), dL1(www0)√
ε

e−χ,uuu0)-decrease procedure,

where χ = Θ(log( d
ε2.5δ
)) and L1(www0) is defined in (4).

Perturbed GD is a decrease procedure only in LF,F (www0) where we have quantitative control on F and
its derivatives – using our framework is crucial. To prove Claim 2, we note the analysis of Perturbed
GD in Jin et al. (2017) only considers ‘local’ points close to the current iterate the algorithm. Thus
we can apply similar analysis, using Lemma 3.1, Lemma 3.2, and the similar Lemma D.1 to give
enough control over the derivatives of F between these ‘local’ points close to uuu0 ∈ LF,F (www0).

3.5 Restarted Stochastic Gradient Descent
In addition to Assumption 3.1, we will make the following mild assumption on the error of the
stochastic gradient oracle, a relaxation of Assumption 1 of Fang et al. (2019).

Assumption 3.2. For every www,ζζζ, ∥∇2f(www;ζζζ)∥
op
≤ ρ3(∥∇f(www;ζζζ)∥, F (www)), where ρ3(⋅, ⋅) ∶ R≥0 ×

R≥0 → R≥0 is non-decreasing in both arguments.

9



Note if f(⋅;ζζζ) satisfies the regularity assumptions of Zhang et al. (2019) or Li et al. (2023a) for every
ζζζ, then Assumption 3.2 is satisfied. However, Assumption 3.2 goes well beyond these assumptions,
allowing for the operator norm of ∇2f(⋅;ζζζ) to also diverge in F (www).6

Theorem 3.5 (Restarted SGD for SOSP). Suppose F satisfies Assumption 1.2 and ∇f(⋅; ⋅) satisfies
Assumption 3.1 and Assumption 3.2. For any δ ∈ (0,1), run Restarted SGD (Algorithm 2, the same
algorithm from Fang et al. (2019)) initialized atwww0, with appropriate step size η and other parameters
depending on ε, δ, d, and F (www0). Then with probability at least 1 − δ, upon making

T = Õ( 1

ε3.5
) oracle calls to ∇f(⋅; ⋅),

Restarted SGD outputs T candidateswww, one of which satisfies ∥∇F (www)∥ ≤ ε,∇2F (www) ⪰ −√εIII .

Here Õ(⋅) only hides constant factors, F (www0)-dependent constants, and logarithmic factors in
d,1/ε,1/δ. We specify the exact parameters and detail the proof in Section E. The proof follows our
framework instantiated for Restarted GD as in Subsection 2.3. The crux again is establishing that the
algorithm is a decrease procedure in the F (www0)-sublevel set, done in Claim 7.

3.6 Examples
Several interesting problems in ML and optimization, such as Phase Retrieval and Matrix PCA, can
be globally optimized by finding a SOSP (but not a FOSP), and satisfy Assumption 1.2. See Section F
for these verifications. Thus Theorem 3.4 and Theorem 3.5 immediately imply we can solve the
following problems, with no customized analysis required.

Phase Retrieval: We reconstruct a hidden vector www∗ ∈ Rd with ∥www∗∥ = 1 using phaseless
observations S = {(aaaj , yj)} where yj = ⟨aaaj ,www∗⟩2, aaaj ∼ N(0⃗00, IIId). The population loss is

Fpr(www) = Eaaa∼N(0⃗00,IIId)[(⟨aaa,www⟩
2 − ⟨aaa,www∗⟩2)

2
].

Matrix PCA: Given a d × d symmetric positive definite (PD) matrix MMM , we aim to find www ∈ Rd
(the first principal component) minimizing Fpca(www) = 1

2
∥wwwwww⊺ −MMM∥2F .

3.7 Practical Implications and Simulations
Our results show under generalizations of smoothness, unlike with Lipschitz gradient/Hessian, the
larger the loss is at initialization (larger F (www0)) and larger self-bounding functions ρ1(⋅) shrink the
‘window’ for choosing a working η. Specifically, with larger loss at initialization, the smaller the
largest working step size is, in contrast to optimizing smooth functions. This implies in practice, for
losses with non-Lipschitz gradient/Hessian, one should tune η based on suboptimality at initialization.

In Section G, we validate this finding through simulations with GD and SGD on several natural smooth
and generalized smooth functions, namely F (www) = ∥AAAwww∥p for p = 2,3,4,5,6. Our simulations show
the above theoretical conclusions match behavior in practice, validating the practical implications of
our theoretical results on which step sizes successfully optimize generalized smooth functions.

4 Conclusion
We present a systematic framework to analyze the convergence of first order methods to FOSPs and
SOSPs under generalizations of smoothness, extending key results in finding SOSPs via first-order
methods to this setting. Our work elucidates fundamental behavior of first-order optimization al-
gorithms, showing that ‘chaining together high-probability decrease’ enables their success under
generalizations of smoothness. Our framework applies for many other algorithms (e.g. Langevin
Dynamics) and sets of interest S (e.g. higher order stationary points, or minima with good gener-
alization properties). It can also inform the design of new optimization algorithms, by designing
procedures which are decrease procedures. These promising directions are left for future research.

5 Acknowledgments
We thank Dylan J. Foster and Ayush Sekhari for discussions, and Anthony Bao, Fan Chen, and Albert
Gong for useful suggestions on the presentation of our manuscript.

6While the above assumes that f(⋅;ζζζ) is twice differentiable, it can be easily phrased in terms of ∇f(⋅;ζζζ).

10



References
Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Ayush Sekhari, and Karthik Sridharan.

Second-Order Information in Non-Convex Stochastic Optimization: Power and Limitations. In
Conference on Learning Theory, pages 242–299. PMLR, 2020.

Peter Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin, and Ambuj Tewari.
High-Probability Regret Bounds for Bandit Online Linear Optimization. In Proceedings of the
21st Annual Conference on Learning Theory, pages 335–342. Omnipress, 2008.

Sébastien Bubeck et al. Convex Optimization: Algorithms and Complexity. Foundations and Trends
in Machine Learning, 8(3-4):231–357, 2015.

Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase Retrieval via Wirtinger Flow:
Theory and Algorithms. IEEE Transactions on Information Theory, 61(4):1985–2007, 2015.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower Bounds for Finding Stationary
Points I. Mathematical Programming, 184(1):71–120, 2020.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower Bounds for Finding Stationary
Points II: First-Order Methods. Mathematical Programming, 185(1):315–355, 2021.

August Y Chen and Karthik Sridharan. Optimization, Isoperimetric inequalities, and Sampling via
Lyapunov Potentials. Conference on Learning Theory, pages 1094–1153, 2025.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust Region Methods. SIAM, 2000.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to Unbounded Smoothness of Generalized SignSGD. Advances in Neural Information Processing
Systems, 35:9955–9968, 2022.

Christopher M De Sa, Satyen Kale, Jason D Lee, Ayush Sekhari, and Karthik Sridharan. From
Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent. Advances in
Neural Information Processing Systems, 35:30963–30976, 2022.

Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang. Spider: Near-Optimal Non-Convex
Optimization via Stochastic Path-Integrated Differential Estimator. Advances in Neural Information
Processing Systems, 31, 2018.

Cong Fang, Zhouchen Lin, and Tong Zhang. Sharp Analysis for Nonconvex SGD Escaping from
Saddle Points. In Conference on Learning Theory, pages 1192–1234. PMLR, 2019.

Gerald B Folland. Real analysis: modern techniques and their applications, volume 40. John Wiley
& Sons, 1999.

Dylan J Foster, Ayush Sekhari, Ohad Shamir, Nathan Srebro, Karthik Sridharan, and Blake Wood-
worth. The complexity of making the gradient small in stochastic convex optimization. In
Conference on Learning Theory, pages 1319–1345. PMLR, 2019.

Ofir Gaash, Kfir Yehuda Levy, and Yair Carmon. Convergence of Clipped SGD on Convex (l_0, l_1)-
Smooth Functions. arXiv preprint arXiv:2502.16492, 2025.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from Saddle Points—Online Stochastic
Gradient for Tensor Decomposition. In Conference on Learning Theory, pages 797–842. PMLR,
2015.

Rong Ge, Chi Jin, and Yi Zheng. No Spurious Local Minima in Nonconvex Low Rank Problems: A
Unified Geometric Analysis. In International Conference on Machine Learning, pages 1233–1242.
PMLR, 2017.

Saeed Ghadimi and Guanghui Lan. Stochastic First-And Zeroth-Order Methods for Nonconvex
Stochastic Programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Robert M Gower, Peter Richtárik, and Francis Bach. Stochastic quasi-gradient methods: variance
reduction via Jacobian sketching. Mathematical Programming, 188(1):135–192, 2021.

11



Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General Analysis and Improved Rates. In International Conference on Machine
Learning, pages 5200–5209. PMLR, 2019.

Yusu Hong and Junhong Lin. On Convergence of Adam for Stochastic Optimization under Relaxed
Assumptions. Advances in Neural Information Processing Systems, 2024.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to Escape
Saddle Points Efficiently. In International Conference on Machine Learning, pages 1724–1732.
PMLR, 2017.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On Nonconvex
Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points. Journal of the
ACM, 68(2):1–29, 2021a.

Jikai Jin, Bohang Zhang, Haiyang Wang, and Liwei Wang. Non-Convex Distributionally Robust
Optimization: Non-asymptotic Analysis. Advances in Neural Information Processing Systems, 34:
2771–2782, 2021b.

Rie Johnson and Tong Zhang. Accelerating Stochastic Gradient Descent using Predictive Variance
Reduction. Advances in Neural Information Processing Systems, 26, 2013.

Olav Kallenberg and Rafal Sztencel. Some dimension-free features of vector-valued martingales.
Probability Theory and Related Fields, 88(2):215–247, 1991.

Guy Kornowski, Swati Padmanabhan, and Ohad Shamir. On the Hardness of Meaningful Local
Guarantees in Nonsmooth Nonconvex Optimization. OPT 2024: Optimization for Machine
Learning, 2024.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient Descent Only
Converges to Minimizers. In Conference on Learning Theory, pages 1246–1257. PMLR, 2016.

Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and Ben-
jamin Recht. First-order Methods Almost Always Avoid Strict Saddle Points. Mathematical
Programming, 176(1):311–337, 2019.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and Non-convex
Optimization Under Generalized Smoothness. Advances in Neural Information Processing Systems,
36, 2023a.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of Adam Under Relaxed Assump-
tions. Advances in Neural Information Processing Systems, 36:52166–52196, 2023b.

Yurii Nesterov and Boris T Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

Iosif Pinelis. Optimum bounds for the distributions of martingales in Banach spaces. The Annals of
Probability, pages 1679–1706, 1994.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making Gradient Descent Optimal for
Strongly Convex Stochastic Optimization. International Conference on Machine Learning, 2012.

Amirhossein Reisizadeh, Haochuan Li, Subhro Das, and Ali Jadbabaie. Variance-reduced Clipping
for Non-convex Optimization. arXiv preprint arXiv:2303.00883, 2023.

Ju Sun, Qing Qu, and John Wright. A Geometric Analysis of Phase Retrieval. Foundations of
Computational Mathematics, 18:1131–1198, 2018.

Bohan Wang, Yushun Zhang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, Tie-Yan Liu,
Zhi-Quan Luo, and Wei Chen. Provable Adaptivity of Adam under Non-uniform Smoothness. In
Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 2960–2969, 2024.

Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type. Part I:
Discrete time analysis. Journal of Nonlinear Science, 33(3):45, 2023.

12



Stephan Wojtowytsch. Stochastic gradient descent with noise of machine learning type. Part II:
Continuous time analysis. Journal of Nonlinear Science, 34(1):16, 2024.

Chenghan Xie, Chenxi Li, Chuwen Zhang, Qi Deng, Dongdong Ge, and Yinyu Ye. Trust Region
Methods For Nonconvex Stochastic Optimization Beyond Lipschitz Smoothness. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 16049–16057, 2024.

Chenhao Yu, Yusu Hong, and Junhong Lin. Convergence Analysis of Stochastic Accelerated Gradient
Methods for Generalized Smooth Optimizations. arXiv preprint arXiv:2502.11125, 2025.

Bohang Zhang, Jikai Jin, Cong Fang, and Liwei Wang. Improved Analysis of Clipping Algorithms for
Non-convex Optimization. Advances in Neural Information Processing Systems, 33:15511–15521,
2020.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. International Conference on Learning Represen-
tations, 2019.

Tong Zhang. Learning Bounds for Kernel Regression using Effective Data Dimensionality. Neural
Computation, 17(9):2077–2098, 2005.

13



NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract and introduction clearly and accurately reflect the
paper’s contributions and scope. See the abstract and Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations and assumptions used throughout the paper. Our
assumptions are clearly stated. In the rest of the paper, we state our claims clearly and
reference the assumptions corresponding to each claim.

Guidelines:

14



• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a full set of assumptions and complete and correct proofs in the
paper. We define all assumptions, reference them throughout when used, and all proofs are
provided in either the main body or appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

15



Answer: [Yes]

Justification: We provide all details necessary to reproduce the main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code in the supplementary material. The code has sufficient
instructions to reproduce the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a full description of the training and test details of our experiments.
These are provided in the Appendix along with our experimental results; the Appendix is
the only place our experimental results are presented.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide suitable error bars and detail all the settings of our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide precise compute information for our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS code of ethics. The research conforms in every
respect to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper is a theoretical study of non-convex optimization, which can help
improve the training of non-convex models in practice. There are many societal impacts of
this, none of which we feel we need to particularly highlight here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

18

https://neurips.cc/public/EthicsGuidelines


(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all creators and/or owners of assets when used. When used,
the license and terms of use are explicitly mentioned and are properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

19



• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]

Justification: The paper does not introduce new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

20

paperswithcode.com/datasets


Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research did not involve LLMs in any
original or important way.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


Additional Notation: For a matrix MMM , λmin(MMM) denotes its minimum eigenvalue, and λr(MMM)
denotes its r-th largest eigenvalue. Thus λ1(MMM) ≥ λ2(MMM) ≥ . . .. We denote the k × k identity matrix
by IIIk. We use Bk(ppp,R) to denote the full k-dimensional l2-ball centered at ppp ∈ Rk with radius
R, including the boundary. When k is not specified explicitly, B(ppp,R) refers to the l2-ball in Rd,
following Notation. All logarithms in the following are the natural logarithm. For an event S, 1S
denotes the indicator function. In the following, the norm ∥⋅∥ of matrices and higher-order tensors
refers to the operator norm unless otherwise stated. The norm ∥⋅∥ of vectors refers to l2-Euclidean
norm.

Contents

1 Introduction 1
1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Main Idea 3
2.1 High Level Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 The Formal Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Examples Subsumed by Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Convergence Results 7
3.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Adaptive Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Perturbed Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Restarted Stochastic Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.7 Practical Implications and Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Conclusion 10

5 Acknowledgments 10

A Technical Preliminaries 23
A.1 Helpful Background Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A.2 Comparison of Assumptions with Literature . . . . . . . . . . . . . . . . . . . . . . . . 25
A.3 Proofs of Technical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B Proof of Framework 31

C First Order Convergence Proofs 33
C.1 Proofs for Adaptive GD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
C.2 Proofs for SGD for FOSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

D Perturbed GD finding Second Order Stationary Points 42
D.1 Proof using the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.2 Proving the key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
D.3 Proof of Escaping Saddles Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

E Restarted SGD finding Second Order Stationary Points 56
E.1 Notation and Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
E.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
E.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
E.4 Escaping Saddles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
E.5 Faster Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
E.6 Finding Second Order Stationary Points . . . . . . . . . . . . . . . . . . . . . . . . . . 84

F Examples 86
F.1 Phase Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
F.2 Matrix PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

22



G Simulations 90
G.1 Synthetic Simulations with GD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
G.2 Synthetic Simulations with SGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Technical Preliminaries
A.1 Helpful Background Lemmas
We will use the following classical inequalities from optimization to show we still have some notion
of control if we have local bounds on the relevant derivatives.

Lemma A.1. Suppose F is twice differentiable, and for all uuu ∈ xxxyyy (the line segment) we have
∥∇2F (uuu)∥

op
≤ L. Then, we have

F (yyy) ≤ F (xxx) + ⟨∇F (xxx),yyy −xxx⟩ + L
2
∥yyy −xxx∥2.

Proof. This follows by the proof of Lemma 3.4 in Bubeck et al. (2015). In particular, one can readily
verify that xxx + t(yyy − xxx) ∈ xxxyyy for all t ∈ [0,1]. Hence for all t ∈ [0,1] and uuu in the line segment
between xxx and xxx + t(yyy −xxx), ∥∇2F (uuu)∥

op
≤ L. Thus,

∣F (yyy) − F (xxx) − ⟨∇F (xxx),yyy −xxx⟩∣ = ∣∫
1

0
⟨∇F (xxx + t(yyy −xxx)),yyy −xxx⟩dt − ⟨∇F (xxx),yyy −xxx⟩∣

= ∣∫
1

0
⟨∇F (xxx + t(yyy −xxx)) − ∇F (xxx),yyy −xxx⟩dt∣

≤ ∣∫
1

0
Lt∥yyy −xxx∥2dt∣ = L

2
∥yyy −xxx∥2.

This gives the desired result.

Analogously, one can show the following by considering the local second-order approxima-
tion around xxx.

Lemma A.2. Suppose F is twice differentiable, and for all uuu ∈ xxxyyy (again the line segment), we have

∥∇2F (uuu) − ∇2F (xxx)∥
op
≤ L∥uuu −xxx∥.

Then,

F (yyy) ≤ F (xxx) + ⟨∇F (xxx),yyy −xxx⟩ + 1

2
(yyy −xxx)⊺∇2F (xxx)(yyy −xxx) + L

6
∥yyy −xxx∥3.

Proof. Similarly to the proof of Lemma A.1, we show this via the proof of Lemma 1 in Nesterov
and Polyak (2006). Analogously as in the proof of Lemma A.1, one can readily verify that for any
yyy′ ∈ xxxyyy, xxx + t(yyy′ −xxx) ∈ xxxyyy holds for all t ∈ [0,1]. Hence for all t ∈ [0,1], applying the condition of
this Lemma,

∥∇2F (xxx + t(yyy′ −xxx)) − ∇2F (xxx)∥
op
≤ Lt∥yyy′ −xxx∥.

Thus for any yyy′ ∈ xxxyyy, by Cauchy-Schwartz and the above, we obtain

∥∇F (yyy′) − ∇F (xxx) − ⟨∇2F (xxx),yyy′ −xxx⟩∥ = ∥∫
1

0
⟨∇2F (xxx + t(yyy′ −xxx)),yyy′ −xxx⟩dt − ⟨∇2F (xxx),yyy′ −xxx⟩∥

= ∥∫
1

0
⟨∇2F (xxx + t(yyy′ −xxx)) − ∇2F (xxx),yyy′ −xxx⟩dt∥

≤ ∣∫
1

0
Lt∥yyy′ −xxx∥2dt∣ = L

2
∥yyy′ −xxx∥2.

Applying the above relation for yyy′ = xxx + t(yyy −xxx) which is in xxxyyy for all t ∈ [0,1], we obtain

∣F (yyy) − F (xxx) − ⟨∇F (xxx),yyy −xxx⟩ − 1

2
⟨∇2F (xxx)(yyy −xxx),yyy −xxx⟩∣

= ∣∫
1

0
⟨∇F (xxx + t(yyy −xxx)) − ∇F (xxx) − t∇2F (xxx)(yyy −xxx),yyy −xxx⟩dt∣

23



= ∣∫
1

0
⟨∇F (xxx + t(yyy −xxx)) − ∇F (xxx) − ∇2F (xxx) ⋅ t(yyy −xxx),yyy −xxx⟩dt∣

≤ ∫
1

0
∥yyy −xxx∥ ⋅ L

2
∥t(yyy −xxx)∥2dt = L

6
∥yyy −xxx∥3.

This gives the desired result.

We will also use the following Lemmas.

Lemma A.3. For vectors aaa, bbb, the matrix operator norm ∥aaabbb⊺∥op ≤ ∥aaa∥∥bbb∥.
Proof. Consider any unit vector xxx. By Cauchy-Schwartz and associativity, we have

xxx⊺(aaabbb⊺)xxx ≤ ⟨xxx,aaa⟩⟨xxx,bbb⟩ ≤ ∥xxx∥2∥aaa∥∥bbb∥ = ∥aaa∥∥bbb∥.

The conclusion follows by definition of operator norm.

Lemma A.4. Consider any non-negative, continuous function g(x) such that limx→∞ g(x) = ∞ and
such that g(x) > 0 on [1,∞). Then on [1,∞), g(x) can be lower bounded by a strictly positive,
infinitely differentiable, strictly increasing function g̃(x), where g̃ has domain [1,∞).
Proof. We will explicitly construct such a g̃ in terms of g. First, since limx→∞ g(x) = ∞, for all
i ≥ 1, there exists ti ∈ [1,∞) such that g(x) ≥ i + 1 for all x ≥ ti. We furthermore can clearly assume
2 ≤ t1 < t2 < ⋯, by increasing each tN if necessary. Also let t0 = 1. Thus ⋃i≥0[ti, ti+1) forms a
disjoint union of [1,∞).
Now, let c = min(1, infx∈[1,t1] g(x)) > 0; the strict inequality here holds as t1 < ∞ and as g
is continuous. Define a sequence {bi}i≥0 by b0 = c/2, b1 = c, and bi = i for all i ≥ 2. Thus
b0 < b1 < ⋯. Furthermore, this construction of {bi}i≥0 implies for all i ≥ 0, we have g(x) ≥ bi+1 for
all x ∈ [ti, ti+1].
Now construct g̃(x) as follows. For all i ≥ 0, we let g̃(x) equal a function hi(x) defined on
[ti, ti+1] such that hi(ti) = bi, hi(ti+1) = bi+1, where we define hi as follows. We first define
h ∶ [0,1] → [0,1] such that h is infinitely differentiable, h(0) = 0, h(1) = 1, h(n)(0) = h(n)(1) = 0
for all n ≥ 1 where h(n) denotes the n-th derivative, and h′(x) > 0 for all x ∈ (0,1). To this end we
use a construction from Chen and Sridharan (2025): let

h(x) = e−
1
x2

e−
1
x2 + e−

1
1−x2

on (0,1),

and extend h to [0,1] by h(0) = 0, h(1) = 1. We justify these claims about h shortly below. Now we
let

hi(x) = (bi+1 − bi) ⋅ h(
x − ti
ti+1 − ti

) + bi for all i ≥ 0.

We now check h satisfies the claimed properties.

• In Chen and Sridharan (2025), it is argued that h maps to [0,1], h(0) = 0, h(1) = 1, and
that h is infinitely differentiable. It is also argued in Chen and Sridharan (2025), Lemma
11.5, that h′(x) (which is called p̃(x) there) is non-negative on [0,1].

• Next, we check h(n)(0) = h(n)(1) = 0 for all n ≥ 1. Via a straightforward induction

outlined in Chen and Sridharan (2025), one can check that (e− 1
x2 )

(n)
= 0, (e−

1
1−x2 )

(n)
= 0

for all n ≥ 1 (following the standard convention in analysis that 0 ⋅ ∞ = 0, see e.g. Folland
(1999)). Now let f(x) = e− 1

x2 , g(x) = e− 1
x2 + e−

1
1−x2 , thus h = f/g. Consequently

f (n)(0) = 0, f (n)(1) = 0, g(n)(0) = 0, g(n)(1) = 0 for all n ≥ 1. As g > 0 always
holds in [0,1] as shown in Chen and Sridharan (2025) and can be easily checked, we have
f = gh. A straightforward induction gives f (n) = ∑nk=0 (nk)g

(k)h(n−k) where (n
k
) is the

binomial coefficient. We thus obtain gh(n) = f (n) − ∑n−1k=0 (nk)g
(k)h(n−k). For any n ≥ 1,

24



taking x = 0,1 in this expression for h(x) and noting at least one of k,n − k ≥ 1 for
0 ≤ k ≤ n − 1 implies g(0)h(n)(0) = g(1)h(n)(1) = 0. Recalling g(x) > 0 on [0,1] proves
h(n)(0) = h(n)(1) = 0 for n ≥ 1, as requested.

• Finally, we check that h′(x) > 0 for all x ∈ (0,1). Consider any x ∈ (0,1). By a
calculation in Lemma 11.5, Chen and Sridharan (2025), we have h′(x) > 0 if and only
if q(x) = 2

x3 (e−
1
x2 + e−

1
1−x2 ) + e −1x2 ⋅ 2

x3 + e−
1

1−x2 ⋅ −2x
(1−x2)2 > 0. If x ∈ [

√
2
2
,1), directly

following the proof of Lemma 11.5 in Chen and Sridharan (2025) establishes that q(x) > 0.
Otherwise if x ∈ (0,

√
2
2
), note the strict inequality 1

x3 > x
(1−x2)2 , which in turn implies

q(x) > 0.

By the above properties of h, it follows from the Chain Rule that for all i ≥ 0, hi satisfies the following
properties:

• hi(ti) = bi, hi(ti+1) = bi+1, and hi(x) ∈ [bi, bi+1] for all x ∈ [ti, ti+1].
• hi is infinitely differentiable.

• h′i(x) > 0 for x ∈ (ti, ti+1), and for all x ∈ [ti, ti+1], h′i(x) ≥ 0.

• For all n ≥ 1, h(n)i (ti) = h
(n)
i (ti+1) = 0, where again h(n)i denotes the n-th derivative.

Finally, we check that g̃ has the desired properties:

• g̃ is well-defined: This follows because for all i ≥ 1, we have hi(ti) = hi−1(ti) = bi.
• g̃ is strictly positive: This follows because hi(x) ∈ [bi, bi+1] ⊆ (0,∞) for all x ∈ [ti, ti+1].
• g̃ is continuous, and moreover is infinitely differentiable: Continuity of g̃ follows because

each hi is infinitely differentiable, and hence continuous, combined with the fact that for all
i ≥ 1, we have hi(ti) = hi−1(ti) = bi. Infinite differentiability of g̃ follows because each hi
is infinitely differentiable, and because for all n ≥ 1 and all i ≥ 0, h(n)i (ti) = h

(n)
i (ti+1) = 0.

• g̃(x) ≤ g(x) always holds for x ∈ [1,∞): Recall for all i ≥ 0, we have g(x) ≥ bi+1 for all
x ∈ [ti, ti+1]. Since we have g̃(x) = hi(x) ≤ bi+1 for all x ∈ [ti, ti+1], it follows that for
all x ∈ [ti, ti+1], g̃(x) ≤ g(x). The result follows upon recalling that ⋃i≥0[ti, ti+1) forms a
disjoint union of [1,∞).

• g̃ is strictly increasing: Consider any x1 < x2, x1, x2 ∈ [1,∞). Since x1 < x2, and
recalling that ⋃i≥0[ti, ti+1) forms a disjoint union of [1,∞), it follows that for some j ≥ 0,
(x1, x2) ∩ (tj , tj+1) ≠ ∅. This intersection is open, and therefore contains some open
interval (a, b) ⊆ (tj , tj+1). Let c′ = infx∈[ 2a+b3 , a+2b3 ] h

′
j(x) > 0, where the strict inequality

follows as [ 2a+b
3
, a+2b

3
] ⊆ (tj , tj+1), and by continuity of h′j on the compact [ 2a+b

3
, a+2b

3
].

Since we have h′i(x) ≥ 0 for all x ∈ [ti, ti+1] for all i ≥ 0, we obtain

g̃(x2) ≥ 0 + c′ ⋅
b − a
3
+ g̃(x1) > g̃(x1).

This proves that g̃ is strictly increasing as claimed.

Thus, we have constructed a function g̃ that satisfies the requested properties.

A.2 Comparison of Assumptions with Literature
Here, we establish that our regularity conditions are more general than those of literature.

Proposition A.1. If ∥∇2F (www)∥ ≤ l(∇F (www)) for non-decreasing, differentiable sub-quadratic l

(where sub-quadratic means that limx→∞
l(x)
x2 = 0), then our Assumption 1.1 is satisfied for some

non-decreasing ρ1(x). In this generality, ρ1(x) depends on l(x), and can be found explicitly from
the construction from Lemma A.4.

Furthermore, suppose F is (L0, L1)-smooth, that ∥∇2F (www)∥ ≤ L0 + L1∥∇F (www)∥ for L0, L1 ≥ 0.
Then Assumption 1.1 is satisfied with ρ1(x) = 3

2
L0 + 4L2

1x.

25



Proof. Essentially this follows from Lemma 3.5, Li et al. (2023a), where it is shown that these
assumptions of Zhang et al. (2019), Li et al. (2023a) imply an upper bound on ∥∇F (www)∥ in terms
of an increasing function of F (www); combining with the assumptions of Zhang et al. (2019); Li et al.
(2023a) implies that ∥∇2F (www)∥ is upper bounded in terms of an increasing function of F (www).

Proof for general l: Consider anywww ∈ Rd. By Lemma 3.5 of Li et al. (2023a),

∥∇F (www)∥2 ≤ 2ℓ(2∥∇F (www)∥) ⋅ F (www).
This implies

4∥∇F (www)∥2

ℓ(2∥∇F (www)∥) ≤ 8F (w
ww).

Let 2∥∇F (www)∥ = t. Consider when t ≥ 2. Then the left hand side equals t2

l(t) . Note that WLOG,

we can add 1 to l(⋅) so that l(t) ≥ 1 for t ≥ 1. Thus t2

l(t) is continuous on [1,∞), and furthermore

is positive on this interval. Now note limx→∞
x2

l(x) = ∞ by the condition (including after adding 1

WLOG), and thus by Lemma A.4, x2

l(x) is lower bounded by some strictly increasing function g̃(x)
on [2,∞). Therefore, g̃ is invertible and so we have

g̃(2∥∇F (www)∥) ≤ 4∥∇F (www)∥2

ℓ(2∥∇F (www)∥) ≤ 8F (w
ww) Ô⇒ ∥∇F (www)∥ ≤ 1

2
g̃−1(8F (www)).

Then by the assumptions of Li et al. (2023b), it holds that

∥∇2F (www)∥ ≤ l(1
2
g̃−1(8F (www))).

Else when t < 2, we have ∥∇F (www)∥ ≤ 1, and by the assumptions of Li et al. (2023b), we have
∥∇2F (www)∥ ≤ l(1).
Thus the assumptions of Li et al. (2023b) imply that the following always holds:

∥∇2F (www)∥ ≤ l(1
2
g̃−1(8F (www))) + l(1).

We thus can take ρ1(x) = l( 12 g̃
−1(8x))+ l(1), which is clearly non-negative. It remains to check that

l( 1
2
g̃−1(8x)) is non-decreasing. As l is non-decreasing, as compositions of non-decreasing functions

are non-decreasing, it remains to check that 1
2
g̃−1(8x) is non-decreasing. Since g̃ is non-decreasing,

g̃−1 is non-decreasing as well, and this completes the proof.

Proof for (L0, L1)-smoothness: First, when L1 = 0 the result is immediate, so from here on out
suppose L1 > 0. By Lemma 3.5 from Li et al. (2023a) we have for allwww ∈ Rd,

∥∇F (www)∥2 ≤ 2ℓ(2∥∇F (www)∥) ⋅ F (www),
where ℓ(x) = L0 +L1(x) for L0, L1 ≥ 0. We thus obtain:

∥∇F (www)∥2 ≤ 2(L0 + 2L1∥∇F (www)∥) ⋅ F (www)
= 2L0F (www) + 4L1∥∇F (www)∥F (www).

Rewriting this inequality, we get

∥∇F (www)∥2 − 4L1∥∇F (www)∥F (www) − 2L0F (www) ≤ 0.

Consider the quadratic x2−4L1F (www)⋅x−2L0F (www). The coefficient on the quadratic term is positive,
and the quadratic is non-negative when x = ∥∇F (www)∥. Thus ∥∇F (www)∥ must be no larger than the
largest root of x2 − 4L1F (www) ⋅ x − 2L0F (www), and we obtain

∥∇F (www)∥ ≤ 1

2
(4L1F (www) +

√
16L2

1F (www)2 + 8L0F (www))

≤ 2L1F (www) +
√
(2L1F (www))2 + 2L0F (www) (5)

26



If F (www) = 0, the above immediately implies ∥∇F (www)∥ = 0. Otherwise, recall by shifting (in Notation)
that F (www) ≥ 0 always holds, so suppose F (www) > 0. Recall also from earlier that it suffices to show
the result for L1 > 0. Applying the inequality

√
a2 + b ≤ a + b

2a
, valid for all a > 0, b ≥ 0 with

a = 2L1F (www) > 0, b = 2L0F (www) ≥ 0, we obtain
√
(2L1F (www))2 + 2L0F (www) ≤ 2L1F (www) +

L0

2L1
.

Substituting into (5) gives that for allwww with F (www) > 0, we have

∥∇F (www)∥ ≤ L0

2L1
+ 4L1F (www). (6)

By the argument earlier, if F (www) = 0, the above bound (6) holds too. Thus (6) holds for allwww ∈ Rd.
Now inserting (6) into the definition of (L0, L1)-smoothness gives

∥∇2F (www)∥ ≤ L0 +L1( L0

2L1
+ 4L1F (www)) = 3

2
L0 + 4L2

1F (www).

Hence Assumption 1.1 is satisfied with the increasing function ρ1(x) = 3
2
L0 + 4L2

1x.

Proposition A.2. When F is (L0, L1)-smooth, letting ρ0(x) = 2L
1/2
0 x1/2 + 5L2

1

L
1/2
0

x3/2, we have

∥∇F (www)∥ ≤ ρ0(F (www)).
Proof. By Proposition A.1, we can take ρ1(x) = 3

2
L0 +4L2

1x in this case. As noted in Subsection 3.1,

we need to show that 2L1/2
0 x1/2 + 5L2

1

L
1/2
0

x3/2 is a pointwise upper bound on

ρ1(x)
√
2θ(x) where θ(x) = ∫

x

0

1

ρ1(v)
dv.

To this end note for each x ≥ 0 that θ(x) ≤ x ⋅ 1
3
2L0
= 2

3L0
x, thus for each x ≥ 0,

ρ1(x)
√
2θ(x) ≤ (3

2
L0 + 4L2

1x)
√

4

3L0
x ≤ 2L1/2

0 x1/2 + 5L2
1

L
1/2
0

x3/2.

This completes the proof.

Example 1. We now provide a natural example of a univariate function that satisfies our regularity
assumptions but does not necessarily satisfy those of Li et al. (2023b) for non-convex optimization.
Namely, consider the univariate function:

F (x) = 1 − log(cos(1 + x)),0 ≤ x < π
2
− 1.

