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Abstract

We study the optimization of non-convex functions that are not necessarily smooth
(gradient and/or Hessian are Lipschitz) using first order methods. Smoothness
is a restrictive assumption in machine learning in both theory and practice, moti-
vating significant recent work on finding first order stationary points of functions
satisfying generalizations of smoothness with first order methods. We develop
a novel framework that lets us systematically study the convergence of a large
class of first-order optimization algorithms (which we call decrease procedures)
under generalizations of smoothness. We instantiate our framework to analyze the
convergence of first order optimization algorithms to first and second order station-
ary points under generalizations of smoothness. As a consequence, we establish
the first convergence guarantees for first order methods to second order stationary
points under generalizations of smoothness. We demonstrate that several canonical
examples fall under our framework, and highlight practical implications.

1 Introduction

A widely studied problem in machine learning (ML) and optimization is finding a First Order
Stationary Point (FOSP) of a generic function F' with domain R?, defined as follows:

Given a tolerance ¢ > 0, find w such that |[VF(w)| < e. (1)

The methods of choice in theory and practice for this task are Gradient Descent (GD), Stochastic
Gradient Descent (SGD), and variants thereof. Under the additional assumption of (second-order)
smoothness on F, i.e. that the gradient VF' is Lipschitz with parameter L > 0, this task is well-
understood. In several settings — such as with access to exact gradients, stochastic gradients, Hessian-
Vector Products, and the exact Hessian — we have matching upper and lower bounds. The literature on
this problem is extensive; for a subset see e.g. Ghadimi and Lan (2013); Johnson and Zhang (2013);
Fang et al. (2018, 2019); Foster et al. (2019); Arjevani et al. (2020); Carmon et al. (2020, 2021).

However, for many non-convex functions F', FOSPs are uninformative. A significant and difficult
problem established in the literature for over a decade — which carries strong theoretical and practical
implications in optimization for machine learning — is establishing efficient rates for finding a Second
Order Stationary Point (SOSP). In many non-convex optimization problems such as Phase Retrieval
and Matrix Square Root (Ge et al., 2015; Jin et al., 2017; Ge et al., 2017; Sun et al., 2018), SOSPs
are global minima. Finding a SOSP is defined as follows:

Given a tolerance ¢ > 0, find w such that | VF(w)|| < e, V2F (w) = —/I, 2)
where > denotes the PSD order, I is the d x d identity matrix, and V2 F(w) is the Hessian of F.?

Under the additional Hessian Lipschitz assumption, that the operator norm of the Hessian V2 F in
addition to the gradient V F' is Lipschitz, this task is also well-understood. Under these regularity

* Authors are listed in alphabetical order.
There are several definitions of a SOSP; see Remark 5 for why we use this definition here.
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assumptions, finding SOSPs is classical under exact oracle access to the full Hessian V2 F. Decades
ago, it was shown that cubic regularization and trust region methods succeed (Nesterov and Polyak,
2006; Conn et al., 2000), with a matching lower bound in Arjevani et al. (2020). Motivated by the
success of non-convex optimization in ML via first order methods, solving this problem (2) with
first order methods has seen much recent study (Ge et al., 2015; Jin et al., 2017; Fang et al., 2019;
Arjevani et al., 2020; Jin et al., 2021a). We have matching upper and lower bounds in several cases,
such as for SGD which is perhaps most relevant to ML (Fang et al., 2019; Arjevani et al., 2020).

However, in many optimization problems in ML, the gradient and Hessian of the loss function is
not Lipschitz. This was observed empirically through extensive experiments of Zhang et al. (2019)
on LSTMs and of Crawshaw et al. (2022) on transformers. We provide theoretical examples in
Subsection 3.6. As such, a line of work began in Zhang et al. (2019) on studying finding FOSPs
under weaker regularity assumptions, see e.g. (Zhang et al., 2020; Jin et al., 2021b; Crawshaw
et al., 2022; Reisizadeh et al., 2023; Li et al., 2023b; Wang et al., 2024; Hong and Lin, 2024; Gaash
et al., 2025; Yu et al., 2025). The regularity assumption generally made is (Lg, L1 )-smoothness:
HVZF(w)Hop < Lo+ Ly |[VF(w)]| for all w € R for some Lo, Ly > 0. This allows for arbitrarily

polynomial growth rates of F' in |w|. The guarantees in Zhang et al. (2019) and follow-up works
generally hold for adaptive methods, presented as theoretical justification for gradient clipping.

The authors of Li et al. (2023a), under a milder regularity assumption than Zhang et al. (2019),
studied finding FOSPs via fixed-step-size GD and SGD rather than adaptive methods. In particular,
Li et al. (2023a) demonstrated clipping is not necessary for (Lo, L1)-smooth functions. Related
works extended this analysis to Nesterov’s Accelerated Gradient Descent (Li et al., 2023b; Hong
and Lin, 2024). Xie et al. (2024) studied finding SOSPs under (Lg, L1 )-smoothness and a similar
assumption that for all w, in a small neighborhood of w, the Hessian of F' is Lipschitz with parameter
Mo+ M7 |VF(w)|. However, their algorithm is second-order and requires the full Hessian, analogous
to classical work (Nesterov and Polyak, 2006; Conn et al., 2000). This contrasts with recent
developments of finding SOSPs using first order methods when F has Lipschitz gradient and Hessian,
which are more pertinent to ML where first-order algorithms are the only tractable method (Ge et al.,
2015; Jin et al., 2017; Fang et al., 2019; Arjevani et al., 2020; Jin et al., 2021a).

1.1 Our Contributions

In this work, we develop a novel framework to study non-asymptotic guarantees finding FOSPs
and SOSPs via first-order methods, for functions whose gradient and/or Hessian are not Lipschitz.
Central to our work is the following regularity assumption:

Assumption 1.1 (Second-Order Self-Bounding Regularity). F is twice differentiable, and there exists
a non-decreasing function p1 : Ryg = Ryq such that ”VQF('w) ”Op < p1(F(w)) for all w € RY,

This assumption implies the relevant Hessian operator norm is upper bounded by a function of
the function value. It was also made in De Sa et al. (2022) for the different task of studying
global convergence of GD/SGD, where it was shown that Assumption 1.1 holds for many canonical
non-convex optimization problems. Some quantitative control of the Hessian is necessary for non-
asymptotic guarantees of finding FOSPs (Kornowski et al., 2024). In Example 1, we show these
prior assumptions are not satisfied by a natural univariate function. We show in Proposition A.1 that
Assumption 1.1 generalizes (L, L )-smoothness and its extension from Li et al. (2023a), and that

(Lo, L1 )-smoothness (||V2FHop < Lo+L1|VF|) = Assumption 1.1 with py () = gL0+4L%x.
For finding SOSPs, we impose the following additional regularity assumption:

Assumption 1.2 (Third-Order Self-Bounding Regularity). F' satisfies Assumption 1.1, and either:

» Fis three-times differentiable everywhere, and for some non-decreasing function ps : Ryg —

R0, v?>F(u;)]|op < pa(F(w)) for all w € RY.

* Or for some constant 6 > 0 and some non-decreasing function ps : Ryg — Ry, for all
w,w' € R with |w - w'| <6, we have | V*F(w) - VQF(w’)”Op < po(F(w))|w —w'|.

Assumption 1.2 naturally extends Assumption 1.1, and generalizes the Hessian Lipschitz assumption
ubiquitous in the literature on non-asymptotic rates for finding SOSPs. (We note that the works Lee
et al. (2016, 2019) established asymptotic guarantees for GD finding SOSPs without the Hessian



Lipschitz assumption, and note their proof strategy uses Lipschitzness of the gradient in a crucial way.)
In Subsection 3.6, we show several canonical non-convex losses with non-Lipschitz gradient and
Hessian satisfy Assumption 1.2. Assumption 1.2 covers several growth rates of interest (e.g. univariate
self-concordant functions satisfying Assumption 1.1). It also subsumes that of Xie et al. (2024),
which to our knowledge is the only other result on finding SOSPs under generalized smoothness (but
uses the full Hessian). Under the assumptions of Xie et al. (2024), an explicit, simple form for po(+)
can be found. We detail all of this in Example 2.

Furthermore, Assumption 1.2 encompasses several examples of Distributionally Robust Optimization
(DRO) problems. Xie et al. (2024) very interestingly demonstrates that under mild assumptions, the
objective of DRO satisfies their Assumption 3, see Theorem 3 therein. Assumption 3 of Xie et al.
(2024) is subsumed by Assumption 1.2 as per our Example 2. Thus our results apply to DRO. DRO
is a general optimization problem that has significant applications in fairness in machine learning and
in learning under distribution shifts; see Xie et al. (2024) for more discussion.

We now introduce the following standard definition, which, when combined with Assumption 1.1
and Assumption 1.2, forms the core of our argument, as we explain in Subsection 2.1.

Definition 1.1. For a function F and threshold o, the a-sublevel set of F is Ly o = {w : F(w) < a}.
Now, our contributions are as follows:

1. We develop a novel, systematic framework detailed in Section 2 and Theorem 2.1 to
study the convergence of first order methods to FOSPs and SOSPs under Assumption 1.1
and Assumption 1.2 respectively. The core idea is in Subsection 2.1. Our framework lets
us systematically analyze existing practical, and widely used first-order optimization
algorithms in the challenging generalized smooth setting.

2. Main Results, non-asymptotic convergence to SOSPs: Under Assumption 1.2, we estab-
lish efficient rates for first-order optimization algorithms finding SOSPs. See Theorem 3.4
for Perturbed GD (Jin et al., 2017) and Theorem 3.5 for Restarted SGD (Fang et al., 2019).
The dependence on €, d matches that in the smooth setting, and in particular is polylogarith-
mic in d. This is particularly pertinent for ML applications, where the ambient dimension is
so large that the second-order methods of Xie et al. (2024) are not feasible.

3. Non-asymptotic convergence to FOSPs: Under Assumption 1.1, we establish efficient rates
for GD, Adaptive GD, and SGD finding FOSPs. See Theorem 3.1, Theorem 3.2, and
Theorem 3.3 respectively. The dependence on ¢, d again matches that in the smooth setting.

4. We provide examples and practical implications in Subsection 3.6. Our examples are direct
corollaries of Theorem 3.4, Theorem 3.5. They show variants of GD/SGD globally optimize
non-convex ‘strict-saddle’ losses from ML with non-Lipschitz gradient and Hessian.

Notation: B(p, R) denotes the Euclidean [ ball centered at p € R¢ with radius R > 0, with boundary.
By shifting, we assume WLOG that F' attains a minimum value of 0. We follow the convention
that F' is smooth, specifically L-smooth, if HVQFH < L holds globally. We always let wg denote the
initialization of a given algorithm (which is clear from context) unless stated otherwise.

2 Main Idea

2.1 High Level Idea

One classic analysis of GD on smooth functions to converge to a FOSP goes by establishing decrease
per iterate, via the so-called ‘Descent Lemma’ (Bubeck et al., 2015). For L-smooth functions, setting
the step size 1) = % in GD,

Flwin) < F(w,) - n(1- %Ln)uvnwmf = Flw) - 5= |9 F ()] 3)

Such an analysis fails if F is not L-smooth. Following the above recipe under Assumption 1.1, as
such a bound L < oo need not exist, one must set 77 = 0 and does not obtain any convergence rate.

Core Insight 1: The first simple but powerful insight in our work is that many optimization
algorithms such as GD decrease the function value at each iterate (with high probability) when 7 is
appropriately chosen as a function of the smoothness (Hessian operator norm) at the current iterate.



Specifically, consider iterates of GD initialized at some wg. For step size 7 small enough in terms
of HVQF(wo) , the next iterate w, of GD is sufficiently ‘local’ (see Corollary 1). This lets us
upper bound H VQFH along the segment wow7 by an increasing function L1 (F (wg)) of F'(wq) (see
Lemma 3.2). Thus, for appropriate 7 in terms of F'(wg), we obtain F'(w;) < F'(wg), and so w, lies
in the F'(wq)-sublevel set L g p(w,)-

Core Insight 2: Crucially, we can ‘chain together’ this decrease. By Assumption 1.1, the afore-
mentioned argument goes through at any w in the F'(w )-sublevel set Lz, p(w,) — in particular, at
w;. Consequently, this same step size 7 is small enough to ensure F'(w2) < F(w1) < F(wy), and
so forth through all the iterates of GD. Moreover, this argument yields a convergence rate. As each
iterate is in £ F,F(wo)> if the gradient norm is at least € at each iterate, we obtain decrease of at least

Wﬁw)) per iterate analogously to (3). Too many iterations contradicts that F' is lower bounded by

2L1(F(w<;))F(tUo)

0 (recall Notation), so we must reach an iterate w; which is a FOSP within iterates.

Generalizing the argument: This idea is powerful enough to readily analyze SGD and variants of
GD/SGD which find SOSPs. Rather than a single iterate where decrease need not hold, we consider a
sequence of consecutive s iterates. We show with high probability, the last iterate in this sequence
decreases function value for w € L p(w,)- To do so, recall the analyses of first-order optimization
algorithms often establish decrease by considering ‘local’ behavior. Locally around w € L (w)»
Assumption 1.1 and Assumption 1.2 give enough control over the relevant derivatives to do so.

Then the above argument still goes through, with a fixed step size defined in terms of F'(wg). We
group the iterates of the algorithm into ‘blocks’ of length ¢, and establish F'(wy, . ) < F(wp) and
so forth (rather than establishing F'(w2) < F'(w1) < F(wy) for consecutive iterates).

2.2 The Formal Framework

Consider a set of interest S, e.g. FOSPs or SOSPs with tolerance €. We begin by presenting a simpler
version of our formal framework. Consider a deterministic update procedure A : R? - R?, where the
output of A denotes the future iterate of the algorithm. For example, A(w) = w - nV F(w) for GD.
Following Subsection 2.1, we consider algorithms that decrease function value in the F'(w )-sublevel
set L p(w,) if they have not reached S. The following definition formalizes this property:

Definition 2.1 (Special case of Decrease Procedure in Definition 2.2). Consider a set of interest S, a
decrease threshold A > 0, a point ug, and a deterministic procedure A to compute the next iteration.
We say A forms a (S, toracle (W0 ), A(ug),uq)-decrease procedure if computing A(ug) takes at most
toracle (W0 ) oracle calls, and one of the following holds:

1) F(A(UO))<F(’U,0)—A(UU), or 2) .A(’U,())HS¢{}.

Here 1) means that the subsequent iterate has smaller function value, and 2) means that the rule of
output A5 outputs a sequence of candidate vectors, one of which isin S.

Then, Theorem 2.1 states that if A is a decrease procedure for all ug in L£p g (x,). We can bound the
number of oracle calls for A to output a candidate vector in S, e.g. for GD to output a FOSP. We
prove it arguing as in Subsection 2.1, ‘chaining together’ the decrease per iterate in L, (). Then
as F' is lower bounded, 1) in Definition 2.2 cannot occur too often, so 2) must occur at some point.

We now generalize this to randomized procedures A which can output several candidate vectors.

Framework in full generality.  Consider an update procedure A : R — R%x(J,(R?)™ (possibly
randomized). We now consider a map A = (A1, A2), A: R - RY x 52 (R?)" defined as follows:

For all u € R, A(u) = (p1,p2) forp1 € R% py € | J(R?)", and define A; (u) = p1, Az (u) = po.
n=0

Intuitively, A; computes a future iterate A; (u). A outputs a sequence of candidate vectors in R,

among which we hope one lies in S (e.g. different candidate models in statistical learning).

However, the output of A4; need not correspond to the ‘next iterate’ in the traditional sense. For SGD,
A1 does not output the next iterate of SGD, but rather the iterate produced by SGD after Ky > 1
steps. This is necessary to guarantee decrease; a single step of SGD need not decrease the value of F,
but with high probability and large enough K, a consecutive ‘block’ of K iterates will. We will lay
this out concretely next in Subsection 2.3.



Remark 1. Often A, will output a single vector in RY, which we hope lies in S, but this is not
always the case. Consider guarantees for GD or SGD, which upper bound YL IVF(w,)|” < &2

or = YL, |VF(w;)]| < e. This only ensures a single w; € S,1 <t < T where S is the set of FOSPs to
tolerance ¢ (e.g. Zhang et al. (2019), Jin et al. (2021b), Li et al. (2023b), Xie et al. (2024) and many
others). Consequently (w1, ..., wr) is our sequence of candidate vectors, and the guarantee obtained
is that w, € S for some 1 < ¢t <T'. We thus allow for A5 to output multiple candidate vectors.

The following definition formalizes a common property of optimization algorithms we study:

Definition 2.2 (Decrease Procedure). Consider a set of interest S, a confidence parameter § > 0, a
decrease threshold A > 0, a point ug, and a procedure A to compute the next iteration. We say A
SJorms a (S, torcle (uo), Aug), d (uo), up)-decrease procedure if with probability at least 1 - §(ug)
over the randomness in A to compute A(ug) from wo, computing A(ug) takes at most topele (to)
oracle calls, and one of the following holds:

1) F(Ai(uo)) < F'(uo) — A(uo), or  2) Ax(ug)nS % {}.

Here 1) means that the subsequent iterate has smaller function value, and 2) means that the
rule of output Ay outputs a sequence of candidate vectors, one of which is in S. A forms a
(S, toracte (o), Alug), d (ug ), up )-decrease procedure if 1) or 2) occurs with high probability.

Informal Theorem: For analogous reasons as before, we will establish that if A is a decrease
procedure for all ug in Lg (w,), We can bound the number of oracle calls for A3 to output a
candidate vector lying in S. Formally, this is Theorem 2.1.

2.3 Examples Subsumed by Framework

We demonstrate that a host of first-order optimization algorithms are covered in our framework, and
highlight the general recipe for using our framework.

GD: Starting from u, the next iterate of GD with step size 7 > 0 isu — nVF (u).
1. Fore >0,let S = {w: |[VF(w)| <}, the set of FOSPs.

2. For all ug € RY, let A(ug) = (uo—nVF(ug),up). Hence, A;(uo) = uo — nVF (up),
Az (o) = o, and foracte (u0) = 1.

3. In Claim 1, we establish that if I’ is satisfies Assumption 1.1, then A is a decrease
procedure for all uy € Lz, p(y,), for suitable 1) depending on F'(w ). Our result for GD,
Theorem 3.1, subsequently follows by our general framework Theorem 2.1.

Adaptive GD: Starting from u, the next iterate of Adaptive GD is u — 1, VF(u), where 7y > 0 is
an adaptive step size that depends on u.

1. Fore >0,let S ={w: |VF(w)| < e}, the set of FOSPs.

2. For all ug € R%, let A(ug) = (o — 7w, VF (u0),u0). Hence, A;(ug) = uo — nVF (up),
»AQ ('U'O) =g, and foracle ('U'O) =1.

3. In Claim 4, we establish that if F is satisfies Assumption 1.1, then A is a decrease
procedure for all uy € L p(w,), for suitable 7, depending on F'(wo) and |V F(u)].
Our result for Adaptive GD, Theorem 3.2, then follows by Theorem 2.1.

However, for SGD and other randomized algorithms involving randomness, 1) in Definition 2.2 does
not hold deterministically. This is where the generality in our framework is powerful. For SGD, by
concentration inequalities we show that 1) is true with high probability over a long enough ‘block’ of
subsequent iterates, as long as none of the iterates in the block have small gradient. We then define A
so that A, outputs the composition of the SGD steps in the block, and A, outputs all the iterates of
the block. The resulting guarantee is that one of the points among all the blocks lies in S.

SGD: Starting from u, letting V f (u;{) be a stochastic gradient oracle where ¢ is a minibatch
sample, the next iterate of SGD is u — nV f (u; ) where 1 > 0 is the step size.

1. Fore >0,letS = {w: |VF(w)]| < e}, the set of FOSPs.



2. Consider any K > 1. For all ug € R4, let Do = U, and define a sequence (p;)o<i<k, via
Di =Di-1 -1V f(pi-1;{;), where the {; are i.i.d. minibatch samples. Note this sequence can
be equivalently defined by repeatedly composing the function u - u — nV f (u;{). We then
define A(uo) = (P, , (Pi)o<i<i,-1), hence A;(ug) = pr,, A2(uo) = (Pi)o<i<i,-1. Note
all the p; are a function of ug and the randomness in the stochastic gradient oracle V f(+;-).
We let toracte (u0) = Ko, which need not equal 1. This procedure is clearly SGD, with its
iterates divided into blocks of length K.

3. In Claim 5, we establish that if 7' is satisfies Assumption 1.1 and V f(-;-) satisfies
Assumption 3.1, then A is a decrease procedure for all ug € Ly r(y,) for suitable
algorithm parameters. Our result for SGD, Theorem 3.3, then follows by Theorem 2.1.

SOSP-finding algorithms: We now study finding SOSPs using first order methods under our
regularity assumptions. We analyze two algorithms to achieve this under exact and stochastic
gradients, respectively Perturbed GD (Algorithm 1, Jin et al. (2017)) and Restarted SGD (Algorithm 2,
Fang et al. (2019)). We remark that our framework likely subsumes many other algorithms.

Perturbed GD: This algorithm, formally written in Algorithm 1, Section D, is as follows. At u,
o If [VE(u)|| > gthres fOor some appropriate giyes, the algorithm simply runs a step of GD.