The argument here is in radians. The first derivative is:

F ′(x) = tan(1 + x).
The second derivative is:

F ′′(x) = sec2(1 + x).
Thus as tan2(θ) + 1 = sec2(θ), F satisfies the ODE:

F ′′(x) = F ′(x)2 + 1. (7)

Suppose that F satisfied the conditions of Li et al. (2023b) for non-convex optimization on the
relevant domain, thus for all 0 ≤ x < π

2
− 1, we would have

F ′′(x) ≤ ℓ(F ′(x)),
for some sub-quadratic l(⋅).

27



Then by (7) and noting F ′(x) > 0 on the domain, we obtain for all 0 ≤ x < π
2
− 1

1 ≤ 1 + 1

F ′(x)2 =
F ′(x)2 + 1
F ′(x)2 = F

′′(x)
F ′(x)2 ≤

ℓ(F ′(x))
F ′(x)2 .

As l is subquadratic, there exists x′ < ∞ such that l(x)/x2 < 1 for all x > x′. Noting F ′(x) → ∞ for
x→ π

2
− 1 yields a contradiction.

Consequently F does not satisfy the conditions of Li et al. (2023b) for non-convex optimization.
However, we show that F satisfies Assumption 1.1. Rewriting F ′′(x) in terms of F (x), note that:

cos(1 + x) = e1−F (x),
and thus:

F ′′(x) = sec2(1 + x) = 1

cos2(1 + x) = e
2(F (x)−1).

Hence we can define the increasing, non-negative function

ρ1(t) = e2(t−1),
which satisfies:

F ′′(x) ≤ ρ1(F (x)).
Thus F satisfies Assumption 1.1 (in the relevant domain).

We now discuss Assumption 1.2.

Example 2. First, we show that Assumption 1.2 captures several univariate functions of interest.
Notice also if F (www) is a sum of functions satisfying Assumption 1.2, Triangle Inequality implies that
F (www) also satisfies Assumption 1.2.

• Polynomials: Consider whenever F (x) is a linear combination of monomials xp for p ≥ 1,
combined with a constant term. We claim F (x) satisfies Assumption 1.2. By linearity of
derivative and Triangle Inequality, it suffices to prove this whenever F (x) = xp for p ≥ 1 as
the constant term vanishes, and then add up all the non-decreasing, non-negative functions
on the right hand side to form ρ1 and ρ2. To this end note F ′′(x) = p(p − 1)xp−2, thus

∣F ′′(x)∣ = p(p − 1)xp−2 ≤ p(p − 1)(xp + 1) = p(p − 1)(F (x) + 1).
Similarly, F ′′′(x) = p(p − 1)(p − 2)xp−3, thus

∣F ′′′(x)∣ = p(p − 1)(p − 2)xp−3 ≤ p(p − 1)(p − 2)(1 + F (x)).
Noting p(p − 1)(1 + t) and p(p − 1)(p − 2)(1 + t) are non-decreasing and non-negative for
t ≥ 0, combined with our earlier remarks that it suffices to prove this result when F (x) = xp,
completes the proof.

• Single-exponential functions: Consider when F (x) = ax = ex lna for a > 1. Then F ′′(x) =
(lna)2ex lna, F ′′′(x) = (lna)3ex lna, and so we can take ρ1(t) = (lna)2t, ρ2(t) =
(lna)3t.

• Doubly-exponential functions: Consider when F (x) = abx = elnaex lnb

for a, b > 1. Thus

F ′(x) = elnae
x lnb

⋅ lnaex ln b ⋅ ln b = lna ln bF (x)ex ln b.
It follows that

F ′′(x) = lna ln b(F ′(x)ex ln b + ln bF (x)ex ln b) = (lna)(ln b)2F (x)(e2x ln b lna+ex ln b).
This then implies

F ′′′(x) = (lna)(ln b)2F (x)(e2x ln b2 lna ln b + ex ln b ln b)
+ (lna)(ln b)2(e2x ln b lna + ex ln b) lna ln bF (x)ex ln b

= (lna)(ln b)3F (x)(2e2x ln b lna + ex ln b + e3x ln b(lna)2 + e2x ln b lna).
Notice

ex ln b ≤ elnae
x lnb

− 1 < F (x),

28



therefore we have

F ′′(x) ≤ (lna)(ln b)2F (x)(F (x)2 lna + F (x)),
F ′′′(x) ≤ (lna)(ln b)3F (x)(F (x)3(lna)2 + 3F (x)2 lna + F (x)).

We thus can take

ρ1(t) = (lna)(ln b)2t(t2 lna + t),
ρ2(t) = (lna)(ln b)3t(t3(lna)2 + 3t2 lna + t),

which are clearly non-negative and non-decreasing on [0,∞).
• Next we highlight the natural example of any self-concordant function F ∶ R→ R. Thus

∣F ′′′(x)∣ ≤ 2F ′′(x)3/2 ≤ 2∣F ′′(x)∣3/2.
Suppose F satisfies Assumption 1.1. Then there exists a non-negative, non-decreasing ρ1
such that ∣F ′′(x)∣ ≤ ρ1(F (x)). Thus,

∣F ′′′(x)∣ ≤ 2ρ1(F (x))3/2.

Since ρ1 is non-negative and non-decreasing, ρ2(t) ∶= 2ρ1(t)3/2 is as well, and thus
Assumption 1.2 is satisfied.

Next, we show that the regularity assumptions Assumptions 1 and 3 of Xie et al. (2024), which
they need for their guarantees finding SOSPs, are less general than Assumption 1.2 when F is
twice-differentiable. To do so we show they imply Assumption 1.2, and are hence subsumed by
Assumption 1.2.

When F is twice-differentiable, their Assumption 1 implies (L0, L1)-smoothness. As shown in
Proposition A.2, this means that

∥∇F (www)∥ ≤ ρ0(F (www)) where ρ0(x) = 2L1/2
0 x1/2 + 5L2

1

L
1/2
0

x3/2.

Their Assumption 3 implies for M0,M1 ≥ 0 and some δ > 0 that for allwww,www′ with ∥www −www′∥ ≤ δ,

∥∇2F (www) − ∇2F (www′)∥
op
≤ ∥www −www′∥(M0 +M1∥∇F (www)∥).

Combining this with the earlier display gives for allwww,www′ with ∥www −www′∥ ≤ δ,

∥∇2F (www) − ∇2F (www′)∥
op
≤ ∥www −www′∥(M0 +M1ρ0(F (www))),

where ρ0(x) = 2L
1/2
0 x1/2 + 5L2

1

L
1/2
0

x3/2. We thus see that F satisfies Assumption 1.2 with the non-

decreasing, non-negative function ρ2(x) =M0 +M1(2L1/2
0 x1/2 + 5L2

1

L
1/2
0

x3/2), where the latter two

properties are evident as ρ0(⋅) is non-decreasing and non-negative.

A.3 Proofs of Technical Results
Now, we prove general results used throughout our work. We prove Corollary 1, which gives us
control over the gradient:

Proof of Corollary 1. Applying Lemma 11, De Sa et al. (2022) with Φ in place of F , we obtain

∥∇F (www)∥ ≤ ρ(F (www))
√
2θ(F (www)) = ρ0(F (www)),

where θ(⋅) is defined as in the statement of Corollary 1. To prove ρ0(x) is increasing, simply note θ
and thus

√
θ are clearly increasing, and are both non-negative. ρ1 is non-decreasing and non-negative

as well, thus ρ0 is non-decreasing and non-negative.

We also prove the central Lemma 3.1, which is very important to our results: it lets us con-
trol the change in function value under our regularity assumptions. We first state the following
Lemma from Li et al. (2023a), a generalization of Gronwall’s Inequality:

29



Lemma A.5 (Lemma A.3, Li et al. (2023a)). Let α ∶ [a, b] → [0,∞) and β ∶ [0,∞) → [0,∞) be
two continuous functions. Suppose α′(t) ≤ β(α(t)) almost everywhere over (a, b). Let ϕ(u) =
∫
u
0

1
β(v)dv. Then for all all t ∈ [a, b],

ϕ(α(t)) ≤ ϕ(α(a)) − a + t.

This allows us to prove Lemma 3.1, which is an extension of Lemma A.4, Li et al. (2023a):

Proof of Lemma 3.1. The proof is essentially identical to the proof of Lemma A.4, Li et al. (2023a).
Let zzz(t) = (1 − t)xxx + tyyy, α(t) = F (zzz(t)). Then for all t ∈ (0,1), we obtain

α′(t) = lim
s→t

α(s) − α(t)
s − t

≤ lim
s→t
∣F (zzz(s)) − F (zzz(t))∣

s − t

= ∣lim
s→t

F (zzz(s)) − F (zzz(t))
s − t ∣

= ∣ d
dt
F (zzz(t))∣

= ∣∇F (zzz(t))⊺(yyy −xxx)∣
≤ ρ0(F (zzz(t)))∥yyy −xxx∥,

the last step using ∥∇F (www)∥ ≤ ρ0(F (www)). Let β(x) = ∥yyy −xxx∥ρ0(x) and let ϕ(u) = ∫
u
0

1
β(v)dv.

Thus, α′(t) ≤ β(α(t)) almost everywhere. Applying Lemma A.5 gives

ϕ(F (yyy)) = ϕ(α(1)) ≤ ϕ(α(0)) + 1 = ϕ(F (xxx)) + 1.
Let ψ(u) = ∥yyy −xxx∥ϕ(u) = ∫

u
0

1
ρ0(v)dv, which is clearly strictly increasing. Consequently we obtain

from the above and assumption on yyy that

ψ(F (yyy)) ≤ ψ(F (xxx)) + ∥yyy −xxx∥

≤ ψ(F (xxx)) + 1

ρ0(F (xxx) + 1)

≤ ∫
F (xxx)

0

1

ρ0(v)
dv + ∫

F (xxx)+1

F (xxx)

1

ρ0(v)
dv

= ∫
F (xxx)+1

0

1

ρ0(v)
dv = ψ(F (xxx) + 1).

Since ψ is strictly increasing, taking inverses implies

F (yyy) ≤ F (xxx) + 1,
as desired.

We also introduce the following Lemma, which lets us exploit Assumption 1.2 to control
the Lipschitz constant of the Hessian of F .

Lemma A.6. Suppose F satisfies Assumption 1.2. Suppose xxx,yyy ∈ Rd are such that ∥yyy −xxx∥ ≤ r for
some r > 0. Then

∥∇2F (xxx) − ∇2F (yyy)∥
op
≤ ∥xxx − yyy∥ ⋅ sup

uuu∈xxxyyy
ρ2(F (uuu)).

In particular, we have

∥∇2F (xxx) − ∇2F (yyy)∥
op
≤ ∥xxx − yyy∥ ⋅ sup

uuu∈B(yyy,r)
ρ2(F (uuu)).

Proof. Consider δ > 0, either from Assumption 1.2 if the second case of Assumption 1.2 holds, and
otherwise set to some arbitrary positive real. Similar to the proof of Lemma 3.1, divide the line
segment between xxx,yyy into N = ∥xxx−yyy∥

δ
equally spaced segments of length δ between points xxxi, where

we define xxx0 = xxx,xxx1, . . . ,xxxN−1,xxxN = yyy. Thus ∥xxx − yyy∥ = Nδ.

30



Suppose for all uuu ∈ xxxyyy we have ∥∇3F (uuu)∥
op
≤ L. Consider any xxx′,yyy′ in the line segment xxxyyy.

Applying this for xxx′ + t(yyy′ −xxx′) for t ∈ [0,1], which always lies in the line segment xxxyyy, we obtain

∥∇2F (yyy′) − ∇2F (xxx′)∥
op
≤ ∥∫

1

0
⟨∇3F (xxx′ + t(yyy′ −xxx′)),yyy′ −xxx′⟩dt∥ ≤ L∥yyy′ −xxx′∥.

Consequently irrespective of which case of Assumption 1.2 holds, because ∥xxxi −xxxi−1∥ ≤ δ, we have
for each i,1 ≤ i ≤ N that

∥∇2F (xxxi) − ∇2F (xxxi−1)∥op ≤ ∥xxxi −xxxi−1∥ sup
uuu∈xxxyyy

ρ2(F (uuu)).

Now Triangle Inequality gives

∥∇2F (xxx) − ∇2F (yyy)∥
op
≤
N

∑
i=1
∥∇2F (xxxi) − ∇2F (xxxi−1)∥op

≤
N

∑
i=1
∥xxxi −xxxi−1∥ sup

uuu∈xxxyyy
ρ2(F (uuu))

≤ Nδ ⋅ sup
uuu∈xxxyyy

ρ2(F (uuu))

= ∥xxx − yyy∥ sup
uuu∈xxxyyy

ρ2(F (uuu)),

as desired.

We will also generalize the proof of Theorem 3.1 to show that GD, when initialized in the
F (www0)-sublevel set LF,F (www0) with appropriate step size defined in terms of F (www0), never increases
function value.

Lemma A.7. Consider any www0 ∈ Rd, and consider iterates {uuut}t≥0 of GD initialized at any uuu0 ∈
LF,F (www0), the F (www0)-sublevel set. If the step size η of GD is at most 1

L1(www0) where L1(⋅) is defined
as per (4), then F (uuut) ≤ F (uuu0) for all t ≥ 0.

Proof. It suffices to prove this for t = 1; a simple inductive argument then establishes this for all
t ≥ 0. We have uuu1 = uuu0 − η∇F (uuu0). By Corollary 1 and because uuu0 ∈ LF,F (www0), ∥∇F (uuu0)∥ ≤
ρ0(F (uuu0)) ≤ ρ0(F (www0)). Thus by choice of η and definition of L1(www0),

∥uuu1 −uuu0∥ = η∥∇F (uuu0)∥ ≤ ηρ0(F (www0)) ≤
1

ρ0(F (www0) + 1)
.

By Lemma 3.2, because uuu0 ∈ LF,F (www0), for all ppp in the line segment uuu0uuu1we have ∥∇2F (ppp)∥
op
≤

L1(www0). By Lemma A.1, it follows that

F (uuu1) ≤ F (uuu0) − η∥∇F (uuu0)∥2 +
L1(www0)η2

2
⋅ ∥∇F (uuu0)∥2

≤ F (uuu0) + ∥∇F (uuu0)∥2 ⋅ (−η +
L1(www0)η2

2
).

Noting −η + L1(www0)η2
2

≤ 0 for η ∈ [0, 2
L1(www0)], the conclusion follows.

B Proof of Framework
Proof of Theorem 2.1. For convenience, for all n ≥ 0, define pn ∶= 1 − n ⋅ supuuu∈LF,F (www0)

δ(uuu). Also

let T = supuuu∈LF,F (www0)
{F (www0)

∆(uuu) }.

Lemma B.1. For any n ≥ 0, let En be the event that the sequence of iterates (wwwt)0≤t≤n−1 satisfies
either:

1. The event En,1: For all 0 ≤ t ≤ n − 1, F (A1(wwwt)) < F (wwwt) −∆(wwwt).

31



2. The event En,2: There exists wwwt ∈ (wwwt)0≤t≤n−1 such that A2(wwwt) ∩ S ≠ {}, and for all wwws
with 0 ≤ s < t, we have F (A1(wwws)) < F (wwws) −∆(wwws).

That is, En = En,1 ∪ En,2. Then over the randomness in A, we have P(En) ≥ pn for all n ≥ 0.

Proof. We proceed by induction on n. The base case n = 0 is vacuously evident, and the case n = 1
follows immediately by the definition of a decrease procedure from Definition 2.2 and hypotheses of
Theorem 2.1.

For the inductive step, suppose Lemma B.1 is true for some n ≥ 1; we show it is for n + 1. By the
inductive hypothesis, we know that P(En) ≥ pn. We aim to show P(En) ≥ pn+1. If pn ≤ 0 there is
nothing to prove, so suppose now that n is such that pn > 0.

1. Let p = P(En,2∣En). Note En,2 ⊆ En+1,2 ⊆ En+1.

2. Let B ∶= En,1 ∩Ecn,2. Thus, if B occurs, then all the (wwwt)0≤t≤n−1 are such that F (A1(wwwt)) <
F (wwwt)−∆(wwwt), but En,2 did not occur. Note En is the disjoint union En,2⊔B, so P(B∣En) =
1 − p.

Under B, we know wwwn = A(wwwn−1) is such that F (wwwn) ≤ F (www0). Hence wwwn ∈ LF,F (www0).
Therefore, conditioned on B, by the hypotheses of Theorem 2.1 we have with probability at
least p0 that either F (A1(wwwn)) < F (wwwn) −∆(wwwn) or A2(wwwn) ∩ S ≠ {}.
Let C be the event that F (A1(wwwn)) < F (wwwn) −∆(wwwn) occurs. Let D be the event that
A2(wwwn) ∩ S ≠ {} occurs but C does not occur. Recall thatwwwn ∈ LF,F (www0) conditioned on
B. Furthermore recall that A(wwwn) is only a function of wwwn, and none of the (wwwt)0≤t≤n−1.
Thus the definition of decrease procedure, Definition 2.2, implies that

P(C ⊔ D∣B) ≥ p0.

Now since P(B) = P(B∣En)P(En) ≥ (1 − p)pn > 0, Bayes’ Rule implies

P((B ∩ C) ⊔ (B ∩D)∣B) = P(B ∩ ((B ∩ C) ⊔ (B ∩D)))
P(B)

= P(B ∩ (C ⊔D))
P(B) = P(C ⊔ D∣B) ≥ p0.

Note B ∩ C implies that En+1,1 occurs, since under B ∩ C we have F (A1(wwwt)) < F (wwwt) −
∆(wwwt) for all 0 ≤ t ≤ n. Similarly, B ∩D implies that En+1,2 occurs, since under B ∩D we
have F (A1(wwwt)) < F (wwwt) −∆(wwwt) for 0 ≤ t ≤ n − 1 and A2(wwwn) ∩ S ≠ {}.

Thus recalling En,2,B are disjoint, we see that En+1 contains the following disjoint union of events:

En+1 ⊇ En,2 ⊔ (B ∩ C) ⊔ (B ∩D).

The above observations imply via Bayes’ Rule that

P(En+1) ≥ P(En,2 ⊔ (B ∩ C) ⊔ (B ∩D))
= P(En,2) + P((B ∩ C) ⊔ (B ∩D))
= P(En,2∣En)P(En) + P((B ∩ C) ⊔ (B ∩D)∣B)P(B∣En)P(En)
= P(En)(p + P((B ∩ C) ⊔ (B ∩D)∣B) ⋅ (1 − p))
≥ pn(p + p0(1 − p))
≥ pn(p0p + p0(1 − p)) = pnp0 ≥ pn+1.

Here we used that P(En) ≥ pn, pnp0 ≥ pn+1 which follows immediately from the definition of pn,
p0 ≤ 1, and simple manipulations. The inductive step, and hence the proof, is thus complete.

Using Lemma B.1 now readily proves the following:

Claim 3. Let E be the event that there existswwwt withwwwt ∈ (wwwt)0≤t≤T−1 such that A2(wwwt) ∩ S ≠ {},
and for allwwws with 0 ≤ s < t, we have F (A1(wwws)) < F (wwws) −∆(wwws). Then P(E) ≥ pT .

Proof of Claim 3. Apply Lemma B.1 with n = T . Following the notation from there, we have that
the event ET = ET,1 ⊔ ET,2 has probability at least pT .

32



Suppose that ET,1 occurs. Note ET,1 implies thatwwwt ∈ LF,F (www0) for all 0 ≤ t ≤ T . Therefore

∆(wwwt) ≥ inf
uuu∈LF,F (www0)

∆(uuu) for all 0 ≤ t ≤ T. (8)

Moreover, telescoping the direct implication of ET,1 gives that

F (wwwT ) < F (www0) −
T−1
∑
t=0

∆(wwwt). (9)

Combining (8) and (9) and recalling that we shifted WLOG so F has minimum value 0 (see Notation)
gives

T inf
uuu∈LF,F (www0)

∆(uuu) ≤
T−1
∑
t=0

∆(wwwt) < F (www0) − F (wwwT ) ≤ F (www0).

This contradicts our choice of T .

Thus ET,1 cannot occur, and so ET,2 must occur, i.e. ET = ET,2. Note ET,2 is exactly the event E .
Thus

P(E) = P(ET,2) = P(ET ) ≥ pT ,
as desired.

Conditioning on the event E from Claim 3, by Claim 3, we immediately recover the desired guarantee
on the output, probability, and number of candidate vectors stated in Theorem 2.1. The only part
remaining to prove Theorem 2.1 is to establish the bound N = F (www0)

∆
+ supuuu∈LF,F (www0)

toracle(uuu) on
the number of oracle calls.

To this end, condition on E from Claim 3 in all of the following, and follow the notation from there,
in particular the definition of wwwt. Directly, we obtain that the number of oracle calls is at most
∑ti=0 toracle(wwwi) (the last term toracle(wwwt) in the sum appears since computing A(wwwt) and A(wwwt)
takes at most toracle(wwwt) oracle calls). We now upper bound this sum.

As we are conditioning on E and since we assumed WLOG by shifting that F has minimum value 0,
we have

F (wwwi+1) − F (wwwi) < −∆(wwwi) < 0 for all 0 ≤ i ≤ t − 1 Ô⇒
t−1
∑
i=0

∆(wwwi) < F (www0) − F (wwwt) ≤ F (www0).

(10)
The above also implies F (wwwi) ≤ F (www0), i.e. wwwi ∈ LF,F (www0), for all 0 ≤ i ≤ t. Therefore, toracle(wwwi) ≤
supuuu∈LF,F (www0)

toracle(uuu) for all 0 ≤ i ≤ t. Thus (10) gives

F (www0)
∑t−1i=0 toracle(wwwi)

> ∑t−1i=0 ∆(wwwi)
∑t−1i=0 toracle(wwwi)

≥ min
0≤i≤t−1

∆(wwwi)
toracle(wwwi)

≥∆,

where the last inequality uses the elementary inequality ∑
k′
i=1 ai

∑k′
i=1 bi

≥ mini
ai
bi

for ai ≥ 0, bi > 0, that

wwwi ∈ LF,F (www0) for all 0 ≤ i ≤ t − 1, and the definition of ∆. Rearranging and recalling toracle(wwwt) ≤
supuuu∈LF,F (www0)

toracle(uuu) as justified above, we obtain

t

∑
i=0
toracle(wwwi) ≤ sup

uuu∈LF,F (www0)

toracle(uuu) +
t−1
∑
i=0
toracle(wwwi) ≤ sup

uuu∈LF,F (www0)

toracle(uuu) +
F (www0)

∆
.

This yields the desired conclusion on oracle complexity, completing the proof.

C First Order Convergence Proofs
C.1 Proofs for Adaptive GD
Proof. As with the proof of Theorem 3.1, we use Theorem 2.1. We again have S = {www ∶ ∥∇F (www)∥ ≤
ε}, and recall the choice of η from Theorem 3.2. Now we let A(uuu0) = (uuu0 − ηuuu0∇F (uuu0),uuu0).
ThusA1(uuu0) = uuu0 − η∇F (uuu0), A2(uuu0) = uuu0, and toracle(uuu0) = 1.

33



Claim 4. For any uuu0 in the F (www0)-sublevel set LF,F (www0), A is a

(S,1,min{ L′1(www0)
2ρ0(F (www0)+1)2 ,

ε2

2L′1(www0)},0,uuu0)-decrease procedure.

To show this, analogously to the proof of Theorem 3.1, for any uuu0 /∈ S in the F (www0)-sublevel set
LF,F (www0), we will show that the function will deterministically decrease by strictly greater than

min{ L′1(www0)
ρ0(F (www0)+1)2 ,

ε2

2L′1(www0)} at the next iterate. By definition of A2, exactly as with the proof of
Theorem 3.1, we conclude via Theorem 2.1 upon showing Claim 4.

To show Claim 4, by choice of step size, we have ηuuu0∥∇F (uuu0)∥ ≤ 1
ρ0(F (www0)+1) . Thus

∥uuu1 −uuu0∥ ≤
1

ρ0(F (www0) + 1)
≤ 1

ρ0(F (uuu0) + 1)
.

Now combining Lemma 3.1 with Assumption 1.1, and becauseuuu0 ∈ LF,F (www0), we see for all ppp ∈ uuu0uuu1,
∥∇2F (ppp)∥

op
≤ L′1(www0) where L′1(www0) is defined as in the statement of Theorem 3.2. We thus obtain

by Lemma A.1,

F (uuu1) ≤ F (uuu0) − η∥∇F (uuu0)∥2 +
L′1(www0)η2

2
⋅ ∥∇F (uuu0)∥2. (11)

Recall that uuu0 /∈ S, so ∥∇F (uuu0)∥ > ε. We break into cases:

1. If ∥∇F (uuu0)∥ > L′1(www0)
ρ0(F (www0)+1) , then ηuuu0 = 1

ρ0(F (www0)+1)∥∇F (uuu0)∥ . In this case, substituting into
(11) gives

F (uuu1) ≤ F (uuu0) − η∥∇F (uuu0)∥2 +
L′1(www0)η2

2
⋅ ∥∇F (uuu0)∥2

= F (uuu0) −
1

ρ0(F (www0) + 1)
∥∇F (uuu0)∥ +

L′1(www0)
2ρ0(F (www0) + 1)2

< F (uuu0) −
1

2
⋅ L′1(www0)
ρ0(F (www0) + 1)2

.

2. Else if ∥∇F (uuu0)∥ ≤ L′1(www0), then ηuuu0 = 1
L′1(www0) . In this case, substituting into (11) gives

F (uuu1) ≤ F (uuu0) − η∥∇F (uuu0)∥2 +
L′1(www0)η2

2
⋅ ∥∇F (uuu0)∥2

≤ F (uuu0) −
∥∇F (uuu0)∥2

2L′1(www0)
< F (uuu0) −

ε2

2L′1(www0)
,

where we used that ∥∇F (uuu0)∥ > ε.
In either case, for ∥∇F (uuu0)∥ > ε we have that

F (uuu1) < F (uuu0) −min{ L′1(www0)
2ρ0(F (www0) + 1)2

,
ε2

2L′1(www0)
}.

This proves Claim 4. By our framework Theorem 2.1, the proof is complete.

C.2 Proofs for SGD for FOSPs
Here, we prove Theorem 3.3. We first introduce technical preliminaries, which will also be used in
Section E.

Theorem C.1 (Vector-Valued Azuma-Hoeffding, Theorem 3.5 in Pinelis (1994)). Let εεε1, . . . ,εεεK ∈ Rd
be such that for all k, E[εεεk ∣Fk−1] = 0, ∥εεεk∥2 ≤ σ2

k. Then for any λ > 0,

P(∥
K

∑
k=1

εεεk∥ ≥ λ) ≤ 4 exp(−
λ2

4∑Kk=1 σ2
k

).

34



Note the bound here is dimension free, so this result does not follow directly from standard Azuma-
Hoeffding. Such a result can also be found in Kallenberg and Sztencel (1991); Zhang (2005); Fang
et al. (2019).

Theorem C.2 (Data-Dependent Concentration Inequality, Lemma 3 in Rakhlin et al. (2012)). Let
ε1, . . . , εK ∈ R be such that for all k, E[εk ∣Fk−1] = 0, E[ε2k ∣Fk−1] ≤ σ2

k. Furthermore suppose that
P(εk ≤ b∣Fk−1) = 1. Letting VK = ∑Kk=1 σ2

k, for any δ < 1/e, K ≥ 4, we have

P(
K

∑
k=1

εk > 2max{2
√
Vk, b
√
log(1/δ)}

√
log(1/δ)) ≤ δ log(K).

Such a result is also presented in Zhang (2005); Bartlett et al. (2008); Fang et al. (2019).

We will first prove Theorem 3.3 in the case where ∥∇f(www;ζζζ) − ∇F (www)∥ is bounded by σ(F (www)).
As noted in Fang et al. (2019), these same inequalities hold when the martingale difference is
not bounded or almost-surely bounded but rather the norms are sub-Gaussian with parameter σk.
Thus after the proof, we remark how to straightforwardly generalize Theorem 3.3 to the case when
∥∇f(www;ζζζ) − ∇F (www)∥ is sub-Gaussian with parameter σ(F (www)) in Remark 7.

Now, we prove Theorem 3.3.

Proof. We use our framework Theorem 2.1 with S = {www ∶ ∥∇F (www)∥ ≤ ε}. Recall as per the discussion
of SGD in our framework in Subsection 2.3, we let ppp0 = uuu0, and define a sequence (pppi)0≤i≤K0 via

pppi = pppi−1 − η∇f(pppi−1;ζζζi),
where the ζζζi are minibatch samples i.i.d. across different i. Note this sequence can be equivalently
defined by repeated compositions of the function uuu→ uuu − η∇f(uuu;ζζζ).
We now let A(uuu0) = (pppK0 , (pppi)0≤i≤K0−1), hence A1(uuu0) = pppK0 , A2(uuu0) = (pppi)0≤i≤K0−1. Thus
toracle(uuu0) =K0. Also note the noise ξξξt used defining A are independent across different t.

For appropriate η = Θ̃(ε2), K0 = Θ̃(ε−2) depending only on ε, δ, F (www0) and polylogarithmically in
1/δ, which we define below, we establish the following Claim 5:

Claim 5. For any uuu0 in the F (www0)-sublevel set LF,F (www0), A is a (S,K0,
ηK0ε

2

4
, p,uuu0)-decrease

procedure, where p = δηK0ε
2

4(F (www0)+1) .

Then using Theorem 2.1, we then directly conclude Theorem 3.3.

To show Claim 5, consider any uuu0 in the F (www0)-sublevel set but not in S. Following the notation
from above, consider a ‘block’ of K0 consecutive iterates of SGD starting at ppp0 = uuu0. We establish
that with probability at least 1 − p, if none of the iterates {ppp0 = uuu0, . . . ,pppK0−1} lie in S, then
F (pppK0) < F (ppp0) −∆ where ∆ = ηK0ε

2

4
. Then recalling the definitions of A2, we immediately

conclude Claim 5.

Definitions and Parameters: For convenience, define

L0(www0) = ρ0(F (www0) + 1),
L1(www0) = ρ1(F (www0) + 1),
σ1(www0) = σ(F (www0) + 1),

B(www0) = σ1(www0)2 +
1

8
σ1(www0)L0(www0).

Also define
ξξξt+1 = ∇f(pppt;ζζζt+1) − ∇F (pppt),

where ζζζt+1 denotes the i.i.d. minibatch samples. Note by Assumption 3.1 that E[ξξξt+1] = 0, where
expectation is with respect to ζζζt+1.

In particular, we choose these parameters as follows:

η̃ = ε2

L̃(www0) log(1/ε)6 log(1/δ)6

35



K0 =
C(www0)
ε2

log(1/η̃)2 log(1/δ)2 log(1/ε)2,

η = 1

max{1, ρ0(F (www0) + 1)}
⋅ η̃,

where

C(www0) = 128B(www0) ∨ 64(F (www0) + 1)2,
L̃′(www0) = 8L1(www0)(L0(www0)2 + σ1(www0)2) ∨ 2L0(www0) ∨ 4σ1(www0),
L̃(www0) = L̃′(www0)2C(www0)2 ∨ (3

√
2 log(L̃(www0)))8 ∨ (3

√
2)8.

Remark 6. Note that C, L̃′, L̃ depend only polynomially in terms of the self-bounding functions
ρ0, ρ1, σ, and F (www0).
Note we can assume WLOG that ε and the desired probability δ are at most some small enough
universal constants in (0,1); by doing so, the result does not change up to universal constant, and
hence is identical under the O(⋅). Consequently we may assume WLOG that η̃ and η are at most
some small enough universal constant in (0,1) and that K0 ≥ 4.

Claim 6. For ε, δ small enough universal constants, the above choice of parameters satisfies the
following properties:

max{1, ρ0(F (www0) + 1)}η

= η̃ ≤min

⎧⎪⎪⎨⎪⎪⎩

ε2

8L1(www0)(L0(www0)2 + σ1(www0)2)
,

1

2K0L0(www0)
,

1

4σ1(www0)
√
K0 log(4K0/p)

⎫⎪⎪⎬⎪⎪⎭
,

(12)

K0ε
2 ≥ 128B(www0) log(

2 logK0

p
). (13)

For the sake of brevity, we prove Claim 6 after the our main proof. Checking this is a matter of
elementary, albeit tedious, univariate inequalities.

Again, our plan is to apply Theorem 2.1 by showing decrease with high probability for a block of K0

iterates starting at ppp0.

Notation: Let Ft denote the filtration of all information up through pppt, but not including the mini-
batch sample ζζζt+1. Let K be a stopping time denoting the first t such that pppt /∈ B(ppp0, 1

ρ0(F (www0)+1)),
i.e. the escape time of the iterates beginning at ppp0 from B(ppp0, 1

ρ0(F (www0)+1)) = B(uuu0,
1

ρ0(F (www0)+1)).

We first detail two high probability events we will condition on for the remainder of the proof:

• By Vector-Valued Azuma Hoeffding Theorem C.1, for a given 1 ≤ t ≤ K0 we have with
probability at least 1 − p

2K0
,

∥η
t

∑
k=1

ξξξk∥ ≤ 2η
¿
ÁÁÀlog(48K0/p)

t

∑
k=1

σ(F (pppk−1))2 = 2η
¿
ÁÁÀlog(4K0/p)

t−1
∑
k=0

σ(F (pppk−1))2.

This follows since each E[ξξξk ∣Fk−1] = 0 as the stochastic gradient oracle is unbiased, and as
∥ξξξk∥ ≤ σ(F (pppk−1)) by Assumption 3.1.

Thus by Union Bound, with probability at least 1 − p/2, we have for all 1 ≤ t ≤K0 that

∥η
t

∑
k=1

ξξξk∥ ≤ 2η
¿
ÁÁÀlog(4K0/p)

t−1
∑
k=0

σ(F (pppk))2. (14)

Denote this event by E1, so P(E1) ≥ 1 − p/2.

36



• We define a stochastic process with the following trick to derive uniform bounds. Define the
following sequence of real numbers:

Yt ∶= −η⟨∇F (pppt), ξξξt+1⟩1t<K.
Notice 1t<K is Ft-measurable, as {t < K} holds if and only if ppp1, . . . ,pppt ∈
B(ppp0, 1

ρ0(F (www0)+1)).

Clearly ∇F (pppt) is also Ft-measurable. Thus as the stochastic gradient oracle is unbiased
(i.e. E[ξξξt+1∣Ft] = 0),

E[Yt] = E[⟨∇F (pppt), ξξξt+1⟩1t<K∣Ft] = 0.

For t ≥ K we have Yt ≡ 0. For t < K, we have pppt ∈ B(ppp0, 1
ρ0(F (www0)+1)). Consequently by

Lemma 3.1 and Corollary 1 we have

∣Yt∣ ≤ η∣⟨∇F (pppt), ξξξt+1⟩∣ ≤ η∥∇F (pppt)∥∥ξξξt+1∥ ≤ ηρ0(F (www0) + 1)∥ξξξt+1∥.
Moreover by Assumption 3.1 and Lemma 3.1,

∥ξξξt+1∥ ≤ σ(F (pppt)) ≤ σ(F (www0) + 1) = σ1(www0).
In particular, recall that ξξξt+1 is the difference between the gradient oracle and actual gradient
at pppt.

By the above arguments, both of the following inequalities hold deterministically:

∣Yt∣ ≤ η∥∇F (pppt)∥σ1(www0),
∣Yt∣ ≤ ηρ0(F (www0) + 1)σ1(www0) = ηL0(www0)σ1(www0).

We now apply both of these bounds in Data-Dependent Concentration Inequality, Theo-
rem C.2 (whose conditions hold because we can assume δ, ε are at most given universal
constants, so K0 ≥ 4,2 logK0/p > e). Consequently we obtain with probability at least
1 − p

2
that

−η
K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩1t<K ≤ 2ηL0(www0)σ1(www0) log(

2 logK0

p
)⋁

4

¿
ÁÁÀη2σ1(www0)2

K0−1
∑
t=0
∥∇F (pppt)∥2

√
log(2 logK0

p
). (15)

Denote this event by E2, so P(E2) ≥ 1 − p/2.

For the rest of this proof, we condition on E1 ∩ E2. By the above, E1 ∩ E occurs with probability at
least 1 − p. Denote E = E1 ∩ E2.

A-priori, these bounds are not particularly useful, especially in our more challenging setting under
Assumption 3.2 where noise can depend on function value. However conditioned on E , we prove that
SGD is sufficiently ‘local’, in particular that ∥pppt −uuu0∥ ≤ 1 for all t,1 ≤ t ≤K0. This will then give us
control over function value via Lemma 3.1, which then allow us to make use of these bounds in a
more standard way.

Lemma C.1. Conditioned on E1 (and hence conditioned on E), for all t,1 ≤ t ≤K0, we have

∥pppt − ppp0∥ = ∥pppt −uuu0∥ ≤
1

ρ0(F (www0) + 1)
.

Proof. We go by induction on t. Notice after t iterates,

pppt =www0 − η
t−1
∑
k=0
∇F (pppk) − η

t

∑
k=1

ξξξk.

For the base case t = 1, we have from Corollary 1 that ∥∇F (www0)∥ ≤ ρ0(F (www0)) ≤ L0(www0). From the
definition of the high-probability event E1 and properties of η from Claim 6, and as σ1(www0) ≥ σ(www0)),
it follows that

∥ηξξξ1∥ ≤ 2ησ(F (www0))
√
K0 log(4K0/p) ≤

1

2ρ0(F (www0) + 1)
.

37



Consequently by properties of η from Claim 6,

∥ppp1 − ppp0∥ ≤ ∥η∇F (www0)∥ + ∥ηξξξ0∥ ≤
1

ρ0(F (www0) + 1)
.

This finishes the proof of the base case.

Now suppose Lemma C.1 holds for all 1 ≤ k ≤ t − 1; we will show it for t. From Lemma 3.1, for all
k ≤ t − 1, we have

∥∇F (pppk)∥ ≤ ρ0(F (www0) + 1) ≤ L0(www0).
Thus for each k, we have

σ(F (pppk)) ≤ σ(F (www0) + 1) = σ1(www0).
Thus conditioned on E1 we obtain

∥pppt − ppp0∥ ≤ ∥η
t−1
∑
k=0
∇F (pppk)∥ + ∥η

t

∑
k=1

ξξξk∥

≤ ηK0L0(www0) + 2η

¿
ÁÁÀlog(4K0/p)

K0−1
∑
k=0

σ1(www0)2

= ηK0L0(www0) + 2ησ1(www0)
√
K0 log(4K0/p)

≤ 1

2ρ0(F (www0) + 1)
+ 1

2ρ0(F (www0) + 1)
= 1

ρ0(F (www0) + 1)
.

Here we used the choice of η from Claim 6 and the upper bound (14) on ∥η∑tk=1 ξξξk∥ implied by E1.
This completes the induction.

Now that we know the iterates of SGD are ‘sufficiently local’ for K0 iterations via Lemma C.1, the
finish is straightforward. Condition on E for the rest of the proof. Consider any 0 ≤ t ≤ K0 − 1. E
implies for all ppp ∈ pppt−1pppt, writing ppp = θpppt−1 + (1 − θ)pppt for θ ∈ [0,1], that we have

∥ppp − ppp0∥ ≤ θ∥pppt−1 − ppp0∥ + (1 − θ)∥pppt − ppp0∥ ≤ (1 − θ + θ) ⋅
1

ρ0(F (www0) + 1)
= 1

ρ0(F (www0) + 1)
.

Consequently F (ppp) ≤ ρ0(F (www0) + 1), so the above combined with Assumption 1.1 gives

∥∇2F (ppp)∥ ≤ L1(www0). (16)

We also obtain from Lemma C.1 together with Corollary 1 and Assumption 3.1 that for all 0 ≤ t ≤K0,

∥ξξξt∥ ≤ σ(F (www0) + 1) = σ1(www0),
∥∇F (pppt)∥ ≤ ρ0(F (www0) + 1) = L0(www0). (17)

Now by Lemma A.1 and (16),

F (pppt+1) ≤ F (pppt) − η⟨∇F (pppt),∇f(pppt;ζζζt+1)⟩ +
η2L1(www0)

2
∥∇f(pppt;ζζζt+1)∥2

≤ F (pppt) − η∥∇F (pppt)∥2 − η⟨∇F (pppt), ξξξt+1)⟩ + η2L1(www0)(∥∇F (pppt)∥2 + ∥ξξξt+1∥2).

The last step uses the definition of ξξξt+1 and Young’s Inequality.

Summing and telescoping the above for 0 ≤ t ≤K0 − 1, and applying (17), gives

F (pppK0) ≤ F (ppp0) − η
K0−1
∑
t=0
∥∇F (pppt)∥2 − η

K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩

+ η2K0L0(www0)2L1(www0) + η2K0σ
2
1(www0)L1(www0). (18)

Now, conditioned on E , we upper bound

−η
K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩

38



using (15). Under E , by Lemma C.1 and Lemma 3.1, we have pppt ∈ B(ppp0, 1
ρ0(F (www0)+1)) for all

1 ≤ t ≤K0, which implies that t < K for all 1 ≤ t ≤K0. Therefore

−η
K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩ = −η

K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩1t<K.

Now AM-GM gives

4

¿
ÁÁÀη2σ1(www0)2

K0−1
∑
t=0
∥∇F (pppt)∥2

√
log(2 logK0

p
)

≤ 2η(1
4

K0−1
∑
t=0
∥∇F (pppt)∥2 + 8σ1(www0)2 log(

2 logK0

p
)).

Combining with (15), we obtain

−η
K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩ = −η

K0−1
∑
t=0
⟨∇F (pppt), ξξξt+1⟩1t<K

≤ η
2

K0−1
∑
t=0
∥∇F (pppt)∥2 + 16ηB(www0) log(

2 logK0

p
).

Combining with (18) gives

F (pppK0) ≤ F (ppp0) −
η

2

K0−1
∑
t=0
∥∇F (pppt)∥2 + 16ηB(www0) log(

2 logK0

p
) + η2K0L0(www0)2L1(www0)

+ η2K0σ
2
1(www0)L1(www0). (19)

Suppose that ∥∇F (pppt)∥ > ε for all 0 ≤ t ≤K0 − 1. Then the above gives

F (pppK0) < F (ppp0) −
ηK0ε

2

2
+ 16ηB(www0) log(

2 logK0

p
)

+ η2K0L0(www0)2L1(www0) + η2K0σ
2
1(www0)L1(www0).

To make use of this bound, by our choice of η, Claim 6 implies that

η2K0L0(www0)2L1(www0) + η2K0σ
2
1(www0)L1(www0) ≤

ηK0ε
2

8
.

By choice of K0, Claim 6 implies that

16ηB(www0) log(
2 logK0

p
) ≤ ηK0ε

2

8
.

The above was all conditioned on E , which occurred with probability at least 1 − p. Thus by (19), we
obtain that with this same probability which is at least 1 − p, if none of ppp0, . . . ,pppK0−1 have gradient
norm larger than ε, we have

F (pppK0) < F (ppp0) −
ηK0ε

2

4
= F (uuu0) −

ηK0ε
2

4
.

This establishes that A is a (S,K0 + 1, ηK0ε
2

4
, p,uuu0)-decrease procedure. Following our initial

observations, we conclude via Theorem 2.1.

Now we prove Claim 6.

Proof of Claim 6. We first prove (13). Recall we chose

K0 =
C(www0)
ε2

log(1/η̃)2 log(1/δ)2 log(1/ε)2.

Furthermore recall p = δη̃K0ε
2

4(F (www0)+1) . Thus, (13) holds if and only if

C(www0) log(1/η̃)2 log(1/δ)2 log(1/ε)2 ≥ 128B(www0) log(
8 logK0 ⋅ (F (www0) + 1)

δη̃K0ε2
).

39



As C(www0) ≥ 128B(www0) ∨ 64(F (www0) + 1)2, again using the expression for K0, it suffices to prove

log(1/η̃)2 log(1/δ)2 log(1/ε)2 ≥ log( logK0

C(www0)1/2δη̃ log(1/η̃)2 log(1/δ)2
).

As log(1/δ), log(1/η̃) are both larger than 1, it suffices to prove

log(1/η̃)2 log(1/δ)2 log(1/ε)2

≥ log(1/η̃) + log(1/δ)

+ log( logC(www0) + log(1/ε2) + 2 log log(1/η̃) + 2 log log(1/δ) + 2 log log(1/ε)
C(www0)1/2

).

Since C(www0) ≥ 64, it satisfies logC(www0) < C(www0)1/2, so it suffices to prove

log(1/η̃)2 log(1/δ)2 log(1/ε)2

≥ log(1/η̃) + log(1/δ)
+ log(1 + 2 log(1/ε) + 2 log log(1/η̃) + 2 log log(1/δ) + 2 log log(1/ε)).

By comparing ‘degrees’, we conclude recalling we can assume WLOG that δ, ε, η̃ are smaller than
some universal constant.

Now we prove (12). We will prove that

η̃ ≤ 1

L̃′(www0)K0

√
log(4K0/p)

. (20)

After proving (20), recalling our choice ofK0 > 1/ε2 directly implies (12). To show (20), equivalently,
we want to show

η̃ log(1/η̃)2
√
log(4K0/p) ≤

ε2

L̃′(www0)C(www0) log(1/δ)2 log(1/ε)2
.

Recalling the definition of p, this holds if and only if

η̃ log(1/η̃)2
¿
ÁÁÀlog(16(F (www0) + 1)

δη̃ε2
) ≤ ε2

L̃′(www0)C(www0) log(1/δ)2 log(1/ε)2
.

Now we explicitly recall our expression for η̃ = ε2

L̃(www0) log(1/ε)6 log(1/δ)6 . Plugging this in and recalling

L̃(www0) ≥ L̃′(www0)2C(www0)2, it suffices to prove

1

L̃(www0)1/2 log(1/ε)6 log(1/δ)6
log( L̃(www0) log(1/ε)6 log(1/δ)6

ε2
)
2

⋅

¿
ÁÁÀlog(16(F (www0) + 1)L̃(www0) log(1/ε)6 log(1/δ)6

δε4
)

≤ 1

log(1/δ)2 log(1/ε)2 .

Thus it suffices to prove:

18

L̃(www0)1/2
log( L̃(www0) log(1/ε) log(1/δ)

ε
)
2
¿
ÁÁÀlog(16(F (www0) + 1)L̃(www0) log(1/ε) log(1/δ)

δε
)

≤ log(1/δ)4 log(1/ε)4.

Recall L̃(www0)1/8 ≥ 3
√
2 log(L̃(www0)) ∨ 3

√
2 and so

3
√
2

L̃(www0)1/4
log( L̃(www0) log(1/ε) log(1/δ)

ε
)

40



≤ 3
√
2

L̃(www0)1/4
(log(1/ε) + log log(1/ε) + log log(1/δ) + log L̃(www0))

≤ 1

L̃(www0)1/8
(1 + log(1/ε) + log log(1/ε) + log log(1/δ)).

Thus it suffices to show
1

L̃(www0)1/4
(1 + log(1/ε) + log log(1/ε) + log log(1/δ))2

⋅

¿
ÁÁÀlog(16(F (www0) + 1)L̃(www0) log(1/ε) log(1/δ)

δε
)

≤ log(1/δ)4 log(1/ε)4.

To this end recall L̃(www0)1/8 ≥ log(16(F (www0) + 1)L̃(www0)), thus

1

L̃(www0)1/8
log(16(F (www0) + 1)L̃(www0) log(1/ε) log(1/δ)

δε
)

= 1

L̃(www0)1/8
(log(16(F (www0) + 1)L̃(www0)) + log(1/δ) + log(1/ε) + log log(1/δ)) + log log(1/ε))

≤ 1 + log(1/δ) + log(1/ε) + log log(1/δ)) + log log(1/ε).
Therefore it suffices to show

(1 + log(1/ε) + log log(1/ε) + log log(1/δ))2

⋅ (1 + log(1/δ) + log(1/ε) + log log(1/δ)) + log log(1/ε))1/2

≤ log(1/δ)4 log(1/ε)4.
Evidently the above holds for small enough universal constants δ, ε (compare ‘degrees’), so we
conclude the proof.

Remark 7. We also discuss how to extend this result to when the ∥ξξξt∥ has sub-Gaussianity parameter
σ(F (pppt)). The extension is straightforward. Again, we aim to prove Claim 5. For the rest of
this remark, follow the notation from the proof for SGD above. Besides applying Theorem C.1,
Theorem C.2 when the relevant random variables are sub-Gaussian, which still hold true as mentioned
in Fang et al. (2019), the only other time we used that ∥ξξξt∥ ≤ σ(F (pppt)) holds deterministically is to
derive (18).

We apply Theorem C.1, Theorem C.2 identically to the proof earlier. This time, we have for t < K
that ξξξt+1 is sub-Gaussian with parameter σ1(www0), thanks to the same trick of multiplying with 1t<K
when applying Theorem C.2.

The only change is as follows: in the definition E , add in the intersection the event E3 that for all
1 ≤ t ≤ K0, ∥ξξξt∥2 ≤ σ(F (pppt))2 log(K0/p), where p is defined the same as before. We control the
probability of E3 via the following Lemma:

Lemma C.2 (Equivalent of Lemma 12, De Sa et al. (2022)). With probability at least 1 − p, we have
for all 1 ≤ t ≤K0,

∥ξξξt∥2 ≤ σ(F (pppt))2 log(K0/p).

Proof. By Assumption 3.1, with probability 1 − p
K0

, we have

∥ξξξt∥2

σ(F (pppt))2
≤ log(K0/p).

A Union Bound finishes the proof.

Now we condition on E = E1 ∩ E2 ∩ E3, which has probability at least 1 − 2p by combining

41



our earlier argument with Lemma C.2. Note this only changes the resulting guarantee by a universal
constant. We still have Lemma C.1, which does not require an upper bound on each ∥ξξξt∥ in its proof
but simply uses concentration from event E1.

Thus, conditioned on E , we still have F (pppt) ≤ F (www0) + 1 by Lemma C.1, Lemma 3.1, and as
uuu0 ∈ LF,F (www0). Now conditioned on E , by Lemma C.2, we still have the following upper bound for
all 1 ≤ t ≤K0:

∥ξξξt∥2 ≤ σ(F (www0) + 1)2 log(K0/p) = σ1(www0)2 log(K0/p).
Therefore conditioned on E , we can still derive a bound analogous to (18). This resulting bound
changes by only a log(K0/p) factor (from Lemma C.2, see the above display); moreover recall K0, p
depend polynomially in δ,1/ε. By adjusting η smaller by a polylog(K0/p) factor, the same proof as
above goes through, up to changing quantities by polylogarithmic factors.

D Perturbed GD finding Second Order Stationary Points
D.1 Proof using the Framework
Here we prove Theorem 3.4. We instantiate Algorithm 1 formally here. The parameters of Algorithm 1
will depend on L1(www0), L2(www0), which are defined in (4), (21) respectively, and depend only
on ρ1, ρ2, F (www0). Given a desired success probability 1 − δ for δ > 0, a tolerance ε > 0, and
F (www0), L1(www0), L2(www0), the algorithm’s other parameters are defined in terms of as follows:

1. c ≤ cmax is a universal constant, where cmax is a universal constant defined in Lemma D.2.

2. ε̃ = ε
L2(www0) .

3. χ← 4max{log( 2dL1(www0)2F (www0)
c2ε̃2.5δ

),5}.

4. η ← c
L1(www0) .

5. r ←
√
cε̃

χ2L1(www0) .

6. gthres ←
√
c

χ2 ε̃.

7. fthres ← c
χ3

√
ε̃3

L2(www0) .

8. tthres ← χ
c2

L1(www0)√
L2(www0)ε̃

Proof of Theorem 3.4 given Lemma D.2. We will first prove the following Lemma, which will
define L2(www0) and explain its significance.

Lemma D.1. Define L1(www0) as in (4), and define

L2(www0) =max{1, L1(www0), ρ2(F (www0) + 1)}. (21)

Then we have the following:

1. Suppose uuu is such that ∥uuu − w̃ww∥ ≤ 1
ρ0(F (www0)+1) , where w̃ww ∈ LF,F (www0), the F (www0)-sublevel

set. Then under Assumption 1.1 (and in particular under Assumption 1.2),

∥∇2F (uuu)∥
op
≤ L1(www0).

2. Suppose that uuu1,uuu2 are such that ∥uuu1 − w̃ww∥, ∥uuu2 − w̃ww∥ ≤ 1
ρ0(F (www0)+1) , where w̃ww ∈ LF,F (www0).

Then
∥∇2F (uuu1) − ∇2F (uuu2)∥op ≤ L2(www0)∥uuu1 −uuu2∥.

Remark 8. Note L1(www0), L2(www0) ≥ 1, and L2(www0) ≥ L1(www0).
Proof of Lemma D.1. Recall by Corollary 1 that ∥∇F (www)∥ ≤ ρ0(F (www)). Now by Lemma 3.1 and
as w̃ww ∈ LF,F (www0), for any uuu′ with ∥uuu′ − w̃ww∥ ≤ 1

ρ0(F (www0)+1) ≤
1

ρ0(F (w̃ww)+1) , we have F (uuu′) ≤ F (w̃ww) + 1.
The first part now directly follows by Assumption 1.1.

42



Algorithm 1 Perturbed Gradient Descent, modified from Jin et al. (2017).

ε̃ = ε
L2(www0) , χ ← 4max{log( 2dL1(www0)2F (www0)

cε̃2.5δ
),5}, η ← c

L1(www0) , r ←
√
cε̃

χ2L1(www0) , gthres ←
√
c

χ2 ε̃,

fthres ← c
χ3

√
ε̃3

L2(www0) , tthres ← χ
c2

L1(www0)√
L2(www0)ε̃

. Here c refers to a small enough universal constant

upper bounded by cmax in Lemma D.2.

while True do
if ∥∇F (wwwt)∥ ≤ gthres then
w̃wwt ←wwwt, tnoise ← t
wwwt ← w̃wwt + ξξξt, ξξξt uniform from B(0⃗00, r)
s← 0
while s < tthres do
wwwt+1 =wwwt − η∇F (wwwt), s← s + 1, t← t + 1

end while
if F (wwwt) − F (w̃wwtnoise) > −fthres then

Return w̃wwtnoise

end if
else
wwwt+1 =wwwt − η∇F (wwwt), t← t + 1

end if
end while

The second part now follows by noting the line segment uuu1uuu2 is contained in B(w̃ww, 1
ρ0(F (www0)+1)) via

Triangle Inequality, recalling w̃ww ∈ LF,F (www0), and then applying Lemma A.6 and Lemma 3.1.

We now prove Theorem 3.4 by instantiating our framework.

Define ε̃ = ε
L2(www0) as we did earlier, and note L2(www0) ≥ 1. It suffices to show for ε̃ ≤ 1, that with

probability at least 1 − δ, we will return www such that ∥∇F (www)∥ ≤ ε̃, ∇2F (www) ⪰ −
√
L2(www0)ε̃III in

T = O(L1(www0)max{F (www0),1}χ4

ε̃2
) = O(L1(www0)L2(www0)2 max{F (www0),1}χ4

ε2
) oracle calls.7

Now let the set of interest

S = {www ∶ ∥∇F (www)∥ ≤ gthres,∇2F (www) ⪰ −
√
L2(www0)ε̃III}.

Note gthres ≤ ε̃, sowww ∈ S immediately implies ∥∇F (www)∥ ≤ ε̃, ∇2F (www) ⪰ −
√
L2(www0)ε̃III . Also note it

suffices to show the result for all ε̃ ≤ 1
100L2(www0) ; otherwise for larger ε̃ we can just apply the result for

ε̃ = 1
100L2(www0) . Thus as L2(www0) ≥ 1, we can assume ε̃ ≤ 1. Clearly, we also can assume WLOG that

tthres ≥ 1.

As in Subsection 2.3, we make the following definitions for Algorithm 1. For all uuu0 ∈ Rd, if
∥∇F (uuu0)∥ > gthres, we let

A(uuu0) = (uuu0 − η∇F (uuu0),uuu0), hence A1(uuu0) = uuu0 − η∇F (uuu0),A2(uuu0) = uuu0.
Otherwise if ∥∇F (uuu0)∥ ≤ gthres, we let ppp0 = uuu0 + ξξξ where ξξξ is uniform from B(0⃗00, r), and define a
sequence (pppi)0≤i≤tthres via

pppi = pppi−1 − η∇F (pppi−1).
When then take

A(uuu0) = (ppptthres ,uuu0), hence A1(uuu0) = ppptthres ,A2(uuu0) = uuu0.
We then have

toracle(uuu0) = {
tthres ∶ ∥∇F (uuu0)∥ ≤ gthres

1 ∶ ∥∇F (uuu0)∥ > gthres.

We also define

∆(uuu0) = {
fthres ∶ ∥∇F (uuu0)∥ ≤ gthres
η
2
⋅ g2thres ∶ ∥∇F (uuu0)∥ > gthres.

7The max{1, F (www0)} is a proof artifact.

43



We now establish the crucial Claim 2: for all uuu0 ∈ LF,F (www0), A is a
(S, toracle(uuu0),∆(uuu0), dL1(www0)√

L2(www0)ε̃
e−χ,uuu0)-decrease procedure. (Recall ε̃ = ε

L2(www0) .)

To do this, we use the following crucial Lemma ensuring high-probability decrease around saddle
points in the F (www0)-sublevel set:

Lemma D.2 (Equivalent of Lemma 13, Jin et al. (2017)). There exists a universal constant cmax ≤ 1
such that the following occurs. Suppose we start with a w̃ww ∈ LF,F (www0), that is in the F (www0)-sublevel
set, satisfying the following conditions:

∥∇F (w̃ww)∥ ≤ gthres and λmin(∇2F (w̃ww)) ≤ −
√
L2(www0)ε̃.

Now let ppp0 = w̃ww +ζζζ , where ζζζ is sampled uniformly from B(0⃗00, r) where r is defined in Lemma D.3, and
let {pppt} be the iterates of gradient descent starting from ppp0. Then when the step size η ≤ cmax

L1(www0) , with

probability at least 1 − dL1(www0)√
L2(www0)ε̃

e−χ, we have:

F (ppptthres) − F (w̃ww) < −fthres.

The variables in the above are defined in Algorithm 1. As noted earlier, because we work in the
generalized smooth setting, the details require significant care compared to the proof of Lemma 13 in
Jin et al. (2017).

With Lemma D.2, we have the ingredients to prove Theorem 3.4. First we establish Claim 2.

Proof of Claim 2. We prove this by breaking into the following cases:

• Suppose ∥∇F (uuu0)∥ > gthres. Then uuu1 = A1(uuu0) = uuu0 − η∇F (uuu0).
Our condition on η implies that

η ≤ 1

L1(www0)
≤ 1

ρ0(F (www0))ρ0(F (www0) + 1)
.

As uuu0 ∈ LF,F (www0), we have by Corollary 1,

∥uuu1 −uuu0∥ = η∥∇F (uuu0)∥ ≤ ηρ0(F (uuu0)) ≤ ηρ0(F (www0)) ≤
1

ρ0(F (www0) + 1)
.

Consequently, by Lemma 3.1,

F (ppp) ≤ F (uuu0) + 1 ≤ F (www0) + 1 for all ppp ∈ uuu0uuu1.
Now by Lemma A.1 and Assumption 1.1,

F (uuu1) ≤ F (uuu0) − η∥∇F (uuu0)∥2 +
L1(www0)η2

2
∥∇F (uuu0)∥2

≤ F (uuu0) −
η

2
∥∇F (uuu0)∥2

< F (uuu0) −
η

2
⋅ g2thres = F (uuu0) −∆(uuu0).

• Else suppose ∥∇F (uuu0)∥ ≤ gthres. Then uuu0 is perturbed, and we consider the sequence of the
next tthres iterates ppp0 = uuu0 + ξξξ,ppp1, . . . ,ppptthres .

Consider the event E from Lemma D.2, which occurs with probability at least 1 −
dL1(www0)√
L2(www0)ε̃

e−χ. Under E , for such uuu0, we have:

– Either
F (ppptthres) − F (uuu0) < −fthres,

that is
F (uuu1) = F (ppptthres) < F (uuu0) − fthres.

– Or
λMIN(∇2F (uuu0)) ≥ −

√
ε̃L2(www0), hence uuu0 ∈ S.

44



In all cases, by definition of A, we conclude that A is a (S, toracle(uuu0),∆(uuu0), dL1(www0)√
L2(www0)ε̃

e−χ,uuu0)
decrease procedure for uuu0 ∈ LF,F (www0).

Consider these two cases, and recall the definition of ∆ from Theorem 2.1. Using the
definition of η, gthres, fthres, we obtain for c a small enough universal constant,

∆ ≥ 1

2
min{ c2ε̃2

2L1(www0)χ4
,

c3ε̃2

χ4L1(www0)
}

≥ c3ε̃2

χ4L1(www0)
.

Combining with Theorem 2.1, and note toracle(uuu0) ≤ tthres ≤ max{1,F (www0)}
∆

for ε̃ ≤ 1. We thus obtain

the desired oracle complexity of O(L1(www0)max{F (www0),1}χ4

ε̃2
) = O(L1(www0)L2(www0)2 max{F (www0),1}χ4

ε2
) to

obtain an iterate in S.8

We finally show the desired probability of success. Through Theorem 2.1, since χ ≥ 18 and by
definition of χ, we can verify that the probability of failure is at most

dL1(www0)√
L2(www0)ε̃

e−χ ⋅ sup
uuu∈LF,F (www0)

{F (www0)
∆(www) }

≤ dL1(www0)√
L2(www0)ε̃

e−χ ⋅ F (www0)
c2ε̃2

2χ4L1(www0)
√
L2(www0)

≤ χ4e−χ
2dL1(www0)2F (www0)

c2ε̃2.5

≤ e−χ/4 ⋅ 2F (www0)dL2
1(www0)

cε̃2.5

≤ δ.

This completes the proof, assuming Lemma D.2.

D.2 Proving the key Lemma
We now prove Lemma D.2 to complete the proof. The rest of the proof is similar to that of Jin et al.
(2017), but hinges crucially on the fact that the analysis in Jin et al. (2017) is ‘local’.

Consider any γ > 0, and define the ‘units’ in a similar way as Jin et al. (2017), but now in terms of
L1(www0), L2(www0) > 0 defined earlier. First let the new ‘condition number’ be κ = κ(www0) ∶= L1(www0)

γ

(note this is not the real condition number, but rather is the ‘effective condition number’ of ∇2F in
LF,F (www0)). Now define the following positive reals:

F1 = ηL1(www0)
γ3

L2(www0)2
log−3(dκ

δ
),

F2 =
log(dκ

δ
)

ηγ
,

G =
√
ηL1(www0)

γ2

L2(www0)
log−2(dκ

δ
),

L =
√
ηL1(www0)

γ

L2(www0)
log−1(dκ

δ
).

Our goal is to prove the following.

8Note tthres generally does not decrease with F (www0), and this is why the max{1, F (www0)} comes in.

45



Lemma D.3 (equivalent of Lemma 14 in Jin et al. (2017)). There exists a universal constant cmax

such that the following holds. For any F satisfying the conditions of Theorem 3.4, for any δ ∈ (0, dκ
e
],

suppose we start with a point w̃ww ∈ LF,F (www0) satisfying the following conditions for some γ > 0, where
G is defined as above:

∥∇F (w̃ww)∥ ≤ G and λmin(∇2F (w̃ww)) ≤ −γ.
Let ppp0 = w̃ww+ζζζ , where ζζζ is sampled from the uniform distribution over a ball with radius L

κ⋅log( dκδ )
∶= r

and where L is defined as above. Let {pppt} be the iterates of gradient descent starting from ppp0.
Then, when the step size η ≤ cmax

L1(www0) , with probability at least 1 − δ, we have the following for any
T ≥ 1

cmax
F2:

F (pppT ) − F (w̃ww) < −F1.

Plugging in γ =
√
L2(www0)ε̃, η = cmax

L1(www0) , δ =
dL1(www0)√
L2(www0)ε̃

e−χ into the above expressions for

F1,F2,G,L, using c ≤ cmax, and directly applying Lemma D.3, we immediately obtain Lemma D.2.
The rest of Section D is thus devoted to proving Lemma D.3.

Remark 9. Note it suffices to prove Lemma D.3 for δ and γ smaller than universal constants, as the
result Theorem 3.4 will remain identical under the O(⋅). Thus we can assume WLOG that log(dκ/δ)
is larger than some universal constant, and that γ ≤ 1

60
. Also notice by our choice of step size

η ≤ cmax
L1(www0) and the assumption γ ≤ 1

60
, for c ≤ cmax ≤ 1

12100
we obtain

κ ≥ 1, r ≤ 1.
This in turn implies

G ≤ L,
F2 ≥ 40,

L ≤
√
ηL1(www0) ⋅

γ

L2(www0)
⋅ log−1(dκ

δ
)

≤ 1

6600
⋅min{1, 1

ρ0(F (www0) + 1)
,

1

ρ0(F (www0))ρ0(F (www0) + 1)
},

where the second line uses that

L2(www0) ≥ L1(www0) ≥max{1, ρ0(F (www0) + 1), ρ0(F (www0))ρ0(F (www0) + 1)}.
As these assumptions come with no loss of generality, we make these assumptions for the rest of the
proof.

To show Lemma D.3, again as in Jin et al. (2017), we prove that the width of the stuck region is not
too large.

Lemma D.4 (equivalent of Lemma 15 in Jin et al. (2017)). There exists a universal constant cmax

such that the following occurs. For any δ ∈ (0, dκ
e
], let F and w̃ww satisfy the conditions in Lemma D.3.

Without loss of generality, by rotational symmetry, let eee1 be the minimum eigenvector of ∇2F (w̃ww).
Consider two gradient descent sequences {uuut} and {xxxt} with initial points uuu0,xxx0 satisfying (again,
denote the radius r = L

κ⋅log( dκδ )
):

∥uuu0 − w̃ww∥ ≤ r, xxx0 = uuu0 ± µ ⋅ r ⋅ eee1, µ ∈ [ δ

2
√
d
,1].

Then for any step size η ≤ cmax
L1(www0) , and any T ≥ 1

cmax
F2, we have:

min{F (uuuT ) − F (uuu0), F (xxxT ) − F (xxx0)} ≤ −2.5F1.

Now, we prove Lemma D.3 given Lemma D.4.

Proof of Lemma D.3 given Lemma D.4. Recall as per Remark 9 that

∥ppp0 − w̃ww∥ ≤ r ≤ L ≤
1

ρ0(F (www0) + 1)
.

46



Also recall w̃ww ∈ LF,F (www0). Thus by Lemma D.1 we obtain for all uuu ∈ ppp0w̃ww that

∥∇2F (uuu)∥
op
≤ L1(www0).

Therefore by Lemma A.1,

F (ppp0) ≤ F (w̃ww) + ∥∇F (w̃ww)∥r +
L1(www0)

2
r2 ≤ F (w̃ww) + Gr + L1(www0)

2
r2 = F (w̃ww) + F1,

where we can readily verify from Remark 9 that Gr + L1(www0)
2

r2 ≤ F1.

Now let the stuck region be the set of points ppp0 in B(w̃ww, r) such that

F (pppT ) − F (ppp0) ≥ −2.5F1.

Define the unstuck points by the complement of the stuck points.

We upper bound the volume of the stuck region as done in Jin et al. (2017); this step does not use
gradient and Hessian Lispchitzness. Let 1Stuck Region(⋅) be the indicator function of the stuck region.
Write all www ∈ Rd as www = (www(1),www(−1)), where www(1) is the component of www along eee1 direction and
www(−1) is the component of www along the orthogonal complement of eee1. By Lemma D.4, for any
www ∈ B(w̃ww, r),

1Stuck region(www)dwww = 1Stuck region(www)dwww(−1) ∫
w̃ww+
√
r2−∥w̃ww(−1)−www(−1)∥2

w̃ww−
√
r2−∥w̃ww(−1)−www(−1)∥2

dwww(1)

≤ dwww(−1) ⋅ 2 ⋅ δ

2
√
d
r.

Using this, we have:

Volume(Stuck region) = ∫
Bd(w̃ww,r)

1Stuck region(www)dwww

= ∫
Bd−1(w̃ww,r)

1Stuck region(www)dwww(−1) ∫
w̃ww+
√
r2−∥w̃ww(−1)−www(−1)∥2

w̃ww−
√
r2−∥w̃ww(−1)−www(−1)∥2

dwww(1)

≤ ∫
Bd−1(w̃ww,r)

dwww(−1) ⋅ 2 ⋅ δ

2
√
d
r.

= Volume(Bd−1(0⃗00, r)) ⋅ δr√
d
.

Then letting Γ(⋅) denote the Gamma function, we have the following ratio:

Volume(Stuck region)
Volume(B(w̃ww, r)) ≤ δr√

d
⋅ Volume(Bd−1(0⃗00, r))

Volume(Bd(0⃗00, r))

= δ√
πd
⋅
Γ (d

2
+ 1)

Γ (d
2
+ 1

2
)

≤ δ√
πd
⋅
√

d

2
+ 1

2
≤ δ.

Here we use the following property of the Gamma function: for x ≥ 0, Γ(x+1)
Γ( x2 +

1
2

≤
√
x + 1

2
.