* Else, Algorithm 1 adds uniform noise from a ball with particular radius and runs GD for
Lires iterations for suitably chosen tyyes, yielding u’. We check if F'(u') = F(u) < — finres
for some appropriate fiyes. If decrease does not occur, we return u; if decrease occurred, we
go back to the If/Else with »’ in place of u.

Notice now that the oracle complexity fqp,cle, probability d, and amount of decrease A depend on the
location u. Our framework readily subsumes this example as follows.

1. Fore >0,letS = {w: |[VF(w)| <&, V*F(w) > —\/eI}, the set of SOSPs.
2. Forallug € RY,if [VF (o) > ginres» We let
A(ug) = (uo -V EF (ug),uo), hence A; (ug) =uo - nVE (uo), Az (uo) = up.
Otherwise if |VF (ug)| < Ginres» We let py = uo + & where & is uniform from B(0,r), and
define a sequence (P;)o<i<ty,, Via P; = Pi-1 — NV F(p;-1). We then define
A(o) = (Ptye - 0), hence Ay (uo) = Pty , A2(u0) = to.
Thus

1 : HVF(UO) H > Gihres-
This is identical to Algorithm 1, and highlights why tg,cle, 9, A need to depend on .

toracle('U:O) = {ﬁthres : ”VF(UO)H < Gthres

3. In Claim 2, we establish that if I satisfies Assumption 1.2, then A is a decrease
procedure for all ug € Ly p(y,) for suitable algorithm parameters. Our result for
Perturbed GD, Theorem 3.4, then follows by Theorem 2.1.

Restarted~SGD: This a}gorithm, formally written in Algorithm 2, Section E, works as follows.
Take B = ©(£%?), K¢ = ©(¢72). Consider an anchor point u, first taken to be the initialization wy.
The algorithm runs SGD until its iterates first escape the ball B(u, B), tracking at most K iterations.

* If an escape occurs within K iterations, letting u’ be the first iterate that escaped B(u, B),
the algorithm sets u’ to be the anchor point and runs the same procedure.

* If these K| iterates do not escape within K iterations, return their average.
We cover Restarted SGD in our framework as follows.

1. Fore >0,letS = {w: |[VF(w)| <&, V2F(w) > —/el}, the set of SOSPs.

2. For all uy € RY, let py = ug. We define a sequence (p;)o<i<k, Via Pi = Pi-1 —
n(Vf(pi_1;¢:) + GAY), where Vf(+;-) is our stochastic gradient oracle, the ¢; are i.i.d.
minibatch samples, the A’ ~ B(0,1) are i.i.d., and & is a parameter governing the noise
level. Note this sequence can be equivalently defined by repeatedly composing the function



u—>u-n(Vf(u;¢)+aA). If it exists, let 4,1 < i < K be the minimal index such that
|p; —po| > B. Otherwise let i = K. In either case, we define

1 -1 1 -1
A(ug) = (pi, z Zpt), hence A; (ug) = p;, A2 (ug) = Z oo
t=0 t=0

We let toreie (uo) = Ko.* This is clearly identical to Algorithm 2.

3. In Claim 7, we establish that if 7' satisfies Assumption 1.2 and V f(-; -) satisfies Assump-
tion 3.1 and Assumption 3.2, then A is a decrease procedure for all ug € Ly r(y,) for
suitable algorithm parameters. Our result for Restarted GD, Theorem 3.5, then follows by
Theorem 2.1.

Theorem 2.1 (General Framework). Consider a given initialization wq of A and a desired set S.

Define a sequence (W) recursively by wy,1 = Ai(wy). Suppose that for all ug € Lp p(w,), A
Au)

UELE, F(w0) Toracte (1) °

forms a (S, toree(10), A(ug), 6 (uo), uo)-decrease procedure. Define A = inf
Then with probability at least

F(w
g +  sup  toracle(®)
A ueLF,F(wO)

1- sup d(u)- sup

uelp, r(wg) uel g, F(wg)

F
{ A(Z‘;O)) }, upon making N =
oracle calls, there exists w; € (W )¢s0 such that Ay(w) NS + {}. Le. for some wy, As(wy) will
output a sequence of candidate vectors, one of which is in S. Furthermore, if the output of Az has

length at most S, then the number of candidate vectors outputted is at most S-SuDycr . . (we) { IXE‘;O)) }
,F(wq

Our full proof is in Section B.* The proof formalizes the main idea from Subsection 2.1, by ‘chaining
together’ the decrease per iterate in Lz p(w,). Then as F' is lower bounded, 1) in Definition 2.2
cannot occur too many times, so 2) must occur at some point.

Remark 2. To verify A is a decrease procedure in L p(w,), W€ can systematically port over
analyses in the literature. As discussed in Subsection 2.1, ug being in L, p(4,) allows us to show
the algorithm is ‘local’, crucially giving us quantitative control over the relevant derivatives. We view
this as a core strength of our work; our framework allows us to systematically extend results from the
smooth setting to generalizations of smoothness.

3 Convergence Results

Here we systematically obtain our convergence results for the algorithms listed in Subsection 2.3,
by formally showing that they are decrease procedures. Our main results are Theorem 3.4,
Theorem 3.5: that under Assumption 1.2, variants of GD/SGD can find SOSPs. We note our
dependence on ¢, d for Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.5 match lower
bounds for smooth functions (Carmon et al., 2020, 2021; Arjevani et al., 2020), and hence are optimal
in this setting too.> We present examples and implications of our results in Subsection 3.6.

Remark 3 (Dependence on Initialization). In our results, the step size 1 here depends only on
p1(F(wy)), a fixed value depending only on initialization. Moreover, the expressions on 1 depending
on p1 (F(wp)) in our results and proofs to follow are only an upper bound for working step sizes.
We do not need to know these exact values. Therefore, all that is needed is an upper bound on fixed
quantities such as p1 (F(wq)); hence a working step size 7 for our algorithms in practice and theory
can be found using cross validation or binary search.

Letting 7(wy) be an upper bound on the step size 1 needed to guarantee convergence, we note by
searching over log(n(wy)) with binary search, we will find an 7 with a constant factor 2 of n(wy).
This log factor will be logarithmic in €, d, and will only change the claimed iteration complexity by a
universal constant factor. The latter is because the amount of decrease in the definition of Decrease
Procedure will in turn only change by a universal constant multiple.

3Defining i as above, note that we can compute A(uo) using 7 rather than K oracle calls, but this change
does not affect runtime beyond constant factors.

“The extra second term in the sum defining N occurs as torcle, A, & have uo-dependence.

>Dependence on ¢ in Theorem 3.3 and on €, d in Theorem 3.5 are tight up to log factors.



Remark 4 (On Adaptivity). Our results hold for non-adaptive versions of GD/SGD and their variants.
That said, one can interpret cross validation or binary search over 7 as adaptive algorithms in their
own right. As mentioned above, it is relatively straightforward to obtain analogous results to our
current ones for cross validation or binary search. In the learning from data setting, one can make the
cross validation result formal using classic techniques.

3.1 Gradient Descent

Theorem 3.1 (GD for FOSP). Suppose F satisfies Assumption 1.1. Run GD initialized at wg, with
step size 1) = 1 (w 5 where Ly (wy) is defined in (4). Then letting
2F (wo) L1 (wo)

T = 2

, within T + 1 oracle calls to VF(-),

GD will output T candidate vectors (p1,...,pr), one of which satisfies |VF (p;)| < e.

We prove Theorem 3.1 here to show our strategy’s simplicity. The following Lemmas, proved in
Subsection A.3, help show GD is ‘local’ for w € Lz p(y,)-

Corollary 1. For F satisfying Assumption 1.1, we have |VF(w)| < po(F(w)), where py : Ryg —
Ry is a non-decreasing function given by po(z) = p1(x)\/20(x), where 0(z) = [, p%(v)dv.

Lemma 3.1. Under Assumption 1.1, for x,y with |y — x| < m, F(y)-F(z) <1
Combining the above with Assumption 1.1 immediately gives:

Lemma 3.2. Suppose F satisfies Assumption 1.1. Defining py as in Corollary 1, let
Ly (wo) = max{1, po(F(wo) + 1), po(F(wo))po(F (wo) + 1), p1(F(wo) +1)}. 4)
2F(u)|| < Ly (wo) for all w € B(w, po(F(wo) +1)7").

Then for all w € Lp pw,), |V

Proof of Theorem 3.1. Use Theorem 2.1 with S = {w : |[VF(w)| < ¢}, defining A as in
Subsection 2.3. Upon applying Theorem 2.1, the following Claim directly proves Theorem 3.1:

Claim 1. For any ug in Lp, p(w,), Aisa (S,1 0,ug)-decrease procedure.

' 2L, (w )?
To prove Claim 1, note for ug € S, by definition of Ay that As(ug) = (ug) € S. Now ifug ¢ S (i.e.
[VF(uo)| > €), consider uq = Ay (ug) = uo — nVF (ug). By Corollary 1 and as F'(ug) < F'(wo),
IVE(uo)| < po(F(uo)) < po(F(wo)), so by choice of 7,

luy = ol = 0|V F(uo)| < npo(F(wo)) < po(F(wo) +1)7".

V2F(p) Hop < Li(wp). By Lemma A.1, which
only depends on the smoothness constant in the segment between the two iterates (see Subsection A.1),

By Lemma 3.2, for all p in the line segment ugu,

2 L 2 2 2
F(uy) < F(uo) = n| VF (uo) |* + 2820 - |9 F(u) | < Fuo) - 57550

as ||[VF(ug)| > ¢ and by our choice of 7. This proves Claim 1, completing the proof. O

Note it is critical here that ug is in the F'(wg)-sublevel set. Also, to satisfy Corollary 1, po(z) just
needs to be a non-decreasing pointwise upper bound of p1(x)y/20(x). For example when F is
(Lo, L1 )-smooth, we show in Proposition A.2 that we can take po(x) = 2Lé/2x1/2 + 5L%Lal/2x3/2.

3.2 Adaptive Gradient Descent

Our proof and framework readily adapt to Adaptive GD, as discussed Subsection 2.3. It is even easier
as Adaptive GD is automatically ‘local’ via gradient clipping. Our proof is in Subsection C.1.

Theorem 3.2 (GD for FOSP). Suppose F satisfies Assumption 1.1. Run Adaptive GD initialized at wy,

with adaptive step size 1, = min{ L,l(lwo), PO(F(WO)+]i)“vF(wt)“ } where L (wq) = p1(F(wo) +1).
LetT = L,ffy?f") . Within T + 1 oracle calls to VF(-), Adaptive GD will output T

. 2
mm{ 70 (F(wg)+1)2 Li<w0>}

candidate vectors (p1, . ..,pr), one of which satisfies |VF (p;)| < e.



3.3 Stochastic Gradient Descent
We make the following assumption on the stochastic gradient oracle:

Assumption 3.1. The stochastic gradient oracle V f(-;-) is unbiased (i.e. E¢[V f(-;¢)] = VF(-)),
Vf(w;¢) - VF(w)|* <o(F(w))>

In many problems of interest in ML, noise scales with function value (Wojtowytsch, 2023, 2024);
Assumption 3.1 captures this setting. Note we do not assume a global bound on ||V F'|| or ', thus noise
is unbounded. We show in Remark 7 that one can extend Theorem 3.3 to when |V f (w;{) — VF(w)|
is sub-Gaussian with parameter o(F (w)) with a longer technical argument. We also note that
bounding Lo gradient error in terms of function value has been studied — denoted by the expected
smoothness assumption — in Gower et al. (2019, 2021).

and for a non-decreasing function o : R* — R* and all w, ¢,

Theorem 3.3 (SGD for FOSP). Suppose F satisfies Assumption 1.1 and that the stochastic gradient
oracle Y f(+;-) satisfies Assumption 3.1. For any § € (0,1), run SGD initialized at wy, for a given

fixed step size n < O(e?) depending on €, 8, and F(wy). Then with probability at least 1 - 8, within
~(1
T= 0(5—4 - polylog(1/e, 1/6)) oracle calls to V f(+;-),

SGD will output T candidate vectors w, one of which satisfies |VF(w)| < e.

Here O(-) hides additional F'(w)-dependence. Our full proof is in Subsection C.2. As discussed
in Subsection 2.3, the idea is similar to the proof of Theorem 3.1, except we now establish high-
probability decrease over blocks of consecutive iterates using concentration inequalities.

3.4 Perturbed Gradient Descent

Theorem 3.4 (Perturbed GD for SOSP). Suppose F satisfies Assumption 1.2. For any § € (0,1), run
Perturbed GD (Algorithm 1, from Jin et al. (2017)) initialized at w, with appropriate step size 1 and
other parameters depending on €, 6, d, and F(wy). Then with probability at least 1 - §, within

T= O(l2 1og4(i)) oracle calls to VF(+),
€ €d

Perturbed GD outputs T candidates w, one of which satisfies |VF (w)| < e, V?F(w) > —/el.
Remark 5. Here we find w with V2 F (w) > —/cI, which is most sensible without Lipschitz Hessian.

For Perturbed GD here in Subsection 3.4, asymptotic notation hides universal constants and depen-
dence on F'(wg). The full proof is in Section D; here we give the main ideas. Define A, toracte (20 ), S
as in Subsection 2.3 for Perturbed GD. Consider gyres = O(), finres = ©('°) defined in Algorithm 1.
Let

Auo) = {f IVE @0) | < gines
g 'thhres : ”vF(UO)” > Othres-

The central Claim is as follows, from which Theorem 3.4 follows directly via Theorem 2.1:

Claim 2. Forallug € Lp p(w,), Ais a (S, toracte (o), A(uo), %\/;O)e’x, ug)-decrease procedure,
where x = @(log(%)) and Ly (wy) is defined in (4).

Perturbed GD is a decrease procedure only in L£p (4,) Where we have quantitative control on /' and
its derivatives — using our framework is crucial. To prove Claim 2, we note the analysis of Perturbed
GD in Jin et al. (2017) only considers ‘local’ points close to the current iterate the algorithm. Thus

we can apply similar analysis, using Lemma 3.1, Lemma 3.2, and the similar Lemma D.1 to give
enough control over the derivatives of I’ between these ‘local’ points close to ug € Lz, p(w,)-

3.5 Restarted Stochastic Gradient Descent

In addition to Assumption 3.1, we will make the following mild assumption on the error of the
stochastic gradient oracle, a relaxation of Assumption 1 of Fang et al. (2019).

V2w Q) < ps(IVf(wi O, F(w)), where ps(-,-) : Rao x

Ry — Ry is non-decreasing in both arguments.

Assumption 3.2. For every w,(,




Note if f(+;¢) satisfies the regularity assumptions of Zhang et al. (2019) or Li et al. (2023a) for every
¢, then Assumption 3.2 is satisfied. However, Assumption 3.2 goes well beyond these assumptions,
allowing for the operator norm of V2 f(-;¢) to also diverge in F'(w).°

Theorem 3.5 (Restarted SGD for SOSP). Suppose I satisfies Assumption 1.2 and ¥ f (+;-) satisfies
Assumption 3.1 and Assumption 3.2. For any ¢ € (0, 1), run Restarted SGD (Algorithm 2, the same
algorithm from Fang et al. (2019)) initialized at wq, with appropriate step size 1 and other parameters
depending on ¢, 6, d, and F(wq). Then with probability at least 1 - 0, upon making

(1
T = 0(6375) oracle calls to V f (+;-),

Restarted SGD outputs T candidates w, one of which satisfies |VF(w)| < &, V2 F(w) > —/z1.

Here O(-) only hides constant factors, F'(w)-dependent constants, and logarithmic factors in
d,1/e,1/6. We specify the exact parameters and detail the proof in Section E. The proof follows our
framework instantiated for Restarted GD as in Subsection 2.3. The crux again is establishing that the
algorithm is a decrease procedure in the F'(wg)-sublevel set, done in Claim 7.

3.6 Examples

Several interesting problems in ML and optimization, such as Phase Retrieval and Matrix PCA, can
be globally optimized by finding a SOSP (but not a FOSP), and satisfy Assumption 1.2. See Section F
for these verifications. Thus Theorem 3.4 and Theorem 3.5 immediately imply we can solve the
following problems, with no customized analysis required.

Phase Retrieval: We reconstruct a hidden vector w* ¢ R? with |w*| = 1 using phaseless
observations S = {(a;,y;)} where y; = (a;,w*)? a; ~ N(0,I;). The population loss is

Fpr(w) _ ]Ea~j\/’(ﬁ,1d)|:((a’w>2 - (a,w*)2)2:|

Matrix PCA: Given a d x d symmetric positive definite (PD) matrix M, we aim to find w € R?
(the first principal component) minimizing Fpea(w) = 5 |ww™ - M Hi,

3.7 Practical Implications and Simulations

Our results show under generalizations of smoothness, unlike with Lipschitz gradient/Hessian, the
larger the loss is at initialization (larger F'(w()) and larger self-bounding functions p; (-) shrink the
‘window’ for choosing a working 7. Specifically, with larger loss at initialization, the smaller the
largest working step size is, in contrast to optimizing smooth functions. This implies in practice, for
losses with non-Lipschitz gradient/Hessian, one should tune n based on suboptimality at initialization.

In Section G, we validate this finding through simulations with GD and SGD on several natural smooth
and generalized smooth functions, namely F(w) = ||Aw|” for p = 2,3, 4,5, 6. Our simulations show
the above theoretical conclusions match behavior in practice, validating the practical implications of
our theoretical results on which step sizes successfully optimize generalized smooth functions.

4 Conclusion

We present a systematic framework to analyze the convergence of first order methods to FOSPs and
SOSPs under generalizations of smoothness, extending key results in finding SOSPs via first-order
methods to this setting. Our work elucidates fundamental behavior of first-order optimization al-
gorithms, showing that ‘chaining together high-probability decrease’ enables their success under
generalizations of smoothness. Our framework applies for many other algorithms (e.g. Langevin
Dynamics) and sets of interest S (e.g. higher order stationary points, or minima with good gener-
alization properties). It can also inform the design of new optimization algorithms, by designing
procedures which are decrease procedures. These promising directions are left for future research.
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While the above assumes that f(-;¢) is twice differentiable, it can be easily phrased in terms of V£ (+;¢).
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes], ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " " itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims in the abstract and introduction clearly and accurately reflect the
paper’s contributions and scope. See the abstract and Section 1.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations and assumptions used throughout the paper. Our
assumptions are clearly stated. In the rest of the paper, we state our claims clearly and
reference the assumptions corresponding to each claim.

Guidelines:
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The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a full set of assumptions and complete and correct proofs in the
paper. We define all assumptions, reference them throughout when used, and all proofs are
provided in either the main body or appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]
Justification: We provide all details necessary to reproduce the main experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code in the supplementary material. The code has sufficient
instructions to reproduce the main experimental results.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

16


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide a full description of the training and test details of our experiments.
These are provided in the Appendix along with our experimental results; the Appendix is
the only place our experimental results are presented.

Guidelines:
» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide suitable error bars and detail all the settings of our experiments.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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8.

10.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide precise compute information for our experimental results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS code of ethics. The research conforms in every
respect to the NeurIPS Code of Ethics.

Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The paper is a theoretical study of non-convex optimization, which can help
improve the training of non-convex models in practice. There are many societal impacts of
this, none of which we feel we need to particularly highlight here.

Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly credit all creators and/or owners of assets when used. When used,
the license and terms of use are explicitly mentioned and are properly respected.

Guidelines:
* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:|[NA|
Justification: The paper does not introduce new assets.
Guidelines:
» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in our research did not involve LLMs in any
original or important way.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Additional Notation: For a matrix M, Api, (M) denotes its minimum eigenvalue, and \,.(M)
denotes its r-th largest eigenvalue. Thus A\q (M) > Ao(M) > .... We denote the k x k identity matrix
by I;,. We use B*(p, R) to denote the full k-dimensional lo-ball centered at p € R* with radius
R, including the boundary. When k is not specified explicitly, B(p, R) refers to the lo-ball in R,
following Notation. All logarithms in the following are the natural logarithm. For an event S, 1s
denotes the indicator function. In the following, the norm |[|-| of matrices and higher-order tensors
refers to the operator norm unless otherwise stated. The norm || of vectors refers to l>-Euclidean
norm.
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A Technical Preliminaries

A.1 Helpful Background Lemmas

We will use the following classical inequalities from optimization to show we still have some notion
of control if we have local bounds on the relevant derivatives.

Lemma A.1. Suppose F is twice differentiable, and for all u € Ty (the line segment) we have
HVZF(U)HOP < L. Then, we have

Fy) < F(@) + (VF(@),y-2) + oIy -zl

Proof. This follows by the proof of Lemma 3.4 in Bubeck et al. (2015). In particular, one can readily
verify that « + ¢(y — x) € Ty for all ¢ € [0,1]. Hence for all ¢ € [0,1] and u in the line segment

between z and z + t(y — ), VQF(u)”Op < L. Thus,

F) - @)~ (F@,y o) =| [ (e ity -2)).y -2t - (7))
= f()l(VF(:l:th(y—x))—VF(x),y—m)dt’

1 L

2 2

f Lt|y - =| dt‘:*l\y-w\l -
0 2

This gives the desired result. O

IA

Analogously, one can show the following by considering the local second-order approxima-
tion around z.

Lemma A.2. Suppose F' is twice differentiable, and for all u € Ty (again the line segment), we have
||V2F(u) - VQF((II)”OP <L|u-x|.