This directly implies that with probability at least 1 − δ, ppp0 is an unstuck point. Consequently with
probability at least 1 − δ, for any T ≥ 1

cmax
F2, we have

F (pppT ) − F (w̃ww) = F (pppT ) − F (ppp0) + F (ppp0) − F (w̃ww) ≤ −2.5F1 +F1 = −1.5F1 < −F1.

This proves Lemma D.3.

Now we prove Lemma D.4, which we do with an analogous strategy as Jin et al. (2017) by
coupling two gradient descent sequences. We have the following two Lemmas, analogous to

47



Lemmas 16, 17 in Jin et al. (2017). Again, the reason why they hold in our setting under generalized
smoothness is because they all concern ‘local’ behavior around points in the sublevel set of F (www0).
Consequently Lemma 3.1 and Assumption 1.2 ensure we have the required ‘local’ smoothness
properties.

Again defineHHH, F̃yyy(xxx) analogously to page 20, Jin et al. (2017), as follows:

HHH ∶= ∇2F (w̃ww), F̃yyy(xxx) ∶= F (yyy) + ⟨∇F (yyy),xxx − yyy⟩ +
1

2
(xxx − yyy)⊺HHH(xxx − yyy). (22)

That is, F̃yyy is a quadratic approximation of F , Taylor expanded about w̃ww.

The aforementioned Lemmas are as follows:

Lemma D.5 (equivalent of Lemma 16 in Jin et al. (2017)). Letting ĉ = 11, there exists a univer-
sal constant cmax ≤ 1

12100
such that following holds. For any δ ∈ (0, dκ

e
], consider F,w̃ww, r as in

Lemma D.3. For any uuu0 with ∥uuu0 − w̃ww∥ ≤ 2r = 2L
κ⋅log( dκδ )

, define

T =min{inf
t
{t ∣ F̃uuu0(uuut) − F (uuu0) ≤ −3F1}, ĉF2}.

Then for any η ≤ cmax
L(www0) , we have for all t < T that ∥uuut − w̃ww∥ ≤ 150Lĉ.

Lemma D.6 (equivalent of Lemma 17 in Jin et al. (2017)). Letting ĉ = 11, there exists a universal
constant cmax ≤ 1

12100
such that the following holds. For any δ ∈ (0, dκ

e
], consider F,w̃ww, r as in

Lemma D.3, and sequences {uuut}, {xxxt} satisfying the conditions in Lemma D.4. Define:

T =min{inf
t
{t ∣ F̃xxx0(xxxt) − F (xxx0) ≤ −3F1} , ĉF2} .

Then, for any η ≤ cmax
L1(www0) , if ∥uuut − w̃ww∥ ≤ 150Lĉ for all t < T , we will have T < ĉF2. Equivalently, this

means that
inf
t
{t ∶ F̃xxx0(xxxt) − F (xxx0) ≤ −3F1} < ĉF2,

i.e. that we escaped the saddle point.

Proof of Lemma D.4 given Lemma D.5, Lemma D.6. Choosing cmax to be the minimum of the
cmax from Lemma D.5, Lemma D.6, we can ensure both Lemmas hold. Clearly this preserves that
cmax ≤ 1

12100
.

Define
T ⋆ = ĉF2, T

′ = inf{t ∶ F̃uuu0(uuut) − F (uuu0) ≤ −3F1}.
We break into cases on T ′ versus T ⋆:

• T ′ ≤ T ⋆: By Lemma D.5, ∥uuuT ′−1 − w̃ww∥ ≤ 150Lĉ. Since L ≤ 1
6600
⋅ 1
ρ0(F (www0)+1) from

Remark 9 and ĉ = 11, this yields

∥uuuT ′−1 − w̃ww∥ ≤ 150Lĉ ≤
1

4
⋅ 1

ρ0(F (www0) + 1)
.

Thus because w̃ww ∈ LF,F (www0), by Lemma D.1, we have

∥∇2F (uuu)∥ ≤ L1(www0) for all uuu ∈ uuuT ′−1w̃ww.
Thus, recalling G ≤ L from Remark 9, we obtain

∥∇F (uuuT ′−1)∥ ≤ ∥∇F (w̃ww)∥ +L1(www0)∥uuuT ′−1 − w̃ww∥
≤ G + 150ĉL1(www0)L ≤ L + 150ĉL1(www0)L.

Therefore, as ηL1(www0) ≤ cmax ≤ 1,

∥uuuT ′ − w̃ww∥ ≤ ∥uuuT ′−1 − w̃ww∥ + η∥∇F (uuuT ′−1)∥
≤ 150Lĉ + L + 150ĉ ⋅ ηL1(www0)L ≤ (300ĉ + 1)L (23)

Recalling κ, log(dκ
δ
) ≥ 1, the conditions of Lemma D.4 give

∥uuu0 − w̃ww∥ ≤ r ≤ L. (24)

48



Combining (23), (24) and applying Triangle Inequality gives

∥uuuT ′ −uuu0∥ ≤ (300ĉ + 2)L. (25)

Also by (24), we have ∥uuu0 − w̃ww∥ ≤ L ≤ 1
ρ0(F (www0)+1) . Thus as w̃ww ∈ LF,F (www0), by Lemma D.1

we obtain
∥∇2F (uuu0)∥ ≤ L1(www0). (26)

Moreover, by Triangle Inequality we obtain that for any uuu ∈ uuu0uuuT ′ , we have

∥uuu − w̃ww∥ ≤ (300ĉ + 2)L = 3302L ≤ 1

ρ0(F (www0) + 1)
.

As w̃ww ∈ LF,F (www0), Lemma D.1 implies for all such uuu1,uuu2 ∈ uuu0uuuT ′ that

∥∇2F (uuu1) − ∇2F (uuu2)∥op ≤ ∥uuu1 −uuu2∥L2(www0).

Now applying Lemma A.2, and by choosing η = c
L(www0) for a small enough universal constant

c, we obtain:

F (uuuT ′) − F (uuu0)

≤ ∇F (uuu0)⊺(uuuT ′ −uuu0) +
1

2
(uuuT ′ −uuu0)⊺∇2F (uuu0)(uuuT ′ −uuu0) +

L2(www0)
6
∥uuuT ′ −uuu0∥3

≤ F̃uuu0(uuuT ′) − F (uuu0) +
L2(www0)

2
∥uuuT ′ −uuu0∥2∥uuu0 − w̃ww∥ +

L2(www0)
6
∥uuuT ′ −uuu0∥3

≤ −3F1 +O(L1(www0)L3)
= −3F1 +O(

√
ηL1(www0)F1) ≤ −2.5F1.

Here we used (26), (24), (25), and that L ≤ 1 as per Remark 9. In the above, O(⋅) only hides
universal constants as ĉ = 11 is a universal constant, and so these final inequalities can be
made to hold by choosing cmax a sufficiently small universal constant.

Since w̃ww ∈ LF,F (www0) and η ≤ 2
L1(www0) , Lemma A.7 shows that gradient descent will not

increase value (this is essentially the same as several steps the proof of Theorem 3.1,
combined with induction). Thus for all T ≥ T ′ and hence for all T ≥ 1

cmax
F2 ≥ ĉF2 ≥ T ′

along this gradient descent trajectory, we have

F (uuuT ) − F (uuu0) ≤ F (uuuT ′) − F (uuu0) ≤ −2.5F1.

• T ′ > T ⋆: In this case, by Lemma D.5, we know ∥uuut − w̃ww∥ ≤ 150Lĉ for all t < T ⋆ = ĉF2.

Define
T ′′ = inf

t
{t ∣ F̃xxx0(xxxt) − F (xxx0) ≤ −3F1} .

Since ∥uuut − w̃ww∥ ≤ 150Lĉ for all t < T ⋆ = ĉF2, it follows that ∥uuut − w̃ww∥ ≤ 150Lĉ for all
t <min{T ′′, T ⋆}. Thus by Lemma D.6, we have that min{T ′′, T ⋆} < T ⋆, and so T ′′ < T ⋆.
Applying the same argument as in the first case to the {xxxt}, we have that for all T ≥ 1

cmax
F2

that
F (xxxT ) − F (xxx0) ≤ −2.5F1.

This proves Lemma D.4.

Remark 10. Note that w̃ww ∈ LF,F (www0) is central to this argument, unlike the Lipschitz gradient and
Hessian case from Jin et al. (2017).

49



D.3 Proof of Escaping Saddles Lemmas
Now we prove Lemma D.5, Lemma D.6.

Proof of Lemma D.5. We follow the proof of Lemma 16, Jin et al. (2017). Again, we aim to show
that if the function value does not decrease, then all the iterates must remain constrained in a small
ball. This is done by analyzing the dynamics of the iterates and decomposing the d-dimensional
space into two subspaces: a subspace S, which is the span of the negative enough eigenvectors of the
Hessian, and its orthogonal complement.

The main difference now is that now we cannot directly control relevant operator norms with global
Lipschitz properties of the gradient and Hessian. However, it turns out that the proof of this Lemma
will follow induction on the iterate uuut, and consequently we will obtain that all of the prior iterates
uuut′ for t′ < t are close enough to w̃ww. By a similar argument as in Lemma D.3, since w̃ww ∈ LF,F (www0),
this lets us upper bound the gradient of these points. By the Gradient Descent update rule, this in turn
implies the current iterate is also close to w̃ww, and thus we obtain bounds on the relevant derivatives in
terms of L1(www0), L2(www0) for all points in the convex hull of the relevant iterates.

We begin the argument. Analogously to Jin et al. (2017), since δ ∈ (0, dκ
e
], we always have

log (dκ
δ
) ≥ 1. By the gradient descent update function, we have

uuut+1 = uuut − η∇F (uuut).
This can be expanded as:

uuut+1 = uuut − η∇F (uuu0) − η(∫
1

0
∇2F (θ(uuut −uuu0) +uuu0)dθ)(uuut −uuu0).

Recall the definitionHHH = ∇2F (w̃ww). Let ∆t be defined as:

∆t ∶= ∫
1

0
∇2F (θ(uuut −uuu0) +uuu0)dθ −HHH.

Substituting, we obtain:

uuut+1 = (III − ηHHH − η∆t)(uuut −uuu0) − η∇F (uuu0) +uuu0.
Note we do not immediately have an upper bound on the operator norm of ∆t. In particular this is
because t could diverge (logarithmically) in the dimension, only being upper bounded by F2.

We now compute the projections of uuut −uuu0 in different eigenspaces ofHHH . Define S as the subspace
spanned by all eigenvectors of HHH whose eigenvalues are less than − γ

ĉ log( dκδ )
. Let Sc denote the

subspace of the remaining eigenvectors. Let αααt and βββt denote the projections of uuut −uuu0 onto S and
Sc respectively, i.e., αααt = PS(uuut −uuu0), and βββt = PSc(uuut −uuu0).
We can decompose the update equations for uuut+1 into:

αααt+1 = (III − ηHHH)αααt − ηPS∆t(uuut −uuu0) − ηPS∇F (uuu0),
βββt+1 = (III − ηHHH)βββt − ηPSc∆t(uuut −uuu0) − ηPSc∇F (uuu0).

By the definition of T , we know for all t < T :

−3F1 < F̃uuu0(uuut) − F (uuu0) = ∇F (uuu0)⊺(uuut −uuu0) −
1

2
(uuut −uuu0)⊺HHH(uuut −uuu0)

≤ ∇F (uuu0)⊺(uuut −uuu0) −
γ

2

∥αααt∥2

ĉ log (dκ
δ
)
+ 1

2
βββ⊺tHHHβββt.

Evidently we have ∥uuut −uuu0∥2 = ∥αααt∥2 + ∥βββt∥2, and thus the above rearranges to

∥uuut −uuu0∥2 ≤
2ĉ log (dκ

δ
)

γ
(3F1 +∇F (uuu0)⊺(uuut −uuu0) +

1

2
βββ⊺tHHHβββt) + ∥βββt∥

2
. (27)

Now we control ∥∇F (uuu0)∥. We use the fact that w̃ww ∈ LF,F (www0) to give us the necessary control over
this quantity. Similar ideas were used in the proof of Lemma D.4, and will continue to be used in the
rest of the proofs of Lemma D.5, Lemma D.6. In particular, recall as per Remark 9 that

∥uuu0 − w̃ww∥ ≤ 2r ≤ 2L ≤
1

ρ0(F (www0) + 1)
.

50



Thus by Lemma D.1, as w̃ww ∈ cLF,F (www0), we obtain

∥∇2F (uuu)∥ ≤ L1(www0) for all uuu ∈ uuu0w̃ww.
Consequently,

∥∇F (uuu0) − ∇F (w̃ww)∥ ≤ L1(www0)∥uuu0 − w̃ww∥ ≤ 2rL1(www0) = 2G,
which implies

∥∇F (uuu0)∥ ≤ ∥∇F (w̃ww)∥ + 2G = 3G. (28)
This gives us an analogous bound on ∥∇F (uuu0)∥ as in the proof of Lemma 16, Jin et al. (2017).
Substituting this bound on ∥∇F (uuu0∥ into (27), we obtain

∥uuut −uuu0∥2 ≤ 14max

⎧⎪⎪⎨⎪⎪⎩

Gĉ log (dκ
δ
)

γ
∥uuut −uuu0∥,

F1ĉ log (dκδ )
γ

,
βββ⊺tHHHβββtĉ log (dκδ )

γ
, ∥βββt∥2

⎫⎪⎪⎬⎪⎪⎭
.

In turn this implies

∥uuut −uuu0∥ ≤ 14max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Gĉ log (dκ
δ
)

γ
,

¿
ÁÁÀF1ĉ log (dκδ )

γ
,

¿
ÁÁÀβββ⊺tHHHβββtĉ log (dκδ )

γ
, ∥βββt∥

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (29)

The key induction: Now, we induct on t to prove

∥uuut −uuu0∥ ≤ 148Lĉ for all t < T. (30)

Clearly this implies Lemma D.5, upon recalling ∥uuu0 − w̃ww∥ ≤ 2r = 2L ≤ ĉL by our choice ĉ = 11.

The base case t = 0 is evident.

Now for the inductive step, suppose (30) is true for all τ ≤ t such that t + 1 < T . We show it is true
for t + 1.

Due to the above bound (29), it suffices to upper bound ∥βββt+1∥,βββ⊺t+1HHHβββt+1. We note as in the proof
of Lemma 16 of Jin et al. (2017) that letting

δδδt ∶= PSc(∆t(uuut −uuu0) + ∇F (uuu0)),
we have by the Triangle Inequality and properties of projections that

∥δδδt∥ ≤ ∥∆t∥op∥uuut −uuu0∥ + ∥∇F (uuu0)∥. (31)

Furthermore, we have by definition of the update rule for βββt+1 that

βββt+1 = (III − ηHHH)βββt + ηδδδt. (32)

Thus,
∥βββt+1∥ ≤ ∥(III − ηHHH)βββt∥ + ηδδδt ≤ ∥βββt∥ + η∥HHHβββt∥ + ηδδδt. (33)

Now, consider any τ,0 ≤ τ ≤ t. We upper bound ∥∆τ∥op. Rewrite

∆τ = ∫
1

0
(∇2F (θ(uuuτ −uuu0) +uuu0) − ∇2F (uuu0))dθ +∇2F (uuu0) − ∇2F (w̃ww).

Clearly, as per Remark 9,

∥uuu0 − w̃ww∥ ≤ 2r ≤ 2L ≤
1

ρ0(F (www0) + 1)
.

Recalling w̃ww ∈ LF,F (www0) and applying Lemma D.1 gives

∥∇2F (uuu0) − ∇2F (w̃ww)∥
op
≤ L2(www0)∥uuu0 − w̃ww∥. (34)

Moreover by inductive hypothesis, we know that ∥uuuτ −uuu0∥ ≤ 148Lĉ. Consequently as ĉ = 11 ≥ 1
and following Remark 9, for all θ ∈ [0,1], we have

∥(θ(uuuτ −uuu0) +uuu0) − w̃ww∥ ≤ 2L + 148ĉL ≤
1

ρ0(F (www0) + 1)
.

51



Since w̃ww ∈ LF,F (www0), it follows by Lemma D.1 that

∥∇2F (θ(uuuτ −uuu0) +uuu0) − ∇2F (uuu0)∥op ≤ L2(www0)∥uuuτ −uuu0∥ for all θ ∈ [0,1]. (35)

Hence by Triangle Inequality, from (34) and (35), we have

∥∆t∥op ≤ L2(www0)(∥uuuτ −uuu0∥ + ∥uuu0 − w̃ww∥) ≤ L2(www0)(148Lĉ + ∥uuu0 − w̃ww∥). (36)

Proceeding from here is now exactly the same as in Jin et al. (2017). We detail the argument for
completeness.

Combining (31), (36), (28) and applying the inductive hypothesis and the condition of Lemma D.3
that ∥uuu0 − w̃ww∥ ≤ 2r, gives

∥δδδτ∥ ≤ L2(www0)(148Lĉ + ∥uuu0 − w̃ww∥)∥uuuτ −uuu0∥ + ∥∇F (uuu0)∥

≤ L2(www0) ⋅ 148ĉ
⎛
⎝
148ĉ + 2

κ ⋅ log (dκ
δ
)
⎞
⎠
L2 + 3G.

Plugging in the choice of L, and choosing a small enough constant cmax ≤ ( 1
2⋅148ĉ(148ĉ+2))

2
and

choosing step size η < cmax

L1(www0) , gives for any 0 ≤ τ ≤ t:

∥δδδτ∥ ≤
⎧⎪⎪⎨⎪⎪⎩
148ĉ

⎛
⎝
148ĉ + 2

κ ⋅ log (dκ
δ
)
⎞
⎠
√
ηL1(www0) + 3

⎫⎪⎪⎬⎪⎪⎭
G ≤ 3.5G. (37)

We now bound ∥βββt+1∥,βββ⊺t+1HHHβββt+1, which combining with (29) finishes the induction and thus the
proof.

• In order to bound ∥βββt+1∥, combining (33) with (37) and recalling the definition of S and βββt
gives:

∥βββt+1∥ ≤
⎛
⎝
1 + ηγ

ĉ log (dκ
δ
)
⎞
⎠
∥βββt∥ + 3.5ηG.

Since ∥βββ0∥ = 0 and t + 1 ≤ T , by applying the above relation recursively, we have:

∥βββt+1∥ ≤
T

∑
τ=0

3.5
⎛
⎝
1 + ηγ

ĉ log (dκ
δ
)
⎞
⎠

τ

ηG ≤ 3.5 ⋅ 3 ⋅ TηG ≤ 10.5Lĉ. (38)

In the above we used T ≤ ĉF , which also implies (1 + ηγ

ĉ log( dκδ )
)
T

≤ (1 + ηγ

ĉ log( dκδ )
)
ĉF
≤ 3

(one can find an easy upper bound on F based on its definition and check using L2(www0) ≥
L1(www0) ≥ 1 that this is the case).

• Now for bounding βββ⊺t+1HHHβββt+1, notice we can also write the update equation (32) for βββt as:

βββt = η
t−1
∑
τ=0
(III − ηHHH)τδδδt−1−τ .

AsHHH is symmetric this gives:

βββ⊺t+1HHHβββt+1 = η2
t

∑
τ1=0

t

∑
τ2=0

δδδ⊺t−1−τ1(III − ηHHH)
τ1HHH(III − ηHHH)τ2δδδt−1−τ2 .

Thus we have:

βββ⊺t+1HHHβββt+1 ≤ η2
t

∑
τ1=0

t

∑
τ2=0
∥δδδt−1−τ1∥∥(III − ηHHH)τ1HHH(III − ηHHH)τ2∥∥δδδt−1−τ2∥.

Since for 0 ≤ τ1, τ2 ≤ t we have ∥δδδt−1−τ1∥, ∥δδδt−1−τ2∥ ≤ 3.5G as argued earlier, we have:

βββ⊺t+1HHHβββt+1 ≤ 3.52η2G2
t

∑
τ1=0

t

∑
τ2=0
∥(III − ηHHH)τ1HHH(III − ηHHH)τ2∥.

52



Let the eigenvalues of HHH be {λi}. Thus for any τ1, τ2 ≥ 0, the eigenvalues of
(III −ηHHH)τ1HHH(III −ηHHH)τ2 are {λi(1−ηλi)τ1+τ2}. We now detail a calculation from Jin et al.
(2017). Letting gt(λ) ∶= λ(1 − ηλ)t and setting its derivative to zero yields

∇gt(λ) = (1 − ηλ)t − tηλ(1 − ηλ)t−1 = 0.

It is easy to check that λ⋆t = 1
(1+t)η is the unique maximizer, and gt(λ) is monotonically

increasing in (−∞, λ⋆t ].
This gives:

∥(III − ηHHH)τ1HHH(III − ηHHH)τ2∥ =max
i
λi(1 − ηλi)τ1+τ2 ≤ λ̂(1 − ηλ̂)τ1+τ2 ≤

1

(1 + τ1 + τ2)η
,

where λ̂ =min{ℓ, λ⋆τ1+τ2}. Therefore, we have:

βββ⊺t+1HHHβββt+1 ≤ 3.52ηG2
t

∑
τ1=0

t

∑
τ2=0

1

1 + τ1 + τ2
.

To bound the sum note:
t

∑
τ1=0

t

∑
τ2=0

1

1 + τ1 + τ2
=

2t

∑
τ=0

min{1 + τ,2t + 1 − τ} ⋅ 1

1 + τ ≤ 2t + 1 < 2T.

Thus:

βββ⊺t+1HHHβββt+1 ≤ 2 ⋅ 3.52ηTG2 ≤
3.52L2γĉ

log (dκ
δ
)
. (39)

Finally, substituting the previous upper bounds (38), (39) for ∥βββt∥, βββ⊺t+1HHHβββt+1 into our prior display
(29) for ∥uuut −uuu0∥, we obtain:

∥uuut −uuu0∥ ≤ 14max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Gĉ log (dκ
δ
)

γ
,

¿
ÁÁÀF1ĉ log (dκδ )

γ
,

¿
ÁÁÀβββ⊺tHHHβββtĉ log (dκδ )

γ
, ∥βββt∥

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤ 148Lĉ.

This finishes the induction, and hence the proof of the Lemma.

Proof of Lemma D.6. Again, we aim to show that if all iterates from uuu0 are contained in a small
ball, then the iterates from xxx0 decrease function value. As with the proof of Lemma D.5, the proof
combines the proof idea of Lemma 17, Jin et al. (2017) with the self-bounding framework. This time
it goes through even easier, because the required new bounds that we need from the relevant iterates
being ‘local’ hold not due to induction, but rather from a direct application of Lemma D.5.

Define vvvt = xxxt −uuut. By the assumptions of this Lemma we have that vvv0 = ±µ [ L
κ⋅log( dκδ )

]eee1 where

µ ∈ [ δ

2
√
d
,1]. Consequently

δ

2
√
d
⋅ r ≤ ∥vvv0∥ ≤ r. (40)

Recall the definition
HHH = ∇2F (w̃ww)

as per (22). Also define

∆′t ∶= ∫
1

0
∇2F (uuut + θvvvt)dθ −HHH.

Exactly as in the proof of Lemma 17, Jin et al. (2017), by directly writing the update equations, we
have

uuut+1 + vvvt+1 = xxxt+1 = xxxt − η∇F (xxxt)
= uuut + vvvt − η∇F (uuut + vvvt)

53



= uuut + vvvt − η∇F (uuut) − η(∫
1

0
∇2F (uuut + θvvvt)dθ)vvvt

= uuut + vvvt − η∇F (uuut) − η(HHH +∆′t)vvvt
= uuut − η∇F (uuut) + (III − ηHHH − η∆′t)vvvt.

Hence as uuut+1 = uuut − η∇F (uuut), we obtain
vvvt+1 = (III − ηHHH − η∆′t)vvvt. (41)

The difference from the proof of Lemma 17, Jin et al. (2017) is now that we do not immediately
have an upper bound on ∥∆′t∥op without global Lipschitzness of the gradient and Hessian. However,
similarly as in the proof of Lemma D.5, we can obtain such a bound using the self-bounding
framework, since the point w̃ww in question is in the F (www0)-sublevel set LF,F (www0).

Note by hypothesis on uuu0 from Lemma D.4 and as ∥vvv0∥ ≤ r by (40),
∥xxx0 − w̃ww∥ ≤ ∥uuu0 − w̃ww∥ + ∥vvv0∥ ≤ r + r = 2r.

Applying Lemma D.5 directly to the {xxxt} implies that
∥xxxt − w̃ww∥ ≤ 150Lĉ for all t < T.

By assumption of this Lemma, we have
∥uuut − w̃ww∥ ≤ 150Lĉ for all t < T.

Triangle Inequality thus gives
∥vvvt∥ ≤ 300Lĉ, ∥uuut −uuu0∥ ≤ 300Lĉ for all t < T.

Therefore for all 0 ≤ θ ≤ 1,
uuut + θvvvt ∈ B(w̃ww,600Lĉ).

Note as per Remark 9,

600Lĉ = 6600L ≤ 1

ρ0(F (www0) + 1)
.

As w̃ww ∈ LF,F (www0), it follows from Lemma D.1 that

∥∇2F (uuut + θvvvt) − ∇2F (uuut)∥op ≤ L2(www0) ⋅ θvvvt for all θ ∈ [0,1]. (42)

Similarly, by the above bound

∥uuut − w̃ww∥ ≤ 150Lĉ ≤
1

ρ0(F (www0) + 1)
and as w̃ww ∈ LF,F (www0), Lemma D.1 proves that

∥∇2F (uuut) − ∇2F (w̃ww)∥
op
≤ L2(www0)∥uuut − w̃ww∥. (43)

Now, rewrite

∆′t = ∫
1

0
(∇2F (uuut + θvvvt) − ∇2F (uuut))dθ +∇2F (uuut) − ∇2F (w̃ww).

By (42), (43), and the above bounds on ∥vvvt∥, ∥uuut − w̃ww∥, we obtain for all θ ∈ [0,1] that
∥∆′t∥op ≤ L2(www0)(θ∥vvvt∥ + ∥uuut − w̃ww∥) ≤ L2(www0)L(450ĉ + 1). (44)

From here, exactly the same proof as that of Lemma 17, Jin et al. (2017) lets us conclude. We
detail it for completeness. Similar to the proof of Lemma 17, Jin et al. (2017), let S be the subspace
corresponding to eigenvectors ofHHH with eigenvalues larger or equal in absolute value to γ, and let
S⊥ be its orthogonal complement. Note eee1 ⊆ S. Denote the norm of vvvt projected onto S by ψt, and
the norm of vvvt projected onto S⊥ by ϕt.

Notice therefore from the assumptions of this Lemma that ϕ0 = 0 as vvv0 is a scalar multiple of eee1.
Similarly, note ψ0 = ∥vvv0∥ ≥ δ

2
√
d
⋅ r by (40).

Let
B ∶= ηL2(www0)L(450ĉ + 1).

Observe B ≤ 1, as LL2(www0) ≤ 1 and as η ≤ cmax ≤ 1
12100

, ĉ = 11.

Combining (41) with (44) gives that

ψt+1 ≥ (1 + γη)ψt −B
√
ψ2
t + ϕ2t , ϕt+1 ≤ (1 + γη)ϕt +B

√
ψ2
t + ϕ2t . (45)

54



The key induction: Now we induct on t to show that for all t < T ,

ϕt ≤ 4Bt ⋅ ψt.
For the base case, recall by hypotheses of the Lemma that vvv0 is a scalar multiple of eee1, thus ϕ0 = 0
and the base case holds.

Now, for the inductive step, assume that the inductive hypothesis holds true for all τ ≤ t for some t
such that t + 1 ≤ T . Substituting the inequality (45) for ϕt+1 and applying the inductive hypothesis
ϕt ≤ 4Bt ⋅ ψt, we obtain

ϕt+1 ≤ 4Bt(1 + γη)ψt +B
√
ψ2
t + ϕ2t .

Also note (45) gives

4B(t + 1)ψt+1 ≥ 4B(t + 1)((1 + γη)ψt −B
√
ψ2
t + ϕ2t),

which rearranges to

4Bt(1 + γη)ψt ≤ 4B(t + 1)ψt+1 + 4B2(t + 1)
√
ψ2
t + ϕ2t − 4B(1 + γη)ψt.

Therefore,

ϕt+1 ≤ 4B(t + 1)ψt+1 + (4B2(t + 1)
√
ψ2
t + ϕ2t +B

√
ψ2
t + ϕ2t − 4B(1 + γη)ψt).

Thus, recalling B ≤ 1, to complete the induction it suffices to show the following:

(1 + 4B2(t + 1))
√
ψ2
t + ϕ2t ≤ 4(1 + γη)ψt.

Choosing
√
cmax ≤ 1

450ĉ+1 min{ 1

2
√
2
, 1
4ĉ
} which is a universal constant, and choosing η ≤ cmax

L1(www0) ,
we have:

4B(t + 1) ≤ 4BT ≤ 4ηL2(www0)L(450ĉ + 1)ĉF = 4
√
ηL1(www0)(450ĉ + 1)ĉ ≤ 1.

By the inductive hypothesis, this gives ϕt ≤ ψt. In turn this implies that

4(1 + γη)ψt ≥ 4ψt ≥ 2
√
2ψt ≥ (1 + 4B(t + 1))

√
ψ2
t + ϕ2t ,

finishing the induction.

Finishing the proof from here: We thus obtain ϕt ≤ 4Btψt ≤ ψt for all t, where we use that
4BT ≤ 1 as proven above, which just follows from our choice of parameters. Therefore,

ψt+1 ≥ (1 + γη)ψt −B
√
2ψt > (1 +

γη

2
)ψt. (46)

The last step follows upon noting B ≤ ηL2(www0)L(450ĉ+1) ≤
√
cmax(450ĉ+1)γη log−1(dκδ ) <

γη

2
√
2

.
The inequality is strict as γη > 0.

Finally, recalling that ∥vvvt∥ ≤ 300Lĉ, ψ0 ≥ δ

2
√
d
⋅ r and using (46), we have for all t < T :

300(L ⋅ ĉ) ≥ ∥vvvt∥
≥ ψt

> (1 + γη
2
)
t

ψ0

≥ (1 + γη
2
)
t

⋅ δ

2
√
d
⋅ L
κ ⋅ log (dκ

δ
)
. (47)

Note that δ ∈ (0, dκ
e
] implies log (dκ

δ
) ≥ 1. Applying (47) for t = T − 1 we obtain:

T < 1 + log (600κ
√
dδ−1 ⋅ ĉ log (dκ

δ
)) ⋅ log−1(1 + γη

2
)

55



Algorithm 2 Restarted SGD, from Fang et al. (2019)

Initialize atwww0, and considerK0 = Θ̃(ε−2), η = Θ̃(ε1.5),B = Θ̃(ε0.5), σ̃ = 2σ′1(www0), all explicitly
defined in Subsection E.1.
Let t = 0 (the total number of iterates), k = 0 (the restart counter), xxx0 =www0 (the point we consider
the escape from).
while k <K0 do

Let xxxt+1 = xxxt −η(∇f(xxxt;ζζζt+1) + σ̃ΛΛΛt+1), where ΛΛΛt+1 is uniform from B(0⃗00,1) and independent
of everything else, and ζζζt+1 is an i.i.d. minibatch sample
t← t + 1, k ← k + 1
if ∥xxxk −xxx0∥ > B then
xxx0 ← xxxk, k ← 0

end if
end while
Return 1

K0
∑K0−1
k=0 xxxk

≤ 1 + 2.01 log (600κ
√
dδ−1 ⋅ ĉ log (dκ

δ
)) ⋅ 1

γη

≤ 1 + 2.01(log(600ĉ) + 1.01 log(dκ/δ)) ⋅ 1
γη

≤ ( 1

40
+ 1 + 2.0301)F2 ≤ ĉF2.

These last steps follow by:

• Taking cmax a small enough universal constant so that γη ≤ 1
60
⋅ cmax
L1(www0) ≤

cmax
60

satisfies
2.01
x
> log−1(1 + x/2), which is valid for all 0 < x < 0.02.

• Remark 9, which states that we can assume WLOG log(dκ/δ) is larger than a universal con-
stant. In particular we can assume WLOG that log(dκ/δ) solves logx < x0.01 (hence
log(κ

√
dδ−1 log(dκ/δ)) ≤ 1.01 log(dκ/δ)), that 2.01 log(600ĉ) = 2.01 log(6600) ≤

log(dκ/δ) (recall ĉ = 11), and that F2 = log(dκ/δ)
γη

≥ 40.

This completes the proof.

E Restarted SGD finding Second Order Stationary Points
Here, we formally prove Theorem 3.5. We formally instantiate Algorithm 2 here. One may notice a
slight difference in Algorithm 2 vs the algorithm of Fang et al. (2019): we artificially inject bounded
noise at a particular scale σ̃. This ensures we can escape saddle points that are in the F (www0)-sublevel
set LF,F (www0). Note we may not be able to escape saddle points that are not in LF,F (www0), but that does
not matter thanks to our framework Theorem 2.1, which effectively lets us consider only behavior
within LF,F (www0). Also note a practitioner can find such a noise scaling σ̃ (depending on suboptimality
at initialization F (www0)) via appropriate cross-validation.

The general proof strategy here is similar to the way we adapted the proof of Jin et al. (2017) in
Section D. Namely, we use the self-bounding regularity conditions to control the derivatives of F in
appropriate neighborhoods of the F (www0)-sublevel set LF,F (www0).

E.1 Notation and Parameters
We set the parameters of the algorithm as follows. We will highlight the significance of these
parameters in Subsection E.3.

Noise Parameters: Define

σ′(www0) = σ(F (www0) + 1). (48)

σ̃ = 2σ′(www0). (49)

56



σ1(www0) =max{σ′(www0) + σ̃,1}. (50)

Note this only depends on ρ0 (and therefore only on ρ1) and F (www0). Note σ̃ ∈ [σ′(www0),2σ′(www0)].9
Also note σ1(www0) ≤ 3σ′(www0).
Update Rule: Define

∇f̃(xxxt;ζζζt+1) ∶= ∇f(xxxt;ζζζt+1) + σ̃ΛΛΛt+1.
Thus the SGD update rule in Algorithm 2 (without considering the restarts) is xxxt+1 = xxxt −
η∇f̃(xxxt;ζζζt+1). Note the slight abuse of notation; ∇f̃(xxxt;ζζζt+1) is not necessarily an actual gra-
dient.10 This will not cause issues or ambiguity for the rest of this section.