Then,
F(y) < F(@) + (VF(@),y-2) + 5 (y-2) PF@)@-2)+ LIyl

Proof. Similarly to the proof of Lemma A.1, we show this via the proof of Lemma 1 in Nesterov
and Polyak (2006). Analogously as in the proof of Lemma A.1, one can readily verify that for any
y' exy, x +t(y —x) e Ty holds for all ¢ € [0, 1]. Hence for all ¢ € [0, 1], applying the condition of
this Lemma,

IV?F(z+t(y' -=)) - V2F(.’I})“Op < Lty - z|.

Thus for any y’ € Ty, by Cauchy-Schwartz and the above, we obtain

IVF@') - VF(z) - (V2F(z),y - )|

’./ol(VQF(x +t(y' -x)),y —x)dt - (VQF(x)’y, —x)H
_ ’fol(VZF(:l: +i(y' —2)) - V'F ()9’ ‘””)dtH

! 2 L 2
<|[ Lty -l = Sy -l

Applying the above relation for y’ = z + t(y — ) which is in zy for all ¢ € [0, 1], we obtain
1
|F@) - F@) - (vF(@).y-2) - 5 (VF@)-2).y-3)

- ‘fol(w(m +t(y-z)) - VF(z) - tV’F(z)(y - ).y _m>dt‘
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- ‘/(;1<vF(a:+t(y—z)) _VF(z)—VQF(m)‘t(y—x),y—z)dt‘

1 L 2 L 3
< — - — — = — — .
< [Nzl Liew-o)ar-Liy-a

This gives the desired result. O

We will also use the following Lemmas.

Lemma A.3. For vectors a, b, the matrix operator norm |ab'| < |a][b].

Proof. Consider any unit vector . By Cauchy-Schwartz and associativity, we have
2
z'(ab")z < (z,a)(z.b) < |z|"[al [b] = |a]b].

The conclusion follows by definition of operator norm. O

Lemma A.4. Consider any non-negative, continuous function g(x) such that lim,_,., g() = co and
such that g(x) > 0 on [1,00). Then on [1,00), g(x) can be lower bounded by a strictly positive,
infinitely differentiable, strictly increasing function g(x), where § has domain [1, c0).

Proof. We will explicitly construct such a g in terms of g. First, since lim, ., g(x) = oo, for all
i > 1, there exists ¢; € [1, 00) such that g(x) > i + 1 for all 2 > ¢;. We furthermore can clearly assume
2 <t < ty < -, by increasing each ¢y if necessary. Also let tg = 1. Thus U;so[ti,ti+1) forms a
disjoint union of [1, 00).

Now, let ¢ = min(l,infze[ul]g(x)) > 0; the strict inequality here holds as t; < oo and as g
is continuous. Define a sequence {b;};»o by by = ¢/2,b; = ¢, and b; = i for all 4 > 2. Thus
by < by < ---. Furthermore, this construction of {b;};>¢ implies for all i > 0, we have g(x) > b;41 for
all x € [ti, ti+1].

Now construct §(z) as follows. For all ¢ > 0, we let g(z) equal a function h;(x) defined on
[t:,ti+1] such that h;(t;) = b;, hi(t;+1) = bi+1, where we define h; as follows. We first define
h:[0,1] - [0, 1] such that h is infinitely differentiable, h(0) = 0, h(1) = 1, L™ (0) = K™ (1) = 0
for all n > 1 where h(™) denotes the n-th derivative, and h’(z) > 0 for all - € (0,1). To this end we
use a construction from Chen and Sridharan (2025): let
1

w3z
— " on (0,1),
e 2 +e 1-a?
and extend h to [0,1] by h(0) =0, (1) = 1. We justify these claims about & shortly below. Now we
let

h(x) =

I—ti

hl(.’t) = (bi+1 - bz) . h(t
We now check h satisfies the claimed properties.

¢ In Chen and Sridharan (2025), it is argued that h maps to [0, 1], 2(0) =0, h(1) = 1, and
that A is infinitely differentiable. It is also argued in Chen and Sridharan (2025), Lemma
11.5, that b’ (x) (which is called p(z) there) is non-negative on [0, 1].

)+bif0ralli20.

i+l — U

* Next, we check R(™(0) = h(™ (1) = 0 for all » > 1. Via a straightforward induction
(n) 1\ (n)
=0

outlined in Chen and Sridharan (2025), one can check that e_% =0, (e 1-=2

for all n > 1 (following the standard convention in analysis that 0 - oo = 0, see e.g. Folland
(1999)). Now let f(z) = e a7, g(x) = €37 + ¢ a7, thus h = f/g. Consequently
f0) =0, f™(1) =0, g™ (©0) =0, g"(1) =0 forall n > 1. As g > 0 always
holds in [0, 1] as shown in Chen and Sridharan (2025) and can be easily checked, we have
f = gh. A straightforward induction gives f(") = ¥7_, (Z)Q(k)h(”_k) where (Z) is the
binomial coefficient. We thus obtain gh(™) = f(") — y773 (Z)g(k)h(”‘k). For any n > 1,
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taking x = 0,1 in this expression for h(x) and noting at least one of k,n — k > 1 for
0 <k <n—1implies g(0)2(™ (0) = g(1)A(™ (1) = 0. Recalling g(z) > 0 on [0, 1] proves
R (0) = K™ (1) = 0 for n > 1, as requested.

* Finally, we check that h'(z) > 0 for all x € (0,1). Consider any 2 € (0,1). By a
calculation in Lemma 11.5, Chen and Sridharan (2025), we have h'(z) > 0 if and only
if ¢(x) = r%(e_f? +e‘ﬁ) +eat - Z+ e TeT % >0. Ifz e [g,l), directly
following the proof of Lemma 11.5 in Chen and Sridharan (2025) establishes that ¢(x) > 0.
Otherwise if = € (0, g), note the strict inequality T%, > ﬁ, which in turn implies
q(z) > 0.

By the above properties of &, it follows from the Chain Rule that for all ¢ > 0, h; satisfies the following
properties:

o hz(tl) = bi, hi(ti+1) = bi+1, and hl(l‘) € [bi7bi+1] forall z € [ti,ti+1].
* h; is infinitely differentiable.
* hl(x)>0forx e (t;,t;+1), and for all z € [¢;,t;41], h}(x) > 0.

e Foralln > 1, hg”)(ti) = hg”)(ti+1) = 0, where again hgn) denotes the n-th derivative.
Finally, we check that g has the desired properties:

* g is well-defined: This follows because for all i > 1, we have h;(t;) = h;—1(t;) = b;.

* g is strictly positive: This follows because h;(x) € [b;, bi41] € (0, 00) for all x € [¢;,t;41].

* ¢ is continuous, and moreover is infinitely differentiable: Continuity of g follows because
each h; is infinitely differentiable, and hence continuous, combined with the fact that for all
i > 1, we have h;(t;) = h;_1(t;) = b;. Infinite differentiability of g follows because each h;

is infinitely differentiable, and because for all n > 1 and all ¢ > 0, hgn) (t;) = hg") (tiv1) =0.

* g(x) < g(x) always holds for = € [1, 00): Recall for all 7 > 0, we have g(z) > b;4 for all
x € [t;,tir1]. Since we have g(z) = h;(x) < b1 for all © € [¢;,t;41], it follows that for
all z € [t;,t;41], §(x) < g(x). The result follows upon recalling that U;sq[%;, t;+1) forms a
disjoint union of [1, c0).

* g is strictly increasing: Consider any x; < z3,x1,2z2 € [1,00). Since z7 < x2, and
recalling that U;so[¢;,ti+1) forms a disjoint union of [1, c0), it follows that for some j > 0,
(z1,22) N (t;,tj41) * @. This intersection is open, and therefore contains some open
interval (a,b) € (t;,tj41). Let ¢ = Inf f2aen oioy h’(x) > 0, where the strict inequality

follows as [2“3+b, %Qb] < (;,tj+1), and by continuity of i on the compact [2‘?1’, %Qb]
Since we have R} (x) > 0 for all © € [t;, ;1] for all ¢ > 0, we obtain
~ / b —-a ~ ~
g(x2) 20+ " —=+g(x1) > g(21)-
This proves that g is strictly increasing as claimed.
Thus, we have constructed a function g that satisfies the requested properties. O

A.2 Comparison of Assumptions with Literature
Here, we establish that our regularity conditions are more general than those of literature.

Proposition A.1. If ”VQF(w)” < I(VF(w)) for non-decreasing, differentiable sub-quadratic |

(where sub-quadratic means that lim,_, l%) = 0), then our Assumption 1.1 is satisfied for some

non-decreasing p1(x). In this generality, p1(x) depends on l(x), and can be found explicitly from
the construction from Lemma A.4.

Furthermore, suppose F' is (Lo, L1)-smooth, that HV2F(w)H < Lo+ L1|VF(w)| for Lo, Ly > 0.
Then Assumption 1.1 is satisfied with py (z) = 3 Lo + 4L3 .
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Proof. Essentially this follows from Lemma 3.5, Li et al. (2023a), where it is shown that these
assumptions of Zhang et al. (2019), Li et al. (2023a) imply an upper bound on |V F(w)| in terms
of an increasing function of F'(w); combining with the assumptions of Zhang et al. (2019); Li et al.
(2023a) implies that HVQF (w) ” is upper bounded in terms of an increasing function of F'(w).
Proof for general [: Consider any w € R?. By Lemma 3.5 of Li et al. (2023a),
2
[VF)[” <202V (w)]) - F(w).
This implies
2
TP
(2[VE(w)])

Let 2|VF(w)| = ¢. Consider when ¢ > 2. Then the left hand side equals % Note that WLOG,
we can add 1 to [(+) so that I(¢) > 1 for ¢ > 1. Thus % is continuous on [1, c0), and furthermore
is positive on this interval. Now note lim,._, « % = oo by the condition (including after adding 1

8F (w).

WLOG), and thus by Lemma A 4, % is lower bounded by some strictly increasing function g(x)
on [2, 00). Therefore, § is invertible and so we have

B A|VF(w)]?
(2| VF(w)[) < 1IVF@)]) <

Then by the assumptions of Li et al. (2023b), it holds that
1
|V2F(w)| < l(§§‘1(8F(w))).

Else when t < 2, we have |VF(w)| < 1, and by the assumptions of Li et al. (2023b), we have
|V2F(w)| <1(1).

Thus the assumptions of Li et al. (2023b) imply that the following always holds:

|v2F )] <1557 5F@)) =100

SF(w) = [VF@)] < 25 (8F ().

We thus can take p1 (2) = [( % §7*(8z)) +1(1), which is clearly non-negative. It remains to check that
l (% gt (8:5)) is non-decreasing. As [ is non-decreasing, as compositions of non-decreasing functions

are non-decreasing, it remains to check that % G71(8z) is non-decreasing. Since § is non-decreasing,

G~ ! is non-decreasing as well, and this completes the proof.

Proof for (Lo, L1 )-smoothness: First, when Ly = 0 the result is immediate, so from here on out
suppose L1 > 0. By Lemma 3.5 from Li et al. (2023a) we have for all w € R?,

2
IVF(w)|” < 22|V (w)]) - F(w),
where ((x) = Lo + L1(x) for Lo, Ly > 0. We thus obtain:
|VF(w)|* < 2(Lo + 2L, [VF (w)]) - F(w)
=2LgF(w) +4L|VF (w)| F(w).
Rewriting this inequality, we get
|VEw)|* - 4L | VF (w) | F(w) - 2Lo F (w) < 0.

Consider the quadratic % ~4L; F(w)-z-2LoF (w). The coefficient on the quadratic term is positive,
and the quadratic is non-negative when z = |VF (w)|. Thus |VF(w)| must be no larger than the
largest root of #2 — 4L, F(w) - — 2Lo F (w), and we obtain

|VF(w)] < %(4L1F(w) #1613 F (w)? + 8L0F(w))

<2L1F(w) +\/(2L1F (w))? + 2Lo F (w) 5)
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If F(w) = 0, the above immediately implies |V F (w)]| = 0. Otherwise, recall by shifting (in Notation)
that F'(w) > 0 always holds, so suppose F'(w) > 0. Recall also from earlier that it suffices to show
the result for L; > 0. Applying the inequality Va2 +b < a + %, valid for all ¢ > 0,b > 0 with
a=2L1F(w) >0, b=2LyF(w) >0, we obtain

VQLIF(w))2 +2LoF(w) < 2L F(w) + 2%0

Substituting into (5) gives that for all w with F'(w) > 0, we have
Lo
|[VE(w)| < —— + 4L F(w). (6)
2L,

By the argument earlier, if F'(w) = 0, the above bound (6) holds too. Thus (6) holds for all w € R?.
Now inserting (6) into the definition of (Lg, L )-smoothness gives

|V2F(w)| < Lo+ La( £ + 4L F(w)) = 3 Lo + ALIF (w).

Hence Assumption 1.1 is satisfied with the increasing function p; (x) = %LO +4L%x. O

Proposition A.2. When F is (Lo, L1)-smooth, letting po(x) = 2Lé/2x1/2 + %xg’m, we have
0
[VE(w)] < po(F(w)).

Proof. By Proposition A.1, we can take p; (z) = 3 Ly + 4Lz in this case. As noted in Subsection 3.1,
2
we need to show that 2L[1)/ 22 4 %xd/ 2 is a pointwise upper bound on
LO

p1(2)\/26(x) Whereﬁ(x):[om ! dv.

p1(v)

To this end note for each = > 0 that §(z) < x - 3}:0 = ﬁx, thus for each = > 0,
2
3 [ 4 5L%
p1(2)\/20(x) < (§L0 + 4L%x) 3" < 211(1)/2951/2 + f/gx?’p.
0 Ly
This completes the proof. O

Example 1. We now provide a natural example of a univariate function that satisfies our regularity
assumptions but does not necessarily satisfy those of Li et al. (2023b) for non-convex optimization.
Namely, consider the univariate function:

F(z)=1-log(cos(l+x)),0<x< g -1
The argument here is in radians. The first derivative is:
F'(z) =tan(1 +x).

The second derivative is:
F"(z) =sec’(1+ ).

Thus as tan?(#) + 1 = sec?(#), F satisfies the ODE:
F"(z) = F'(x)? + 1. (7

Suppose that F' satisfied the conditions of Li et al. (2023b) for non-convex optimization on the
relevant domain, thus for all 0 < z < g — 1, we would have

F'(z) <(F'(x)),

for some sub-quadratic I(-).
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Then by (7) and noting F’(z) > 0 on the domain, we obtain forall 0 <z < 5 ~ 1

1<1+ 1 :F’(x)2+1: F"(x) SK(F/(.’E)).
F’(a:)2 F'(JZ)2 F’(x)Q Fl(x)Q

As [ is subquadratic, there exists 2’ < oo such that [(x)/z? < 1 for all z > z’. Noting F’(x) — oo for
x — 4 — 1 yields a contradiction.

Consequently F' does not satisfy the conditions of Li et al. (2023b) for non-convex optimization.
However, we show that F’ satisfies Assumption 1.1. Rewriting F/(z) in terms of F'(x), note that:

cos(1+z) = e F@,

and thus:

1
F"(x) =sec’(1 = = 2R
(x) =sec*(1+x) o2 (1+ 1) e

Hence we can define the increasing, non-negative function
P1(t) _ e2(t—1)’
which satisfies:
F"(2) < pu(F(2)).
Thus F satisfies Assumption 1.1 (in the relevant domain).
We now discuss Assumption 1.2.

Example 2. First, we show that Assumption 1.2 captures several univariate functions of interest.
Notice also if F'(w) is a sum of functions satisfying Assumption 1.2, Triangle Inequality implies that
F(w) also satisfies Assumption 1.2.

* Polynomials: Consider whenever F'(x) is a linear combination of monomials z? for p > 1,
combined with a constant term. We claim F'(x) satisfies Assumption 1.2. By linearity of
derivative and Triangle Inequality, it suffices to prove this whenever F'(x) = zP for p > 1 as
the constant term vanishes, and then add up all the non-decreasing, non-negative functions
on the right hand side to form p; and ps. To this end note F”'(z) = p(p — 1)zP~2, thus

[F"(x)| = p(p- 1) <p(p-1)(a” + 1) = p(p - 1)(F(x) +1).
Similarly, F"’(z) = p(p - 1)(p — 2)2P~3, thus
|F" ()| =p(p-1)(p-2)2" > <p(p-1)(p-2)(1+ F()).

Noting p(p—1)(1 +t) and p(p — 1)(p — 2)(1 + t) are non-decreasing and non-negative for
t > 0, combined with our earlier remarks that it suffices to prove this result when F'(z) = 2P,
completes the proof.

» Single-exponential functions: Consider when F'(z) = a® = €% for a > 1. Then F"'(z) =
(Ina)?e*me, F"(z) = (Ina)3e*™?, and so we can take pi(t) = (Ina)?t,po(t) =
(Ina)3t.

« Doubly-exponential functions: Consider when F(z) = a?" = ! ae™™" for a,b > 1. Thus

n

F'(z) = o™ I ge b 1np = InalnbF(z)e*™?.
It follows that
F"(z)=Inaln b(F'(x)emlnb +InbF(x)e” lnb) = (Ina)(Inb)?F(z)(**™PIna+e”?).
This then implies
F"(2) = (Ina)(Inb)?F(z)(e**™*2Inalnb + e®" 0 Inb)
+ (Ina)(Inb)?(e**™Plna + e* ™) InalnbF(z)e®m?
= (Ina)(In b)3F(x)(262xlnblna + ety BrInb gy g)2 4 g2ty a).

Notice

xzlnb

6rlnbselnae -1 <F(CC),
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therefore we have

F"(z) < (Ina)(Inb)*F(z)(F(z)*Ina+ F(z)),

F"(z) <(In a)(lnb)?’F(gL‘)(F(x)?’(lna)2 +3F(x)*Ina + F(z)).
We thus can take

p1(t) = (Ina)(Inb)*t(¢* na + 1),
p2(t) = (Ina)(Inb)3t(t*(Ina)? + 3t*Ina + t),
which are clearly non-negative and non-decreasing on [0, c0).
* Next we highlight the natural example of any self-concordant function F': R — R. Thus
[P ()] < 2" ()1 < 2F" ()2
Suppose F satisfies Assumption 1.1. Then there exists a non-negative, non-decreasing p;
such that |F"'(z)| < p1 (F(x)). Thus,
[P ()] < 201 (F ()",

Since p; is non-negative and non-decreasing, po(t) := 2p1(t)*/? is as well, and thus
Assumption 1.2 is satisfied.

Next, we show that the regularity assumptions Assumptions 1 and 3 of Xie et al. (2024), which
they need for their guarantees finding SOSPs, are less general than Assumption 1.2 when F' is
twice-differentiable. To do so we show they imply Assumption 1.2, and are hence subsumed by
Assumption 1.2.

When F is twice-differentiable, their Assumption 1 implies (Lg, L1 )-smoothness. As shown in
Proposition A.2, this means that

1/2 5L%
[VF(w)| < po(F(w)) where pg(x) = 2L0/ %+ ﬁxB/Q.
0

Their Assumption 3 implies for My, M7 > 0 and some § > 0 that for all w, w’ with |w —w’| <4,
[V2F(w) -V F )], < w-w'| (Mo + Mi|VF (w)]).
Combining this with the earlier display gives for all w,w’ with |w —w’| <6,

|V F(w) - VQF(“")“OP < Jw —w'[ (Mo + Mypo(F(w))),

2
where po(x) = 2Lé/2x1/2 + %xdﬂ. We thus see that F' satisfies Assumption 1.2 with the non-
0

. . . B 1/2_1/2 , 5L 3/2
decreasing, non-negative function pa(x) = Mo + M| 2L, “z/* + Tt where the latter two

0
properties are evident as po(+) is non-decreasing and non-negative.

A.3 Proofs of Technical Results

Now, we prove general results used throughout our work. We prove Corollary 1, which gives us
control over the gradient:

Proof of Corollary 1. Applying Lemma 11, De Sa et al. (2022) with ® in place of F', we obtain

[VE(w)] < p(F(w))/20(F(w)) = po(F(w)),
where 0(-) is defined as in the statement of Corollary 1. To prove po(x) is increasing, simply note 6

and thus /0 are clearly increasing, and are both non-negative. p; is non-decreasing and non-negative
as well, thus pq is non-decreasing and non-negative. [

We also prove the central Lemma 3.1, which is very important to our results: it lets us con-

trol the change in function value under our regularity assumptions. We first state the following
Lemma from Li et al. (2023a), a generalization of Gronwall’s Inequality:
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Lemma A.5 (Lemma A.3, Li et al. (2023a)). Let o : [a,b] - [0,00) and 8 : [0,00) — [0, 0) be
two continuous Sunctions. Suppose o/ (t) < B(a(t)) almost everywhere over (a,b). Let ¢p(u) =
1y ﬂ dv Then for all all t € [a,b],

p(a(t)) < ¢(a(a)) —a+t.