Effective Smoothness Parameters in F (www0)-sublevel set: We define the ‘local smoothness
parameters’ as follows, slightly differently compared to the proof of Theorem 3.4. Define

L1(www0) ∶=max{1, ρ1(F (www0) + 1), ρ3(ρ0(F (www0) + 1) + σ′(www0), F (www0) + 1)}, (51)

L2(www0) ∶=max{1, ρ2(F (www0) + 1), ρ0(F (www0) + 1)2max{4, (σ1(www0) + ρ0(F (www0) + 1))2}}.
(52)

Note all of these parameters only depend on F (www0), through ρ1(⋅), ρ2(⋅), ρ3(⋅, ⋅) (recall ρ0(⋅) can be
defined in terms of ρ1(⋅)).
Parameters of Algorithm 2: We define the remaining parameters of Algorithm 2 as follows.
Consider any ε > 0 and p ∈ (0,1). We choose:

C̃1 = 2⌊
log(3/p)
log(0.8−1) + 1⌋ log(

24
√
d

η
),

δ =
√
L2(www0)ε,

δ2 = 16δ,

B = δ

L2(www0)C̃1

,

K0 = C̃1η
−1δ−12 ,

η ≤ B2δ

512max(σ1(www0)2,1)C̃1 log(48K0/p)
⋅ 1

3(1 + log(K0))
. (53)

Also define

Ko = 2 log(
24
√
d

η
)η−1δ−12 , thus K0 = ⌊

log(3/p)
log(0.8−1) + 1⌋Ko.

Remark 11. To choose η satisfying the above inequality, one can perform the same analysis as on
footnote 4, page 7 of Fang et al. (2019). We first choose η̃ appropriately by setting

η̃ = B2δ

4096max(σ1(www0)2,1) log(48/p) log(p)⌊ log(3/p)
log(0.8−1) + 1⌋

,

and then set η = η̃ log−3(1/η̃).
Remark 12. Analogously to the proof of Theorem 3.4, note it suffices to show the result for
ε ≤ 1

L2(www0) ; for ε > 1
L2(www0) , we can just apply the result for ε = 1

L2(www0) , and the result remains the
same up to F (www0)-dependent parameters in the O(⋅). Thus we can suppose that δ2 (and δ) are at
most some universal constant. We also can take L1(www0), L2(www0), σ1(www0) to be the max between
their currently definition and an appropriate universal constant. Thus due to the choice of parameters
above, we may assume that

C̃1,K0 ≥ 1,
9In fact, this is the only condition we need on σ̃. In practice, such a σ̃ by fine-enough cross validation in

terms of only F (www0).
10This choice of notation is made to demonstrate the artificial noise injections σ̃ΛΛΛt+1 are not fundamentally

needed. They are not necessary if the stochastic gradient ∇f(⋅; ⋅) enjoys suitable anticoncentration properties.

57



log(K0), σ1(www0) ≥ 1,

B ≤min(1, σ1(www0)
L1(www0)

,
1

L1(www0)
,

1

L2(www0)
),

η ≤min{1, 1

σ1(www0)2
}.

From here note we have ηL1(www0) ≤ 1. As these assumptions come with no loss of generality, we
make these assumptions for the rest of the proof.

Notation: Consider a sequence of iterates xxx0,xxx1, . . . beginning at xxx0 comprising an instance of
the while loop in Algorithm 2. For such a sequence, let Fk be the σ-algebra defined by all the
prior iterates and the noise up through xxxk, namely σ{xxx0, ζζζ1,ΛΛΛ1,xxx1, . . . ,xxxk−1, ζζζk,ΛΛΛ

k}. Let K0 be a
stopping time given by

K0 = inf
k
{k ≥ 0 ∶ ∥xxxk −xxx0∥ ≥ B}.

Note xxxk and 1K0≥k,1K0>k are Fk-measurable. Thus, 1K0>k−1 ≡ 1K0≥k is Fk−1-measurable.

E.2 Result
We now formally prove Theorem 3.5. The following Theorem E.1 can readily be seen to imply
Theorem 3.5.

Theorem E.1. Suppose F satisfies Assumption 1.2 and the stochastic gradient oracle satisfies
Assumption 3.1 and Assumption 3.2. Run Algorithm 2 initialized atwww0, run with parameters chosen
as per Subsection E.1.

Consider any p ∈ (0,1). With probability at least 1 − 7
4
p ⋅ (F (www0)+1)7ηK0

B2 , upon making

K0 +
7ηK2

0(F (www0) + 1)
B2

oracle calls to ∇f(⋅; ⋅),

Algorithm 2 will output Õ( 7ηK
2
0(F (www0)+1)
B2 ) candidate vectorswww, one of which satisfies

∥∇F (www)∥ ≤ 18L2(www0)B2, λMIN(∇2F (www)) ≥ −17δ.

Remark 13. Before proceeding, we justify why Theorem E.1 implies Theorem 3.5. Simply take
ε ← ε

289L2(www0) in Theorem E.1. Plugging this in, we obtain a result on finding a SOSP as per the
definition in (2).11 The oracle complexity has the desired dependence on ε and polylog dependence
on d, p. The probability is at least 1−p ⋅ Θ̃(ε−1.5), where the Θ̃ are hiding polylog terms in d,1/ε,1/p
and dependence on F (www0) (through ρ1(⋅), ρ2(⋅), ρ3(⋅), σ(⋅)). This holds for any p ∈ (0,1).

Now consider the final desired success probability 1−δ̃ governed in terms of δ̃ ∈ (0,1) in Theorem 3.5.
Let p = δ̃ε1.5 ⋅ polylog(d,1/ε) in the guarantee from the above paragraph. This gives Theorem 3.5,
with the requested probability and oracle complexity.

We now prove Theorem E.1 via our framework, Theorem 2.1.

Proof of Theorem E.1 and thus Theorem 3.5. We again use our framework Theorem 2.1. Consider
any p ∈ (0,1), and choose parameters as per Subsection E.1.

Let
S = {www ∶ ∥∇F (www)∥ ≤ 18L2(www0)B2, λMIN(∇2F (www)) ≥ −17δ}.

Define A as follows, identically to how we defined them for Restarted SGD in Subsection 2.3.
Consider any given uuu0 ∈ Rd. Let ppp0 = uuu0. We define a sequence (pppi)0≤i≤K0 via pppi = pppi−1 −
η(∇f(pppi−1;ζζζi) + σ̃Λi). Note this sequence can be equivalently defined by repeatedly composing the
function uuu→ uuu − η(∇f(uuu;ζζζ) + σ̃Λ).

11Recall this definition refers to www such that ∥∇F (www)∥ ≤ ε,∇2F (www) ⪰ −
√
εIII .

58



If it exists, let i,1 ≤ i ≤K0 be the minimal index such that ∥pppi − ppp0∥ > B. Otherwise let i =K0. In
either case, we define

A(uuu0) = (pppi,
1

i

i−1
∑
t=0
pppt), hence A1(uuu0) = pppi,A2(uuu0) =

1

i

i−1
∑
t=0
pppt.

We now let

toracle(uuu0) =K0, and ∆ = B2

7ηK0
.

Following the notation from Algorithm 2, notice that A(uuu0) corresponds to next vector set to xxx0 in
the while loop of Algorithm 2, when the while loop begins at xxx0 = uuu0.

Crucial to this proof are the following two Lemmas. While inspired from Fang et al. (2019), a crucial
difference is that they hold only in the F (www0)-sublevel set LF,F (www0).

Lemma E.1 (Equivalent of Proposition 10, Fang et al. (2019)). Consider xxx0 in the while loop of
Algorithm 2. Suppose xxx0 ∈ LF,F (www0). With probability at least 1 − p, if xxxk does not move out of the
ball B(xxx0,B) within the firstK0 iterations in the while loop of Algorithm 2, letting xxx = 1

K0
∑K0−1
k=0 xxxk,

we have
∥∇F (xxx)∥ ≤ 18L2(www0)B2, λMIN(∇2F (xxx)) ≥ −17δ.

Lemma E.2 (Equivalent of Proposition 9, Fang et al. (2019)). Consider xxx0 in the while loop of
Algorithm 2. Suppose xxx0 ∈ LF,F (www0). With probability at least 1 − 3

4
p, if xxxk moves out of B(xxx0,B)

in K0 iterations or fewer in the while loop of Algorithm 2, we have

F (xxxK0) < F (xxx0) − B2

7ηK0
.

Finishing the proof: The main point is to prove the following Claim.

Claim 7. For any uuu0 ∈ LF,F (www0), A is a (S,K0,∆,
7
4
p,uuu0)-decrease procedure.

Proof of Claim 7. Apply Lemma E.1 and Lemma E.2 to the sequence (pppi)0≤i≤K0 , recalling that
A(uuu0) corresponds to next vector set to xxx0 in the while loop of Algorithm 2 when the while loop
begins at xxx0 = ppp0 = uuu0. By a Union Bound over the events of Lemma E.1 and Lemma E.2, with
probability at least 1 − 7

4
p, we have the following:

• Suppose there exists t <K0 such that pppt /∈ B(ppp0,B) = B(uuu0,B). Let t′ be the minimal such
t. By Lemma E.2, we have

F (A1(uuu0)) = F (pppt′) ≤ F (ppp0) −
B2

7ηK0
= F (uuu0) −∆.

• Otherwise, we have A2(uuu0) = ppp where ppp = 1
K0
∑K0−1
k=0 pppk. In this case, by Lemma E.1, we

have
A2(uuu0) = ppp ∈ S.

Consequently, A is a (S,K0,∆,
7
4
p,uuu)-decrease procedure.

Now with Claim 7, directly applying Theorem 2.1 and plugging in the relevant parameters,
we obtain Theorem E.1.

Remark 14. To sanity check these results, note the rate from Lemma E.2 will get worse as η gets
smaller because K0η = 2⌊ log(3/p)

log(0.8−1) + 1⌋ log(
24
√
d

η
)δ−12 will increase as η gets smaller.

The rest of Section E will now be devoted to the proofs of Lemma E.1 and Lemma E.2. For the
rest of Section E, we suppose F satisfies Assumption 1.2 and the stochastic gradient oracle satisfies
Assumption 3.1 and Assumption 3.2. These proofs are similar to that of Fang et al. (2019), but hinges
crucially on the fact that the analysis in Fang et al. (2019) is ‘local’.

59



E.3 Preliminaries
We now establish useful properties of the parameters of the algorithm defined in Subsection E.1,
analogously to Lemma D.1.

Locality of balls B(xxx0,B):
Lemma E.3. We have B ≤ 1

2ρ0(F (www0)+1) . In particular, for any uuu ∈ B(www,B) forwww ∈ LF,F (www0), we
have ∥uuu −www∥ ≤ 1

2ρ0(F (www0)+1) ≤
1

2ρ0(F (www)+1) .

Proof. As per Remark 12, we have ε ≤ 1. Thus by the choice of parameters in (52),

B ≤ δ

L2(www0)
≤ 1√

L2(www0)
≤ 1

2ρ0(F (www0) + 1)
.

This completes the proof.

Control over the stochastic gradient oracle:

Lemma E.4. For all uuu such that uuu ∈ B(www, 1
ρ0(F (www0)+1)) for www ∈ LF,F (www0), we have

∥∇f(uuu;ζζζ) − ∇F (uuu)∥ ≤ σ′(www0) for all ζζζ.

Proof. By Assumption 3.1, we have

∥∇f(uuu;ζζζ) − ∇F (uuu)∥ ≤ σ(F (uuu)).

Now aswww ∈ LF,F (www0), we have

1

ρ0(F (www0) + 1)
≤ 1

ρ0(F (www) + 1)
.

Thus by Lemma 3.1 and again aswww ∈ LF,F (www0), we have

F (uuu) ≤ F (www) + 1 ≤ F (www0) + 1.

Combining these gives Lemma E.4.

Lemma E.5. For all uuu such that uuu ∈ B(www, 1
ρ0(F (www0)+1)) forwww ∈ LF,F (www0), ∥∇f̃(uuu;ζζζ) − ∇F (uuu)∥ ≤

σ1(www0) for all ζζζ.

Proof. This immediately follows from Lemma E.4 and the definition of ∇f̃(uuu;ζζζ), as ∥σ̃ΛΛΛt∥ ≤ σ̃.

Locality after one step of SGD:

Lemma E.6. Consider any uuu ∈ B(www,B) forwww ∈ LF,F (www0). Then for all points ppp in the line segment

between uuu and uuu − η∇f̃(uuu;ζζζ) for any ζζζ, we have ppp ∈ B(www, 1
ρ0(F (www0)+1)).

Proof. It suffices to show uuu − η∇f̃(uuu;ζζζ) ∈ B(www, 1
2(ρ0(F (www0)+1))); after establishing this, the result

then follows by Triangle Inequality and Lemma E.3. To this end, by Triangle Inequality, it suffices to
show that

η∥∇f̃(uuu;ζζζ)∥ ≤ 1

2ρ0(F (www0) + 1)
.

Indeed, the same reasoning as in the proof of Lemma E.3 gives

F (uuu) ≤ F (www0) + 1.

Thus, Assumption 3.2 gives
∥∇F (uuu)∥ ≤ ρ0(F (www0) + 1),

60



and so Lemma E.5 gives

∥∇f̃(uuu;ζζζ)∥ ≤ σ1(www0) + ρ0(F (www0) + 1).
As per Remark 12, we have

η ≤ 1

2
B2δ ≤ 1

2
⋅ δ3

L2(www0)2
≤ 1

2L2(www0)0.5
.

Combining all the above gives

η∥∇f̃(uuu;ζζζ)∥ ≤ 1

2L2(www0)0.5
⋅ (σ1(www0) + ρ0(F (www0) + 1))

≤ 1

2ρ0(F (www0) + 1)(σ1(www0) + ρ0(F (www0) + 1))
⋅ (σ1(www0) + ρ0(F (www0) + 1))

≤ 1

2ρ0(F (www0) + 1)
,

which by our earlier remarks completes the proof.

Properties of the effective smoothness parameters:

Lemma E.7. Consider any xxx0 ∈ LF,F (www0). Then we have ∥∇2F (uuu)∥
op
≤ L1(www0) for all uuu such that

either:

• uuu ∈ B(xxx0,B),

• Or uuu lies in the line segment between some uuu′ ∈ B(xxx0,B) and uuu′ − η∇f̃(uuu′;ζζζ), for any ζζζ.

Proof. By Lemma E.3 and Lemma E.6, irrespective of which case foruuu in the conditions of Lemma E.7
holds, we have

uuu ∈ B(xxx0, 1

ρ0(F (www0) + 1)
).

As xxx0 ∈ LF,F (www0), this implies

∥uuu −xxx0∥ ≤ 1

ρ0(F (www0) + 1)
≤ 1

ρ0(F (xxx0) + 1)
.

By Lemma 3.1 and as xxx0 ∈ LF,F (www0), it follows that

F (uuu) ≤ F (xxx0) + 1 ≤ F (www0) + 1.
The conclusion now follows by Assumption 1.1.

Lemma E.8. Consider any xxx0 ∈ LF,F (www0). Consider any uuu1,uuu2 such that each uuui, i = 1,2 is such
that either:

• uuui ∈ B(xxx0,B),

• Or uuui lies in the line segment between some uuu′ ∈ B(xxx0,B) and uuu′ − η∇f̃(uuu′;ζζζ), for any ζζζ.

Then
∥∇2F (uuu1) − ∇2F (uuu2)∥op ≤ L2(www0)∥uuu1 −uuu2∥.

Proof. Irrespective of which condition applies to uuui, By Lemma E.3 and Lemma E.6, we have

uuui ∈ B(xxx0,
1

ρ0(F (www0) + 1)
)

for i = 1,2. Thus the line segment uuu1uuu2 is contained in B(w̃ww, 1
ρ0(F (www0)+1)). As xxx0 ∈ LF,F (www0), the

result now follows from applying Lemma A.6 and Lemma 3.1.

61



Remark 15. The reason for the second case in the condition on uuu or uuui from Lemma E.7, Lemma E.8
will become clear in the proof of Lemma E.2. In particular, to prove Lemma E.2, we will consider
uuu − η∇f̃(uuu;ζζζ) for uuu ∈ B(xxx0,B) where xxx0 ∈ LF,F (www0).

Lemma E.9. Consider any xxx0 ∈ LF,F (www0). Then for any uuu ∈ B(xxx0,B) and any ζζζ,

∥∇2f(uuu;ζζζ)∥
op
≤ L1(www0).

Proof. By Lemma E.3, we have

uuu ∈ B(xxx0, 1

ρ0(F (www0) + 1)
).

By Lemma 3.1, because xxx0 ∈ LF,F (www0), we have

F (uuu) ≤ F (www0) + 1.
Moreover, as xxx0 ∈ LF,F (www0) and by Lemma E.4 and Corollary 1,

∥∇f(uuu;ζζζ)∥ ≤ ∥∇F (uuu)∥ + σ′(www0) ≤ ρ0(F (www0) + 1) + σ′(www0).
Thus the result follows from Assumption 3.2.

Remark 16. While Lemma E.9 is phrased as an upper bound on the operator norm of ∇2f(⋅;ζζζ),
it can be easily phrased in terms of the local Lipschitz constant of ∇f(⋅;ζζζ), similar to one of the
possibilities in Assumption 1.2.

Enough noise to escape saddles: Now we verify that the noise scheme here gives us enough noise
to escape saddle points in the F (www0)-sublevel set LF,F (www0).

Definition E.1 ((q∗,vvv)-narrow property; Definition 2 in Fang et al. (2019)). A Borel set A ⊂ Rd
satisfies the (q⋆,vvv)-narrow property if for any uuu ∈ A, q ≥ q⋆, uuu + qvvv ∈ Ac.
Immediately, we obtain the following properties of this definition, as also noted in Fang et al. (2019).

Lemma E.10. If A satisfies the (q⋆,vvv)-narrow property, then for all c1 ∈ Rd, c2 ∈ R, c1 + c2A
satisfies the (∣c2∣q⋆,vvv)-narrow property.

We now introduce the following definition:

Definition E.2 (vvv-dispersive Property; Equivalent of Definition 3 in Fang et al. (2019)). We say
that a random vector ξ̃ξξ has the vvv-dispersive property if for any A satisfying the (σ1(www0)

4
√
d
,vvv)-narrow

property, we have

P(ξ̃ξξ ∈ A) ≤ 1

2
.

Note the slight change of the constant 1
2

rather than 1
4

in the above definition compared to that of
Fang et al. (2019); this subtle difference will appear in the following proofs, although this will not
change too much conceptually.

Now we prove the following Lemma, which shows that our update rule contains enough noise to
escape saddle points:

Lemma E.11 (Dispersive Noise; see also Algorithm 3, Fang et al. (2019)). The update ∇f̃(xxxt;ζζζt+1)
admits the vvv-dispersive property for all unit vectors vvv, for any xxxt.

Note this does not necessarily hold for the stochastic gradient oracle itself under our assumptions,
hence the artificial noise injection of σ̃ΛΛΛt.

Proof of Lemma E.11. First, we prove that the random vector σ̃ΛΛΛt+1 satisfies the Dispersive Noise
property for all unit vectors vvv. Consider any A satisfying the (σ1(www0)

4
√
d
,vvv)-narrow property. Note we

have

P(σ̃ΛΛΛt+1 ∈ A) = P(ΛΛΛt+1 ∈ σ̃−1A)

62



≤ σ1(www0)/4
√
d

σ̃
⋅ Vold−1B(0⃗00,1)

VoldB(0⃗00,1)

≤ σ1(www0)/4
√
d

σ̃
⋅
√
d = σ1(www0)

4σ̃
.

Here, the inequality follows from an elementary calculation with multivariate calculus, analogous to
the calculation in the proof of Lemma D.3, which we detailed in full in this article. An analogous
calculation can also be found in Jin et al. (2017), proof of Lemma 14, and in Appendix F, Fang et al.
(2019).

Now, note as σ̃ ≥ σ′(www0), we have

σ1(www0)
4σ̃

≤ σ
′(www0) + σ̃

4σ̃
≤ 1

2
,

and so
P(σ̃ΛΛΛt+1 ∈ A) ≤ 1

2
.

Consequently the random vector σ̃ΛΛΛt satisfies the Dispersive Noise property for all unit vectors vvv.

Now, we show that∇f̃(xxxt;ζζζt+1) satisfies the vvv-dispersive property as wanted. The proof is analogous
to part iii, Proposition 4 of Fang et al. (2019). Consider any unit vector vvv. Recall that Λt and
∇f(xxxt;ζζζt+1) are independent. Since the (q⋆,vvv)-narrow property is evidently preserved with the
same parameters by adding a fixed vector to A, we obtain the following bound on the following
conditional probability:

P(∇f̃(xxxt;ζζζt+1) ∈ A∣∇f(xxxt;ζζζt+1)) = P(∇f(xxxt;ζζζt+1) + σ̃ΛΛΛt+1 ∈ A∣∇f(xxxt;ζζζt+1))

= P(σ̃ΛΛΛt+1 ∈ −∇f(xxxt;ζζζt+1) +A∣∇f(xxxt;ζζζt+1)) ≤
1

2
.

This holds irrespective of conditioning, which implies that ∇f̃(xxxt;ζζζt+1) satisfies the vvv-dispersive
property.

E.4 Escaping Saddles
We first aim to prove that we can efficiently escape strict saddle points in the F (www0)-sublevel set,
similarly to Fang et al. (2019). In particular, we aim to prove the following Lemma E.12. The
contrapositive of Lemma E.12 will in turn be used to prove Lemma E.1, which establishes that
Algorithm 2 can find SOSPs.

Lemma E.12 (Equivalent of Proposition 7 in Fang et al. (2019)). Consider a sequence of iterates
xxx0,xxx1, . . . beginning at xxx0 comprising an instance of the while loop in Algorithm 2. Suppose
xxx0 ∈ LF,F (www0) and that λMIN(∇2F (xxx0)) ≤ −δ2 for δ2 > 0. Then when the while loop of Algorithm 2
is initialized at xxx0, with probability at least 1 − p

3
, we have

K0 ≤K0 = ⌊
log(3/p)
log(0.8−1) + 1⌋Ko.

Remark 17. For δ2 very small, note the guarantee from Lemma E.12 will deteriorate because K0

scales with δ−12 .

To prove Lemma E.12, we use the same strategy as in Fang et al. (2019). However, as we do not have
global Lipschitzness of the gradient and Hessian, we must be careful. We use that the strategy only
requires control over points that are ‘local’, i.e. near xxx0, since the proof strategy studies escape from
the ball B(xxx0,B). We then appeal to control over F in B(xxx0,B) that we have by Subsection E.3.

Remark 18. In this section Subsection E.4, probability is over the samples ζζζk and the artificial noise
injections Λk.

Now we go into the details. As in Fang et al. (2019), letwwwk(uuu) be the iterates of SGD starting from a
given uuu using the same stochastic samples as xxxk and the same noise additions σ̃ΛΛΛk. In particular

wwwk(uuu) =wwwk−1(uuu) − η∇f̃(wwwk−1(uuu);ζζζk).

63



Thus xxxk =wwwk(xxx0).
Also for all uuu, let Kexit(uuu) be the stopping time defined by

Kexit(uuu) ∶= inf{k ≥ 0 ∶ ∥wwwk(uuu) −xxx0∥ > B}.

Thus K0 = Kexit(xxx0).
The high-level idea from Fang et al. (2019), similar to as in Jin et al. (2017), is to consider the ‘bad
initialization region’ around B(xxx0,B) where iterates initialized in this bad region escape with low
probability. We then prove that this bad initialization region is ‘narrow’, and consequently we can
escape the saddle point efficiently.

In particular, define
SBKo
(xxx0) = {uuu ∈ Rd ∶ P(Kexit(uuu) <Ko) ≤ 0.4}.

Note by definition that SBK0
(xxx0) ⊆ B(xxx0,B).

First let q0 = σ1(www0)η
4
√
d

. We establish the following Lemma, which verifies that SBKo
(xxx0) is ‘narrow’ in

a suitable sense.

Lemma E.13 (Equivalent of Lemma 8 in Fang et al. (2019); also similar to Lemma 15, Jin et al.
(2017)). Suppose the assumptions of Lemma E.12 hold. Let eee1 be an arbitrary unit eigenvector of
∇2F (xxx0) corresponding to its smallest eigenvalue −δm ≤ −δ2. Then for any q ≥ q0 = σ1(www0)η

4
√
d

and

any uuu,uuu + qeee1 ∈ B(xxx0,B), we have that

P((Kexit(uuu) ≥Ko) and (Kexit(uuu + qeee1) ≥Ko)) ≤ 0.1.
Here probability is over the single sequence of samples used to compute stochastic gradients and the
artificial noise injection.

Remark 19. The proof of Lemma E.13 crucially uses that ∇2F (xxx0) has a negative eigenvector, as
one would expect.

Note we have, as in Fang et al. (2019), that

Ko = 2 log(
24
√
d

η
)η−1δ−12 ≥

log(6/q0)
log(1 + ηδ2)

≥ log(6B/q0)
log(1 + ηδ2)

. (54)

This follows evidently from the choice of parameters and definition of q0, and Remark 12 which
states that it is enough to show the result for ηδ2 at most a universal constant, namely one satisfying
log(1 + x) ≥ x

2
. Now using Lemma E.13, we prove Lemma E.12:

Proof of Lemma E.12 given Lemma E.13. Given Lemma E.13, we first prove that the bad
initialization region SBKo

(xxx0) satisfies the (q0,eee1)-narrow property, i.e. that there are no points
uuu,uuu + qeee1 ∈ SBKo

(xxx0) where q ≥ q0 = σ1(www0)η
4
√
d

. This part of the proof is identical to Proposition 7,
Fang et al. (2019). If such points existed we would have

P(Kexit(uuu) ≥Ko) ≥ 0.6,P(Kexit(uuu + qeee1) ≥Ko) ≥ 0.6.
This implies

P((Kexit(uuu) ≥Ko) and (Kexit(uuu + qeee1) ≥Ko)) ≥ P(Kexit(uuu) ≥Ko) + P(Kexit(uuu + qeee1)) − 1
≥ 0.2,

which contradicts Lemma E.13.

From here, we prove Lemma E.12. For this rest of the proof of Lemma E.12, we only consider uuu
and do not consider the iterates from uuu + qeee1. Recall SBKo

satisfies the (q0,eee1)-narrow property with
q0 = ησ1(www0)

4
√
d

as shown above. Thus we have for any uuu ∈ B(xxx0,B),

P(www1(uuu) ∈ SBKo
(xxx0)) = P(uuu − η∇f̃(uuu;ζζζ1) ∈ SBKo

(xxx0))

= P(∇f̃(uuu;ζζζ1) ∈ η−1(−SBKo
(xxx0) +uuu)) ≤ 1

2
. (55)

64



The last step follows from the definition of the wwwk(uuu), the scale and translation properties of the
(q0,eee1)-narrow property which implies that η−1(−SBKo

(xxx0) +uuu) satisfies the (σ1(www0)
4
√
d
,eee1)-narrow

property, and that ∇f̃(uuu;ζζζ1) satisfies the eee1-dispersive property by Lemma E.11.

Note as events we have {Kexit(www1(uuu)) <Ko} ⊆ {Kexit(uuu) ≤Ko}. Thus by Law of Total Expectation,
for all uuu ∈ B(xxx0,B),

P(Kexit(uuu) ≤Ko) ≥ P(Kexit(www1(uuu)) <Ko)
≥ E[P(Kexit(www1(uuu)) <Ko∣F1)∣{www1(uuu) ∈ (SBKo

(xxx0))c}]. (56)

Conditioned on www1(uuu) ≤ (SBKo
(xxx0))c, we have by definition of SBKo

(xxx0) that
P(Kexit(www1(uuu)) <Ko∣F1) ≥ 0.4. By (55), for all uuu ∈ B(xxx0,B), we have

P(www1(uuu) ∈ SBKo
(xxx0)c) ≥ 1

2
.

Thus combining with (56) implies for all uuu ∈ B(xxx0,B),

P(Kexit(uuu) ≤Ko) ≥ 0.4 ⋅
1

2
= 0.2. (57)

Now consider any N ′ ≥ 1. Notice as events,

{Kexit(uuu) > N ′Ko} = {Kexit(www(N
′−1)Ko(uuu)) >Ko}

= {Kexit(www(N
′−1)Ko(uuu)) >Ko} ∩ {Kexit(uuu) > (N ′ − 1)Ko}.

Therefore,

P(Kexit(uuu) > N ′Ko) = E[P(Kexit(www(N
′−1)Ko(uuu)) >Ko∣FKo)∣{Kexit(uuu) > (N ′ − 1)Ko}].

Note that conditioned on Kexit(uuu) > (N ′ − 1)Ko, it follows that Kexit(www(N
′−1)Ko(uuu)) ∈ B(xxx0,B).

Therefore P(Kexit(www(N
′−1)Ko(uuu)) >Ko∣FKo) ≤ supuuu′∈B(xxx0,B) P(Kexit(uuu′) >Ko). Using (57), we

can upper bound

P(Kexit(uuu) > N ′Ko) ≤ P(Kexit(uuu) > (N ′ − 1)Ko) ⋅ sup
uuu′∈B(xxx0,B)

P(Kexit(uuu′) >Ko)

≤ 0.8P(Kexit(uuu) > (N ′ − 1)Ko). (58)

Recall that K0 = ⌊ log(3/p)
log(0.8−1) + 1⌋Ko. Let N = ⌊ log(3/p)

log(0.8−1) + 1⌋. We obtain by repeatedly applying (58)
for N ′ = N,N − 1, . . . that

P(Kexit(uuu) > NKo) ≤ 0.8N ≤ p/3.
This gives the desired result.

Now we prove Lemma E.13.

Proof of Lemma E.13. Again, we proceed similarly as the proof of Lemma 8, Fang et al. (2019).
The main difference is we only have control over the relevant derivatives prior to the escape from
B(xxx0,B) (recall xxx0 ∈ LF,F (www0)). However, it turns out that this is sufficient for the proof to go
through.

Setup. Recall that we havewww0(uuu) = uuu, and

wwwk(uuu) =wwwk−1(uuu) − η∇f̃(wwwk−1(uuu);ζζζk),
wwwk(uuu + qeee1) =wwwk−1(uuu + qeee1) − η∇f̃(wwwk−1(uuu + qeee1);ζζζk).

Now define the following stopping time:

K1 = Kexit(uuu) ∧ Kexit(uuu + qeee1).
For solely the purpose of analysis, consider the following sequence:

zzzk = {www
k(uuu + qeee1) −wwwk(uuu) ∶ k ≤ K1

(III − η∇2F (xxx0))zzzk−1 ∶ k > K1
. (59)

Clearly the zzzk are Fk-measurable, because the event {k ≤ K1} is Fk-measurable.

65



Remark 20. Note unlike Fang et al. (2019), the first case holds when k ≤ K1 rather than k < K1.
That being said we expect that if one uses the exact same definition as in Fang et al. (2019) for the zzzk,
the proof this generalized smooth setting will still work, with a slightly modified argument compared
to the proof we present.

Notice by definition ofwww0(uuu),www0(uuu+qeee1) and assumption of Lemma E.13 thatuuu,uuu+qeee1 ∈ B(xxx0,B),
we have K1 > 0. Thus,

zzz0 = qeee1.

Controlling the zzzk. LetHHH = ∇2F (xxx0). We have the following lemma to control the zzzk from (59).

For all k, define

DDDk ∶= ∇2F (xxx0) − ∫
1

0
∇2F(wwwk(uuu) + θ(wwwk(uuu + qeee1) −wwwk(uuu)))dθ, (60)

ξξξkd ∶= (∇F (wwwk−1(uuu + qeee1)) − ∇F (wwwk−1(uuu))) − (∇f̃(wwwk−1(uuu + qeee1);ζζζk) − ∇f̃(wwwk−1(uuu);ζζζk)).
(61)

Recall by definition ofwwwk(uuu), we have

∇f̃(wwwk−1(uuu + qeee1);ζζζk) = ∇f(wwwk−1(uuu + qeee1);ζζζk) + σ̃ΛΛΛk,
∇f̃(wwwk−1(uuu);ζζζk) = ∇f(wwwk−1(uuu);ζζζk) + σ̃ΛΛΛk,

for the same noise sequence ΛΛΛk. Thus we also have

ξξξkd = (∇F (wwwk−1(uuu + qeee1)) − ∇F (wwwk−1(uuu))) − (∇f(wwwk−1(uuu + qeee1);ζζζk) − ∇f(wwwk−1(uuu);ζζζk)).
(62)

Lemma E.14 (Equivalent of Lemma 13, Fang et al. (2019)). We have that for all k ≤ K1,

zzzk = (III − ηHHH)zzzk−1 + ηDDDk−1zzzk−1 + ηξξξkd.

Furthermore, we have the following properties of theDDDk and ξξξkd defined in (60), (61):

1. For all such k ≤ K1, we have

∥DDDk−1∥ ≤ L2(www0)max(∥wwwk−1(uuu + qeee1) −xxx0∥, ∥wwwk−1(uuu) −xxx0∥) ≤ L2(www0)B.

2. For all k, we have
E[ξξξkd ∣Fk−1] = 0.

3. For all k ≤ K1, we have
∥ξξξkd∥ ≤ 2L1(www0)∥zzzk−1∥.

Proof. We prove each part one at a time:

1. For k ≤ K1, using the definition of zzzk, it follows that

zzzk =wwwk(uuu + qeee1) −wwwk(uuu)
=wwwk−1(uuu + qeee1) −wwwk−1(uuu) − η(∇f̃(wwwk−1(uuu + qeee1);ζζζk) − ∇f̃(wwwk−1(uuu);ζζζk))
= zzzk−1 − η(∇F (wwwk−1(uuu + qeee1)) − ∇F (wwwk−1(uuu)))
+ η[(∇F (wwwk−1(uuu + qeee1)) − ∇F (wwwk−1(uuu))) − (∇f̃(wwwk−1(uuu + qeee1);ζζζk) − ∇f̃(wwwk−1(uuu);ζζζk))]

= zzzk−1 − η[∫
1

0
∇2F (wwwk−1(uuu) + θ(wwwk−1(uuu + qeee1) −wwwk−1(uuu)))dθ]zzzk−1 + ηξξξkd

= zzzk−1 − η(HHH −DDDk−1)zzzk−1 + ηξξξkd.

This proves the desired property of the zzzk.