This allows us to prove Lemma 3.1, which is an extension of Lemma A.4, Li et al. (2023a):

Proof of Lemma 3.1. The proof is essentially identical to the proof of Lemma A.4, Li et al. (2023a).
Let z(t) = (1 - t)x + ty, a(t) = F(2(t)). Then for all ¢ € (0, 1), we obtain

Lo IPG()) = F((0))
T osot s—t

1o FG(9) —F(z(t))‘

st s—t

‘th(z(t )‘

= |VF(2(1)) (y - z)|
< po(F(2(1)))lly -,
the last step using |VE(w)| < po(F(w)). Let B(z) = |y - z[po(z) and let ¢(u) = [,* B(v)
Thus, o/ (t) < B(«(t)) almost everywhere. Applying Lemma A.5 gives
P(F(y)) = ¢(a(1)) < ¢(a(0)) +1 = ¢(F(x)) + 1.
Let ¢(u) = |y - z[o(u) = ;' ﬁdv, which is clearly strictly increasing. Consequently we obtain
from the above and assumption on y that

P(F(y) <y(F(@)) + |y -z

1
S Fw D

F(z) 1 F(z)+1 1
é[ dv+f dv
0 po(v) F(z) po(v)

~ F(z)+1 1 do = 7
- [ = v E@) .

Since 9 is strictly increasing, taking inverses implies
F(y) < F(z)+1,
as desired. O

We also introduce the following Lemma, which lets us exploit Assumption 1.2 to control
the Lipschitz constant of the Hessian of F'.

Lemma A.6. Suppose F satisfies Assumption 1.2. Suppose x,y € R are such that |y — x| < r for
some r > 0. Then

[V2F(z) - V2F(y),, <z -yl sup pa(F(w)).

ueTy
In particular, we have
[V2F(z) - V2F(y),, <le-yl- sup pa(F(u)).

ueB(y,r)

Proof. Consider § > 0, either from Assumption 1.2 if the second case of Assumption 1.2 holds, and
otherwise set to some arbitrary positive real. Similar to the proof of Lemma 3.1, divide the line

segment between z,y into N = Hx vl equally spaced segments of length § between points x;, where
we define £g = x,21,...,ZN_ 1,:1:N y. Thus |z -y| =
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Suppose for all u € Ty we have ||V3F(u)||oID < L. Consider any z’,y’ in the line segment Zy.
Applying this for ' + ¢(y’ — z") for t € [0, 1], which always lies in the line segment Zy, we obtain

1

[ (VPF(z' +t(y -2')),y —2')dt
0

Consequently irrespective of which case of Assumption 1.2 holds, because |z; — z;_1 | < §, we have

for each 7,1 <4 < N that
|V2F(2:) = V*F (i), < @i~ @it ]| sup pa(F(w)).

ueTy

|V F@y') - v*F()],, < <Lly —2'|.

Now Triangle Inequality gives

=

S
I
—

[V F@) -V F@®)|,, < IV F(:) -V F(zi)],,

<

M=

|lz; — i1 sup p2(F(u))

UETY
< NG - sup p2(F(u))

uexTy

= & -yl sup p2(F(w)),

ueTyY

<
Il
—

as desired. O

We will also generalize the proof of Theorem 3.1 to show that GD, when initialized in the
F(wg)-sublevel set L p(y,) With appropriate step size defined in terms of F'(wy ), never increases
function value.

Lemma A.7. Consider any wq € RY, and consider iterates {u¢ }1=0 of GD initialized at any ug €
L, p(wo) the F(wo)-sublevel set. If the step size 1 of GD is at most m where L1 (+) is defined
as per (4), then F(uy) < F(ug) forall t > 0.
Proof. It suffices to prove this for ¢ = 1; a simple inductive argument then establishes this for all
t > 0. We have u; = ug - 7V F(ug). By Corollary 1 and because uy € L p(w,). |VF(uo)| <
po(F(up)) < po(F(wp)). Thus by choice of 1 and definition of L, (wy),

1

po(F(wo) +1)

By Lemma 3.2, because ug € Lg, p(w,). for all p in the line segment uou;we have ||V2F(p)||Op <
Li(wp). By Lemma A.1, it follows that

lur —uo| = 0 VE (uo)| < mpo(F(wo)) <

|V F(uo)|?

< F(uo) + |VF(uo)|- (_77+ Ll(“2’0)772)

Fu) < F(ug) 1] 7 (u) |2+ 210

], the conclusion follows. O

~ Ly (wo)n® 2
Noting —n + ==5>" <0 forn e [0, Trwo)

B Proof of Framework

Proof of Theorem 2.1. For convenience, for all > 0, define py, := 1 =72 SuPyer . 0 0(u). Also

F
letT = SUPue[Ip’p(wo) { A(’(muo)) }

Lemma B.1. For anyn > 0, let £,, be the event that the sequence of iterates (W )o<t<n—1 Safisfies
either:

1. The event &, 1: Forall0 <t <n-1, F(Ai(w)) < F(w;) — A(w,).

31



2. The event £, o: There exists w; € (W )o<t<n—1 such that As(w,) NS + {}, and for all w,
with 0 < s < t, we have F(A1(ws)) < F(ws) — A(wy).

That is, €, = E,,1 U &y 2. Then over the randomness in A, we have P(E,) > p,, for all n > 0.

Proof. We proceed by induction on n. The base case n = 0 is vacuously evident, and the case n = 1
follows immediately by the definition of a decrease procedure from Definition 2.2 and hypotheses of
Theorem 2.1.

For the inductive step, suppose Lemma B.1 is true for some n > 1; we show it is for n + 1. By the
inductive hypothesis, we know that P(&,,) > p,,. We aim to show P(&,,) > pn+1. If p,, <0 there is
nothing to prove, so suppose now that n is such that p,, > 0.

1. Letp= P(gn,g‘gn) Note gn,2 c gn+1,2 c&nst.

2. Let B:= &,1nES 5. Thus, if B occurs, then all the (w; )o<¢<n-1 are such that F(A; (w,)) <
F(w;)-A(w,), but &, 5 did not occur. Note &, is the disjoint union £,, o u BB, so P(B|E,,) =
1-p.

Under B, we know w,, = A(w,,_1) is such that F(w,,) < F'(wo). Hence w,, € Lp, p(w,)-

Therefore, conditioned on B, by the hypotheses of Theorem 2.1 we have with probability at
least py that either F'( A1 (w,)) < F(w,) - A(w,) or Az(w,)nS # {}.

Let C be the event that F'(A;(w,,)) < F(w,) - A(w,) occurs. Let D be the event that
As(wy,) NS # {} occurs but C does not occur. Recall that w,, € L, p(w,) conditioned on
B. Furthermore recall that A(w.,,) is only a function of w,,, and none of the (w;)o<t<n—1-
Thus the definition of decrease procedure, Definition 2.2, implies that

P(CuD|B) > po.
Now since P(B) = P(B|E,)P(E,) = (1 - p)pn > 0, Bayes” Rule implies

P((BnC)u (BnD)B) - BB r;bfl)g)u (BnD)))

_P(Bn(CuD))
- P(B)

=P(CuDIB) 2 po.

Note B nC implies that &,.1 1 occurs, since under 5N C we have F'(A; (w;)) < F(w;) —
A(w,) for all 0 < ¢ < n. Similarly, B0 D implies that £,,,1 2 occurs, since under Bn D we
have F(A;(w;)) < F(w;) - A(w;) for 0<t <n—-1and Ay(w,)nS # {}.

Thus recalling &, 2, B are disjoint, we see that £, contains the following disjoint union of events:
Eni1 2 gmg [} (B("IC) (] (B ﬁD).
The above observations imply via Bayes’ Rule that
P(57L+1) > P(gn’g [} (B N C) [} (B al D))
=P(&n2) +P((BNC)u(BnD))
=P(&n2|E0)P(E) +P((BNC) u (BnD)B)P(BIE,)P(EL)
=P(&)(p+P((BNC)u(BnD)[B)-(1-p))
> pn(p+po(1-p))
> pn(Pop +po(1=p)) = Pnpo > Ps1.

Here we used that P(&,,) > pn, PnPo = Prn+1 Which follows immediately from the definition of p,,,
po < 1, and simple manipulations. The inductive step, and hence the proof, is thus complete. O

Using Lemma B.1 now readily proves the following:

Claim 3. Let & be the event that there exists w; with wy € (wWy)o<g<r-1 such that Ax(w;) NS #{},
and for all w with 0 < s < t, we have F (A1 (w;)) < F(ws) - A(ws). Then P(E) > pr.

Proof of Claim 3. Apply Lemma B.1 with n = T'. Following the notation from there, we have that
the event &7 = £71 U E7 2 has probability at least pr.
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Suppose that 7.1 occurs. Note 7,1 implies that wy € L p(w,) for all 0 <t < T'. Therefore

A(wy) > inf A(u)forall0<t<T. (8)

uel F F(wg)
Moreover, telescoping the direct implication of £7; gives that

F(wr) < F(wo) - TZ_:lA(wt)- )
=0

Combining (8) and (9) and recalling that we shifted WLOG so F" has minimum value O (see Notation)
gives
T-1
T inf A(uw)< ) A(wy) < F(wo) - F(wr) < F(wy).
=0

ueLF,F(ww

This contradicts our choice of 7T

Thus &71 cannot occur, and so E7 2 must occur, i.e. £ = E72. Note E7 2 is exactly the event £.
Thus

P(&) =P(ér2) =P(Er) 2 pr,
as desired. O]

Conditioning on the event £ from Claim 3, by Claim 3, we immediately recover the desired guarantee
on the output, probability, and number of candidate vectors stated in Theorem 2.1. The only part
remaining to prove Theorem 2.1 is to establish the bound N = % +SUDyel . 1) toracle (w) ON
the number of oracle calls.

To this end, condition on &£ from Claim 3 in all of the following, and follow the notation from there,
in particular the definition of w,. Directly, we obtain that the number of oracle calls is at most
!0 toracte (w; ) (the last term topee(wy) in the sum appears since computing A(w;) and A(w;)
takes at most toracte (W) oracle calls). We now upper bound this sum.

As we are conditioning on £ and since we assumed WLOG by shifting that F' has minimum value 0,
we have
t-1

F(wi) - F(w;) < -A(w;) <0forall0<i<t -1 = > A(w;) < F(wp) - F(w;) < F(wy).

i=0
(10)
The above also implies F'(w;) < F(wo), i.e. w; € L p(w,), for all 0 < i < t. Therefore, Zorcte (W) <
SUDyeL o) toracle () for all 0 < ¢ < ¢. Thus (10) gives

Paw) | SSAw) | Aw)
22;3 Loracle (wz) Zf;é Loracle (wz) - Osist-1 Loracle (wl) o
Zf:ll ai
b
w; € Lp p(w,) forall 0 <i <t -1, and the definition of A. Rearranging and recalling #oracie (w¢) <
SUPLEL 1 () toracte (1) as justified above, we obtain

where the last inequality uses the elementary inequality > min; ‘g— for a; > 0,b; > 0, that

t t-1 F(’LUQ)
Z Loracle (wz) < Sup  Zoracle (’U.) + Z toracle (wz) < Sup  toracle (u) e
=0 “ECF,F(wO) =0 ueLF,F(wO)

This yields the desired conclusion on oracle complexity, completing the proof. O

C First Order Convergence Proofs

C.1 Proofs for Adaptive GD

Proof. As with the proof of Theorem 3.1, we use Theorem 2.1. We again have S = {w : [VF(w)|| <
e}, and recall the choice of 7 from Theorem 3.2. Now we let A(ug) = (ug — N, VF (%0), o).
ThUSAl (’LL()) =Ug — T]VF(U()), AQ (UQ) =1Uop, and toracle(uo) =1.

33



Claim 4. For any wuy in the F(wq)-sublevel set Lppuw,) A is a

2

(S,1, min{ 2p0(§?’1((z::l’00))+1)2 , 2L,15(w0) }, 0,uq)-decrease procedure.

To show this, analogously to the proof of Theorem 3.1, for any ug ¢ S in the F'(w)-sublevel set
L F(wy)> We will show that the function will deterministically decrease by strictly greater than
L' (wo) 2
po(F(wo)+1)27 2L (wo)
Theorem 3.1, we conclude via Theorem 2.1 upon showing Claim 4.

min{ } at the next iterate. By definition of A, exactly as with the proof of

To show Claim 4, by choice of step size, we have 7y, |V F (1) || < Thus

1 < 1
po(F(wo) +1) = po(F(ug) +1)
Now combining Lemma 3.1 with Assumption 1.1, and because ug € L, F(wo)> WE see for all p € upuy,
|V2F (p) Hop < L} (wo) where L] (wy) is defined as in the statement of Theorem 3.2. We thus obtain
by Lemma A.1,

Jur —uol <

L (wo)n?
F(ur) < (o) -l T F o)l + X g ) a
Recall that ug ¢ S, so |VF (ug)| > e. We break into cases:
1. If |[VF (uo)| > %, then 7y, = pO(F(w0)+11)HvF(uo)\|' In this case, substituting into
(11) gives
L' (wo)n?
F(ur) < F(un) -l 9P o)+ AT g g
1 L (wo)
- F(ug) - ———— |V F(up)| + ———=1%0)
(wo) = F o)+ ) V0 G o) + 1)2

Li (wo)

1
O o) D

2. Else if [VF(uo)| < L (wo), then 1y, = 7. In this case, substituting into (11) gives

1(wo)”
L (wo)n?
F(ur) < Fluo) ~n9F (o) |+ T ()
[VF (uo) |” e’
< F(up) - O pyy - — 5
where we used that |VF (ug)| > €.
In either case, for |VF (up)| > € we have that
. L (wo) g2
F(uy) < F(uo) - ! .
(1) < I (wo) mm{ 200 (F (wo) + 1)2" 2L (wp)

This proves Claim 4. By our framework Theorem 2.1, the proof is complete. O

C.2 Proofs for SGD for FOSPs

Here, we prove Theorem 3.3. We first introduce technical preliminaries, which will also be used in
Section E.

Theorem C.1 (Vector-Valued Azuma-Hoeffding, Theorem 3.5 in Pinelis (1994)). Lete, ... ,ex € R?
be such that for all k, E[e,|§*1] = 0, e |? < o2. Then for any X >0,

CARRE S
P Erll > )\) < 4exp(— )
k=1 4ZkK:1 op
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Note the bound here is dimension free, so this result does not follow directly from standard Azuma-
Hoeffding. Such a result can also be found in Kallenberg and Sztencel (1991); Zhang (2005); Fang
et al. (2019).

Theorem C.2 (Data-Dependent Concentration Inequality, Lemma 3 in Rakhlin et al. (2012)). Let
€1,...,6x € R be such that for all k, E[skmk‘l] =0, E[eﬂ%k_l] < 0%, Furthermore suppose that
]P’(sk < b|§k’1) = 1. Letting Vic = Y1, 0%, forany § < 1/e, K > 4, we have

P(i e > 2max{2\/vk, b\/log(l/é)}\/log(l/é)) <dlog(K).
k=1

Such a result is also presented in Zhang (2005); Bartlett et al. (2008); Fang et al. (2019).

We will first prove Theorem 3.3 in the case where ||V f(w;¢) — VF (w)| is bounded by o (F(w)).
As noted in Fang et al. (2019), these same inequalities hold when the martingale difference is
not bounded or almost-surely bounded but rather the norms are sub-Gaussian with parameter oy.
Thus after the proof, we remark how to straightforwardly generalize Theorem 3.3 to the case when
|V f(w;¢) — VF(w)| is sub-Gaussian with parameter o( F'(w)) in Remark 7.

Now, we prove Theorem 3.3.

Proof. We use our framework Theorem 2.1 with S = {w : |[VF(w)| < €}. Recall as per the discussion
of SGD in our framework in Subsection 2.3, we let py = uo, and define a sequence (p;)o<i<k, via

pi =pi-1 — V[ (Pi-15Ci),
where the (; are minibatch samples i.i.d. across different i. Note this sequence can be equivalently
defined by repeated compositions of the function u - u — 0V f (u; ().

We now let A(uo) = (Pry, (Pi)oci<ko-1), hence Ai(ug) = pr,, A2(to) = (Pi)oci<ko-1. Thus
toracle (U0) = K. Also note the noise &; used defining .4 are independent across different .

For appropriate = ©(g?), K, = ©(¢~2) depending only on ¢, 8, F(w) and polylogarithmically in
1/4, which we define below, we establish the following Claim 5:

Claim 5. For any ug in the F(wq)-sublevel set Lp p(w,), A is a (S, Ko, Lfg,p,uo)-decrease

517K0£2

procedure, where p = A(F(wo)+1)"

Then using Theorem 2.1, we then directly conclude Theorem 3.3.

To show Claim 5, consider any uq in the F'(wg)-sublevel set but not in S. Following the notation
from above, consider a ‘block’ of Ky consecutive iterates of SGD starting at py = ug. We establish
that with probability at least 1 — p, if none of the iterates {py = uo,...,Px,-1} lie in S, then

F(pk,) < F(po) - A where A = %. Then recalling the definitions of A, we immediately
conclude Claim 5.

Definitions and Parameters: For convenience, define

Lo(wo) = po(F(wo) +1),
Li(wo) = p1(F(wo) + 1),
o1(wo) = o(F(wo) +1),

B(wo) = o1 (wp)? + %al(wo)Lo(wo).

Also define
€1 =V f(Pt;Ct41) — VF(py),

where {;,1 denotes the i.i.d. minibatch samples. Note by Assumption 3.1 that E[£;,1] = 0, where
expectation is with respect to {44 1.

In particular, we choose these parameters as follows:

52

L(wo)log(1/¢)¢log(1/8)6

77:

35



- S0 g 1) tog(1/6) 0g 12,

1 .
7™ max{1, po(F(wo) + 1)} "

Ko

where
C(wo) = 128 B(wg) v 64(F(wo) +1)?,
L' (wo) = 8Ly (wo) (Lo (wo)? + o1 (wo)?) v 2Lo (wo) v 40y (wy),
L(wo) = L' (wo)*C(wo)* v (3v2log(L(w)))* v (3v/2)".

Remark 6. Note that C, L', L depend only polynomially in terms of the self-bounding functions
Lo, P1, 0, and F(’wo)

Note we can assume WLOG that € and the desired probability ¢ are at most some small enough
universal constants in (0, 1); by doing so, the result does not change up to universal constant, and
hence is identical under the O(-). Consequently we may assume WLOG that 7} and 7 are at most
some small enough universal constant in (0, 1) and that K > 4.

Claim 6. For ¢,6 small enough universal constants, the above choice of parameters satisfies the
following properties:

max{1, po(F(wo) +1)}n

- . 2 1 1
Se mln{8L1(wo)(Lo(wo)Q +01(w0)?) " 2KoLo(wo) " 4oy (wy)y/Ko log(4Ko/p) }
(12)

13)

21og K.
K05221283(w0)10g( 8 0).

For the sake of brevity, we prove Claim 6 after the our main proof. Checking this is a matter of
elementary, albeit tedious, univariate inequalities.

Again, our plan is to apply Theorem 2.1 by showing decrease with high probability for a block of K
iterates starting at pg.

Notation: Let F* denote the filtration of all information up through p;, but not including the mini-
batch sample (1. Let K be a stopping time denoting the first ¢ such that p; ¢ IB%(po, m),

i.e. the escape time of the iterates beginning at py from IBB(pO, m) = IB%(uo, 7o (Fwe)iT) )
We first detail two high probability events we will condition on for the remainder of the proof:

* By Vector-Valued Azuma Hoeffding Theorem C.1, for a given 1 < ¢ < Ky we have with
probability at least 1 —

This follows since each E[E k|3k’1] = 0 as the stochastic gradient oracle is unbiased, and as
|€k| < o(F(pr-1)) by Assumption 3.1.

p
2K’

< 277\J log(48Ko/p) i o (F(pr-1))? = 2774 log(4Ko/p) z o(F(py-1))°.

k=1 k=0

n > &k
|

Thus by Union Bound, with probability at least 1 — p/2, we have for all 1 < ¢ < K that

t
‘772&
p

Denote this event by £1, so P(&1) > 1 - p/2.

< 277\J log(4Ko/p) ki o(F(pr))’. (14)
=0
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* We define a stochastic process with the following trick to derive uniform bounds. Define the
following sequence of real numbers:

Y = =n(VF(p:),&e1) Leck-
Notice 1 is F'-measurable, as {¢ < K} holds if and only if py,...,p; ¢

B(po. e )

Clearly VF(p;) is also §*-measurable. Thus as the stochastic gradient oracle is unbiased

(. E[€r[5'] = 0),
E[Yi] = E[(VF(p:), 1) lecrc '] = 0.

For ¢t > K we have Y; = 0. For ¢ < IC, we have p, € B(po, m) Consequently by
Lemma 3.1 and Corollary 1 we have

Vil < nl{VE (D), &)l < 0l VE (o) 1€ ] < mpo(F(wo) + 1) [€ea -
Moreover by Assumption 3.1 and Lemma 3.1,

[§er1ll < o(F(pe)) < o(F(wo) +1) = 01(wo).
In particular, recall that &1 is the difference between the gradient oracle and actual gradient
atpg.

By the above arguments, both of the following inequalities hold deterministically:
Vil <0 VE(pe) ] o1 (wo),
Yi| < mpo(F'(wo) + 1)a1(wo) = nLo(wo)o1(wo).

We now apply both of these bounds in Data-Dependent Concentration Inequality, Theo-
rem C.2 (whose conditions hold because we can assume ¢, ¢ are at most given universal
constants, so Ky > 4,2log Ky/p > e). Consequently we obtain with probability at least
— & that
2

Kol 21og K,
0 S VE®) Ee1)Lrerc < 2nLo<wo)ol(wo>1og($)v
t=0

M). (15)
p

Ko-1
4\J n?oy(we)? ) IVE®:)| 10%(
=0

Denote this event by &, so P(£2) > 1 - p/2.

For the rest of this proof, we condition on £ n &;. By the above, £ N € occurs with probability at
least 1 — p. Denote £ = &, N &s.

A-priori, these bounds are not particularly useful, especially in our more challenging setting under
Assumption 3.2 where noise can depend on function value. However conditioned on £, we prove that
SGD is sufficiently ‘local’, in particular that |p; — ugl| < 1 for all ¢,1 < ¢ < K. This will then give us
control over function value via Lemma 3.1, which then allow us to make use of these bounds in a
more standard way.
Lemma C.1. Conditioned on £, (and hence conditioned on &), for all t,1 <t < Ky, we have

1

po(F(wo) +1)

Proof. We go by induction on ¢. Notice after ¢ iterates,

|p: = pol = llpe —uo| <

t—1 t

pe=wo-1ny. VF(pr)-nY. &
k=0 k=1

For the base case ¢t = 1, we have from Corollary 1 that |V F'(wq)| < po(F(wo)) < Lo(wp). From the
definition of the high-probability event £; and properties of 7 from Claim 6, and as o1 (wq) > o (wo)),

it follows that 1
<2 F Kol 4K, —————.
[16:1] < 20 (F (o)) v Kolog(4Ko/p) < 5 e =4y
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Consequently by properties of 7 from Claim 6,

1

- < F SN
o1 =poll < v (wo) |+ Infoll < =7y

This finishes the proof of the base case.
Now suppose Lemma C.1 holds for all 1 < k <¢ - 1; we will show it for ¢. From Lemma 3.1, for all
k <t-1, we have
IVE@r)| < po(F(wo) +1) < Lo(wo).
Thus for each k, we have
o(F(pr)) <o(F(wo) +1) = o1(wo).
Thus conditioned on £; we obtain

t

n> &k

t-1
n Y. VF(pr)
k=0

|lp: — po <

Ko-1
<nKoLo(wo) + 277\] log(4Ko/p) Y. o1(wq)?
k=0

= ’I]K(JL()(’wo) +27701('w0) KO 10g(4K0/p)
1 1 1
= 200(F(wo) + 1) 200(F(wo) + 1) po(Flwg) + 1)’

Here we used the choice of 7 from Claim 6 and the upper bound (14) on ||n st ko1 €k || implied by 81.
This completes the induction.

Now that we know the iterates of SGD are ‘sufficiently local’ for K iterations via Lemma C.1, the
finish is straightforward. Condition on £ for the rest of the proof. Consider any 0 <t < Ko —-1. &
implies for all p € p;_1pz, writing p = Op;_1 + (1 — 0)p; for 6 € [0, 1], that we have

1 1
po(F(wo) +1) — po(F(wo) +1)
Consequently F'(p) < po(F(wp) + 1), so the above combined with Assumption 1.1 gives

Ilp = pol < Opt-1 —pol + (1 =) |ps —pol < (1-0+6)-

[V2F(p)| < Ly (wo). (16)
We also obtain from Lemma C.1 together with Corollary 1 and Assumption 3.1 that for all 0 < ¢ < K,
[§:]l < o (F(wo) + 1) = 1 (wo),
IVF(pe)|l < po(F(wo) +1) = Lo(wo). (17)
Now by Lemma A.1 and (16),
F(p) < F(p) - n(TF @0 7 i) + 0 15 1 1)

<F(p) =0l VE@)|* = 1{VE(Pe),€1)) +0* La(wo) (Y (pe) | + €],

The last step uses the definition of £;,1 and Young’s Inequality.
Summing and telescoping the above for 0 <t < K — 1, and applying (17), gives

Ko 1
F(pr,) < F(po) =1 Z IVE®@)]* -7 Z (VE(Pe)€ee1)
+ 1 KoLo(wo)? Ll(wo) +1? Koo (wo) L1 (wo). (18)
Now, conditioned on &£, we upper bound
Ko-1
-n Z (VE(pt),&ee1)
=0
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using (15). Under &£, by Lemma C.1 and Lemma 3.1, we have p, € IB%( ) for all

1
P0s 5o (Fwo)+1)
1 <t < Ky, which implies that ¢ < IC for all 1 <t < K. Therefore

Ko-1 Ko-1

=1 f;} (VE(p:),&t41) = -1 ZE) (VE(pe),&ee1) i<k

Now AM-GM gives

Ko 1 21og K,
4\‘ n?o1(wo)? Y. IVE(py)]? log(%)
t=0

L 2log K
<2\ o Z HVF(pt)H2+801(w0)210g(ﬁ) )
4 i3 »
Combining with (15), we obtain
Ko-1 Koot

=N ;) (VF(p),€t41) = -1 t;) (VF(pt),&e1) e

< ﬂKo‘l (2logKO)
5 —.

> [VE®e)| + 16nB(w) log
t=0

Combining with (18) gives

Ko-1
F(pk,) < F(po) - g S [ VE®)| + 16nB(wo) log +1° KoLo(wo)® L1 (wo)
t=0

2log K
(=)
+17° Koo} (wo) Ly (wo). (19)
Suppose that |VF (p;)| > € for all 0 < ¢ < K — 1. Then the above gives

nKoe? QIOgKO)
p

Fp,) < F(po) - + 1695 (wo) log(

+ 772K0L0 (wo )2L1 (wo) + ﬂzKoU% (wo) L1 (wo).
To make use of this bound, by our choice of 7, Claim 6 implies that

2 2 2 2 WK0€2
" KoLo(wo)”Li(wo) + 1" Kooq (wo) L1 (wo) < g

By choice of K, Claim 6 implies that

2log Ky ) < nKoe?
p /T 8
The above was all conditioned on &, which occurred with probability at least 1 — p. Thus by (19), we

obtain that with this same probability which is at least 1 — p, if none of py, . . .,pk,-1 have gradient
norm larger than e, we have

161 B(wo) log(

7’]K0<€2
4

Ke?
= F(ug) - 40 .

F(pk,) < F(po) -

This establishes that A is a (S, Ky + 1, "Ki’sz ,D,ug)-decrease procedure. Following our initial

observations, we conclude via Theorem 2.1. O

Now we prove Claim 6.
Proof of Claim 6. We first prove (13). Recall we chose

) v 1/ 08(16? Tow (1)

Furthermore recall p = 150 _ Thys, (13) holds if and only if

4(F(wo)+1) "
SIOgKO . (F(wo) + 1))

Ko =

C(wo) log(1/7)*log(1/6)*log(1/€)? > 128 B(wg) log( STRoe?
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As C(wg) > 128B(wp) v 64(F (wg) + 1)2, again using the expression for K, it suffices to prove
log Ky
C(wo)'/2d7log(1/77)?log(1/8)* )
Aslog(1/6), log(1/n) are both larger than 1, it suffices to prove
log(1/7)*log(1/6) log(1/e)?
>log(1/m) +log(1/0)

| log C(wq) +1og(1/£?) +2loglog(1/7) + 2loglog(1/6) + 2loglog(1/c)
+log C (wo) 2 .

log(1/7)? log(1/6)? log(1/<)? » 1og(

Since C'(wy) > 64, it satisfies log C(wg) < C(wo)'/?, so it suffices to prove

log(1/1)? log(1/9)* log(1/)”

> log(1/if) + log(1/5)

+log(1+2log(1/e) +2loglog(1/7) + 2loglog(1/8) + 21loglog(1/e)).
By comparing ‘degrees’, we conclude recalling we can assume WLOG that 6, €, 77 are smaller than
some universal constant.

Now we prove (12). We will prove that
1

" L' (wo) Ko\/log(4Ko/p)

After proving (20), recalling our choice of K > 1/£2 directly implies (12). To show (20), equivalently,
we want to show

(20)

2

ilog(1/i)*\/log(4Ko/p) < =

L'(wo)C (wo) log(1/6)2log(1/e)?
Recalling the definition of p, this holds if and only if

) . 16(F(wo) +1) e’
nlog(l/n) \J IOg( 5’1782 ) < Z/(wo)c(wo)log(1/5)2 10g(1/€)2.

52

L(wo) log(1/2)% log(1/3)° "

Now we explicitly recall our expression for 7 = Plugging this in and recalling

L(wo) > L' (wo)?C(wo)?, it suffices to prove

1 . (E(wo>1og(1/e>ﬁlog<1/5>6)2
L(wo) " log(1/2)°log(1/6)° - &2

. \J log( 16(F(wo) + 1) L(wo) log(1/¢)" 1og(1/5)6)

det
< 1
~ log(1/6)21og(1/e)?

Thus it suffices to prove:

18 o (f/(wo) log(1/e)log(1/4) )2 o (16(F(w0) +1)L(wg) log(1/e) log(l/é))
L(w)1/2 & 5 & de
<log(1/5)*1og(1/e)*.

Recall L(wg)'/® > 3v/2log(L(wo)) v 3v/2 and so

V2| (i(wo)log(l/g)log(l/@
L(wo)'/4 © €

40



3V2

< T(wo) 1/ (10g(1/5) +loglog(1/e) +loglog(1/6) + logf,(wo))

< E(wlg)l/g(l +log(1/e) +loglog(1/e) +loglog(1/4)).

Thus it suffices to show

f/(wi)l/‘l(l +log(1/¢) +loglog(1/e) +loglog(1/8))?

_ \J 1Og( 16(F(wo) + 1) L(wo) log(1/¢) 1Og(1/§))

o
<log(1/6)*log(1/e)*.
To this end recall L(wg)'/® > log(16(F(wq) + 1) L(wo)), thus

LI (16(F(w0) + 1)E(w0)1og(1/s)1og(1/5))
L(wo)Y/8 de

i(u;lo)l/S(log(m(F(wO) +1)L(wg)) +1og(1/5) +log(1/e) +loglog(1/5)) + log log(l/e))

<1+log(1/0) +1log(1/e) +loglog(1/d)) + loglog(1/e).
Therefore it suffices to show
(1+1log(1/e) +loglog(1/e) +loglog(1/5))?
(1 +1og(1/8) +log(1/e) +loglog(1/8)) + loglog(1/e))*/?
<log(1/6)*1og(1/e)*.

Evidently the above holds for small enough universal constants J,c (compare ‘degrees’), so we
conclude the proof.

Remark 7. We also discuss how to extend this result to when the |£; | has sub-Gaussianity parameter
o(F(p:)). The extension is straightforward. Again, we aim to prove Claim 5. For the rest of
this remark, follow the notation from the proof for SGD above. Besides applying Theorem C.1,
Theorem C.2 when the relevant random variables are sub-Gaussian, which still hold true as mentioned
in Fang et al. (2019), the only other time we used that |€;| < o(F(p;)) holds deterministically is to
derive (18).

We apply Theorem C.1, Theorem C.2 identically to the proof earlier. This time, we have for ¢ <
that £,1 is sub-Gaussian with parameter o1 (wg ), thanks to the same trick of multiplying with 1,
when applying Theorem C.2.

The only change is as follows: in the definition £, add in the intersection the event &3 that for all

1<t < Ky, ||£t|\2 < o(F(py))?log(Ko/p), where p is defined the same as before. We control the
probability of &£ via the following Lemma:

Lemma C.2 (Equivalent of Lemma 12, De Sa et al. (2022)). With probability at least 1 — p, we have
forall1 <t< K,

1€:1% < o (F(p:))*log(Ko/p).
Proof. By Assumption 3.1, with probability 1 — KLO, we have
2
(1

o(F(p:))?
A Union Bound finishes the proof. O

<log(Ko/p).

Now we condition on £ = & n & n &, which has probability at least 1 — 2p by combining
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our earlier argument with Lemma C.2. Note this only changes the resulting guarantee by a universal
constant. We still have Lemma C.1, which does not require an upper bound on each || in its proof
but simply uses concentration from event &;.

Thus, conditioned on &, we still have F(p;) < F(wp) + 1 by Lemma C.1, Lemma 3.1, and as
uo € LF p(w,)- Now conditioned on &£, by Lemma C.2, we still have the following upper bound for
all 1 <t < Ky:

€217 < o (F(wo) + 1)*log(Ko/p) = o1 (wo)* log(Ko/p).
Therefore conditioned on £, we can still derive a bound analogous to (18). This resulting bound
changes by only a log( K /p) factor (from Lemma C.2, see the above display); moreover recall Ky, p

depend polynomially in 4, 1/e. By adjusting n smaller by a polylog(K/p) factor, the same proof as
above goes through, up to changing quantities by polylogarithmic factors.

D Perturbed GD finding Second Order Stationary Points

D.1 Proof using the Framework

Here we prove Theorem 3.4. We instantiate Algorithm 1 formally here. The parameters of Algorithm 1
will depend on L;(wq), La(wp), which are defined in (4), (21) respectively, and depend only
on p1, p2, F'(wp). Given a desired success probability 1 — § for 6 > 0, a tolerance ¢ > 0, and
F(wg), L1 (wo), La(wq), the algorithm’s other parameters are defined in terms of as follows:

1. ¢ < cmax 1S @ universal constant, where ¢« 1S a universal constant defined in Lemma D.2.

2. é= m

3. X<—4max{log(%2)_z§w(’)),5}.
4. n < m

S.r« Xg%?io)

N
6. Gires < F&

< [_&
7. fthres - XV La(wo)”

Ll(‘u)o)

X
8. tures < T sz

Proof of Theorem 3.4 given Lemma D.2. We will first prove the following Lemma, which will
define Ls(wq) and explain its significance.

Lemma D.1. Define L1(wq) as in (4), and define
La(wo) = max{1, L1 (wo), p2 (F'(wo) + 1)} 21
Then we have the following:

1. Suppose u is such that |u —w| < m, where w € L p(w,), the F'(wo)-sublevel

set. Then under Assumption 1.1 (and in particular under Assumption 1.2),

|V2F ()|, < Li(wo).

2. Suppose that uy,us are such that |u; —w|, |us - w| < m, where W € L, p(w,)-
Then
|V2F (1) = V2F (up)] < La(wo) fur —uz].

Remark 8. Note L (wq), La(wo) > 1, and Lo (wo) > Ly (wo).

Proof of Lemma D.1. Recall by Corollary 1 that |VF(w)| < po(F(w)). Now by Lemma 3.1 and
as W € Ly p(w,)» for any u’ with |u’ — | < po(F(11110)+1) < oty Ve have F') < F(w) + 1.
The first part now directly follows by Assumption 1.1.
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Algorithm 1 Perturbed Gradient Descent, modified from Jin et al. (2017).
~ 2dL ’F
E = Ly X < Amax{log( 2l flw) 51
c g3 Li(wp)
Jthres < PEAV, m’ Lihres < 0%7’;2(700)5
upper bounded by cpax in Lemma D.2.

< Tiwo)’ T PLi(wo)’ Jtwes < 7 Es

Here c refers to a small enough universal constant

while True do
if HNVF(wt)H < Gihres then
Wy < Wi, tnoise < ¢ .
wy < Wy + &4, & uniform from B(0, )
s< 0
while s < tes do
Wil ='wt—77VF('wt),s<—s+1,t<—t+1
end while
if F(wt) - F('l.bt
Return wy,
end if
else
Wiy = W —’I]VF(wt), t<t+1
end if
end while

) > _fthres then

noise

The second part now follows by noting the line segment ujus is contained in B(ﬁ}, m) via

Triangle Inequality, recalling w € L, 7 (w,)» and then applying Lemma A.6 and Lemma 3.1.

We now prove Theorem 3.4 by instantiating our framework.

Define € = as we did earlier, and note Lo(wg) > 1. Tt suffices to show for £ < 1, that with

£
L2 (wo)
probability at least 1 — §, we will return w such that |[VF(w)| < & V2F(w) > —/La(w)él in
T = O( L1(wo)max~{2}:’(wo),1}x4 ) _ O( L1 (wo) Lo (wo)? max{F(wg),1}x*

= ) oracle calls.”

Now let the set of interest

S={w:|VF(w)] < gires: V> F(w) = —\/La(wo)eI }.

Note ginres < &, 50 w € S immediately implies | VF(w)| < &, V2F(w) > —/La(wo)EI. Also note it

suffices to show the result for all € < m; otherwise for larger € we can just apply the result for

Thus as Lo (wp) > 1, we can assume € < 1. Clearly, we also can assume WLOG that

_ 1
€= 100L2(wo)"

tlhres >1

As in Subsection 2.3, we make the following definitions for Algorithm 1. For all ug € R?, if
[VE(uo) | > ginres, we let

A(uo) = (uo - nVE (ug),up), hence A; (ug) =uo — nVF (uo), A2(uo) = uo.
Otherwise if |V F(0)|| < ginres> We let po = ug + & where £ is uniform from B(0,r), and define a

sequence (P;)osisty., Via
Di=Di-1— T]VF(pi—l)

‘When then take
A(uo) = (Ptye,» o), hence A; (ug) = py,,.,, A2(uo) = uo.
‘We then have
tihres HVF('U'O)H < Gthres
t =
oracte (%0) {1 | VF(u0)| > ginres-
We also define

A(’U,O) B {fthres : ”VF(UO)H < Gihres
g 'gt2hres : ”VF(Uo)H > Gthres-

"The max{1, F(wo)} is a proof artifact.
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We now establish the crucial Claim 2: for all up € Lppuw, A is a

dL - -
(S, toracte (w0), A(ug), \/%e X, uq )-decrease procedure. (Recall £ = m.)
To do this, we use the following crucial Lemma ensuring high-probability decrease around saddle
points in the F'(wq)-sublevel set:

Lemma D.2 (Equivalent of Lemma 13, Jin et al. (2017)). There exists a universal constant Cpg, < 1
such that the following occurs. Suppose we start with a w € L, p(w,), that is in the F'(wq)-sublevel
set, satisfying the following conditions:

HVF('&))” < Gtees  and )\min(VQF(’l]J)) <=V Lz(’wo)&:.

Now let py = w + (, where € is sampled uniformly from IB%((), r) where r is defined in Lemma D.3, and
let {p;} be the iterates of gradient descent starting from po. Then when the step size ) < Lf&";;jo), with
dLy(wo)

VL2(wo)é

probability at least 1 — e~ X, we have:

F(ptlhres) - F(ﬁ)) < _fthres-

The variables in the above are defined in Algorithm 1. As noted earlier, because we work in the
generalized smooth setting, the details require significant care compared to the proof of Lemma 13 in
Jin et al. (2017).

With Lemma D.2, we have the ingredients to prove Theorem 3.4. First we establish Claim 2.
Proof of Claim 2. We prove this by breaking into the following cases:
* Suppose |VF(ug)| > gires- Then ug = A (ug) = ug — nVF (ug).
Our condition on 7 implies that
1 1
n< < .
Li(wo) = po(F(wo))po(F(wo) +1)

As ug € L p(w,)> We have by Corollary 1,

s =g = 11 )] < (F (10)) < 0 (F(w0)) < ~— s

Consequently, by Lemma 3.1,
F(p) < F(uo)+1< F(wg) + 1 for all p € uguy.
Now by Lemma A.1 and Assumption 1.1,

F(uy) < F(uo) - VF (o) |* +

Ly (wo)n? 2
f”vF(uo)H

< F(up) - 2|7 F (o) |

n
< F(’u,o) - 5 'gl2hres = F(’U,o) - A(’U,O)

* Else suppose ||V F (uo)]|| < ginres- Then g is perturbed, and we consider the sequence of the
next tinres iterates po = o +&,D1, - - -, Ptypee -

Consider the event £ from Lemma D.2, which occurs with probability at least 1 —

%e’x. Under &, for such ug, we have:
2 0

— Either
F(ptmres) - F(UO) < _fthres,
that is
F(ul) = F(pt[hmg) < F(UO) - fthres~
- Or

)\MIN(VQF(UO)) > —\/éLy(wp), hence up € S.

44



dL1 (’Lll())

In all cases, by definition of A, we conclude that A is a (S, torcte (%0), Aug), NG
2 0

e_X7 U())
decrease procedure for ug € Lp p(w,)-

Consider these two cases, and recall the definition of A from Theorem 2.1. Using the
definition of 7, gnres, finres, We obtain for ¢ a small enough universal constant,

—_ 1 . c2&? c3é?
A > —min 1 1
2 2Ly (wo)x* x*L1(wo)
c3é?
> —.
x* L1 (wo)

Combining with Theorem 2.1, and note toracie (o) < tinres < %F(w")} for £ < 1. We thus obtain

the desired oracle complexity of O( L1 (wo) maxg.{zF(w“)’l}X4 ) = O( Ly (wo)La (wo)® max{F(wo),1}x" ) to

52
obtain an iterate in S.8

We finally show the desired probability of success. Through Theorem 2.1, since x > 18 and by
definition of y, we can verify that the probability of failure is at most

dLi(wo) . sup {F(wo) }
\/ Lg(wo)é uel p F(wg) A(’w)
dL1(’wO) o X F('wo)

< o~ c2&2
VIawo)e oS
< yle X 2d L1 (wo)* F (wo)
= 025245
1 2F (wo)dLE (wo)
' CcE2:5

< e_X/
<6.

This completes the proof, assuming Lemma D.2. O

D.2 Proving the key Lemma

We now prove Lemma D.2 to complete the proof. The rest of the proof is similar to that of Jin et al.
(2017), but hinges crucially on the fact that the analysis in Jin et al. (2017) is ‘local’.