66



2. For the required properties of the DDDk−1, consider any k ≤ K1. First, notice wwwk−1(uuu) +
θ(wwwk−1(uuu + qeee1) − wwwk−1(uuu)) = θwwwk−1(uuu + qeee1) + (1 − θ)wwwk−1(uuu) for any θ ∈ [0,1].
For k ≤ K1, both wwwk−1(uuu + qeee1),wwwk−1(uuu) ∈ B(xxx0,B). Note this still remains true for
k = K1 because for k − 1 = K1 − 1 < K1, the definition of K1 implies that the iterates
wwwk−1(uuu + qeee1),wwwk−1(uuu) ∈ B(xxx0,B).
Thus for any θ ∈ [0,1], wwwk−1(uuu) + θ(wwwk−1(uuu + qeee1) −wwwk−1(uuu)) ∈ B(xxx0,B), and so all
points ppp on the line segment between xxx0 andwwwk−1(uuu) + θ(wwwk−1(uuu+ qeee1) −wwwk−1(uuu)) lie in
B(xxx0,B). Thus by Lemma E.8,

∥DDDk−1∥ = ∥∇2F (xxx0) − ∫
1

0
∇2F (wwwk−1(uuu) + θ(wwwk−1(uuu + qeee1) −wwwk−1(uuu)))dθ∥

≤ ∫
1

0
∥∇2F (xxx0) − ∇2F (wwwk−1(uuu) + θ(wwwk−1(uuu + qeee1) −wwwk−1(uuu)))∥dθ

≤ L2(www0)∫
1

0
∥θ(wwwk−1(uuu + qeee1) −xxx0) + (1 − θ)(wwwk−1(uuu) −xxx0)∥dθ

≤ L2(www0)max{∥wwwk−1(uuu + qeee1) −xxx0∥, ∥wwwk−1(uuu) −xxx0∥}
≤ L2(www0)B.

The last line follows since k ≤ K1, hence k − 1 < K1, thus wwwk−1(uuu + qeee1),wwwk−1(uuu) ∈
B(xxx0,B).

3. Next as the stochastic gradient oracle∇f(⋅;ζζζ) is unbiased, applying Linearity of Expectation
on (62), it follows that E[ξξξkd ∣Fk−1] = 0 for all k.

For the bound on the magnitude of ξξξkd , again recall by the above that for k ≤ K1, we have

wwwk−1(uuu + qeee1),wwwk−1(uuu) ∈ B(xxx0,B).

Thus for all ppp on the line segment betweenwwwk−1(uuu + qeee1),wwwk−1(uuu), we have ppp ∈ B(xxx0,B).
Thus by Lemma E.7, ∥∇2F (ppp)∥ ≤ L1(www0). By Lemma E.9, for any ζζζ, ∥∇2f(ppp;ζζζ)∥ ≤
L1(www0). Recalling (62) gives

∥ξξξkd∥
≤ ∥∇F (wwwk−1(uuu + qeee1)) − ∇F (wwwk−1(uuu))∥ + ∥∇f(wwwk−1(uuu + qeee1);ζζζk) − ∇f(wwwk−1(uuu);ζζζk)∥
≤ 2L1(www0)∥wwwk−1(uuu + qeee1) −wwwk−1(uuu)∥
= 2L1(www0)∥zzzk−1∥.

In the last step, we used the definition of zzzk for k ≤ K1.

This proves all the desired parts of Lemma E.14.

Controlling iterates under a high probability event. We now consider a rescaled iteration as
considered in Fang et al. (2019). Recall the definition of δm ≥ δ2 in the statement of Lemma E.13.
For each k = 0,1, . . ., we define:

ψψψk ∶= q−1(1 + ηδm)−kzzzk.

Lemma E.15 (Equivalent of the first part of Lemma 14, Fang et al. (2019)). Define D̂DDk ∶= (1 +
ηδm)−1DDDk, and slightly overloading notation, define

ζζζkd ∶= q−1(1 + ηδm)−kξξξkd.
Then for k ≤ K1, we have ψψψ0 = eee1 and

ψψψk = III − ηHHH
1 + ηδm

ψψψk−1 + ηD̂DD
k−1

ψψψk−1 + ηζζζkd,

67



as well as the properties

∥D̂DD
k
∥ ≤ L2(www0)B for all 0 ≤ k < K1,

∥ζζζkd∥ ≤ 2L1(www0)∥ψψψk−1∥ for all 1 ≤ k ≤ K1.

Proof. We prove all the desired parts of Lemma E.15.

• The fact that ψψψ0 = eee1 follows immediately, because zzz0 = qeee1. For the general recursion
for ψψψk, consider any k ≤ K1. First note that by the recursion for the zzzk for k ≤ K1 in
Lemma E.14, we have

ψψψk = q−1(1 + ηδm)−kzzzk

= III − ηHHH
1 + ηδm

q−1(1 + ηδm)−(k−1)zzzk−1

+ η DDDk−1

1 + ηδm
q−1(1 + ηδm)−(k−1)zzzk−1 + ηq−1(1 + ηδm)−kξξξkd

= III − ηHHH
1 + ηδm

ψψψk−1 + ηD̂DD
k−1

ψψψk−1 + ηζζζkd.

• Consider any k ≤ K1. For the requisite properties of D̂DD
k

for k < K1, the upper bound on the

norm of D̂DD
k

follows immediately from Lemma E.14.

Next from the definition of ζζζkd and Lemma E.14, for k ≤ K1 we have that

∥ζζζkd∥ ≤ q−1(1 + ηδm)−k∥ξξξkd∥

≤ 2L1(www0)q−1
(1 + ηδm)−(k−1)

1 + ηδm
∥zzzk−1∥

≤ 2L1(www0)∥ψψψk−1∥.

This proves Lemma E.15.

Lemma E.16 (Equivalent of the rest of Lemma 14, Fang et al. (2019)). With the step size η from
(53), there exists an event Ho (namely, from (66)) with probability at least 0.9, such that for all
k ≤min(K1 − 1,K0) we have

∥ψψψk∥2 ≤ 4, (63)
and

eee⊺1ψψψ
k > 1

2
. (64)

Proof. Define
ψ̂̂ψ̂ψk−1 = III − ηHHH

1 + ηδm
ψψψk−1.

Recall thatHHH = ∇2F (xxx0) and xxx0 is in the F (www0)-sublevel set LF,F (www0). Therefore, from Assump-
tion 1.1, ∥HHH∥ ≤ L1(www0). By definition of δm, it follows that

−δmIII ⪯HHH ⪯ L1(www0)III.
Since ηL1(www0) ≤ 1, it follows that the matrix III − ηHHH is symmetric and has all eigenvalues in
[0,1 + ηδm]. This implies

∥ψ̂̂ψ̂ψk−1∥ ≤ ∥ψψψk−1∥. (65)

Note that ψ̂̂ψ̂ψk−1 andψψψk−1 are measurable on Fk−1. This combined with Lemma E.14 and Lemma E.15
implies that for all 1 ≤ k ≤ K1,

E[(ψ̂̂ψ̂ψk−1)⊺ζζζkd ⋅ 1∥ψψψk−1∥≤2∣Fk−1] = 1∥ψψψk−1∥≤2 ⋅E[(ψ̂̂ψ̂ψk−1)⊺ζζζkd ∣Fk−1] = 0,

68



and
∣(ψ̂̂ψ̂ψk−1)⊺ζζζkd ⋅ 1∥ψψψk−1∥≤2∣2 ≤ 1∥ψψψk−1∥≤2 ⋅ 4L2

1(www0)∥ψψψk−1∥
4 ≤ (8L1(www0))2.

Now define the following real-valued stochastic process:

Yk = (ψ̂̂ψ̂ψk−1)⊺ζζζkd1∥ψψψk−1∥≤21k−1<K1 = {
(ψ̂̂ψ̂ψk−1)⊺ζζζkd ⋅ 1∥ψψψk−1∥≤2 ∶ k ≤ K1

0 ∶ k > K1.

Note Yk is Fk-measurable, and that (ψ̂̂ψ̂ψk−1)⊺,1∥ψψψk−1∥≤2,1k−1<K1 ≡ 1k≤K1 are all Fk−1-measurable.
Thus, by Lemma E.14 and the definition of ζζζkd from Lemma E.15,

E[Yk ∣Fk−1] = 0.
Furthermore combining the above justification with the trivial case k > K1, we obtain

∣Yk ∣ ≤ 8L1(www0).
By the (standard) Azuma’s Inequality, with probability 1 − 0.1/(2K0), for any given l,1 ≤ l ≤K0:

∣
l

∑
k=1

Yk∣ ≤ 8L1(www0)
√
2l log(40K0) ≤ 8L1(www0)

√
2K0 log(40K0) ≤

1

η
,

where the last inequality follows from the given choice of parameters.

Analogously, by Lemma E.14 and Lemma E.15, we also have for 1 ≤ k ≤ K1:

E[eee⊺1ζζζkd ⋅ 1∥ψψψk−1∥≤2∣Fk−1] = 0, ∣eee⊺1ζζζkd ⋅ 1∥ψψψk−1∥≤2∣ ≤ 4L1(www0).
Define

Y ′k ∶= eee⊺1ζζζkd ⋅ 1∥ψψψk−1∥≤21k≤K1 .

The (standard) Azuma’s Inequality now implies that with probability at least 1 − 0.1/(2K0), for any
given l,1 ≤ l ≤K0:

∣
l

∑
k=1

Y ′k∣ ≤ 4L1(www0)
√
2l log(40K0) ≤

1

4η
.

By the Union Bound, there exists an eventHo happening with probability at least 0.9 such that the
following inequalities hold for each l = 1,2, . . . ,K0:

∣
l

∑
k=1

Yk∣ ≤
1

η
, ∣

l

∑
k=1

Y ′k∣ ≤
1

4η
. (66)

In particular under the event Ho, for any l ≤ min(K1 − 1,K0), using the definitions of Yk, Y ′k we
obtain

∣
l

∑
k=1

ψ̂̂ψ̂ψ⊺k−1ζζζ
k
d ⋅ 1∥ψψψk−1∥≤2∣ ≤

1

η
, ∣

l

∑
k=1

eee⊺1ζζζ
k
d ⋅ 1∥ψψψk−1∥≤2∣ ≤

1

4η
. (67)

Now from Lemma E.15, it follows for all k ≤ K1 that

∥ψψψk∥2 = ∥ III − ηHHH
1 + ηδm

ψψψk−1 + ηD̂DD
k−1

ψψψk−1 + ηζζζkd∥
2

= ∥ψ̂̂ψ̂ψk−1∥
2
+ 2η(ψ̂̂ψ̂ψk−1)⊺D̂DDk−1ψψψk−1 + η2∥D̂DDk−1ψψψ

k−1 + ζζζkd∥
2
+ 2η(ψ̂̂ψ̂ψk−1)⊺ζζζkd

= ∥ψψψk−1∥2 +Q1,k +Q2,k +Q3,k (68)

where we define

Q1,k ∶= 2η(ψ̂̂ψ̂ψk−1)⊺D̂DD
k−1

ψψψk−1,Q2,k ∶= η2∥D̂DDk−1ψψψk−1 + ζζζkd∥
2
,Q3,k ∶= 2η(ψ̂̂ψ̂ψk−1)⊺ζζζkd.

For k ≤ K1, we have k − 1 < K1. Thus by Lemma E.15 and (65), we have

Q1,k ≤ 2ηL2(www0)B∥ψψψk−1∥
2
, (69)

and

Q2,k ≤ 2η2∥D̂DD
k−1

ψψψk−1∥
2

+ 2η2∥ζζζkd∥
2

69



≤ 2η2 ⋅L2(www0)2B2∥ψψψk−1∥2 + 8η2L1(www0)2∥ψψψk−1∥
2

≤ 16η2L1(www0)2∥ψψψk−1∥
2
. (70)

The last inequality above follows as per Remark 12.

Now we complete the proof. Under the eventHo from (66), we prove (63) by induction on k (recall
our condition for k for Lemma E.16 is that 0 ≤ k ≤min(K1 − 1,K0)).

When k = 0, by Lemma E.15, ψψψ0 = eee1, so ∥ψψψ0∥ = ∥eee1∥ = 1 ≤ 2 and eee⊺1ψψψ
0 = ∥eee1∥2 = 1 (recall eee1 is a

unit eigenvector), proving the base case.

Now for the inductive step, consider some k ≤ min(K1 − 1,K0). Suppose ∥ψψψl∥ ≤ 2 holds for all
l,0 ≤ l ≤ k − 1. Then because k < K1, upon applying the above bounds (68), (69), (70) we have:

∥ψψψk∥2 ≤ ∥ψψψ0∥2 +
k

∑
s=1

Q1,s +
k

∑
s=1

Q2,s +
k

∑
s=1

Q3,s

≤ 1 + 2η
k

∑
s=1

L2(www0)B∥ψψψs−1∥
2 + 16η2L1(www0)2

k

∑
s=1
∥ψψψs∥2 + 2η

k

∑
s=1
(ψ̂̂ψ̂ψs−1)⊺ζζζsd

≤ 1 + 2L2(www0)B ⋅ 4 ⋅ ηk + 16η2 ⋅L1(www0)2 ⋅ 4 ⋅ k + 2η
k

∑
s=1
(ψ̂̂ψ̂ψs−1)⊺ζζζsd ⋅ 1∥ψψψs−1∥≤2

≤ 1 + 16L2(www0)B ⋅ ηK0 + 2η
k

∑
s=1

ψ̂̂ψ̂ψs−1
⊺
ζζζsd ⋅ 1∥ψψψs−1∥≤2 ≤ 1 + 1 + 2η ⋅

1

η
= 4.

To upper bound the above, we used our choice of step size η ≤ L2(www0)B
8L1(www0)2 and B ≤ 1

L1(www0) as per
Remark 12, our above upper bounds on Q1,s,Q2,s, and that the eventHo implies (67).

This completes the induction and proves (63).

With (63), we prove (64). Namely note for k ≤ min(K1 − 1,K0), summing and telescoping the
recursion for ψψψk from Lemma E.15, we have:

eee⊺1ψψψk = eee⊺1ψψψ0 +
k−1
∑
s=0

ηeee⊺1D̂DDsψψψ
s +

k−1
∑
s=0

ηeee⊺1ζζζ
s
d

≥ 1 − η
k−1
∑
s=0

2L2(www0)B∥ψψψs∥ + η
k−1
∑
s=0

eee⊺1ζζζ
s
d ⋅ 1∥ψψψs−1∥≤2

≥ 1 − η ⋅K0 ⋅ 2L2(www0)B ⋅ 2 + η
k−1
∑
s=0

eee⊺1ζζζ
s
d ⋅ 1∥ψψψs−1∥≤2 ≥ 1 −

1

8
− 2

8
≥ 1

2
.

Here to lower bound the final sum, we used that ψψψ0 = eee1 and the upper bound on ∥D̂DDs∥ from
Lemma E.15, the fact that we have already established ∥ψψψs∥ ≤ 2 for all s < k as we showed (63), and
that the eventHo implies (67).

This proves all parts of Lemma E.16.

Finish. Now we prove Lemma E.13 via the same high-level strategy as the proof of Lemma 8, Fang
et al. (2019). Note on the event {K1 >Ko}, we have

zzzKo =wwwKo(uuu + qeee1) −wwwKo(uuu) = (wwwKo(uuu + qeee1) −xxx0)) − (wwwKo(uuu) −xxx0).

Thus by definition of K1, the event {K1 >Ko} implies that

∥zzzKo∥ ≤ ∥wwwKo(uuu + qeee1) −xxx0∥ + ∥wwwKo(uuu) −xxx0∥ ≤ 2B.

That is,
{K1 >Ko} ⊆ {∥zzzKo∥ ≤ 2B}.

70



However, consider the event Ho, (66) from Lemma E.16. On the event {K1 > Ko} ∩Ho, we have
Ko ≤min(K1 − 1,K0), and so by Lemma E.16, we have

eee⊺1ψψψ
Ko > 1

2
.

Thus by definition of ψψψk and recalling δm ≥ δ2 > 0, on the event {K1 >Ko} ∩Ho we have

∥zzzKo∥ = q(1 + ηδm)Ko∥ψψψKo∥ ≥ q0(1 + ηδ2)Ko ∣eee⊺1ψψψKo ∣ > q0 ⋅
6B

q0
⋅ 1
2
= 3B,

where the last inequality uses (54). This means that

{K1 >Ko} ∩Ho ⊆ {∥zzzKo∥ ≥ 3B}.
Putting our work together, we see that

{K1 >Ko} ∩Ho ⊆ {∥zzzKo∥ ≥ 3B} ∩ {∥zzzKo∥ ≤ 2B} = ∅.
Therefore

{K1 >Ko} ⊆ Hco Ô⇒ P(K1 >Ko) ≤ P(Hc0) ≤ 0.1.
Recalling the definition of K1, we conclude Lemma E.13.

Remark 21. Note we only have eeeT1ψψψ
k > 1

2
for k < K1 due to the lack of global Lipschitz bounds on

the graedient and Hessian of F , unlike in the proof of Lemma 8, Fang et al. (2019).

E.5 Faster Descent
Setup: As in Subsection E.4, let K0 denote the escape time of B(xxx0,B) for while loop of Algo-
rithm 2 when the while loop begins at xxx0. In this section, we aim to prove Lemma E.2.

As in Subsection E.4, the difference between Lemma E.2 and Proposition 9 of Fang et al. (2019)
is that this result only holds at points in the F (www0)-sublevel set LF,F (www0). For the rest of this
section, we work under the assumptions of Lemma E.2; thus for the rest of this section, xxx0 is in the
F (www0)-sublevel set LF,F (www0).

The idea here is similar to that of Subsection E.4. At a high level, we have the requisite control over
the gradient and Hessian since the iterates we consider are in a neighborhood of a point xxx0 ∈ LF,F (www0).
As in the previous part and as in Fang et al. (2019), we let

HHH ∶= ∇2F (xxx0),
and let

ξξξk+1 ∶= ∇f̃(xxxk;ζζζk+1) − ∇F (xxxk), k ≥ 0. (71)

Note as ΛΛΛk+1 has mean 0 and as the stochastic gradient oracle is unbiased, we have that for all k ≥ 0,

E[ξξξk+1∣Fk] = 0.

Let S be the subspace spanned by all eigenvectors of ∇2F (xxx0) whose eigenvalue is greater than 0,
and S⊥ denotes the complement space. Also, let PPPS ∈ Rd×d and PPPS⊥ ∈ Rd×d denote the projection
matrices onto the spaces S and S⊥, respectively. Let uuuk = PPPS(xxxk −xxx0), and vvvk = PPPS⊥(xxxk −xxx0). We
can decompose the update equation of SGD as:

uuuk+1 = uuuk − ηPPPS∇F (xxxk) − ηPPPSξξξk+1,

vvvk+1 = vvvk − ηPPPS⊥∇F (xxxk) − ηPPPS⊥ξξξk+1,
for k ≥ 0. Clearly uuu0 = 000, vvv0 = 000.

Now decomposeHHH = UUUΛΛΛUUUT by the Spectral Theorem where UUU ∈ Rd×d is unitary and ΛΛΛ ∈ Rd×d is
diagonal. Let ΛΛΛ>0 denote the diagonal matrix with diagonal entries equal to the positive (diagonal)
entries of ΛΛΛ. Let ΛΛΛ≤0 denote the diagonal matrix with diagonal entries equal to the zero or negative
(diagonal) entries of ΛΛΛ. Now define

HHHS ∶= UUUΛΛΛ>0UUUT ,HHHS⊥ ∶= UUUΛΛΛ≤0UUUT .

71



ThusHHHS has range in S , andHHHS⊥ has range in S⊥. NoteHHHS ,HHHS⊥ are both symmetric.

From here, define the following quadratic approximations:

GS(uuu) ∶= [PPPS∇F (xxx0)]
⊺
uuu + 1

2
uuu⊺HHHSuuu,GS⊥(vvv) ∶= [PPPS⊥∇F (xxx0)]

⊺
vvv + 1

2
vvv⊺HHHS⊥vvv.

Now define the quadratic approximation
G(xxx) = GS(uuu) +GS⊥(vvv) where uuu = PPPS(xxx −xxx0),vvv = PPPS⊥(xxx −xxx0).

It is easy to see that

G(xxx) = [∇F (xxx0)]⊺(xxx −xxx0) + 1

2
(xxx −xxx0)⊺HHH(xxx −xxx0).

For convenience, let
∇uuuF (xxxk) = PPPS∇F (xxxk),∇vvvF (xxxk) = PPPS⊥∇F (xxxk).

Similarly, let
ξξξkuuu = PPPSξξξk, ξξξkvvv = PPPS⊥ξξξk.

Also denote the stopping time
K = K0 ∧K0.

Due to its ‘local’ nature around the xxx0 in the F (www0)-sublevel set, we still have the following result
from Fang et al. (2019):

Lemma E.17 (Equivalent of Lemma 15, Fang et al. (2019)). Consider any uuu ∈ LF,F (www0), and
consider any xxx ∈ B(uuu,B). Then we have

∥∇F (xxx) − ∇G(xxx)∥ ≤ L2(www0)B2

2
.

Furthermore, for any symmetric matrix AAA, with 0 < a ≤ 1
∥AAA∥2

, for any i = 0,1, . . ., and j = 0,1, . . .,
we have

∥(III − aAAA)iAAA(III − aAAA)j∥
2
≤ 1

a(i + j + 1) .

Proof. Notice that for all 0 ≤ θ ≤ 1, θxxx + (1 − θ)uuu ∈ B(uuu,B). Thus as uuu ∈ LF,F (www0), by Lemma E.8,
we have

∥∇2F (θxxx + (1 − θ)uuu) − ∇2F (uuu)∥ ≤ L2(www0) ⋅ θ∥xxx −uuu∥ for all 0 ≤ θ ≤ 1.
Thus we have

∥∇F (xxx) − ∇G(xxx)∥ = ∥∇F (xxx) − ∇F (xxx0) − ∇2F (uuu)(xxx −uuu)∥

= ∥{∫
1

0
(∇2F (xxx0 + θ(xxx −uuu)) − ∇2F (uuu))dθ}(xxx −uuu)∥

≤ ∥∫
1

0
{L2(www0) ⋅ θ∥xxx −uuu∥}dθ∥ ⋅ ∥xxx −uuu∥

≤ L2(www0)B2

2
.

The second part of the Lemma follows from the exact same proof of Lemma D.5 in Section D. It
is also proved in the proofs of Lemma 15, Fang et al. (2019), and in the proof of Lemma 16 of Jin
et al. (2017). For more detail, let the eigenvalues ofAAA be {λk}. Thus for any i, j ≥ 0, the eigenvalues
of (III − aAAA)iAAA(III − aAAA)j are {λk(1 − aλk)i+j}. We now detail a calculation from Jin et al. (2017).
Letting gt(λ) ∶= λ(1 − aλ)t and setting its derivative to zero yields

∇gt(λ) = (1 − aλ)t − taλ(1 − aλ)t−1 = 0.
It is easy to check that λ⋆t = 1

(1+t)a is the unique maximizer, and gt(λ) is monotonically increasing in
(−∞, λ⋆t ].
This gives:

∥(III − aAAA)iAAA(III − aAAA)j∥ =max
k
λi(1 − aλk)i+j ≤ λ̂(1 − aλ̂)i+j ≤

1

(1 + i + j)a,

where λ̂ =min{ℓ, λ⋆i+j}.

72



Lemma E.18. For any k ≤ K0, we have

∥ξξξk∥ ≤ σ1(www0).

Proof. Note for k ≤ K0, we have k − 1 < K0 and so xxxk−1 ∈ B(xxx0,B). Recall furthermore that
xxx0 ∈ LF,F (www0). Thus, by Lemma E.5 and Lemma E.3,

∥ξξξk∥ = ∥∇f̃(xxxk−1;ζζζk) − ∇F (xxxk−1)∥ ≤ σ1(www0),

as desired.

Analyzing the Quadratic Approximation: We now analyze the quadratic approximation G(xxx) as
done in Fang et al. (2019). First we analyze the part in S:

Lemma E.19 (Equivalent of Lemma 16, Fang et al. (2019)). Set hyperparameters from (8). With
probability at least 1 − p/4, we have

GS(uuuK) −GS(uuu0)

≤ −25η
32

K−1
∑
k=0
∥∇GS(yyyk)∥

2 + 4ησ1(www0)2(log(K0) + 3) log(
48K0

p
) + ηL2(www0)2B4K0

= −25η
32

K−1
∑
k=0
∥∇GS(yyyk)∥

2 + Õ(ε1.5).

Proof. We follow a similar strategy as before of combining the proof of Fang et al. (2019) with
our self-bounding framework. To analyze GS(⋅) we first consider an auxiliary Gradient Descent
trajectory, which performs the update:

yyyk+1 = yyyk − η∇GS(yyyk), k ≥ 0,

and yyy0 = uuu0. yyyk performs Gradient Descent on GS(⋅), which is deterministic given xxx0.

Noting GS has HessianHHHS , and thatHHH is the Hessian of F at the point xxx0 ∈ LF,F (www0), we obtain
from Assumption 1.1 that

∥HHHS∥ ≤ ∥HHH∥ ≤ L1(www0).
Since the following only concern GS , then identically to the proof of Lemma 16, Fang et al. (2019),
we obtain the following:

• ByL1(www0)-smoothness ofGS (recallGS has HessianHHHS), we obtain the so-called ‘Descent
Lemma’:

GS(yyyk+1) ≤ GS(yyyk) + ⟨∇GS(yyyk),yyyk+1 − yyyk⟩ +
L1(www0)

2
∥yyyk+1 − yyyk∥2.

= GS(yyyk) − η(1 −
L1(www0)η

2
)∥∇GS(yyyk)∥

2
.

• Telescoping the above for 0 ≤ k ≤ K−1, and by our choice of η which satisfies ηL1(www0) ≤ 1
16

as per Remark 12, we obtain

GS(yyyK) ≤ GS(yyy0) −
31η

32

K−1
∑
k=0
∥∇GS(yyyk)∥

2
. (72)

To obtain Lemma E.19, we upper bound the difference between uuuK and yyyK. For all k ≥ 0, define

zzzk ∶= uuuk − yyyk.

We aim to upper bound zzzK (in an appropriate sense) using the concentration argument of Fang et al.
(2019):

73



Lemma E.20 (Equivalent of Lemma 17, Fang et al. (2019)). With probability at least 1 − p/6, we
have

∥zzzk∥ ≤ 3B

32
≈ Θ̃(ε0.5), (73)

and
zzzk
⊺
HHHSzzz

k ≤ 8σ1(www0)2η(log(K0) + 1) log(
48K0

p
) + ηL2(www0)2B4K0 ≈ Θ̃(ε0.5). (74)

Here Θ̃(⋅) hides F (www0)-dependence.

Proof of Lemma E.20. Clearly zzz0 = 000. From the definitions of uuuk,yyyk, we have

zzzk+1 = zzzk − η(∇GS(uuuk) − ∇GS(yyyk)) − η(∇uuuF (xxxk) − ∇GS(uuuk)) − ηξξξk+1uuu

= (III − ηHHHS)zzzk − η(∇uuuF (xxxk) − ∇GS(uuuk)) − ηξξξk+1uuu , k ≥ 0. (75)

Unraveling the above recursion gives:

zzzk = −
k

∑
j=1

η(III − ηHHHS)k−jξξξjuuu − η
k−1
∑
j=0
(III − ηHHHS)k−1−j(∇uuuF (xxxj) − ∇GS(uuuj)), k ≥ 0. (76)

Setting k = K, Triangle Inequality gives

∥zzzK∥ ≤
XXXXXXXXXXX

K
∑
j=1

η(III − ηHHHS)K−jξξξjuuu
XXXXXXXXXXX
+
XXXXXXXXXXX
η
K−1
∑
j=0
(III − ηHHHS)K−1−j(∇uuuF (xxxj) − ∇GS(uuuj))

XXXXXXXXXXX
.

We separately bound these two terms:

• For the first term, for any fixed l from 1 to K0, and any j from 1 to min(l,K0), we have

E[η(III − ηHHHS)l−jξξξjuuu∣Fj−1] = 0, ∥η(III − ηHHHS)l−jξξξjuuu∥ ≤ ησ1(www0).

The first equality uses ∥ξξξjuuu∥ = ∥PPPSξξξj∥ and that the stochastic gradient oracle is unbiased.
The inequality uses that PPP is a projection matrix, ∥ξξξjuuu∥ = ∥PPPSξξξj∥ ≤ σ1(www0) which follows
as j ≤ K0 and Lemma E.18, and ∥(III − ηHHHS)l−j∥ ≤ 1 which follows as l ≥ j and HHHS ⪰ 0.
(Note the importance that j ≤ K0, which gives us enough control over the noise term ξξξjuuu.)

Now to deal with the fact that the above control only applies for certain j, we define a
stochastic process as follows, analogously to our proof of Lemma E.13. For all fixed
1 ≤ l ≤K0, define a stochastic process Yl,j over all 1 ≤ j ≤ l by:

Yl,j = η(III − ηHHHS)l−jξξξjuuu1j−1<K = {
η(III − ηHHHS)l−jξξξjuuu ∶ j ≤ K
0 ∶ j > K.

Recalling K = K0 ∧ K0, it’s easy to check that for any fixed l, Yl,j is Fj-measurable.
Furthermore, η(III − ηHHHS)l−j ,1j−1<K are both Fj−1-measurable. Thus combining with the
earlier observations, we obtain that

E[Yl,j ∣Fj−1] = 0, ∥Yl,j∥ ≤ ησ1(www0).
Thus, by the Vector-Martingale Concentration Inequality Theorem C.1, we have with
probability 1 − p/(12K0),
XXXXXXXXXXX

l

∑
j=1

Yl,j

XXXXXXXXXXX
≤ 2ησ1(www0)

√
l log(48K0

p
) ≤ 2ησ1(www0)

√
K0 log(

48K0

p
) ≤ B

16
. (77)

The last inequality uses our choice of parameters.

By a Union Bound, with probability at least 1 − p/12, (77) holds for all l from 1 to K0. In
particular, with probability at least 1 − p/12 we have for K (recall K ≤K0) that

XXXXXXXXXXX

K
∑
j=1

η(III − ηHHHS)K−jξξξjuuu
XXXXXXXXXXX
=
XXXXXXXXXXX

K
∑
j=1

YK,j

XXXXXXXXXXX
≤ B
16
,

where we define YK,j the obvious way. This holds because with probability at least 1−p/12,
we have the bound (77) on ∥∑lj=1 Yl,j∥ irrespective of which value of 1 ≤ l ≤ K0 that K
takes on. The first equality holds by our definition of Yl,j for j ≤ l = K.

74



• For the second term, we have
XXXXXXXXXXX
η
K−1
∑
j=0
(III − ηHHHS)K−1−j(∇uuuF (xxxj) − ∇GS(uuuj))

XXXXXXXXXXX
≤ η

K−1
∑
j=0
∥∇uuuF (xxxj) − ∇GS(uuuj)∥

≤ η
K−1
∑
j=0
∥∇F (xxxj) − ∇G(xxxj)∥

≤ ηL2(www0)B2K0

2
≤ B
32
.

The first inequality uses the Triangle Inequality and that ∥(III − ηHHHS)K−1−j∥2 ≤ 1 for j
from 0 to K − 1; this follows because ∥HHHS∥ ≤ L1(www0) and as η ≤ 1

L1(www0) . The second
inequality uses ∥PPPS(∇F (xxx) − ∇G(xxx))∥ ≤ ∥∇F (xxx) − ∇G(xxx)∥ because PPPS is a projection
matrix. The third inequality follows from Lemma E.17, and the fact that for all j ≤ K − 1,
xxxj ∈ B(xxx0,B). The last inequality uses the choice of parameters.

Combining the above gives (73), the first part of Lemma E.20.

Now prove the second part of Lemma E.20, namely (74). Using the fact that (aaa + bbb)⊺AAA(aaa + bbb) ≤
2aaa⊺AAAaaa + 2bbb⊺AAAbbb for any symmetric positive definite matrixAAA and the recursion (76) for zzzk, we have

(zzzK)⊺HHHSzzzK

≤ 2η2
⎛
⎝
K
∑
j=1
(III − ηHHHS)K−j−1

⎞
⎠

⊺

HHHS
⎛
⎝
K
∑
j=1
(III − ηHHHS)K−jξξξju

⎞
⎠

+ 2η2
⎛
⎝
K−1
∑
j=0
(III − ηHHHS)K−1−j (∇uuuF (xxxj) − ∇GS(uuuj))

⎞
⎠

⊺

HHHS
⎛
⎝
K−1
∑
j=0
(III − ηHHHS)K−1−j (∇uuuF (xxxj) − ∇GS(uuuj))

⎞
⎠

= 2
XXXXXXXXXXX
η
K
∑
j=1

HHH
1/2
S (III − ηHHHS)

K−jξξξjuuu

XXXXXXXXXXX

2

+ 2η2
K−1
∑
j=0

K−1
∑
l=0
(∇uuuF (xxxj) − ∇GS(uuuj))

⊺ (III − ηHHHS)K−1−jHHHS(III − ηHHHS)K−1−l (∇uuuF (xxxl) − ∇GS(uuul))

≤ 2
XXXXXXXXXXX
η
K
∑
j=1

HHH
1/2
S (III − ηHHHS)

K−jξξξjuuu

XXXXXXXXXXX

2

+ 2η2L2(www0)2B4

4

K−1
∑
j=0

K−1
∑
l=0
∥(III − ηHHHS)K−1−jHHHS(III − ηHHHS)K−1−l∥.

The last inequality follows by properties of projection matrices and by Lemma E.17, recalling that
for j ≤ K − 1, xxxj ∈ B(xxx0,B).
Now we bound each of these two terms separately:

• For the first term, for any fixed l,1 ≤ l ≤ K0, again we define a stochastic process for any
j,1 ≤ j ≤ l by:

Yl,j = η(HHH1/2
S (III − ηHHHS)

l−jξξξjuuu)1j−1<K =
⎧⎪⎪⎨⎪⎪⎩

η(HHH1/2
S (III − ηHHHS)l−jξξξ

j
uuu) ∶ j ≤ K

0 ∶ j > K.

Analogously to earlier, recalling K ≤ K0, for fixed l, it is evident that Yl,j is Fj-measurable,
ηHHH

1/2
S (III − ηHHHS)l−j1j−1<K is Fj−1-measurable, and thus

E[Yl,j ∣Fj−1] = 0.
We furthermore have

∥Yl,j∥2 ≤
ησ1(www0)2
1 + 2(l − j) ,

which follows by noting for any 1 ≤ l ≤K0 and j ≤ K ≤ K0,

∥η(HHH1/2
S (III − ηHHHS)

l−jξξξjuuu)∥
2
≤ η2∥ξξξjuuu∥

2∥HHH1/2
S (III − ηHHHS)

l−jHHHS(III − ηHHHS)l−j∥∥ξξξjuuu∥
2

75



≤ ησ1(www0)2
1 + 2(l − j) .

This uses the second part of Lemma E.17, that ∥HHHS∥ ≤ L1(www0), that j ≤ K0 which gives
∥ξξξjuuu∥ ≤ σ1(www0) by Lemma E.18, and our choice of η (which cancels one of the σ1(www0)2
factors).