Consider any v > 0, and define the ‘units’ in a similar way as Jin et al. (2017), but now in terms of
Li(wg), La(wg) > 0 defined earlier. First let the new ‘condition number’ be x = r(wq) := %

(note this is not the real condition number, but rather is the ‘effective condition number’ of V2F in
LF F(wo))- Now define the following positive reals:

3
8l -3 d/‘i)
=nL 1 —
Fi=1n 1(1”0)L2(w0)2 og (6 :
log( &
Ty = g( 5 ),
ny
2
v -2 d’f)
=+/nL —1 —
g " 1(wO)L2(w0) 8 (5 ’
B -1 d“)
=+/nL —1 — .
£ " 1(w0)L2(w0) 8 ( 1)

Our goal is to prove the following.

¥Note tmres generally does not decrease with F'(wy), and this is why the max{1, F'(wo)} comes in.

45



Lemma D.3 (equivalent of Lemma 14 in Jin et al. (2017)). There exists a universal constant ¢,y
such that the following holds. For any F satisfying the conditions of Theorem 3.4, for any 6 € (0, df]

suppose we start with a point w € L, p(w,) Satisfying the following conditions for some vy > 0, where
G is defined as above:

IVE()| <G and Amin(VZF(W)) <.
Let po = w +(, where { is sampled from the uniform distribution over a ball with radius ——"z=~ gﬁ(dn) =7
r-log( &

and where L is defined as above. Let {p;} be the iterates of gradient descent starting from py.
Then, when the step size 1 < % with probability at least 1 — 9, we have the following for any

L Fo:

Cimax

F(pr) - F(w) < -F1.

Plugging in v = \/La(wp)é, n = Lf‘(“;l‘jo), 0 = %e‘x into the above expressions for

Fi1,F2,G, L, using ¢ < cmax, and directly applying Lemma D.3, we immediately obtain Lemma D.2.
The rest of Section D is thus devoted to proving Lemma D.3.

Remark 9. Note it suffices to prove Lemma D.3 for § and -y smaller than universal constants, as the
result Theorem 3.4 will remain identical under the O(+). Thus we can assume WLOG that log(dr/d)
is larger than some universal constant and that v < 610 Also notice by our choice of step size

n < % and the assumption y < for ¢ < cpax < we obtain

60’ = 12100
k>1,r<1.
This in turn implies
G<L,
Fo > 40,

L <\/nLyi(wo) -

A
L (wo) 4

. 1 1
= 6600 'm‘“{l’ po(F (wo) + 1) po(F (wo))po(F (wo) + 1>}’
where the second line uses that
LQ(’LU()) > Ll(wo) > max{l,po(F(wo) + 1),pO(F(w0))pO(F(w0) + 1)}

As these assumptions come with no loss of generality, we make these assumptions for the rest of the
proof.

To show Lemma D.3, again as in Jin et al. (2017), we prove that the width of the stuck region is not
too large.

Lemma D.4 (equivalent of Lemma 15 in Jin et al. (2017)). There exists a universal constant Cpqy
such that the following occurs. For any § € (0, df], let F' and w satisfy the conditions in Lemma D.3.
Without loss of generality, by rotational symmetry, let e, be the minimum eigenvector of V> F (ﬂ))
Consider two gradient descent sequences {u;} and {x} with initial points u, T satisfying (again,

- _ L
denote the radius r = rlog (2 ))

- é
Uy —w|<r, To=upxpu-r-e, pe|l——=1{.
o - ] 571]

Then for any step size n < Llc("';jo y and any T > %.7—'2, we have:
min{F(ur) - F(uo), F(zr) - F(x0)} < -2.5F.

Now, we prove Lemma D.3 given Lemma D.4.
Proof of Lemma D.3 given Lemma D.4. Recall as per Remark 9 that
1

—w|<r< L —————.
Hpo ” P()(F(’wo) N 1)

46



Also recall w € L p(w,). Thus by Lemma D.1 we obtain for all u € pow that
||v2F(u)HOp < Ly (wp).

Therefore by Lemma A.1,
- - 1( 0) 2 Ly (wo) 2 _ -
F(py) < F(w) + |VFE(w)|r + <F(w)+gr+72 r* = F(w)+ Fi,

where we can readily verify from Remark 9 that Gr + wrz < Fi.

Now let the stuck region be the set of points pg in B(w, r) such that
F(pr) - F(po) > -2.5F1.

Define the unstuck points by the complement of the stuck points.

We upper bound the volume of the stuck region as done in Jin et al. (2017); this step does not use
gradient and Hessian Lispchitzness. Let 1ggyck Region(-) be the indicator function of the stuck region.

Write all w € R? as w = ('w(l),'w(‘l)), where w(!) is the component of w along e; direction and

w1 is the component of w along the orthogonal complement of e;. By Lemma D.4, for any
w e B(w,r),

W/ 12— D w1 |2
V= T it
Vo [@CD —w |

1 Stuck region (w ) dw=1 Stuck region (’I.U ) dw b /

< dwV -2-—5 r

N

Using this, we have:
Volume (Stuck region) = f L stuck region (W) dw
Bd(w,r)

1) W/ r2— oD —w - I)H (1)
= _[Bd—l(w, )151uckreg10n(’w)d’w [ \/W dw

)
< dwP . 2.
/W-lw,r> 2\/"

= Volume(B* (0, 7)) - —=.
(B(0,7)) \/E
Then letting I'(+) denote the Gamma function, we have the following ratio:

Volume (Stuck region) < or Volume (B4~ (0, r))
Volume (B (w, 7)) Vd  Volume(B4(0,r))
L)
Vad T(5+3)
PR L
= md V272

Here we use the following property of the Gamma function: for x > 0

< 4.

T'(z+1) 1
< 1
P T(2+L S T+3.

This directly implies that with probability at least 1 — 4, pg is an unstuck point. Consequently with
probability at least 1 — 6, for any 7' > —F,, we have

F(pT) - F(’&)) = F(pT) - F(po) + F(p()) - F(’lZ)) < —2.5.7:1 + .7:1 = —1.5.7:1 < —.7:1.
This proves Lemma D.3. O

Now we prove Lemma D.4, which we do with an analogous strategy as Jin et al. (2017) by
coupling two gradient descent sequences. We have the following two Lemmas, analogous to
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Lemmas 16, 17 in Jin et al. (2017). Again, the reason why they hold in our setting under generalized
smoothness is because they all concern ‘local’ behavior around points in the sublevel set of F'(wy).
Consequently Lemma 3.1 and Assumption 1.2 ensure we have the required ‘local’ smoothness
properties.

Again define H, Fy () analogously to page 20, Jin et al. (2017), as follows:
L 1
H = V*F(0), Fy(z) = F(y) + (VF(y), 2 -9) + 5 (2 -9) H(z -y). (22)

That is, Fy is a quadratic approximation of F', Taylor expanded about w.
The aforementioned Lemmas are as follows:

Lemma D.5 (equivalent of Lemma 16 in Jin et al. (2017)). Letting ¢ = 11, there exists a univer-
sal constant Cpay < ﬁ such that following holds. For any 6 € (0, d—:] consider F,w,r as in
Lemma D.3. For any ug with |ug —w| < 2r = ﬁf@) define

B

T- min{irtlf{t | o (ur) — F(up) < -3}, é]-'g}.

Then for any n < LZ"DO) we have for all t < T that |u; - w| < 150Lé.

Lemma D.6 (equivalent of Lemma 17 in Jin et al. (2017)). Letting ¢ = 11, there exists a universal
constant Cpgy < ﬁ such that the following holds. For any § € (O7 df] consider F,w,r as in
Lemma D.3, and sequences {u;}, {x;} satisfying the conditions in Lemma D.4. Define:

T = min {ntlf {t| Foy (z) - F(zo) < 371}, é}"z} .

Then, for any 1 < Lf{"&jo), if |ur — || < 150Lé for all t < T, we will have T < ¢Fs. Equivalently, this

means that _
H,}f {t : on(.’l?t) - F(.’L‘o) < —3f1} < ¢Fo,

i.e. that we escaped the saddle point.

Proof of Lemma D.4 given Lemma D.5, Lemma D.6. Choosing cp,x to be the minimum of the
Cmax from Lemma D.5, Lemma D.6, we can ensure both Lemmas hold. Clearly this preserves that

Cmax < 73700
Define _
T* = ¢Fp, T = inf{t : Fyy(ue) — Fug) < -3F }.

We break into cases on 7" versus T*:

o T" < T*: By Lemma D.5, |ur_; —w| < 150L£é. Since £ <

1
5600 po(FlwoyeT) LrOM
Remark 9 and ¢ = 11, this yields

1 1
1 —w|<150Lé< - —————.
2 =] 21 po(F(wo) + 1)

Thus because w € Lf, p(w,), by Lemma D.1, we have
||V2F(u)|| < Lyi(wo) for all u € upr_w.
Thus, recalling G < £ from Remark 9, we obtain

|VE(ur-1)| < [VE()| + Li(wo) [uz-1 - w|
<G+ 1506L1(w0)£ < L +150¢L (‘wo)ﬁ

Therefore, as L1 (wg) < cmax < 1,

lur —w| < Jug—y —w| +n|VE(ur-1)]
<150L¢+ L+ 1508 nLy (wo) L < (3006 + 1)L (23)

Recalling x, log(dd—'“) > 1, the conditions of Lemma D .4 give

luo -] <7 < L. (24)
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Combining (23), (24) and applying Triangle Inequality gives

luze — o] < (3006 +2)L. (25)

Also by.(24), we have |ug —w| < L < m. Thus as w € L g, p(w,), by Lemma D.1
we obtain

HV2F(U())” < Ll(wo). (26)

Moreover, by Triangle Inequality we obtain that for any u € ugurs, we have

1
po(F(wo) +1)

AsweLp F(wo)» Lemma D.1 implies for all such w1, us € ugur that

|u -] < (300¢+2)L = 3302L <

”V2F(’U,1) - VZF(’U,Q)HOP < Hu1 —U2HL2(’[U0).

Now applying Lemma A.2, and by choosing n = —5— for a small enough universal constant
pplyimng y €7= Tlwo) g
¢, we obtain:

F(ur) - F(uo)
< VF(uo)" (urr —uo) + %(UT’ — ) "V F (uo) (ur —uo) +

La(wo)
2

~ . L
< Fuyo (urr) = F(uo) + s = wo|* o - @ + ===

< —3F; + O(Ly(wg)L?)
=-3F + O(\/ﬂLl(’wo)j:l) < -2.5F.

Here we used (26), (24), (25), and that £ < 1 as per Remark 9. In the above, O(+) only hides
universal constants as ¢ = 11 is a universal constant, and so these final inequalities can be
made to hold by choosing cp,x a sufficiently small universal constant.

Since w € L p(w,) and 1 < ﬁ, Lemma A.7 shows that gradient descent will not

increase value (this is essentially the same as several steps the proof of Theorem 3.1,
combined with induction). Thus for all T > 7" and hence for all T' > %.7:2 >cFy > T
along this gradient descent trajectory, we have

F(ur) - F(ug) < F(ur) - F(ug) < -2.5F7.

o T'>T™: In this case, by Lemma D.5, we know |u; — || < 150L¢é for all ¢ < T = ¢Fs.

Define
T" = inf {t| Foo(z:) - F(=0) < -3F1}.

Since |u; —w| < 150L¢ for all t < T* = ¢Fy, it follows that |u; —w| < 150L¢ for all
t <min{T",T*}. Thus by Lemma D.6, we have that min{T",7*} < T*, and so T" < T*.
Applying the same argument as in the first case to the {z; }, we have that for all T > %]—'2
that

F(Z‘T) - F((II()) < -2.5F.

This proves Lemma D .4. O

Remark 10. Note that w € L p(w,) is central to this argument, unlike the Lipschitz gradient and
Hessian case from Jin et al. (2017).
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D.3 Proof of Escaping Saddles Lemmas

Now we prove Lemma D.5, Lemma D.6.

Proof of Lemma D.5. We follow the proof of Lemma 16, Jin et al. (2017). Again, we aim to show
that if the function value does not decrease, then all the iterates must remain constrained in a small
ball. This is done by analyzing the dynamics of the iterates and decomposing the d-dimensional

space into two subspaces: a subspace S, which is the span of the negative enough eigenvectors of the
Hessian, and its orthogonal complement.

The main difference now is that now we cannot directly control relevant operator norms with global
Lipschitz properties of the gradient and Hessian. However, it turns out that the proof of this Lemma
will follow induction on the iterate u;, and consequently we will obtain that all of the prior iterates
uy for t' < t are close enough to w. By a similar argument as in Lemma D.3, since € L p(w,)s
this lets us upper bound the gradient of these points. By the Gradient Descent update rule, this in turn
implies the current iterate is also close to w, and thus we obtain bounds on the relevant derivatives in
terms of L1 (wq), La(wy) for all points in the convex hull of the relevant iterates.

We begin the argument. Analogously to Jin et al. (2017), since ¢ « (0, %] we always have

log (%ﬁ) > 1. By the gradient descent update function, we have

Ut = U — NV (uy).

This can be expanded as:
1
U1 = U — NV EF (ug) - n([o V2F(0(us —uo) +u0)d9)(ut - up).
Recall the definition H = V2F(w). Let A; be defined as:

1
A, = [ V2F(0(us — uo) +uo)dd — H.
0
Substituting, we obtain:
Uty = (I - 77H - nAt)(ut —UO) - ’l’}VF(’U,()) + Ug.
Note we do not immediately have an upper bound on the operator norm of A;. In particular this is
because ¢ could diverge (logarithmically) in the dimension, only being upper bounded by F5.

We now compute the projections of u; — u in different eigenspaces of H. Define S as the subspace

spanned by all eigenvectors of H whose eigenvalues are less than - —7_—. Let S denote the

é log( dT" ) '
subspace of the remaining eigenvectors. Let a; and 3; denote the projections of u; — ug onto S and
S¢ respectively, i.e., a; = Ps(u; —ug), and B; = Pse(uy — ug).
We can decompose the update equations for u;,1 into:
a1 = (I -nH)a, - nPsAi(ur —uo) —nPsVEF (o),

Bis1 =T —nH)B; —nPse Ar(uy —ug) — Pse VF (ug).
By the definition of 7', we know for all ¢t < T":

=3F1 < Fuo(us) - Fug) = VF(uo) " (ue —uo) - %(Ut —uo) H (u; —up)

2
o 1
< VF(uo)" (us —ug) - 7wl + §ﬁtTHﬂt~

2 ¢log (%")
Evidently we have |u; —uo|” = |a|” + | 8¢]°, and thus the above rearranges to

2¢log dr 1
-l < 5 (57 ) ) - LB ) 1B @
Now we control |V F'(uo)|. We use the fact that w € L, p(w,) to give us the necessary control over
this quantity. Similar ideas were used in the proof of Lemma D.4, and will continue to be used in the
rest of the proofs of Lemma D.5, Lemma D.6. In particular, recall as per Remark 9 that

ug-w|<2r<2L —————.
o H po(F(wo) +1)
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Thus by Lemma D.1, asw € cLp, F(wo)s WE obtain

|V2F(w)| < L1 (wo) for all u € uow.

Consequently,
|VE(uo) - VE(w)| < Li(wo) |uo - w| < 2rLy(wo) =2,
which implies
IVE(uo)|| < [VE(w)] +2G = 3G. (28)

This gives us an analogous bound on |V F (uo)]| as in the proof of Lemma 16, Jin et al. (2017).
Substituting this bound on |V F(ug| into (27), we obtain

Gélog (2= Frélog (%) BTHB,élog (4
Iut—uOIQSMmaX{i(&)Wt—uOI, ielog () BIHB: g(6)7||ﬂt”2-

)

In turn this implies

|us —upl| < 14 max

galoi(‘if[ \‘ Frélog (%) Jﬂlﬂﬁtéfg(?)JﬂA ey

’y )

The key induction: Now, we induct on ¢ to prove

|u: —wo| < 148L¢ forall ¢t < T. (30)
Clearly this implies Lemma D.5, upon recalling |up — w| < 2r = 2L < éL£ by our choice ¢ = 11.
The base case ¢t = 0 is evident.

Now for the inductive step, suppose (30) is true for all 7 < ¢ such that ¢ + 1 < T". We show it is true
fort +1.

Due to the above bound (29), it suffices to upper bound |B¢.1 |, B, HB:+1. We note as in the proof
of Lemma 16 of Jin et al. (2017) that letting

0y :=Pse(Ar(uy —ug) + VF (ug)),

we have by the Triangle Inequality and properties of projections that

18:] < 1A op e —woll + [ VE (o) . 3D
Furthermore, we have by definition of the update rule for 8;,; that
Bis1 = (I —nH)B: +nds. (32)
Thus,
|Besa]| < [(T =nH)B| +néy < |Be] +n|HB| +nd:. (33)

Now, consider any 7,0 < 7 < t. We upper bound |A . Rewrite

1
A, - fo (V2F(0(u, —uo) +10) - V2F (1)) A0 + V2F (1) - V2 F ().
Clearly, as per Remark 9,

Uy —w|<2r <2 ——r—— .
| | po(F(wo) +1)

Recalling w € L (w,) and applying Lemma D.1 gives
|V2F (uo) = V2 F (@), < La(wo) uo -] (34)

Moreover by inductive hypothesis, we know that |u, —ug| < 148£¢. Consequently as ¢ = 11 > 1
and following Remark 9, for all § € [0, 1], we have

O(ur —ug) +ug) —w| <2L+148¢LL ———.
1(0Catr — o) + o) ~ ] D
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Since w € L p(w,). it follows by Lemma D.1 that
||V2F(9(uT —up) +ug) - VQF(uO)HOp < Lo(wo)|ur —ug| forall 6 € [0, 1]. (35)
Hence by Triangle Inequality, from (34) and (35), we have
1Al op < La(wo)(fur —uol + [uo —w]) < Lo (wo) (148L¢ + [uo - w])). (36)

Proceeding from here is now exactly the same as in Jin et al. (2017). We detail the argument for
completeness.

Combining (31), (36), (28) and applying the inductive hypothesis and the condition of Lemma D.3
that |ug — | < 2r, gives

1671 < La(wo) (148L¢ + [uo - w]) [ur —uol + [V F (uo)]|

§L2(w0)~1486(148é+ ),c? +3G.

mlog(%”“)

2
Plugging in the choice of £, and choosing a small enough constant ¢, < (m) and

choosing step size 7 < L‘ir(“;’; > gives forany 0 < 7 < ¢:
2 ———
K- 10g S

We now bound |B¢.1|, 8,1 HBr+1, which combining with (29) finishes the induction and thus the
proof.

* In order to bound ||B;+1 |, combining (33) with (37) and recalling the definition of S and S;
gives:

ny
H,Bt+1H < (1 + élog(d;)) H,BtH +3.51nG.

Since ||Bo|| = 0 and ¢ + 1 < T', by applying the above relation recursively, we have:

T T
1Bl < 335[1+ ——| #G<35-3-TnG < 10.5L¢. (38)
=0 clog (T)

log é log( dT'“ )
(one can find an easy upper bound on F based on its definition and check using Lo (wg) >
Li(wg) > 1 that this is the case).

T cF
In the above we used T' < ¢F, which also implies (1 + %) < (1 + L) <3
¢ s

* Now for bounding ,BI +1HB.1, notice we can also write the update equation (32) for B, as:

B ti_:u pH) 5,
As H is symmetric this gives:
Lt B =1 3 3% 8o (1) H (L iH) 51
7120 75—
Thus we have:
BLAHBi < 3 3% 161 (T o) H (T = )60 .
7120 75—
Since for 0 < 79,72 <t we have |[0;—1-r, ||, [6¢-1-r, | < 3.5G as argued earlier, we have:

t

t
BloHBr <3.5%°G% 37 5 |(I-nH)"H(I -nH)™|.

T1:0 7'2:0
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Let the eigenvalues of H be {)\;}. Thus for any 71,72 > 0, the eigenvalues of
(I-nH)"H(I-nH)™ are {\;(1-n\;)™*™}. We now detail a calculation from Jin et al.
(2017). Letting g; () := A(1 —n))* and setting its derivative to zero yields

Vge(A) = (1= nA)" = tnA(1-nA)' " = 0.

It is easy to check that A} =
increasing in (—oo, A7 ].

m is the unique maximizer, and g;(\) is monotonically
This gives:
1

|(I = nH)"H(I - nH)™| = max A (1 -nA) 2 < A(1-pA) 2 g —
i (1+7+72)n

where A = min{/, AZ i, t+ Therefore, we have:

1
1+7 +7o

t t
BiHB1 <3.5°0G% > %

71=0 12=0

To bound the sum note:

t t 1 2t 1
Y = S min{l 47,2417} —— <2t +1<2T.
7_1=07_2=01+7'1 +7T2 D) 1+7

Thus:
3.52L2~¢
log (%)

, B[, HPB.1 into our prior display

Bl HpB1 <2-3.5*0TG” < (39)

Finally, substituting the previous upper bounds (38), (39) for |3,
(29) for ||us — ug|, we obtain:

Gélog (L) \‘ Fiélog () \JﬂIHﬁtélog(dé‘)
v v 7

Jus —upl| < 14 max  Be| < 148L¢.

This finishes the induction, and hence the proof of the Lemma. O

Proof of Lemma D.6. Again, we aim to show that if all iterates from u are contained in a small
ball, then the iterates from zy decrease function value. As with the proof of Lemma D.5, the proof
combines the proof idea of Lemma 17, Jin et al. (2017) with the self-bounding framework. This time
it goes through even easier, because the required new bounds that we need from the relevant iterates
being ‘local’ hold not due to induction, but rather from a direct application of Lemma D.5.