For a given l, by the Vector-Martingale Concentration Inequality Theorem C.1, we have
with probability 1 − p/(12K0) that

XXXXXXXXXXX

l

∑
j=1

Yl,j

XXXXXXXXXXX

2

≤ 4ησ1(www0)2 log (
48K0

p
)

l

∑
j=1

1

1 + 2(l − j)

≤ 4ησ1(www0)2(log(K0) + 1) log (
48K0

p
) . (78)

The last step above uses l ≤K0, ∑lj=1 1
1+j ≤ log(K0) + 1.

By the Union Bound, with probability at least 1 − p
12

, (78) holds for all l from 1 to K0.
Because 1 ≤ K ≤ K0, using the definition of Yl,j for l ≤ K, we obtain with probability at
least 1 − p

12
that

η
XXXXXXXXXXX

K
∑
j=1

HHH
1/2
S (III − ηHHHS)

K−jξξξjuuu

XXXXXXXXXXX

2

=
XXXXXXXXXXX

K
∑
j=1

YK,j

XXXXXXXXXXX

2

≤ 4ησ1(www0)2(log(K0) + 1) log (
48K0

p
) .

• For the second term, using the second part of Lemma E.17 and that K ≤ K0, and then
rearranging order of the sum and performing explicit calculation yields

η2
L2(www0)2B4

4

K−1
∑
j=0

K−1
∑
l=0
∥(III − ηHHHS)K−1−jHHHS(III − ηHHHS)K−1−l∥

≤ ηL2(www0)2B4

4

K0−1
∑
j=0

K0−1
∑
l=0

1

1 + j + l

≤ ηL2(www0)2B4

4

2(K0−1)
∑
l=0

min(1 + j,2K0 − 1 − j)
1 + j

≤ ηL2(www0)2B4K0

2
.

Combining the above two bounds proves (74), the second part of Lemma E.20.

We introduce one more Lemma, an intermediate step in the proof of Fang et al. (2019).

Lemma E.21. We have with probability at least 1 − p/12 that

⟨∇GS(yyyK),uuuK − yyyK⟩ ≤
3η∑Kk=0∥∇GS(yyyk)∥

2

16
+ 8ησ1(www0)2 log(48K0/p) + ηL2(www0)2B4K0/2.

Proof of Lemma E.21. Let yyy∗ = argminyyyGS(yyy); this exists as G is convex in the subspace S, by
the definition of S . By the optimality condition of yyy∗, we have:

∇uuuF (xxx0) = −HHHSyyy∗. (79)

Let ỹyyk = yyyk − yyy∗. From the update rule of yyyk and the optimality condition (79), we obtain:

HHHSỹyy
k = ∇GS(yyyk), ỹyyk+1 = ỹyyk − ηHHHSỹyyk. (80)

Consequently, using (80) and (76), we have:

⟨∇GS(yyyK),uuuK − yyyK⟩

76



= ⟨ỹyyK,zzzK⟩
HHHS

= η
K
∑
k=1
⟨ỹyyk−1, ξξξku⟩HHHS(III−ηHHHS)K−k+1 − η

K−1
∑
k=0
⟨ỹyyk,∇uuuF (xxxk) − ∇GS(uuuk)⟩HHHS(III−ηHHHS)K−k .

Now we bound both of these sums in a manner similar to the proof of Lemma E.20:

• For the first term: For any fixed l, 1 ≤ l ≤K0, define a real-valued stochastic process for any
k, 1 ≤ k ≤min(l,K0) by:

Yl,k = ⟨ỹyyk−1, ξξξkuuu⟩HHHS(III−ηHHHS)l−k+11k−1<K = {
⟨ỹyyk−1, ξξξkuuu⟩HHHS(III−ηHHHS)l−k+1 ∶ k ≤ K
0 ∶ k > K.

Analogously to earlier, recalling K ≤ K0, it’s easy to check that for any fixed l, Yl,k is Fk

measurable, and that all terms defining Yl,k are Fk−1 measurable except ξξξkuuu. Thus,

E[Yl,k ∣Fk−1] = 0.
We furthermore have for any fixed l,1 ≤ l ≤K0 and k,1 ≤ k ≤ l,

∥Yl,k∥2 ≤ σ1(www0)2∥∇GS(yyyk−1)∥
2
.

To justify why the above holds, clearly this is evident for k > K. For k ≤ K ≤ K0, note that

∣Yl,k ∣2 = ∥⟨ỹyyk−1, ξξξkuuu⟩HHHS(III−ηHHHS)l−k+1∥
2 = ∣⟨HHHSỹyyk−1, ξξξkuuu⟩∣

2

(III−ηHHHS)l−k+1

= ∣⟨∇GS(yyyk−1), ξξξkuuu⟩∣
2

(III−ηHHHS)l−k+1

≤ σ1(www0)2∥∇GS(yyyk−1)∥
2∥(III − ηHHHS)l−k+1∥

2

≤ σ1(www0)2∥∇GS(yyyk−1)∥
2
.

Here we used thatHHHS is symmetric, that (80), that ∥III − ηHHH l−k+1
S ∥ ≤ 1 which we have argued

earlier in the proof of Lemma E.20, and that ∥ξξξkuuu∥ ≤ σ1(www0) as k ≤ l ≤ K0 by Lemma E.18
and properties of projection matrices.

Now for any l,1 ≤ l ≤K0, by the Azuma–Hoeffding inequality, we have with probability at
least 1 − p/(12K0) that

∣η
l

∑
k=1

Yl,k∣ ≤

¿
ÁÁÀ2η2σ1(www0)2 log(24K0/p)

l−1
∑
k=0
∥∇GS(yyyk)∥2.

Taking a Union Bound, it follows that with probability at least 1 − p/12, the above holds for
all l with 1 ≤ l ≤K0.

Because 1 ≤ K ≤ K0 always holds, using the definition of Yl,k for k ≤ K, we obtain with
probability at least 1 − p

12
that

∣η
K
∑
k=1
⟨ỹyyk−1, ξξξkuuu⟩HHHS(III−ηHHHS)K−k+1 ∣ = ∣η

K
∑
k=1

YK,k∣

≤

¿
ÁÁÀ2η2σ1(www0)2 log(24K0/p)

K−1
∑
k=0
∥∇GS(yyyk)∥2

≤ η

16
+ 8ησ1(www0)2 log(48K0/p)

where we used AM-GM in the last step. This holds because we have this upper bound on
∣∑lk=1 Yl,k∣ irrespective of which value of l,1 ≤ l ≤ K0 that K takes on. The first equality
holds by our definition of Yl,k for k ≤ K.

• For the second term: note

η
K−1
∑
k=0
⟨ỹyyk,∇uuuF (xxxk) − ∇GS(uuuk)⟩HHHS(III−ηHHHS)K−k

77



= η
K−1
∑
k=0
⟨∇GS(yyyK),∇uuuF (xxxk) − ∇GS(uuuk)⟩(III−ηHHHS)K−k

≤ η
K−1
∑
k=0
∥∇GS(yyyK)∥∥∇uuuF (xxxk) − ∇GS(uuuk)∥

≤
η∑K−1k=0 ∥∇GS(yyyK)∥

2

8
+ 2η

K−1
∑
k=0
∥∇uuuF (xxxk) − ∇GS(uuuk)∥

2

≤
η∑K−1k=0 ∥∇GS(yyyK)∥

2

8
+ 1

2
ηL2(www0)2B4K0.

The first step above uses thatHHHS is symmetric and (80). The second step uses that k ≤ K
and that ∥III − ηHHHS∥ ≤ 1, as argued in the proof of Lemma E.20. The third step uses AM-GM.
The last step uses that K ≤K0 and Lemma E.17; for k < K, we have xxxk ∈ B(xxx0,B).

Combining these above two bounds proves Lemma E.21.

Now we finish the proof of Lemma E.19. As done in Fang et al. (2019), we combine Lemma E.20,
Lemma E.21 with (72) to prove Lemma E.19 as follows. In particular, taking a Union Bound over the
events from Lemma E.20 and Lemma E.21, we obtain with probability at least 1 − p/4 that

GS(uuuK) = GS(yyyK) + ⟨∇GS(yyyK),uuuK − yyyK⟩ +
1

2
(uuuK − yyyK)⊺HHH(uuuK − yyyK)

≤ GS(yyyK) + ⟨∇GS(yyyK),uuuK − yyyK⟩ +
1

2
(uuuK − yyyK)⊺HHHS(uuuK − yyyK)

≤ GS(yyyK) +
3η

16

K−1
∑
k=0
∥∇GS(yyyk)∥

2

+ 4ησ1(www0)2(log(K0) + 3) log(48K0/p) +L2(www0)2ηB4K0.

Here the first two lines used the definition of GS and S. The last line above applied Lemma E.21
together with the second part of Lemma E.20.

Now combining the above with (72), we obtain

GS(uuuK) ≤ GS(yyyK) +
3η

16

K−1
∑
k=0
∥∇GS(yyyk)∥

2

+ 4ησ1(www0)2(log(K0) + 3) log(48K0/p) +L2(www0)2ηB4K0

≤ GS(uuu0) −
25

32

K−1
∑
k=0
∥∇GS(yyyk)∥

2

+ 4ησ1(www0)2(log(K0) + 3) log(48K0/p) + ηL2(www0)2B4K0,

where we also used yyy0 = uuu0. This proves Lemma E.19.

We now analyze the orthogonal complement of S, S⊥ as in Fang et al. (2019), where the
analysis again goes through since the iterates are ‘local’, being prior to the escape time K:

Lemma E.22 (Equivalent of Lemma 18, Fang et al. (2019)). Deterministically, we have:

GS⊥(vvvK) ≤ GS⊥(vvv0) −
K
∑
k=1

η⟨∇GS⊥(vvvK−1), ξξξkvvv⟩ −
7η

8

K−1
∑
k=0
∥∇GS⊥(xxxk)∥

2 +L2(www0)2B4ηK2
0 .

Note by choice of parameters that L2(www0)2B4ηK2
0 = Õ(ε1.5), where again the Õ(⋅) hides F (www0)-

dependence.

Proof. By definition of GS⊥ , and using definition of S⊥ which impliesHHHS⊥ ⪯ 0, we obtain

GS⊥ (vvvk+1) = GS⊥ (vvvk) + ⟨∇GS⊥ (vvvk) ,vvvk+1 − vvvk⟩ +
1

2
(vvvk+1 − vvvk)⊺HHHS⊥(vvvk+1 − vvvk)

78



≤ GS⊥ (vvvk) + ⟨∇GS⊥ (vvvk) ,vvvk+1 − vvvk⟩
= GS⊥ (vvvk) − η⟨∇GS⊥ (vvvk) ,∇vvvF (xxxk) + ξξξk+1vvv ⟩

= GS⊥ (vvvk) − η∥∇GS⊥(vvvk)∥
2 − ⟨η∇GS⊥ (vvvk) ,∇vvvF (xxxk) − ∇GS⊥ (vvvk)⟩

− η⟨∇GS⊥ (vvvk) , ξξξk+1vvv ⟩

≤ GS⊥ (vvvk) − η⟨∇GS⊥ (vvvk) , ξξξk+1vvv ⟩ −
7η

8
∥∇GS⊥(vvvk)∥

2 + 2η∥∇vvvF (xxxk) − ∇GS⊥ (vvvk)∥
2
.

The last step uses AM-GM.

Substituting and telescoping the above for k from 0 to K − 1, we have:

GS⊥(vvvK)

≤ GS⊥(vvv0) −
K
∑
k=1

η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ −
7η

8

K−1
∑
k=0
∥∇GS⊥(xxxk)∥

2 + 2η
K−1
∑
k=0
∥∇vvvF (xxxk) − ∇GS⊥(vvvk)∥

2

≤ GS⊥(vvv0) −
K

∑
k=1

η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ −
7η

8

K−1
∑
k=0
∥∇GS⊥(xxxk)∥

2 + L2(www0)2B4ηK0

2
.

Here, the second inequality uses that by Lemma E.17, for all k ≤ K − 1, we have xxxk ∈ B(xxx0,B) and
so

∥∇vvvF (xxxk) −GS⊥(vvvk)∥ = ∥PS⊥(∇F (xxxk) − ∇G(xxxk))∥ ≤ ∥∇F (xxxk) − ∇G(xxxk)∥ ≤
L2(www0)B2

2
.

This completes the proof.

Completing the Proof: Now we have all the ingredients in hand to prove Lemma E.2.

Proof of Lemma E.2. Again, we follow the strategy of Fang et al. (2019) and adapt it to our setting
here where we do not have global bounds on the Lipschitz constants of the gradient and Hessian.
With Lemma E.19 and Lemma E.22 in hand, the idea will be to show

K0−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 +
K0−1
∑
k=0
∥∇GS(yyyk)∥

2 = Ω̃(1),

and to bound the noise term

−
K

∑
k=1

η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩.

We break the proof of Lemma E.2 into two cases:

1. ∥∇F (xxx0)∥ > 5σ1(www0).

2. ∥∇F (xxx0)∥ ≤ 5σ1(www0).
Case 1: This case is more straightforward as the gradient is large, and will not use the quadratic
approximation we developed earlier.

Consider any k,0 ≤ k ≤ K − 1. Thus xxxk ∈ B(xxx0,B), and so uuu ∈ B(xxx0,B) for all uuu ∈ xxx0xxxk. By
Lemma E.7, as xxx0 ∈ LF,F (www0), we have ∥∇2F (uuu)∥ ≤ L1(www0) for all such uuu. Thus as ∥∇F (xxx0)∥ >
5σ1(www0) and by our choice of parameters,

∥∇F (xxxk)∥ ≥ ∥∇F (xxx0)∥ − ∥∇F (xxxk) − ∇F (xxx0)∥ ≥ 5σ1(www0) −L1(www0)B ≥
9

2
σ1(www0). (81)

Similarly, as xxxk+1 = xxxk − η∇f̃(xxxk;ζζζk+1) and again as xxx0 ∈ LF,F (www0), we have ∥∇2F (uuu)∥ ≤ L1(www0)
for all uuu ∈ xxxkxxxk+1 by Lemma E.7. Applying Lemma A.1, for all 0 ≤ k ≤ K − 1, we obtain:

F (xxxk+1) − F (xxxk) ≤ ⟨∇F (xxxk),xxxk+1 −xxxk⟩ + L1(www0)
2
∥xxxk+1 −xxxk∥2

79



= −η∥∇F (xxxk)∥2 − η⟨∇F (xxxk), ξξξk+1⟩ + L1(www0)η2
2

∥∇F (xxxk) + ξξξk+1∥2.

≤ −η∥∇F (xxxk)∥2 − η⟨∇F (xxxk), ξξξk+1⟩ +L1(www0)η2∥∇F (xxxk)∥
2 +L1(www0)η2∥ξξξk+1∥

2
.

≤ η(−15
16
+ 5

32
)∥∇F (xxxk)∥2 + 8

5
ησ1(www0)2 +L1(www0)η2σ1(www0)2

≤ −25η
32
∥∇F (xxxk)∥2 + 2ησ2.

≤ −η (25
32
− 8

81
) ∥∇F (xxxk)∥2.

Note here that we need to consider a bound on the Lipschitz constant of the gradient between xxxK−1
and xxxK; see Remark 15. Here, we used the update rule of SGD, AM-GM and Young’s Inequality,
that L1(www0)η ≤ 1

16
by our choice of hyperparameters, Lemma E.18, and finally (81) in the last step.

Telescoping the above inequality from k = 0 to K − 1, we get:

F (xxxK) − F (xxx0) ≤ −η (25
32
− 8

81
)
K−1
∑
k=0
∥∇F (xxxk)∥2. (82)

To upper bound the right hand side above, note by Triangle Inequality that

∥η
K−1
∑
k=0
∇F (xxxk)∥ = ∥−η

K−1
∑
k=0
∇F (xxxk)∥

= ∥xxxK −xxx0 + η
K
∑
k=1

ξξξk∥

≥ ∥xxxK −xxx0∥ − ∥η
K
∑
k=1

ξξξk∥. (83)

By the Vector-Martingale Concentration Inequality Theorem C.1 and the bound ∥ξξξk∥ ≤ σ1(www0) for
all k ≤ K by Lemma E.5, we obtain with probability at least 1 − p/12:

∥η
K
∑
k=1

ξξξk∥ = ∥η
K0

∑
k=1

ξξξk1k≤K∥ ≤ 2ησ1(www0)
√
K0 log(48/p) ≤

B

16
. (84)

Here, we used the fact that 1k≤K ≡ 1k−1<K and consequently 1k≤K is Fk−1-measurable, and that
E[ξξξk ∣Fk−1] = 0, ∥ξξξk∥ ≤ σ1(www0) for all k ≤ K.

Suppose the above event implying (84) occurs, which has probability at least 1− p
12

. Under this event,
suppose that xxxk is able to leave the ball B(xxx0,B) in K0 iterations or less. If this is the case, then we
have K = K0 ≤K0, and so ∥xxxK −xxx0∥ ≥ B. Thus conditioned on the aforementioned event implying
(84), if xxxk is able to leave the ball B(xxx0,B) in K0 iterations or less, we obtain

η
K−1
∑
k=0
∥∇F (xxxk)∥2 ≥ 1

ηK∥
K−1
∑
k=0

η∇F (xxxk)∥
2

≥ 1

ηK(B −
1

16
B)

2

≥ 152B2

162ηK ≥
152B2

162ηK0
,

where we combined (83), (84) to lower bound ∥∑K−1k=0 η∇F (xxxk)∥. Here the first step holds by the

elementary inequality ∥∑li=0aaai∥
2 ≤ l∑li=0∥aaai∥

2, and the last step uses K0 ≥ K.

Consequently by combining with (82), with probability at least 1 − p
12

, if xxxk is able to leave the ball
B(xxx0,B) in K0 iterations or less, we have

F (xxxK) ≤ F (xxx0) − (25
32
− 8

81
) ⋅ 15

2B2

162ηK0
< F (xxx0) − B2

7ηK0
.

Case 2: Suppose ∥∇F (xxx0)∥ ≤ 5σ1(www0). To obtain the desired result, we first define and prove the
following Lemmas. Proving these Lemmas in turn utilizes the Lemmas on quadratic approximation
we have established earlier.

80



Lemma E.23. For all 0 ≤ k ≤ K − 1, we have

∥∇GS⊥(vvvk)∥ ≤
11

2
σ1(www0).

Proof. By the condition in this case, properties of projection matrices, and as vvv0 = 0,

∥∇GS⊥(vvv0)∥ = ∥∇vvvF (xxx0)∥ ≤ ∥∇F (xxx0)∥ ≤ 5σ1(www0).
Note for k ≤ K − 1, we have

∥vvvk − vvv0∥ = ∥PPPS⊥(xxxk −xxx0)∥ ≤ B.
Thus

∥∇GS⊥(vvvk)∥ ≤ ∥∇GS⊥(vvv0)∥ + ∥∇GS⊥(vvvk) − ∇GS⊥(vvv0)∥
≤ 5σ1(www0) +L1(www0)B

≤ 11

2
σ.

The above uses our choice of hyperparameters, and that

∥∇GS⊥(vvvk) − ∇GS⊥(vvv0)∥ = ∥HHHS⊥(vvvk − vvv0)∥ ≤ ∥HHH∥∥vvvk − vvv0∥ ≤ L1(www0)∥vvvk − vvv0∥,

which in turn follows because xxx0 ∈ LF,F (www0) and by Assumption 1.1.

The next Lemma is obtained by combining Lemma E.19 and Lemma E.22, and it gives us
a way to upper bound F (xxxk) − F (xxx0).
Lemma E.24 (Equivalent of Lemma 19 in Fang et al. (2019)). If ∥∇F (xxx0)∥ ≤ 5σ1(www0), with
probability 1 − p

4
, we have

F (xxxK) ≤F (xxx0) − η
K
∑
k=1
⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ + (

3

256
+ 1

80
) B2

ηK0

− 7η

8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 − 25η

32

K−1
∑
k=0
∥∇GS(yyyk)∥

2
.

Proof. For k ≤ K − 1, we have xxxk ∈ B(xxx0,B). Consequently the entire line segment xxx0xxxk lies in
B(xxx0,B). As xxx0 ∈ LF,F (www0), by Lemma E.7, we have

∥∇F (xxxk) − ∇F (xxx0)∥ ≤ L1(www0)∥xxxk −xxx0∥ ≤ L1(www0)B.
Thus by our choice of parameters, as per Remark 12,

∥∇F (xxxk)∥ ≤ ∥∇F (xxx0)∥ + ∥∇F (xxxk) − ∇F (xxx0)∥ ≤ 5σ1(www0) +L1(www0)B ≤
11

2
σ1(www0).

Recalling ∥ξξξK∥ ≤ σ1(www0) by Lemma E.18, we obtain from our choice of parameters as per Remark 12
that

∥xxxK −xxx0∥ ≤ ∥xxx0 −xxxK−1∥ + η∥∇F (xxxK−1) + ξξξK∥ ≤ B + 13

2
ησ1(www0) ≤ B +

B

100
. (85)

Using this, we then bound the difference between F (xxxK) and G(xxxK). As xxxK = xxxK−1 −
η∇f̃(xxxK−1;ζζζK), as xxxK−1 ∈ B(xxx0,B), and as xxx0 ∈ LF,F (www0), we have ∥∇2F (uuu) − ∇2F (xxx0)∥ ≤
L2(www0)∥uuu −xxx0∥ for all uuu ∈ xxxK−1xxxK by Lemma E.8. Applying Lemma A.2 and recalling that
GS(uuuK) +GS⊥(vvvK) = G(xxxK −xxx0), we obtain

F (xxxK) − F (xxx0) −GS(uuuK) −GS⊥(vvvK) ≤
L2(www0)

6
∥xxxK −xxx0∥3 ≤ L2(www0)B3

5
. (86)

Here, we used (85) in the last step. Note here that we need to consider a bound on the Lipschitz
constant of the Hessian between xxxK−1 and xxxK; see Remark 15.

81



Now, take a Union Bound over Lemma E.19 and Lemma E.22. We now add the bounds from
Lemma E.19 and Lemma E.22 to upper boundGS(uuuK)+GS⊥(vvvK) and use thatGS(uuu0)+GS⊥(vvv0) =
0. Combining with (86), we obtain with probability at least 1 − p/4 that

F (xxxK) ≤ F (xxx0) − η
K
∑
k=1
⟨∇GS⊥(vk−1), ξξξkv⟩ + 4ησ1(www0)2(1 + 3 log(K0)) log (

48

p
)

− 7η

8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 − 25η

32

K−1
∑
k=0
∥∇GS(yyyk)∥

2 + 3L2(www0)B4ηK0

2
+ L2(www0)B3

5
. (87)

Note by our choice of hyperparameters (analogous to the choice of hyperparameters from
Fang et al. (2019)), we have the following bounds: 4ησ1(www0)2(1 + 3 log(K0)) log ( 48p ) ≤
B2

256ηK0
, 3L2(www0)B4ηK0

2
≤ B2

128ηK0
, L2(www0)B3

5
≤ B2

80ηK0
.

Combining these above inequalities with (87), with probability at least 1 − p/4, we obtain

F (xxxK) ≤ F (xxx0) − η
K
∑
k=1
⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ + (

3

256
+ 1

80
) B2

ηK0

− 7η

8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 − 25η

32

K−1
∑
k=0
∥∇GS(yyyk)∥

2
.

This implies Lemma E.24.

By Lemma E.24, we want to lower bound the gradient norm of GS⊥ ,GS . We do this in
the following Lemma, assuming xxxk leaves the ball B(xxx0,B) in K0 iterations.

Lemma E.25 (Equivalent of Lemma 20 in Fang et al. (2019)). With probability 1 − p
6

, if xxxk exits
B(xxx0,B) in K0 iterations (i.e. K = K0 ≤K0), we have

η
K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 + η
K−1
∑
k=0
∥∇GS(yyyk)∥

2 ≥ 169B2

512ηK0
.

Proof. At a high level, the proof idea is similar to the proof of Case 1 earlier. Telescoping the
recursions vvvk = vvvk−1 − ηξξξkvvv − η∇vvvF (xxxk) and yyyk = yyyk−1 − η∇GS(yyyk), we obtain

∥η
K−1
∑
k=0
(∇GS⊥(vvvk) + ∇GS(yyyk))∥ = ∥−η

K−1
∑
k=0
(∇GS⊥(vvvk) + ∇GS(yyyk))∥

= ∥vvvK − vvv0 + η
K−1
∑
k=0
(ξξξk+1vvv −∇GS⊥(vvvk) + ∇vvvF (xxxk)) + yyyK − yyy0∥

≥ ∥vvvK − vvv0 + η
K−1
∑
k=0

ξξξk+1vvv + (uuuK −uuu0) − (zzzK − zzz0)∥

− ∥η
K−1
∑
k=0
(∇GS⊥(vvvk) − ∇vvvF (xxxk))∥.

Here, we used that zzzk = uuuk − yyyk and the Triangle Inequality.

Next, recall xxxk − xxx0 = uuuk + vvvk for all k ≥ 0, and uuu0 = vvv0 = 0. Thus xxxk − xxx0 = vvvk − vvv0 + uuuk − uuu0.
Furthermore notice

∇GS⊥(vvvk) − ∇vvvF (xxxk) =HHHS⊥(∇G(xxxk) − ∇F (xxxk)).

For all k ≤ K − 1 we have xxxk ∈ B(xxx0,B), so as xxx0 ∈ LF,F (www0), Lemma E.17 gives

∥η
K−1
∑
k=0
(∇GS⊥(vvvk) − ∇vvvF (xxxk))∥ ≤ ηK0 ⋅

L2(www0)B2

2
.

Applying these observations and Triangle Inequality again, we obtain

∥η
K−1
∑
k=0
(∇GS⊥(vvvk) + ∇GS(yyyk))∥ ≥ ∥xxxK −xxx0∥ − ∥zzzK − zzz0∥ − η∥

K
∑
k=1

ξξξkvvv∥ −
ηK0L2(www0)B2

2

82



≥ ∥xxxK −xxx0∥ − ∥zzzK − zzz0∥ − B
32
− η∥

K
∑
k=1

ξξξkvvv∥. (88)

and Lemma E.17 combined with the fact that projection matrices do not increase norm and that
xxxk ∈ B(xxx0,B) for k < K, and the final statement is by the choice of hyperparameters.

Using Lemma E.20 and that zzz0 = 0, we obtain with probability at least 1 − p
12

that

∥zzzK − zzz0∥ ≤ 3B

32
. (89)

Now recall that 1k≤K ≡ 1k−1<K is Fk−1-measurable, which implies

E[ξξξkvvv1{k≤K}∣Fk−1] = 000,

as the stochastic gradient oracle is unbiased. Furthermore, recall ∥ξξξk∥ ≤ σ1(www0) for k ≤ K, and
projection matrices do not increase norm. Thus by the Vector-Martingale Concentration Inequality
Theorem C.1, with probability at least 1 − p

12
, we have

∥η
K
∑
k=1

ξξξkvvv∥ = ∥η
K0

∑
k=1

ξξξkvvv1{k≤K}∥ ≤ 2ησ1(www0)
√
K0 log (

48

p
) ≤ B

16
. (90)

Thus taking a Union Bound over the events implying (89), (89) and combining with the earlier display
(88), with probability at least 1 − p

6
, we have

∥η
K−1
∑
k=0
∇GS⊥(vvvk) + ∇GS(yyyk)∥ ≥ ∥xxxK −xxx0∥ −

3B

16
.

Thus with probability at least 1− p
6

, if xxxk exits B(xxx0,B) in K0 iterations (that is, if we have K0 ≥ K),
we have

∥η
K−1
∑
k=0
∇GS⊥(vvvk) + ∇GS(yyyk)∥ ≥ ∥xxxK −xxx0∥ −

3B

16
≥ B − 3B

16
,

and so

η
K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 + η
K−1
∑
k=0
∥∇GS(yyyk)∥

2 ≥ 1

2ηK∥η
K−1
∑
k=0
(∇GS⊥(vvvk) + ∇GS(yyyk))∥

2

≥ 1

2ηK(B −
3B

16
)
2

= 169B2

512ηK ≥
169B2

512ηK0
.

In the first step above we used the elementary inequality ∥∑li=1 aaai∥
2 ≤ l∑li=1∥aaai∥

2 and Young’s
Inequality. This proves Lemma E.25.

We now combine Lemma E.24, Lemma E.25 to prove Lemma E.2. First recall by Lemma E.24, with
probability 1 − p/4, we have

F (xxxK) ≤F (xxx0) − η
K
∑
k=1
⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ + (

3

256
+ 1

80
) B2

ηK0

− 7η

8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 − 25η

32

K−1
∑
k=0
∥∇GS(yyyk)∥

2
. (91)

We first control ∑Kk=1⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ by concentration. For all k from 1 to K0, note

E[η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩1k≤K∣Fk−1] = 0,

because 1k≤K ≡ 1k−1≤K, so all terms in η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩1k≤K except ξξξkvvv are Fk−1-measurable.

Furthermore, by Lemma E.23 and Lemma E.18, for all k ≤ K, we have

∥η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩1k≤K∥ ≤
11ησ1(www0)2

2
,

83



and
E[{η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩1k≤K}

2∣Fk−1] ≤ η2σ1(www0)21k≤K∥∇GS⊥(vvvk)∥
2
.

Taking δ = p
3 log(K0) in the Data-Dependent Bernstein Inequality Theorem C.2, we obtain with

probability at least 1 − p
3

,

K
∑
k=1
−η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩

=
K0

∑
k=1
−η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩1k≤K

≤max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
11ησ1(www0)2 log(

3 log(K0)
p

) ,4

¿
ÁÁÀη2σ1(www0)2

K−1
∑
k=0
∥∇GS⊥(vvvk)∥2 log(

3 log(K0)
p

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

(92)

We upper bound each of these terms in the maximum. With our choice of parameters and one
application of AM-GM, we have

11ησ1(www0)2 log(
3 log(K0)

p
) ≤ B2

100ηK0
,

and

4

¿
ÁÁÀη2σ2

K−1
∑
k=0
∥∇GS⊥(vvvk)∥2 log(

3 log(K0)
p

) ≤ 32 log(3 log(K0)
p

)ησ1(www0)2 +
η

8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2

≤ B2

32ηK0
+ η
8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2
.

Consequently the second upper bound dominates the maximum from (92). Substituting the above
into (92), with probability at least 1 − p

3
, we obtain

K
∑
k=1
−η⟨∇GS⊥(vvvk−1), ξξξkvvv⟩ ≤

B2

32ηK0
+ η
8

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2
.

Combining with (91), we obtain with probability at least 1 − 7p
12

that

F (xxxK) − F (xxx0) ≤ ( 3

256
+ 1

80
+ 1

32
) B2

ηK0
− 3η

4

K−1
∑
k=0
∥∇GS⊥(vvvk)∥

2 − 3η

4

K−1
∑
k=0
∥∇GS(yyyk)∥

2

Taking a Union Bound with the event from Lemma E.25, we obtain with probability at least 1 − 3
4
p,

if xxxk moves out of the ballBBB(xxx0,B) within K0 iterations (i.e. K = K0 ≤K0), then

F (xxxK0) − F (xxx0) = F (xxxK) − F (xxx0) ≤ −(3
4
⋅ 169
512
− 3

256
− 1

80
− 1

32
) B2

ηK0
< − B2

7ηK0
.

This proves Lemma E.2 in Case 2.

Combining Case 1 and Case 2, we obtain Lemma E.2.

E.6 Finding Second Order Stationary Points
Here, we finish the proof by showing with high probability, if the algorithm does not escape B(xxx0,B)
inK0 iterates, then the average of theK0 iterates is a SOSP. In particular, we aim to prove Lemma E.1.
Here is where Lemma E.12 is used. In the following, we define ξξξk as in (71). Furthermore, note the
proofs of Lemma E.17 and Lemma E.18 still go through under the conditions of Lemma E.1, so we
may apply those Lemmas in our proof here.

Proof. We adopt the proof strategy of Fang et al. (2019) in a similar way as we have thus far.

84



• By Lemma E.12, with probability 1− p
3

(namely if the event (66) from Lemma E.12 occurs),
then if λMIN(∇2F (xxx)) ≤ −δ2, xxxk will move out of the ball B(xxx0,B) within K0 iterations.
By taking the contrapositive, we see that with probability 1 − p

3
, if xxxk does not move

out of the ball B(xxx0,B) in K0 iterations, then λMIN(∇2F (xxx0)) ≥ −δ2. In this case, we
have xxxk ∈ B(xxx0,B) for all 1 ≤ k ≤ K0, so xxx ∈ B(xxx0,B). Thus by Lemma E.8 and as
xxx0 ∈ LF,F (www0),

λMIN(∇2F (xxx)) ≥ λMIN(∇2F (xxx0)) −L2(www0)∥xxx −xxx0∥ ≥ −δ2 −L2(www0)B ≥ −17δ,
where the final inequality follows from our choice of parameters. That is, with probability
1 − p

3
, if xxxk does not move out of the ball B(xxx0,B) in K0 iterations, then λMIN(∇2F (xxx)) ≥

−17δ.

• To complete the proof and show xxx is a SOSP, we will show that ∥∇F (xxx)∥ is small. To this
end, we upper bound 1

K0
∥∑K0

k=1 ξξξ
k∥ using concentration. In deriving this bound we do not

yet suppose that xxxk does not move out of B(xxx0,B) in its first K0 iterations. Consider

∥
K0

∑
k=1

ξξξk1k≤K0∥ = ∥
K0

∑
k=1

ξξξk1k−1<K0∥.

As 1k−1<K0 is Fk−1-measurable,

E[ξξξk1k≤K0 ∣Fk−1] = 000.
Furthermore by Lemma E.18, for k ≤ K0 we have

∥ξξξk1k≤K0
∥ ≤ σ1(www0).

Thus the Vector-Martingale Concentration Inequality Theorem C.1 gives with probability at
least 1 − 2p/3 that

1

K0
∥
K0

∑
k=1

ξξξk1k≤K0∥ ≤
2σ1(www0)

√
K0 log(6/p)
K0

≤ L2(www0)B2. (93)

The last inequality follows from our choice of parameters.

Now conditioning on the above event implying (93) which occurs with probability at least
1 − 2p/3, suppose xxxk does not move out of the ball B(xxx0,B) in K0 iterations. Then we
have K0 >K0, and so from (93), we have

1

K0
∥
K0

∑
k=1

ξξξk∥ = 1

K0
∥
K0

∑
k=1

ξξξk1k≤K0∥ ≤ L2(www0)B2.