Define v; = x; — u;. By the assumptions of this Lemma we have that vy = £p [%] e where
B}

Kk-log

e [25%, l]. Consequently

)
< v <7 (40)
i Jvo
Recall the definition
H=vVv*F(0)

as per (22). Also define
1
Al = /O V2F (u, + 6v,)d0 - H.

Exactly as in the proof of Lemma 17, Jin et al. (2017), by directly writing the update equations, we
have

Upe1 +Vps1 = Tye1 = L — NV E(24)
=up + v —nVF(up +vy)
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1
=uy+v - nVF(u) - 77([0 VQF(ut + th)dﬂ)vt

=Us + V¢ — ﬂVF(Ut) - 77(H + A;)’Ut
=y —nVEF(u) + (I -nH - nAp)v;.
Hence as u;.1 = us — nVF'(u;), we obtain
Vit1 = (I - T}H - T]Ag)vt (41)
The difference from the proof of Lemma 17, Jin et al. (2017) is now that we do not immediately
have an upper bound on | Aj|,, without global Lipschitzness of the gradient and Hessian. However,
similarly as in the proof of Lemma D.5, we can obtain such a bound using the self-bounding
framework, since the point @ in question is in the F'(wo)-sublevel set Lz p(w,)-
Note by hypothesis on %o from Lemma D.4 and as |vg| < r by (40),
|zo —w| < |luo —w] + [vo] <7+ 7 =2r
Applying Lemma D.5 directly to the {z;} implies that
|z: —w]| < 150Lé forall ¢t < T
By assumption of this Lemma, we have
|y —w| < 150L¢é forall ¢t < T
Triangle Inequality thus gives
|ve]| < 300Lé, |luy —uo| < 300Lé forall ¢ < T

Therefore forall0 < 6 < 1,
u; + v, € B(w, 600LE).
Note as per Remark 9,

600L¢ = 6600L < ———.
po(F(wo) +1)

ASw € L p(w,), it follows from Lemma D.1 that
|V?F (uq + 0vy) - VQF(ut)HOp < Ly(wg) - Ov; for all § € [0,1]. (42)

Similarly, by the above bound
1

u; —w| <150Lé < ———
e | po(F(wo) +1)

and as w € L p(w,), Lemma D.1 proves that
|V2F(ur) - V2 F(@)| | < Lo(wo) Ju; —w].- 43)

Now, rewrite
1
Al = f (V2F (uq + 0v,) - V2F (uy) )0 + V2 F () - V2 F ().
0

By (42), (43), and the above bounds on ||v|, |u; — @], we obtain for all § € [0, 1] that
[A¢lop < L2(wo)(Ollve] + lue = W) < La(wo) L(450¢ + 1). (44)

op —
From here, exactly the same proof as that of Lemma 17, Jin et al. (2017) lets us conclude. We
detail it for completeness. Similar to the proof of Lemma 17, Jin et al. (2017), let S be the subspace
corresponding to eigenvectors of H with eigenvalues larger or equal in absolute value to -y, and let
S* be its orthogonal complement. Note e; € S. Denote the norm of v; projected onto S by v, and
the norm of v; projected onto S* by ¢;.

Notice therefore from the assumptions of this Lemma that ¢g = 0 as v is a scalar multiple of e;.

Similarly, note o = |vo| > ﬁ -7 by (40).
Let

B = nLa(wo) £(450¢ + 1).
Observe B < 1, as LLo(wg) < 1 and as 1 < ¢pax < 127100’ ¢=11.

Combining (41) with (44) gives that
Vo1 2 (L+90) Y — B\ UF + ¢F, drar < (1+ )by + B/ Y7 + ¢3. (45)
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The key induction: Now we induct on ¢ to show that for all ¢t < T,
¢y < 4Bt -y

For the base case, recall by hypotheses of the Lemma that vg is a scalar multiple of e;, thus ¢y = 0
and the base case holds.

Now, for the inductive step, assume that the inductive hypothesis holds true for all 7 < ¢ for some ¢
such that ¢ + 1 < 7. Substituting the inequality (45) for ¢,.1 and applying the inductive hypothesis

¢y < 4Bt - 1)y, we obtain
b1 SABE(1+ )Y + B\J Y} + ¢7.

AB(t+ 1)1 > 4B(t + 1)((1 +ym) P = B\J 7 + fbf),

Also note (45) gives

which rearranges to

ABt(1 +yn)thy <4AB(t + 1)thys1 + 4B%(t + 1)\/9h2 + ¢2 — 4B(1 + ).

Therefore,

i1 <AB(E+1)hepq + (432(t + 1\/Y2 + ¢? + B\/Y? + ¢? —4B(1 + 777)1/&).

Thus, recalling B < 1, to complete the induction it suffices to show the following:

(1+4B(t+1))\/97 + ¢7 <4(1+n) .

. 1 : 11 P . : Cmax
Choosing /Cmax < 50657 min {Tﬂ’ 4&} which is a universal constant, and choosing 1 < Tr(wo)’

we have:
4B(t+1) <4BT < 4nLa(wo)L(450¢ + 1)¢F = 4/nLy (wo)(450¢ + 1)é < 1.

By the inductive hypothesis, this gives ¢; < ¢/;. In turn this implies that

A1 +ym) by > Ay > 2V/2¢ > (1 +4B(t + 1))\ /92 + ¢2,
finishing the induction.

Finishing the proof from here: We thus obtain ¢; < 4Bty < v for all ¢, where we use that
4BT <1 as proven above, which just follows from our choice of parameters. Therefore,

Vet > (L4 ym) - BV, > (1 n %)wt. (46)

The last step follows upon noting B < Lo (wg) £(450¢+ 1) < \/Cmax (450¢ +1)ynlog ™' (%) < .

The inequality is strict as yn > 0.
Finally, recalling that ||v| < 300Lé, 1o > 25% -7 and using (46), we have for all ¢ < T":

300(L-¢) > v

>y
t
>(1+?)w0
o L
2(145) 5o o log ()’ @7

Note that d € (O, d"‘] implies log (%") > 1. Applying (47) for t =T — 1 we obtain:

T<1 +1og(600/<;¢35*1 -élog(%")) -1og-1(1 n g)
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Algorithm 2 Restarted SGD, from Fang et al. (2019)

Initialize at wy, and consider K = (:)(5‘2), n= 6(51'5), B= 6(50'5), & =201 (wo), all explicitly
defined in Subsection E.1.
Let ¢ = 0 (the total number of iterates), k = 0 (the restart counter), z° = wq (the point we consider
the escape from).
while k& < K do
Letz'™! =z' —n(V f(x'; (1) + GA'), where A+ is uniform from B(0, 1) and independent
of everything else, and (1 is an i.i.d. minibatch sample
t<t+1, k< k+1
if |z" - 2°| > B then
20 —xk k<0
end if
end while
Return I%; Z,Ifz"o’l xF

<1+2.01llog (600n\/&6‘1 -élog(d—“)) L
1) n

1
<1+2.01(log(600¢) + 1.01log(dr/d)) - —
v

1
< (— +1+ 2.0301).7-"2 < ¢Fo.
40

These last steps follow by:

* Taking ¢max a small enough universal constant so that yn < L . G < S gatisfies

60 Li(wo) = 60
201 log™* (1 + 2/2), which is valid for all 0 < 2 < 0.02.

* Remark 9, which states that we can assume WLOG log(dk/d) is larger than a universal con-
stant. In particular we can assume WLOG that log(dk/J) solves logz < 299! (hence

log(kV/d6~ log(dk/5)) < 1.01log(dr/d)), that 2.011log(600¢) = 2.01log(6600) <
log(ds/0) (recall ¢ = 11), and that 7, = 252/%) > 40,

This completes the proof. O

E Restarted SGD finding Second Order Stationary Points

Here, we formally prove Theorem 3.5. We formally instantiate Algorithm 2 here. One may notice a
slight difference in Algorithm 2 vs the algorithm of Fang et al. (2019): we artificially inject bounded
noise at a particular scale &. This ensures we can escape saddle points that are in the F'(wg )-sublevel
set L p(w,)- Note we may not be able to escape saddle points that are not in £ g(w,), but that does
not matter thanks to our framework Theorem 2.1, which effectively lets us consider only behavior
within £z p(w,). Also note a practitioner can find such a noise scaling ¢ (depending on suboptimality
at initialization F'(wy)) via appropriate cross-validation.

The general proof strategy here is similar to the way we adapted the proof of Jin et al. (2017) in
Section D. Namely, we use the self-bounding regularity conditions to control the derivatives of F' in
appropriate neighborhoods of the F'(w)-sublevel set L p(w,)-

E.1 Notation and Parameters

We set the parameters of the algorithm as follows. We will highlight the significance of these
parameters in Subsection E.3.

Noise Parameters: Define

o' (wo) = o (F(wo) +1). (48)
& = 20" (wo). (49)

56



Jl(wo) :max{a'(w0)+6,1}. (50)

Note this only depends on pg (and therefore only on p;) and F'(wg). Note & € [0’ (wo), 20" (w)].°
Also note o1 (wg) < 30’ (wy).

Update Rule: Define )
VF(@'5¢1) = V(@' ¢m) + A
Thus the SGD update rule in Algorithm 2 (without considering the restarts) is z'*! = z’ —

NV f(x';Cre1). Note the slight abuse of notation; Vf(z%;(s.1) is not necessarily an actual gra-
dient.'® This will not cause issues or ambiguity for the rest of this section.

Effective Smoothness Parameters in F'(wg)-sublevel set: We define the ‘local smoothness
parameters’ as follows, slightly differently compared to the proof of Theorem 3.4. Define

Ll(’wo) = max{l,pl(F(wo) + 1),p3(p0(F(w0) + 1) + U,(wo),F(wo) + 1)}, (5])
Lo(wo) = max{1, pa(F(wo) + 1), po(F(wo) + 1)* max{4, (51 (wo) + po( F(wo) + 1))} }.
(52)

Note all of these parameters only depend on F'(wy), through p1(-), p2(+), p3(-,-) (recall po(-) can be
defined in terms of p1(-)).

Parameters of Algorithm 2: We define the remaining parameters of Algorithm 2 as follows.
Consider any € > 0 and p € (0,1). We choose:

C = 2LM + 1J10g(247;/a),

log(0.8°1)
5 = \/LQ(’LU())E,
do = 160,
B 0
Lo(wg)Cy’
KO = 0177_152_17
2
)< B . 1 | 3
512max (o1 (wo)2,1)Cy log(48K,/p) 3(1 +1log(Ky))

Also define

24\/d

K, = 210%()77_152_17 thus K = | log(3/p)
n

—085/P) k.
og(0s 1) " U

Remark 11. To choose 7 satisfying the above inequality, one can perform the same analysis as on
footnote 4, page 7 of Fang et al. (2019). We first choose 7} appropriately by setting

B3

n= > )
4096 max (o1 (wp)2,1) log(48/p) log(p)[$ +1]

and then set 1) = 7jlog > (1/7).

Remark 12. Analogously to the proof of Theorem 3.4, note it suffices to show the result for

1. 1 : __ 1 :
€< T(woy’ for e > Ta(wgy® WE can just apply the result for ¢ = and the result remains the

Lo (wo)’

same up to F'(wg)-dependent parameters in the O(+). Thus we can suppose that d (and 0) are at
most some universal constant. We also can take L (wo), La(wo), 01 (wo) to be the max between
their currently definition and an appropriate universal constant. Thus due to the choice of parameters
above, we may assume that

C’l,KO >1,

%In fact, this is the only condition we need on &. In practice, such a & by fine-enough cross validation in
terms of only F'(wo).

'"This choice of notation is made to demonstrate the artificial noise injections A™" are not fundamentally
needed. They are not necessary if the stochastic gradient V f(+;-) enjoys suitable anticoncentration properties.
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log(Ko),01(wo) > 1,

B<min(1 o1(wo) 1 1 )
- )’

" Li(wo)” Li(wo)’ La(wo
<min{1 1}
ns ) Ul(w0)2 .

From here note we have nLi(wg) < 1. As these assumptions come with no loss of generality, we
make these assumptions for the rest of the proof.

Notation: Consider a sequence of iterates z°, 2!, ... beginning at £° comprising an instance of
the while loop in Algorithm 2. For such a sequence, let §* be the o-algebra defined by all the
prior iterates and the noise up through z*, namely o{z°,{;,A* 2!, ... 2" (A} Let Ko be a
stopping time given by
=inf{k>0:|z* - 2°|| > BY.
Ko=int(k>0: |2 -2 > B)

Note z* and lxosks Licy>k are %" -measurable. Thus, lico>k-1 = lio2k 18 %*~1-measurable.

E.2 Result

We now formally prove Theorem 3.5. The following Theorem E.I can readily be seen to imply
Theorem 3.5.

Theorem E.1. Suppose F satisfies Assumption 1.2 and the stochastic gradient oracle satisfies
Assumption 3.1 and Assumption 3.2. Run Algorithm 2 initialized at wy, run with parameters chosen
as per Subsection E. 1.

L (F(wo)+1)TnKo
B2

Consider any p € (0,1). With probability at least 1 — %p , upon making

TnEG(F(wo) +1)
+ B2

A ( 777K§(1;(2w0)+1) )

Ko oracle calls to V f(+;+),

Algorithm 2 will output O candidate vectors w, one of which satisfies

|VE(w)| < 18La(wo) B, Aun(V2F (w)) > -176.

Remark 13. Before proceeding, we justify why Theorem E.1 implies Theorem 3.5. Simply take

€« m in Theorem E.1. Plugging this in, we obtain a result on finding a SOSP as per the

definition in (2).!! The oracle complexity has the desired dependence on ¢ and polylog dependence
on d, p. The probability is at least 1 —p-©(e7%), where the © are hiding polylog terms in d, 1/¢,1/p
and dependence on F'(wq) (through p1(-), p2(), p3(-),o(-)). This holds for any p € (0, 1).

Now consider the final desired success probability 1 -4 governed in terms of be (0,1) in Theorem 3.5.
Let p = 6¢!*% - polylog(d, 1/¢) in the guarantee from the above paragraph. This gives Theorem 3.5,
with the requested probability and oracle complexity.

We now prove Theorem E.1 via our framework, Theorem 2.1.

Proof of Theorem E.1 and thus Theorem 3.5. We again use our framework Theorem 2.1. Consider
any p € (0, 1), and choose parameters as per Subsection E.1.

Let
S={w: |VF(w)| < 18La(wo) B, A (V2 F(w)) > -176}.

Define A as follows, identically to how we defined them for Restarted SGD in Subsection 2.3.
Consider any given ug € R Let py = ug. We define a sequence (p;)o<i<i, Via p; = Pi_1 —
n(Vf(pi_1;¢;) + GAY). Note this sequence can be equivalently defined by repeatedly composing the
function u > u —(V f(u;¢) + 5A).

""Recall this definition refers to w such that |V F(w)]| < e, V2F(w) > —/21.
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If it exists, let ¢, 1 < i < K be the minimal index such that ||p; — po|| > B. Otherwise let i = K. In
either case, we define

1 i—1 1 i—1
A(uo) = (Pm n Zpt)7 hence A; (uo) = pi, A2(uo) = A > p:.
t=0 t=0
We now let
BQ
777K0.

Following the notation from Algorithm 2, notice that A(ug) corresponds to next vector set to z° in
the while loop of Algorithm 2, when the while loop begins at £° = u.

toracle (UO) = Ky, and A =

Crucial to this proof are the following two Lemmas. While inspired from Fang et al. (2019), a crucial
difference is that they hold only in the F(wq)-sublevel set L, p(w,)-

Lemma E.1 (Equivalent of Proposition 10, Fang et al. (2019)). Consider z° in the while loop of
Algorithm 2. Suppose x° € L F(wo)- With probability at least 1 - p, if ¥ does not move out of the
ball B(z°, B) within the first K iterations in the while loop of Algorithm 2, letting T = K%) ZkaO*l z,
we have

|VE ()] < 18La(wo) B, \in(V?F(Z)) > -174.

Lemma E.2 (Equivalent of Proposition 9, Fang et al. (2019)). Consider x° in the while loop of
Algorithm 2. Suppose x° € L F(wo)- With probability at least 1 — %p, if ¥ moves out of B(z°, B)
in K iterations or fewer in the while loop of Algorithm 2, we have

B2
777[(0 '

F(z*) < F(z°) -

Finishing the proof: The main point is to prove the following Claim.
Claim 7. For any uy € L p(w,), Aisa (S, Ko, A, Ep, ug )-decrease procedure.

Proof of Claim 7. Apply Lemma E.1 and Lemma E.2 to the sequence (p; )o<i<k,, recalling that
A(ug) corresponds to next vector set to £ in the while loop of Algorithm 2 when the while loop
begins at 2° = py = uy. By a Union Bound over the events of Lemma E.1 and Lemma E.2, with
probability at least 1 — %p, we have the following:

* Suppose there exists ¢ < K such that p; ¢ B(po, B) = B(ug, B). Let t’ be the minimal such
t. By Lemma E.2, we have

F(Ay(u0)) = Fpr) < F(po) - =2 = Fug) - A.

7’]’]K0
* Otherwise, we have As(ug) = p where p = K%) Z,ﬁoo_lpk. In this case, by Lemma E.1, we
have
As(ug) =peS.
Consequently, Ais a (S, Ko, A, Zp, u)-decrease procedure. O

Now with Claim 7, directly applying Theorem 2.1 and plugging in the relevant parameters,
we obtain Theorem E. 1. O

Remark 14. To sanity check these results, note the rate from Lemma E.2 will get worse as 7 gets

log(3/p) 1] log( 24V/d

smaller because Kyn = 2[10g(0.8_1) =

)52‘ L will increase as 1) gets smaller.

The rest of Section E will now be devoted to the proofs of Lemma E.1 and Lemma E.2. For the
rest of Section E, we suppose F' satisfies Assumption 1.2 and the stochastic gradient oracle satisfies
Assumption 3.1 and Assumption 3.2. These proofs are similar to that of Fang et al. (2019), but hinges
crucially on the fact that the analysis in Fang et al. (2019) is ‘local’.
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E.3 Preliminaries

We now establish useful properties of the parameters of the algorithm defined in Subsection E.1,
analogously to Lemma D.1.

Locality of balls B(z°, B):
Lemma E.3. We have B <

have |u —w|| <

72/)0(},(11”0);1). In particular, for any u € B(w, B) for w € Lp p(w,), we

L <
2po (F(wo)+1) = 2po(F(w)+1)"

Proof. As per Remark 12, we have € < 1. Thus by the choice of parameters in (52),

B< 0 < L < ! .
La(wo) = \/Ly(wg)  2p0(F'(wo) +1)
This completes the proof. O

Control over the stochastic gradient oracle:

Lemma EJ4. For all w such that u ¢ IBS('w, m) for w € Lppu,) we have
|V (u;¢) - VF(u)] < o’ (wo) forall €.
Proof. By Assumption 3.1, we have
|V (u; () - VF(u)| < o(F(u)).
Now as w € L p(w,). We have
1 < 1
po(F(wo) +1) = po(F(w)+1)

Thus by Lemma 3.1 and again as w € L, p(w,), We have

F(u) < F(w)+1< F(wp) + 1.
Combining these gives Lemma E.4. O

Lemma E.5. For all u such that u € ]B(w, m)ﬂ)rw € Lr F(wo) ||V.f(u;¢) - VF(U)H <

a1(wp) for all .
Proof. This immediately follows from Lemma E.4 and the definition of V f(u;(), as H A’ H <g. O

Locality after one step of SGD:

Lemma E.6. Consider any u € B(w, B) forw € L F(wy)- Then for all points p in the line segment

between w and u — 0V f (u;¢) for any ¢, we have p € IB%('w, m)

Proof. It suffices to show u — nV f (u;¢) € B(w, m), after establishing this, the result

then follows by Triangle Inequality and Lemma E.3. To this end, by Triangle Inequality, it suffices to

show that )

| Vi) < s—r——-
” | 2po(F'(wo) +1)
Indeed, the same reasoning as in the proof of Lemma E.3 gives

F(u) < F(wp) + 1.

Thus, Assumption 3.2 gives
|VF(u)] < po(F(wo) +1),
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and so Lemma E.5 gives
|V F(u; Q)| < o1 (wo) + po(F(wo) +1).
As per Remark 12, we have
53 . 1
LQ(’U)O)2 - 2L2('LU0)0‘5.

1 1
<-B*%<—-
7= 2
Combining all the above gives

n|vFu;¢)| < m (o1 (wo) + po(F(wp) +1))
1

0)

: 2p0(F(wo) +1)(o1(wo) + po(F(wo) +1))
1

= 2pa(Flwo) + 1)’

which by our earlier remarks completes the proof. O

“(1(wo) + po(F(wo) +1))

Properties of the effective smoothness parameters:

Lemma E.7. Consider any x° € L p(w,). Then we have | V> F (u) Hop < Ly (wo) for all w such that
either:

» ueB(z°,B),
« Oru lies in the line segment between some u' € B(x°, B) and v’ —nV f(u';{), for any C.

Proof. By Lemma E.3 and Lemma E.6, irrespective of which case for u in the conditions of Lemma E.7

holds, we have
u e IEB(:I:O, 1).
po(F(wo) +1)

Asz0 ¢ L F(w,)» this implies
1 < 1
po(F(wo) +1) = po(F(z0) + 1)
By Lemma 3.1 and as 2° € L, F(w,)» it follows that
F(u) < F(2°) +1 < F(wg) + 1.