Furthermore, if xxxk does not move out of the ball B(xxx0,B) in K0 iterations, then we have
xxx ∈ B(xxx0,B). We find an upper bound ∥∇F (xxx)∥2. We again consider the quadratic
approximation G(xxx) at xxx0 defined in Subsection E.5, and follow the notation from there.
Noting G(⋅) is a quadratic and so its gradient is a linear map, we obtain

∥G(xxx)∥ = ∥ 1

K0

K0−1
∑
k=0
∇G(xxxk)∥

≤ ∥ 1

K0

K0−1
∑
k=0
∇F (xxxk)∥ + ∥ 1

K0

K0−1
∑
k=0
∇G(xxxk) − ∇F (xxxk)∥

= 1

K0η
∥xxxK0−1 −xxx0 − η

K0

∑
k=1

ξξξk∥ + ∥ 1

K0

K0−1
∑
k=0
∇G(xxxk) − ∇F (xxxk)∥

≤ B

K0η
+ 1

K0
∥
K0

∑
k=1

ξξξk∥ + 1

K0
⋅K0 ⋅

L2(www0)B2

2

≤ ( 16
C̃1

+ 1

2
)L2(www0)B2 + 1

K0
∥
K0

∑
k=1

ξξξk∥.

85



Here we used the choice of parameters, that xxxk ∈ B(xxx0,B) for all 0 ≤ k ≤ K0 combined
with Lemma E.17 and that xxx0 ∈ LF,F (www0), and Triangle Inequality repeatedly.

Note because xxx0 ∈ LF,F (www0) and as xxx ∈ B(xxx0,B), by Lemma E.17, the above implies

∥∇F (xxx)∥ ≤ ∥∇G(xxx)∥ + L2(www0)B2

2
≤ 17L2(www0)B2 + 1

K0
∥
K0

∑
k=1

ξξξk∥ ≤ 18L2(www0)B2.

Consequently, with probability at least 1−2p/3, if xxxk does not move out of the ball B(xxx0,B)
within K0 iterations, then

∥∇F (xxx)∥ ≤ 18L2(www0)B2.

Taking a Union Bound, it follows that with probability at least 1 − p, if xxxk does not escape B(xxx0,B)
within the first K0 iterations, we have both

∥∇F (xxx)∥ ≤ 18L2(www0)B2, λMIN(∇2F (xxx)) ≥ −17δ.
This proves Lemma E.1.

F Examples
F.1 Phase Retrieval
By Theorem 3.4 and Theorem 3.5, it suffices to show that 1) Fpr satisfies Assumption 1.2 and 2) Fpr
is a strict saddle problem (that is, all SOSPs are near-optima in a suitable sense). In the rest of this
subsection, denote Fpr by F for short. As shown in Candes et al. (2015); De Sa et al. (2022), Section
2.3 and Lemma 16 part a respectively, direct calculation shows F (www) takes the form

F (www) =www⊺(III − (www⋆)(www⋆)⊺)www + 3

4
(∥www∥2 − 1)2. (94)

As ∥www⋆∥ = 1, we have F (www) ≥ 0. Furthermore, we have infwww∈Rd F (www) = 0, attained for example at
www = ±www⋆. Also note for any fixedwww, F is absolutely continuous on a compact neighborhood ofwww.

F satisfies Assumption 1.2: By De Sa et al. (2022), Lemma 20, we have that

∥∇2F (www)∥ ≤ ρ1(F (www))

for ρ1(x) = 9
√
x + 10. It remains to show that

∥∇3F (www)∥ ≤ ρ2(F (www))

for some increasing, non-negative ρ2, where ∥∇3F (www)∥ refers to operator norm of the third order
tensor. Equivalently, we will show that for anywww and any unit vector uuu, we have

lim
δ→0

∥∇2F (www + δuuu) − ∇2F (www)∥
op

δ∥uuu∥ ≤ ρ2(F (www)).

As shown in the proof of Lemma 20, De Sa et al. (2022), we obtain from direct calculation that

∇2F (www) = 2III − 2(www⋆)(www⋆)⊺ + 3(∥www∥2 − 1)III + 6wwwwww⊺. (95)

Thus, by repeatedly applying Triangle Inequality and Lemma A.3 and as ∥uuu∥ = 1,

∥∇2F (www + δuuu) − ∇2F (www)∥
op

= ∥3(∥www + δuuu∥2 − ∥www∥2)III + 6(www + δuuu)(www + δuuu)⊺ − 6wwwwww⊺∥
op

≤ 3∣∥www + δuuu∥ − ∥www∥∣ ⋅ (∥www + δuuu∥ + ∥www∥)
+ 6∥(www + δuuu)(www + δuuu)⊺ −www(www + δuuu)⊺ +www(www + δuuu)⊺ −wwwwww⊺∥

op

≤ 3δ∥uuu∥(2∥www∥ + δ) + 6(∥δuuu(www + δuuu)⊺∥
op
+ ∥www(δuuu)⊺∥

op
)

86



≤ δ∥uuu∥(3(2∥www∥ + δ) + 6∥www + δuuu∥ + 6∥www∥)
≤ δ∥uuu∥(18∥www∥ + 9δ).

Here, we used the inequality ∣∥xxx + yyy∥ − ∥xxx∥∣ ≤ ∥yyy∥.
Consequently,

lim
δ→0

∥∇2F (www + δuuu) − ∇2F (www)∥
op

δ∥uuu∥ ≤ lim
δ→0

18∥www∥ + 9δ ≤ 18∥www∥ + 1.

By Lemma 16 part d, De Sa et al. (2022), using Jensen’s Inequality we have

F (www) ≥ (∥www∥2 − 1)2.
Note for ∥www∥ ≥ 2, this implies

18∥www∥ + 1 ≤ 18(∥www∥ + 1)2(∥www∥ − 1)2 ≤ 18F (www).
Combining with the case ∥www∥ < 2, we obtain

lim
δ→0

∥∇2F (www + δuuu) − ∇2F (www)∥
op

δ∥uuu∥ ≤ 18∥www∥ + 1 ≤ 18F (www) + 37,

so we can just take ρ2(x) = 18x + 37.

Next, we check that F is a strict saddle problem: We check this here. Similar results, in slightly
different of a setting where we solve phase retrieval from samples from data, are shown in Sun et al.
(2018).

Suppose ∥∇F (www)∥ ≤ δ for δ ≤ ( 1
20
)4. Note by Lemma 16 part b, De Sa et al. (2022), ⟨www⋆,∇F (www)⟩ =

3(∥www∥2 − 1)⟨www,www⋆⟩. By Cauchy-Schwartz and recallingwww⋆ is a unit vector, this gives

δ ≥ ∥www⋆∥∥∇F (www)∥ ≥ ∣⟨www⋆,∇F (www)⟩∣ = 3∣∥www∥2 − 1∣ ⋅ ∣⟨www,www⋆⟩∣. (96)

• Suppose ∣⟨www,www⋆⟩∣ ≥
√
δ. Combining this with (96) gives

∣∥www∥2 − 1∣ ≤
√
δ

3
.

By Lemma 16 part c, De Sa et al. (2022),

∥∇F (www)∥2 = 12∥www∥2F (www) − 8(∥www∥2 − ⟨www,www⋆⟩2)
= (12∥www∥2 − 8)F (www) + 6(∥www∥2 − 1)2,

where the last equality follows from the explicit form F (www) from (94). Thus using
∣∥www∥2 − 1∣ ≤

√
δ
3

, we obtain

δ2 ≥ ∥∇F (www)∥2 = (12∥www∥2 − 8)F (www) + 6(∥www∥2 − 1)2 ≥ (4 − 4
√
δ)F (www).

For δ ≤ 1
4

, this gives

F (www) ≤ δ2

4 − 4
√
δ
≤ δ

2

2
.

• Otherwise, suppose ∣⟨www,www⋆⟩∣ ≤
√
δ. Note by differentiating (94), as shown in the proof of

Lemma 16 part b, De Sa et al. (2022),

∇F (www) = 2www − 2⟨www,www⋆⟩www⋆ + 3(∥www∥2 − 1)www = −2⟨www,www⋆⟩www⋆ + (3∥www∥2 − 1)www.
Thus by Triangle Inequality,

∣3∥www∥2 − 1∣ ⋅ ∥www∥ ≤ ∥∇F (www)∥ + 2∣⟨www,www⋆⟩∣∥www⋆∥ ≤ δ + 2
√
δ ≤ 4

√
δ.

Consequently either ∥www∥ ≤ 2δ1/4 or ∣3∥www∥2 − 1∣ ≤ 2δ1/4.

87



In the first case, by Cauchy Schwartz and (95), notice for any unit vector uuu that

uuu⊺∇2F (www)uuu = uuu⊺(2III − 2(www⋆)(www⋆)⊺ + 3(∥www∥2 − 1)III + 6wwwwwwT )]uuu

≤ −∥uuu∥2 + 3∥uuu∥2 ⋅ (2δ1/4)2 + 6∥uuu∥2 ⋅ (2δ1/4)2

≤ −1 + 36δ1/2 ≤ − 9

10
,

since δ ≤ ( 1
20
)4.

In the second case, using (95), notice as ∥www⋆∥ = 1, we have

www⋆
⊺
∇2F (www)www⋆ =www⋆

⊺
(3∥www∥2 − 1)www⋆ − 2∥www⋆∥2 + 6∣⟨www,www⋆⟩∣2

≤ 2δ1/4 − 2 + 6δ ≤ −9
5
.

Consequently in either case, ∇2F (www) has at least one negative eigenvalue with value at
most − 9

10
.

Consider ε smaller than a universal constant, and take δ = √ε in the above result. It follows from
the analysis here that if we find an SOSP to tolerance ε as per the definition (2), we obtainwww with
F (www) ≤ ε

2
.

Thus, it follows that running Perturbed GD or Restarted SGD as described in Theorem 3.4 or
Theorem 3.5 respectively, we will obtainwww with suboptimality F (www) ≤ ε, where the number of oracle
calls depends on 1/ε, d,F (www0) in the same way as in Theorem 3.4 or Theorem 3.5 respectively.

F.2 Matrix PCA
Again by Theorem 3.4, Theorem 3.5, it suffices to show that 1) Fpca satisfies Assumption 1.2 and 2) is
a strict saddle problem (that is, all SOSPs are near-optima in a suitable sense). We will show this, with
the parameters governing the strict saddle property depending on the spectral gap λ1(MMM)−λ2(MMM).12

In the rest of this subsection, denote Fpca by F for short. Recall the loss function for PCA takes the
form

F (www) = 1

2
∥wwwwww⊺ −MMM∥2

F
,

whereMMM is a symmetric PD matrix. Note for any fixedwww, F is absolutely continuous on a compact
neighborhood of www. Note F (www) ≥ 0 always holds. While it is not true that infwww∈Rd F (www) = 0, to
enforce this, we can consider the shifted function G ∶= F − infwww∈Rd F (www). The derivatives of G are
identical to those of F , and furthermore G(xxx) −G(yyy) = F (xxx) − F (yyy) for all xxx,yyy. Thus to apply
Theorem 3.4, Theorem 3.5 and show that Perturbed GD or Restarted SGD can globally optimize G
and therefore F by finding SOSPs, it remains to show F satisfies Assumption 1.2 and is strict saddle.

F satisfies Assumption 1.2: Direct calculation, also in Jin et al. (2021a), yields

∇F (www) = (wwwwww⊺ −MMM)www,∇2F (www) = ∥www∥2III + 2wwwwww⊺ −MMM. (97)

We now check self-bounding regularity for the Hessian and third order derivative tensor. First observe

www⊺(wwwwww⊺)www = ∥www∥4.

Combining with Lemma A.3, we obtain

∥www∥ = ∥wwwwww⊺∥1/2
op

≤ (∥wwwwww⊺ −MMM∥
op
+ ∥MMM∥op)

1/2

≤ ∥wwwwww⊺ −MMM∥1/2
F
+ ∥MMM∥1/2op

≤ 2F (www)1/4 + ∥MMM∥1/2op . (98)

12Thus our result will be vacuous when the spectral gap is 0.

88



Now we check the self bounding conditions. For the Hessian, note from (97) and (98) and using
Lemma A.3,

∥∇2F (www)∥
op
≤ 3∥www∥2 + ∥MMM∥op ≤ 3(2F (www)

1/4 + ∥MMM∥1/2op )
2 + ∥MMM∥op.

Thus we can take ρ1(x) = 3(2x1/4 + ∥MMM∥1/2op )2 + ∥MMM∥op.

For the third order derivative tensor, following the strategy in Subsection F.1, we will show that for
anywww and any unit vector uuu, we have

lim
δ→0

∥∇2F (www + δuuu) − ∇2F (www)∥
op

δ∥uuu∥ ≤ ρ3(F (www)).

Applying (97) and Lemma A.3 and note

(www + δuuu)(www + δuuu)⊺ −wwwwww⊺ = (www + δuuu)(www + δuuu)⊺ − (www + δuuu)www⊺ + (www + δuuu)www⊺ −wwwwww⊺

= (www + δuuu)(δuuu)⊺ + δuuuwww⊺.
This gives

lim
δ→0

∥∇2F (www + δuuu) − ∇2F (www)∥
op

δ∥uuu∥

= lim
δ→0

(∥www + δuuu∥2 − ∥www∥2) + 2∥(www + δuuu)(www + δuuu)⊺ −wwwwww⊺∥op
δ∥uuu∥

≤ lim
δ→0

∣∥www + δuuu∥ − ∥www∥∣ ⋅ (2∥www∥ + δ∥uuu∥) + δ∥uuu∥(2∥www∥ + δ∥uuu∥)
δ∥uuu∥

≤ lim
δ→0

δ∥uuu∥(2∥www∥ + δ∥uuu∥) + δ∥uuu∥(2∥www∥ + δ∥uuu∥)
δ∥uuu∥

= lim
δ→0

4∥www∥ + 2δ∥uuu∥

= 4∥www∥
≤ 8F (www)1/4 + 4∥MMM∥1/2op .

Here we used the inequality ∣∥xxx + yyy∥ − ∥xxx∥∣ ≤ ∥yyy∥. The last step used (98). Thus we can take
ρ2(x) = 8x1/4 + 4∥MMM∥1/2op .

Next, we check F is a strict saddle problem: We check this here. A similar verification is done in
Ge et al. (2017).

Let vvv1, . . . ,vvvd be the (unit) eigenvectors ofMMM corresponding to λ1(MMM) ≥ λ2(MMM) ≥ ⋯ ≥ λd(MMM) >
0 respectively (recall MMM is assumed to be PD). Thus the vvvi form an orthonormal basis of Rd.
Furthermore for convenience let λi ∶= λi(MMM) for all 1 ≤ i ≤ d. AsMMM is symmetric and PD, by the
Spectral Theorem, we can write

MMM =
d

∑
i=1
λivvvivvv

⊺
i .

Supposewww is a SOSP to tolerance ε for ε <min{1, (λ1−λ2)2
16

, 3
8
(λ1 − λ2)5/2}. Note the minimizers

of F are www = ±
√
λ1vvv1. We will show that www is close to these minimizers: in particular, that

min{∥www −
√
λ1vvv1∥

2
, ∥www +

√
λ1vvv1∥

2} ≤ ε.

Write www = c1vvv1 +⋯ + cdvvvd. Thus, our goal is to show that ∣(c21 +⋯ + c2d) − λ1∣ <
√
ε. By (97), we

have

ε ≥ ∥∇F (www)∥ = ∥MMMwww − ∥www∥2www∥ = ∥
d

∑
i=1
((c21 +⋯ + c2d) − λi)civvvi∥.

That is, we have
d

∑
i=1
c2i ((c21 +⋯ + c2d) − λi)

2 ≤ ε2. (99)

89



Furthermore by (97), we have

∇2F (www) = (c21 +⋯ + c2d)III + 2∑
i,j

cicjvvvivvv
⊺
j −

d

∑
i=1
λivvvivvv

⊺
i .

Sincewww is a SOSP, for all vvvk,1 ≤ k ≤ d, we have

−
√
ε ≤ vvv⊺k∇2F (www)vvvk = (c21 +⋯ + c2d) + 2c2k − λk. (100)

We now break into cases:

• Suppose for all i, we have ∣(c21 +⋯ + c2d) − λi∣ ≥
√
ε. From (99), this gives ∑di=1 c2i ≤ ε.

Taking k = 1 in (100), we obtain

−
√
ε ≤ 3

d

∑
i=1
c2i − λ1 ≤ 3ε − λ1 Ô⇒ λ1 ≤

√
ε + 3ε,

contradicting that ε <min{1, (λ1−λ2)2
16

}.

• Else, suppose there exists i such that ∣(c21 +⋯ + c2d) − λi∣ <
√
ε. Suppose that i ≥ 2. Then

taking k = 1 in (100), we obtain

−
√
ε ≤ λi +

√
ε + 2c21 − λ1 Ô⇒ c21 ≥

λ1 − λi
2

−
√
ε ≥ λ1 − λ2

4
,

where the last inequality uses λi ≤ λ2 and ε < (λ1−λ2

4
)2.

Note furthermore that as ε ≤ (λ1−λ2

4
)2, as ∣(c21 +⋯ + c2d) − λi∣ <

√
ε, and as λi ≤ λ2 < λ1,

we have ∣(c21 +⋯ + c2d) − λ1∣ >
3(λ1−λ2)

4
. Thus (99) implies

ε2 > 0 + λ1 − λ2
4

⋅ 9
16
(λ1 − λ2)2,

contradicting that ε < 3
8
(λ1 − λ2)5/2.

Therefore, we must have i = 1 in the second case above. That is, ∣(c21 +⋯ + c2d) − λ1∣ <
√
ε, as

desired.

Thus, it follows that running Perturbed GD or Restarted SGD as described in Theorem 3.4 or Theo-
rem 3.5 respectively, we will obtainwww that is distance at most

√
ε from a global minimizer of F for

ε <min{1, (λ1−λ2)2
16

, 3
8
(λ1 − λ2)5/2}. Here the number of oracle calls depends on 1/ε, d,F (www0) the

same way as in Theorem 3.4 or Theorem 3.5 respectively. For ε ≥min{1, (λ1−λ2)2
16

, 3
8
(λ1 − λ2)5/2},

we can replace ε by any real strictly smaller than min{1, (λ1−λ2)2
16

, 3
8
(λ1 − λ2)5/2} in the guarantees

from Theorem 3.4 or Theorem 3.5.

G Simulations
Our algorithmic results Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4, and Theorem 3.5 have
strong practical implications. They directly suggest that under generalized smoothness, the step sizes
η that lead to convergence/successful optimization become smaller for larger initialization F (www0)
and larger self-bounding functions ρ1(⋅), ρ2(⋅). For example in Theorem 3.1, we set η = 1

L1(www0)
where L1(www0) =max{1, ρ0(F (www0) + 1), ρ0(F (www0))ρ0(F (www0) + 1), ρ1(F (www0) + 1)} was defined
in (4).

That is, our work suggests that larger suboptimality at initialization and larger self-bounding functions
shrink the ‘window’ for choosing a working η in practice, when the loss function satisfies generalized
smoothness. This has strong practical implications: it implies that for losses with non-Lipschitz
gradient/Hessian, one should tune η based on suboptimality at initialization. This contrasts sharply
with the Lipschitz gradient/Hessian case, see e.g. (Bubeck et al., 2015; Jin et al., 2017; Fang et al.,
2019), where the range of working η is fixed in terms of the Lipschitz constant of the gradient and/or
Hessian, and does not depend on the initialization.

In this section, we empirically validate this implication of our work.

90



G.1 Synthetic Simulations with GD
Simulation Details: We consider F (www) = ∥AAAwww∥p for p = 2,3,4,5,6, where AAA =
diag( 1

20
, 1
19
, . . . , 1

2
,1). When p = 2, F (www) is smooth. When p ≥ 3, F (www) is not smooth, but it

is straightforward to verify that it satisfies Assumption 1.1, similar to our verifications in Subsec-
tion A.2. One can furthermore verify that as p increases, the corresponding self-bounding function
ρ1(⋅) from Assumption 1.1 increase. This choice of generalized smooth function was motivated by
Gaash et al. (2025), who used ∥AAAwww∥4 with the exact sameAAA in their experiments to study optimization
with first-order methods under generalized smoothness.

For each p = 2,3,4,5,6, we consider the following settings for GD:

• Step sizes: We consider 30 step sizes {ηi}30i=1, η1 < ⋯ < η30 evenly spaced on a log scale
between 10−8 and 101, inclusive.

• Initialization: For each step size ηi, we initialize GD at 4 distributions πj = N(0⃗00, cjIII20) for
cj ∈ {2.5,5,7.5,10}. For each of these 4 distributions πj , we draw 100 points www0 ∼ πj to
use as our initialization.

• Number of steps: For each ηi and eachwww0 ∼ πj , we run GD initialized atwww0 with step size
ηi for T = 1000 iterations. Here as F is known, we analytically compute the gradient.

For each p and initialization πj , we consider all 30 possible ηi, which we plot on the x-axis. For
each ηi, we consider all 100 initializationswww0 ∼ πj . For each initializationwww0, letting {wwwt} be the
resulting sequence of iterates of GD, we compute ∥∇F (wwwT )∥

F (www0) for T = 1000. For ηi that led to faithful

convergence of GD, on the y-axis, we then plot the mean of ∥∇F (wwwT )∥
F (www0) over those 100 initializations

as a blue dot, with blue vertical error bars indicating ±2 standard deviations. We considered the
ratio ∥∇F (wwwT )∥

F (www0) because for L-smooth functions, established optimization theory predicts that this
converges at a rate independent of F (www0) and only depending on T and L (Bubeck et al., 2015).

The simulations for Subsection G.1 were run on a Jupyter notebook in Python in Google Colab Pro,
connected to a single NVIDIA T4 GPU. Our code can be found in the attached files.

Divergence of GD and working step sizes: We observe that for some ηi larger than some threshold
depending on p and πj , the iterates of GD diverge. In particular, the resulting ratio ∥∇F (wwwT )∥

F (www0) becomes
massive, often on the order of 105 or more, indicating that ηi was too large for GD to converge. To
identify the smallest ηi where this first occurs, or equivalently find the largest working step size
among {ηi}30i=1, for a given πj and ηi, we computed the average ∥∇F (wwwT )∥

F (www0) over the 100 initializations.
If this average was 100 or more times larger than this average for ηi−1, we took this as an indication
that the iterates of GD with this step size ηi or larger step sizes diverge, and for this p and πj , we
stopped considering any larger ηi′ , i′ > i. We then save this ηi to indicate the smallest ηi for which
divergence occurred. This ηi is indicated with a red line in the following plots.

This smallest ηi for which divergence occurred plays a crucial role in validating our theoretical claims.
Established optimization theory predicts that for smooth functions (here, when p = 2), this ηi is
identical across different initializations (Bubeck et al., 2015). Meanwhile for generalized smooth
functions, as per our remarks earlier and from Subsection 3.6, we predict that as F (www0) increases,
the range of working step sizes, and consequently also the smallest ηi for which divergence occurs,
will decrease. Note as cj increases (recall πj ∼ N(0⃗00, cjIII20) and cj ∈ {2.5,5,7.5,10}), we expect
F (www0) to increase, at least on average or with high probability over the 100 initializationswww0 ∼ πj .

Results: Our simulations validate this theory very accurately. Note in the following figures that
the y-axis is normalized, as we plot ∥∇F (wwwT )∥

F (www0) where T = 1000. Thus larger cj lead to comparable
values on the y-axis.

• When p = 2: In Figure 1, we plot the results in the manner described above for all 4
initializations πj . As is predicted by established optimization theory for smooth functions
(Bubeck et al., 2015), the first step size leading to divergence ηi is identical across all the πj .

• When p = 3,4,5,6: We plot the results in the manner described above for all 4 initializations
πj in Figure 2, Figure 3, Figure 4, Figure 5 respectively. Unlike the p = 2 case, in all of

91



(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 1.17.

(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 1.17.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 1.17.

(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 1.17.

Figure 1: GD simulation results for p = 2. For all πj , the smallest ηi leading to divergence is ≈ 1.17.

these cases, the first step size leading to divergence ηi generally decreases as the covariance
cjIII20 of πj increases from 2.5 to 10.

We also notice the following, both in line with our theoretical claims:

• For a given p, consider how this first step size ηi leading to divergence decreases as the
covariance cjIII20 of πj increases from 2.5 to 10. We find that the rate of this decrease
increases as p increases. The ratio of the first ηi leading to divergence for π1 vs π4 is
approximately 4.18,4.18,8.53,17.43 for p = 3,4,5,6 respectively.

As remarked earlier, for larger p, the corresponding self-bounding function ρ1(⋅) is larger
for F (www) = ∥AAAwww∥p (see Subsection A.2 for a similar verification). Thus this behavior is
consistent with our results, as the step size from all of our results depends on F (www0) through
ρ1(⋅).

• Fixing πj and comparing across p, we see that the first step size leading to divergence ηi
decreases as p increases. Again this is not a surprise considering our theoretical results, as
for larger p, both F (www0) forwww0 ∼ πj and the self-bounding function ρ1(⋅) become larger.

For each p ∈ {2,3,4,5,6} and πj , we also record the smallest ηi for which divergence occurred in
Table 1 on page 92, which highlights the aforementioned trends.

πj = N(0⃗00,2.5III20) πj = N(0⃗00,5.0III20) πj = N(0⃗00,7.5III20) πj = N(0⃗00,10III20)
p = 2 1.17 ⋅ 100 1.17 ⋅ 100 1.17 ⋅ 100 1.17 ⋅ 100
p = 3 2.81 ⋅ 10−1 1.37 ⋅ 10−1 1.37 ⋅ 10−1 6.72 ⋅ 10−2
p = 4 3.29 ⋅ 10−2 3.29 ⋅ 10−2 1.61 ⋅ 10−2 7.88 ⋅ 10−3
p = 5 7.88 ⋅ 10−3 3.86 ⋅ 10−3 9.24 ⋅ 10−4 9.24 ⋅ 10−4
p = 6 9.24 ⋅ 10−4 4.52 ⋅ 10−4 5.30 ⋅ 10−5 5.30 ⋅ 10−5

Table 1: The smallest ηi leading to divergence for a given p and initialization πj .

92



(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 0.281.

(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 0.137.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 0.137.

(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 0.0672.

Figure 2: GD simulation results for p = 3. For πj = N(0⃗00,2.5III20), the first divergence is at ηi ≈ 0.281.
For πj = N(0⃗00,5III20),N(0⃗00,7.5III20), the first divergence is at ηi ≈ 0.137. For πj = N(0⃗00,10III20), the
first divergence is at ηi ≈ 0.0672.

(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 3.29 ⋅ 10

−2.
(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 3.29 ⋅ 10

−2.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 1.61 ⋅ 10

−2.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 7.88 ⋅ 10

−3.

Figure 3: GD simulation results for p = 4. For πj = N(0⃗00,2.5III20),N(0⃗00,5III20), the first divergence
is at ηi ≈ 3.29 ⋅ 10−2. For πj = N(0⃗00,7.5III20), the first divergence is at ηi ≈ 1.61 ⋅ 10−2. For
πj = N(0⃗00,10III20), the first divergence is at ηi ≈ 7.88 ⋅ 10−3.

93



(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 7.88 ⋅ 10

−3.
(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 3.86 ⋅ 10

−3.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 9.24 ⋅ 10

−4.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 9.24 ⋅ 10

−4.

Figure 4: GD simulation results for p = 5. For πj = N(0⃗00,2.5III20), the first divergence is at
ηi ≈ 7.88 ⋅ 10−3. For πj = N(0⃗00,5III20), the first divergence is at ηi ≈ 3.86 ⋅ 10−3. For πj =
N(0⃗00,7.5III20),N(0⃗00,10III20), the first divergence is at ηi ≈ 9.24 ⋅ 10−4.

(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 9.24 ⋅ 10

−4.
(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 4.52 ⋅ 10

−4.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 5.30 ⋅ 10

−5.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 5.30 ⋅ 10

−5.

Figure 5: GD simulation results for p = 6. For πj = N(0⃗00,2.5III20), the first divergence is at
ηi ≈ 9.24 ⋅ 10−4. For πj = N(0⃗00,5III20), the first divergence is at ηi ≈ 4.52 ⋅ 10−4. For πj =
N(0⃗00,7.5III20),N(0⃗00,10III20), the first divergence is at ηi ≈ 5.30 ⋅ 10−5.

94



G.2 Synthetic Simulations with SGD
Simulation Details: We adopt the exact same settings as in Subsection G.1. The only difference is
that we study SGD rather than GD, and hence we simulate stochastic gradients. We do so similarly
to Gaash et al. (2025): we artificially add N(0⃗00,0.01III20) to ∇F at each iteration of SGD.13 The
simulations for Subsection G.2 were again run on a Jupyter notebook in Python in Google Colab Pro,
connected to a single NVIDIA T4 GPU. Our code is in the attached files.

Results: Our conclusions are similar to those from Subsection G.1. When p = 2, as predicted by
established optimization theory for smooth functions, the first step size leading to divergence ηi is
identical across the πj (see Figure 6). In contrast for p = 3,4,5,6, this ηi generally decreases as the
covariance cjIII20 of πj increases from 2.5 to 10 (see Figure 7, Figure 8, Figure 9, Figure 10). We note
that while the general trends are similar to those from Subsection G.1, we can clearly see the presence
of the stochastic gradients in these plots. In many of these plots, ∥∇F (wwwT )∥

F (www0) becomes roughly constant
for η large enough such that T = 1000 yields reasonable convergence; for such η, by T = 1000, the
true gradients are small enough and the noise from the stochastic gradients takes over.

Once more, consider how the first step size leading to divergence ηi decreases as the covariance
cjIII20 of πj increases from 2.5 to 10. We find that the rate of this decrease generally increases as
p increases. We also again see that fixing πj and comparing across p, the first step size leading to
divergence ηi decreases as p increases. As discussed in Subsection G.1, both of these phenomena
are consistent with our theoretical results. For each p ∈ {2,3,4,5,6} and πj , we again record the
smallest ηi for which divergence occurred in Table 2 on page 95.

πj = N(0⃗00,2.5III20) πj = N(0⃗00,5.0III20) πj = N(0⃗00,7.5III20) πj = N(0⃗00,10III20)
p = 2 1.17 ⋅ 100 1.17 ⋅ 100 1.17 ⋅ 100 1.17 ⋅ 100
p = 3 2.81 ⋅ 10−1 1.37 ⋅ 10−1 6.72 ⋅ 10−2 1.37 ⋅ 10−1
p = 4 3.29 ⋅ 10−2 3.29 ⋅ 10−2 1.61 ⋅ 10−2 7.88 ⋅ 10−3
p = 5 7.88 ⋅ 10−3 1.89 ⋅ 10−3 9.24 ⋅ 10−4 4.52 ⋅ 10−4
p = 6 4.52 ⋅ 10−4 4.52 ⋅ 10−4 1.08 ⋅ 10−4 5.30 ⋅ 10−5

Table 2: Smallest ηi leading to divergence for a given p and initialization πj .

13Note our result for convergence of SGD to FOSPs, Theorem 3.3, applies for Gaussian noise as per Remark 7.

95



(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 1.17.

(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 1.17.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 1.17.

(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 1.17.

Figure 6: SGD simulation results for p = 2. For all πj , the smallest ηi leading to divergence is ≈ 1.17.

(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 0.281.

(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 0.137.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 6.72 ⋅ 10

−2.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 0.137.

Figure 7: SGD simulation results for p = 3. For πj = N(0⃗00,2.5III20), the first divergence is at
ηi ≈ 0.281. For πj = N(0⃗00,7.5III20), the first divergence is at ηi ≈ 6.72 ⋅ 10−2. For the other πj , the
first divergence is at ηi ≈ 0.137.

96



(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 3.29 ⋅ 10

−2.
(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 3.29 ⋅ 10

−2.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 1.61 ⋅ 10

−2.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 7.88 ⋅ 10

−3.

Figure 8: SGD simulation results for p = 4. For πj = N(0⃗00,2.5III20),N(0⃗00,5.0III20), the first divergence
is at ηi ≈ 3.29 ⋅ 10−2. For πj = N(0⃗00,7.5III20), the first divergence is at ηi ≈ 1.61 ⋅ 10−2. For
πj ∼ N(0⃗00,10III20), the first divergence is at ηi ≈ 7.88 ⋅ 10−3.

(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 7.88 ⋅ 10

−3.
(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 1.89 ⋅ 10

−3.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 9.24 ⋅ 10

−4.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 4.52 ⋅ 10

−4.

Figure 9: SGD simulation results for p = 5. For πj =
N(0⃗00,2.5III20),N(0⃗00,5.0III20),N(0⃗00,7.5III20),N(0⃗00,10III20), the first divergence is at ηi ≈
7.88 ⋅ 10−3,1.89 ⋅ 10−3,9.24 ⋅ 10−4,4.52 ⋅ 10−4 respectively.

97



(a) πj = N(0⃗00,2.5III20). The first divergence is at
ηi ≈ 4.52 ⋅ 10

−4.
(b) πj = N(0⃗00,5.0III20). The first divergence is at
ηi ≈ 4.52 ⋅ 10

−4.

(c) πj = N(0⃗00,7.5III20). The first divergence is at
ηi ≈ 1.08 ⋅ 10

−4.
(d) πj = N(0⃗00,10III20). The first divergence is at
ηi ≈ 5.30 ⋅ 10

−5.

Figure 10: SGD simulation results for p = 6. For πj =
N(0⃗00,2.5III20),N(0⃗00,5.0III20),N(0⃗00,7.5III20),N(0⃗00,10III20), the first divergence are at
ηi ≈ 4.52 ⋅ 10−4,4.52 ⋅ 10−4,1.08 ⋅ 10−4,5.30 ⋅ 10−5 respectively.

98


	Introduction
	Our Contributions

	Main Idea
	High Level Idea
	The Formal Framework
	Examples Subsumed by Framework

	Convergence Results
	Gradient Descent
	Adaptive Gradient Descent
	Stochastic Gradient Descent
	Perturbed Gradient Descent
	Restarted Stochastic Gradient Descent
	Examples
	Practical Implications and Simulations

	Conclusion
	Acknowledgments
	Technical Preliminaries
	Helpful Background Lemmas
	Comparison of Assumptions with Literature
	Proofs of Technical Results

	Proof of Framework
	First Order Convergence Proofs
	Proofs for Adaptive GD
	Proofs for SGD for FOSPs

	Perturbed GD finding Second Order Stationary Points
	Proof using the Framework
	Proving the key Lemma
	Proof of Escaping Saddles Lemmas

	Restarted SGD finding Second Order Stationary Points
	Notation and Parameters
	Result
	Preliminaries
	Escaping Saddles
	Faster Descent
	Finding Second Order Stationary Points

	Examples
	Phase Retrieval
	Matrix PCA

	Simulations
	Synthetic Simulations with GD
	Synthetic Simulations with SGD