The conclusion now follows by Assumption 1.1. O

Ju -2 <

Lemma E.8. Consider any z° ¢ Lp p(w). Consider any uy,uz such that each w;, i = 1,2 is such
that either:

s u; e B(2°, B),
* Oru, lies in the line segment between some u' € B(z°, B) and u' — nV f(u';¢), for any .

Then
HV2F(U1) _ VQF(’U,Q)”OP < LQ('U)())HU] —Ug H

Proof. Irrespective of which condition applies to u;, By Lemma E.3 and Lemma E.6, we have

_ oL
e ]B%(a: " po(F(wo) + 1))

for ¢ = 1, 2. Thus the line segment uius is contained in ]E%('&), m) Aszl ¢ Lp F(w,)» the

result now follows from applying Lemma A.6 and Lemma 3.1. O
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Remark 15. The reason for the second case in the condition on u or #; from Lemma E.7, Lemma E.8
will become clear in the proof of Lemma E.2. In particular, to prove Lemma E.2, we will consider

u -1V f(u;¢) foru e B(2z°, B) where 2° € L1 1 (ay)-
Lemma E.9. Consider any x° € L F(wy)- Then for any u € B(z", B) and any ¢,

[v2f Q) < L (wo)-

Proof. By Lemma E.3, we have

€ 0 —1
¢ B(”” po(F(wo) + 1))'

By Lemma 3.1, because z° € LF F(w,)> We have
F(u) < F(wp) + 1.
Moreover, as 2° € £ F,F(wo) and by Lemma E.4 and Corollary 1,
IVf (O < IVF(w)] + 0’ (wo) < po(F(wo) +1) + 0’ (wo).
Thus the result follows from Assumption 3.2. O

Remark 16. While Lemma E.9 is phrased as an upper bound on the operator norm of V2 f(-;¢),
it can be easily phrased in terms of the local Lipschitz constant of V f(+;¢), similar to one of the
possibilities in Assumption 1.2.

Enough noise to escape saddles: Now we verify that the noise scheme here gives us enough noise
to escape saddle points in the F'(wy )-sublevel set L g, (w,)-

Definition E.1 ((¢*,v)-narrow property; Definition 2 in Fang et al. (2019)). A Borel set A c R¢
satisfies the (q*,v)-narrow property if foranyu € A, ¢ > ¢*, u + qu € A°.

Immediately, we obtain the following properties of this definition, as also noted in Fang et al. (2019).

Lemma E.10. If A satisfies the (q*,v)-narrow property, then for all ¢; € R%, ¢y € R, ¢1 + oA
satisfies the (|c2|q™,v)-narrow property.
We now introduce the following definition:

Definition E.2 (v-dispersive Property; Equivalent of Definition 3 in Fang et al. (2019)). We say

0’1(100)

4Vd

that a random vectoré has the v-dispersive property if for any A satisfying the ( ,'U)—narrow

property, we have

P(€eA) <

DO | =

Note the slight change of the constant % rather than i in the above definition compared to that of

Fang et al. (2019); this subtle difference will appear in the following proofs, although this will not
change too much conceptually.

Now we prove the following Lemma, which shows that our update rule contains enough noise to
escape saddle points:

Lemma E.11 (Dispersive Noise; see also Algorithm 3, Fang et al. (2019)). The update V f (% ¢ei1)
admits the v-dispersive property for all unit vectors v, for any .

Note this does not necessarily hold for the stochastic gradient oracle itself under our assumptions,
hence the artificial noise injection of GA®.

Proof of Lemma E.11. First, we prove that the random vector GA*! satisfies the Dispersive Noise
o1 (wo)

4Vd

property for all unit vectors v. Consider any 4 satisfying the ( ,v)-narrow property. Note we

have
P(GA" e A) =P(A"" e A)
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o1(wo)/4Vd Vol 'B(0, 1)

- G VolB(0,1)
< 01(w0~)/4\/8 . \/—: Jli’lf)o)

Here, the inequality follows from an elementary calculation with multivariate calculus, analogous to
the calculation in the proof of Lemma D.3, which we detailed in full in this article. An analogous
calculation can also be found in Jin et al. (2017), proof of Lemma 14, and in Appendix F, Fang et al.
(2019).

Now, note as & > o’ (wy ), we have

o1(wg) < o' (wp) +0

4o 40

1

< a)

2
and so 1
IE”(&At+1 eA)< 3"

Consequently the random vector GA! satisfies the Dispersive Noise property for all unit vectors v.

Now, we show that V f (x;{s41) satisfies the v-dispersive property as wanted. The proof is analogous
to part iii, Proposition 4 of Fang et al. (2019). Consider any unit vector v. Recall that A* and
Vf(z';{s41) are independent. Since the (¢*,v)-narrow property is evidently preserved with the
same parameters by adding a fixed vector to A, we obtain the following bound on the following
conditional probability:

P(VF(2"5¢1) € AVF("¢01)) = P(VF (@' C1) + GA™ € AV f(2"5¢141))
=P(GA"" e -V f(2";Crr1) + AV (3" Cea1)) < %

This holds irrespective of conditioning, which implies that V f (z';¢141) satisfies the v-dispersive
property. O

E.4 Escaping Saddles

We first aim to prove that we can efficiently escape strict saddle points in the F'(w)-sublevel set,
similarly to Fang et al. (2019). In particular, we aim to prove the following Lemma E.12. The
contrapositive of Lemma E.12 will in turn be used to prove Lemma E.1, which establishes that
Algorithm 2 can find SOSPs.

Lemma E.12 (Equivalent of Proposition 7 in Fang et al. (2019)). Consider a sequence of iterates
x20 xt, ... beginning at x° comprising an instance of the while loop in Algorithm 2. Suppose
2% € L p(w,) and that \yn(V2F (2°)) < =65 for 52 > 0. Then when the while loop of Algorithm 2

is initialized at x°, with probability at least 1 — g we have

ICOSKO:[mJJJKO.

Remark 17. For 5 very small, note the guarantee from Lemma E.12 will deteriorate because K
scales with ;1.

To prove Lemma E.12, we use the same strategy as in Fang et al. (2019). However, as we do not have
global Lipschitzness of the gradient and Hessian, we must be careful. We use that the strategy only
requires control over points that are ‘local’, i.e. near z°, since the proof strategy studies escape from
the ball B(z", B). We then appeal to control over F in B(z", B) that we have by Subsection E.3.

Remark 18. In this section Subsection E.4, probability is over the samples ¢ and the artificial noise
injections A*.

Now we go into the details. As in Fang et al. (2019), let w” (u) be the iterates of SGD starting from a
given u using the same stochastic samples as z* and the same noise additions GA”. In particular

w'(u) =" (u) ~ v (w0 (w); ).
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Thus z* = w*(z?).
Also for all , let Cexic (u) be the stopping time defined by
Kexit(u) :=inf{k >0: ||w"”'(u) —:x:OH > B}.

Thus K:() = K:exn(.’ﬂo).

The high-level idea from Fang et al. (2019), similar to as in Jin et al. (2017), is to consider the ‘bad
initialization region’ around B(z°, B) where iterates initialized in this bad region escape with low
probability. We then prove that this bad initialization region is ‘narrow’, and consequently we can
escape the saddle point efficiently.

In particular, define
SE (2°) = {u e R": P(Kexie(u) < K,) < 0.4}
Note by definition that Sf (z°) ¢ B(z°, B).

a1 (wo)n
) 4vd
a suitable sense.

First let g = . We establish the following Lemma, which verifies that S IB}O (2°) is ‘narrow’ in

Lemma E.13 (Equivalent of Lemma 8 in Fang et al. (2019); also similar to Lemma 15, Jin et al.
(2017)). Suppose the assumptions of Lemma E.12 hold. Let e, be an arbitrary unit eigenvector of

V2F (2°) corresponding to its smallest eigenvalue —0,, < —65. Then for any q > qg = o1 (wo)n

47& and

any u,u + ge; € B(z°, B), we have that
P((Keir(u) > K,) and (Kxir(u + ger) > K,)) <0.1.

Here probability is over the single sequence of samples used to compute stochastic gradients and the
artificial noise injection.

Remark 19. The proof of Lemma E.13 crucially uses that V2F(z°) has a negative eigenvector, as
one would expect.

Note we have, as in Fang et al. (2019), that
24V/d )n_l 51y loa(6/a)  log(65/q)
n 2 T log(1+ndy) ~ log(1+nd2)

This follows evidently from the choice of parameters and definition of g, and Remark 12 which
states that it is enough to show the result for 7765 at most a universal constant, namely one satisfying
log(1+x) > 5. Now using Lemma E.13, we prove Lemma E.12:

K, = 2log( 54)

Proof of Lemma E.12 given Lemma E.13. Given Lemma E.13, we first prove that the bad
initialization region S}?o (x°) satisfies the (qo,e;)-narrow property, i.e. that there are no points

.+ ger €SP, (%) where g g = 201

Fang et al. (2019). If such points existed we would have
P(Kexit(u) > K,) > 0.6, P(Kexit(u + ge1) > K,,) > 0.6.

. This part of the proof is identical to Proposition 7,

This implies
P((Kexit(u) > K,) and (Kexic(u + ger) > K,)) > P(Kexic(w) > K,) + P(Kexit(u +ge1)) — 1
>0.2,
which contradicts Lemma E.13.

From here, we prove Lemma E.12. For this rest of the proof of Lemma E.12, we only consider u
and do not consider the iterates from u + ge;. Recall S EO satisfies the (qo, e )-narrow property with

qo = %\/%0) as shown above. Thus we have for any u € B(z", B),

P(wl(u) € Sﬁo(xo)) = IP’(u—an(u;(l) € SEO(:I:O))

=P(Vf(ui¢1) en ' (-SE (2°) +u)) < (55)

1
>
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The last step follows from the definition of the w” (u), the scale and translation properties of the
(qo,e1 )-narrow property which implies that 7 (—S}?O (%) + u) satisfies the (01(7\780),61 )-narrow
property, and that v f (u;¢1) satisfies the e;-dispersive property by Lemma E.11.

Note as events we have {Kei(w! (1)) < Ko} € {Kexit(u) < K, }. Thus by Law of Total Expectation,
for all u e B(z", B),

P(Kexit(u) < K,) > IP(ICexit(wl(u)) < Ko)
> B[P(Kexit(w" (u)) < Ko|F" ) {w" (u) € (SE (=°))°}]. (56)
Conditioned on w'(u) < (SE (2°))°. we have by definition of Sf (z°) that
P(Kexit(w! (1)) < Ko[§') > 0.4. By (55), for all u € B(2°, B), we have
1
P(wl(u) € S}?O (iIIO)C) > 7
Thus combining with (56) implies for all u € B(z°, B),

1
P(Kexit(u) < K,) > 0.4 - 5" 0.2. (57)

Now consider any N’ > 1. Notice as events,
{Kexic(w) > N'Ko} = { Kot (™™D () > K, }
= {Kexie ™% () > Ko | 0 {Kesc(w) > (N = 1)Ko}
Therefore,
P(Kewi() > N'K,) = E[P(Kewic (@™ D50 () > K[ ) {Kewic(w) > (N = 1)K} .

Note that conditioned on Keic(u) > (N’ - 1)K, it follows that Kexi[(w(N”l)Ko (u)) € B(z°, B).
Therefore P(Kexit(w(N”l)KD (u)) > KO|SK°) < SUDyrep (20, 5) P(Kexit(u') > K,). Using (57), we
can upper bound

P(Kexit(u) > N'K,) < P(Kexit(u) > (N'-1)K,)-  sup )P(Kexi[(u') > K,)

u’eB(z°,B
< 0.8P(Kowe(w) > (N' = 1)K.). (58)
Recall that K = [% +1|K,. Let N = [% +1]. We obtain by repeatedly applying (58)

for N'=N,N —1,... that
P(Kexit(u) > NK,) < 0.8 < p/3.
This gives the desired result. O

Now we prove Lemma E.13.

Proof of Lemma E.13. Again, we proceed similarly as the proof of Lemma 8, Fang et al. (2019).
The main difference is we only have control over the relevant derivatives prior to the escape from
B(z°, B) (recall 2° € £ F,F(w,))- HOwever, it turns out that this is sufficient for the proof to go
through.

Setup. Recall that we have w’(u) = u, and
w* (u) =w" " (u) — 9V f(w" (u); ),
w* (u+qger) =w" ! (u+ger) - v f(w (u+ger); Cx).
Now define the following stopping time:
K1 = Kexit(u) A Kexic (u + ger).
For solely the purpose of analysis, consider the following sequence:

K {wk(u+qe1) —wh(u) k<K

(I-nv2F(2%))" k>Ky° (59

Clearly the 2* are F*-measurable, because the event {k<Ki}is &*-measurable.
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Remark 20. Note unlike Fang et al. (2019), the first case holds when k < /C; rather than k < ;.
That being said we expect that if one uses the exact same definition as in Fang et al. (2019) for the z*,
the proof this generalized smooth setting will still work, with a slightly modified argument compared
to the proof we present.

Notice by definition of w®(u),w° (u+qge; ) and assumption of Lemma E.13 that u, u+qe; € B(z°, B),
we have K1 > 0. Thus,

ZO =qe;.
Controlling the z*. Let H = V2F(z°). We have the following lemma to control the z* from (59).
For all k, define

D" :=v?F(z°) - fol VQF(wk(u) +0(w" (u + geq) —wk(u)))dG, (60)
&i = (VE(w" " (u+ger)) - VF(w" () - (VF (" (u+qer);¢r) - V(" (u);i(r))-
(61)

Recall by definition of w”* (u), we have

VW (u+qer1);Cr) = V(" (u+qer);Cr) + GA”,
VW (w);Ce) = V(" ()i Cr) + AR,

for the same noise sequence A*. Thus we also have

&i=(VEW" " (u+qer)) - VF(w" " () - (V.f (" (u+qer); Cu) - Vf(wk_l(U);Ck)()éz)

Lemma E.14 (Equivalent of Lemma 13, Fang et al. (2019)). We have that for all k < K4,
2= (I-nH)Z"" + D" 125 4 gl
Furthermore, we have the following properties of the D* and {’3 defined in (60), (61):

1. For all such k < K1, we have

)

||Dk_1 H < Ly(wo) max( Hwk_l(u +qe;) —x°

w1 (u) - z°|) < Lo (wo)B.
2. For all k, we have
E[¢h5"] = 0.
3. Forall k < K4, we have
l€al < 2L1(wo)[2*"].

Proof. We prove each part one at a time:
1. For k < K1, using the definition of z¥, it follows that

2" =wh(u + gey) —wh(u)

=" (u+ger) —w" ! (u) - n(V (W (u+ ger); Cr) - V(w0 ()i k)

=25 p(VE(w"  (u+ ger)) - VF (" (u)))

+n[(VF(w" (u+qger)) - VF(w" " (w))) = (VF(w"" (u+qger);¢r) - V(" (w);¢x))]
=21 n[/01 V2F(wh ! (u) + 0(w" ! (u + geq) —w’“”_l(u)))de]zk"1 + ek

=zF 1 n(H - Dk_l)z’“‘1 + 77{5.

This proves the desired property of the 2*.
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2. For the required properties of the D*~!, consider any k& < K;. First, notice w*~!(u) +
O(w* (u + ger) —wh 1 (u)) = 0w L(u + gey) + (1 - O)w* 1 (u) for any 6 € [0,1].
For k < Ky, both w*!(u + ge; ), w* 1 (u) € B(z, B). Note this still remains true for
k = K1 because for k — 1 = IC; — 1 < Ky, the definition of IC; implies that the iterates
wh L (u+ger), w* (u) e B(2, B).

Thus for any 6 € [0,1], w* ! (u) + O(w* *(u + ge;) - w* 1 (u)) € B(z, B), and so all
points p on the line segment between z° and w*~! (u) + O(w" ! (u + ge; ) —w* 1 (u)) lie in
B(z°, B). Thus by Lemma E.8,
1
||D]‘3_1 | = Hsz(zO) - [ V2F (w1 (u) + 0(w" (u + gey) —wk_l(u)))dHH
0
1
< f |V2F (2°) - V2 F (" () + 0(w* " (u + ger) - w* " (u)) )40
0

< La(wo) [ 0wt (s ger) ~2%) + (1-0) (" () ~2°) a0

[ () -2}

< La(wp) max{”wk‘l(u +qey) —z°
< Lg(wo)B

The last line follows since k < 1, hence k — 1 < Ky, thus w* ! (u + ge;),w* ! (u) €
B(z°, B).

3. Next as the stochastic gradient oracle V f(-;{) is unbiased, applying Linearity of Expectation
on (62), it follows that E[¢%|§*~!] = 0 for all .

For the bound on the magnitude of £ Z, again recall by the above that for k < IC;, we have
w (u+ ger), w" ! (u) e B(z°, B).

Thus for all p on the line segment between w* ! (u + ge; ), w" ' (u), we have p € B(z°, B).

Thus by Lemma E.7, VQF(p)H < Ly(wp). By Lemma E.9, for any ¢, VQf(p;()” <

Ly (wop). Recalling (62) gives

€5

<|[VE@" ! (u+qger)) - V(" ()] + [V (" (u+ ger);¢r) - Vf(w* ()i ¢h) |

< 2L (wo) ||wk‘1(u +qer) —wh 1 (u) ”

= 2L1 (wo) ||f&'k_1 || .

In the last step, we used the definition of 2F for k < Ky.

This proves all the desired parts of Lemma E.14. O

Controlling iterates under a high probability event. We now consider a rescaled iteration as
considered in Fang et al. (2019). Recall the definition of §,, > J- in the statement of Lemma E.13.
Foreach £ =0,1,..., we define:

Vi = ¢ (L +10m) 2y

Lemma E.15 (Equivalent of the first part of Lemma 14, Fang et al. (2019)). Define f)k =(1+
10m )"t Dy, and slightly overloading notation, define

Ca=q (L+ndn) €5,
Then for k < ICy, we have ¥° = e, and
I-nH

kel .
T ) VT

vt
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as well as the properties

.k
HD < Lo(wo)B forall 0 < k < Ky,

¢k < 2L (wo) 9" | for ati 1 < k < KCy.

Proof. We prove all the desired parts of Lemma E.15.

* The fact that 1° = e; follows immediately, because 2" = ge,. For the general recursion
for 9*, consider any k < KC,. First note that by the recursion for the z* for k < Ky in
Lemma E.14, we have

PP =g (L +0d,,) R 2

I-nH _ —(k-1) k-1
=— 1+08,,) k1
T, (1+ndm) z
M k-1) k-1 1 k ek
17 g (L +n0,) " F D g (14 b)) e
+775’m
I-nH Iok-1 k
D +
1+775m¢ P 77<d

.k
* Consider any k < KC;. For the requisite properties of D for k < ICy, the upper bound on the
.k
norm of D follows immediately from Lemma E.14.

Next from the definition of ’fl and Lemma E.14, for k < IC; we have that

I¢al < a (1 +ndm) " |€d]
L1+ 775m)_(k_1)

S2L1(’U)0)q 1+776

="
< 2Ly (wo) 4+

This proves Lemma E.15. O

Lemma E.16 (Equivalent of the rest of Lemma 14, Fang et al. (2019)). With the step size n from
(83), there exists an event ‘H, (namely, from (66)) with probability at least 0.9, such that for all
k <min(Ky - 1, Ko) we have

"] < 4. (63)
and 1
eJyp” > 3 (64)
Proof. Define I-nH
k-1 4T k-1
Vs 1+ n5m¢ '

Recall that H = V?F () and 2 is in the F(wy)-sublevel set L (4, ). Therefore, from Assump-
tion 1.1, |H| < L1 (wp). By definition of §,,, it follows that

—(5mI <H< Ly (wo)I

Since nLi(wp) < 1, it follows that the matrix I — nH is symmetric and has all eigenvalues in
[0,1 + 96y, ]. This implies

djk—lH < ||1/}k—1 ” (65)

Note that 1/3’“’1 and 1*~! are measurable on §*~!. This combined with Lemma E.14 and Lemma E.15
implies that for all 1 < k < Ky,

]E[(%Z’k_l)TCZ : 1\|¢k-1us2|3k_1] = Ljgr-1)<2 E[(@T¢ChF ] =0,
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and
e . 14
()¢ gt j<al® < Lot jea - ALF (wo) [97 71| < (8L (wo))>.
Now define the following real-valued stochastic process:

. '(ka_lTk'l ~ k<K
Yy = (4F 1)T<§1”,¢k—1”§21k71<’C1 = {(() V6w k> IC;

Note Y}, is §;-measurable, and that (Q/A)k’l)T, ].H¢k—1”g2, 1g-1<k, = lrex, are all §x-1-measurable.
Thus, by Lemma E.14 and the definition of ¢ Z from Lemma E.15,
E[Y:|Sk-1] = 0.
Furthermore combining the above justification with the trivial case k > Ky, we obtain
[Yi| < 8L (wo).
By the (standard) Azuma’s Inequality, with probability 1 — 0.1/(2K)), for any given I, 1 <1 < Kjy:

l
Z Yk < 8L1(w0)\/ 2l 10g(40K0) < 8L1(w0)\/ 2K0 10g(40K0) <
k=1

where the last inequality follows from the given choice of parameters.

I |

Analogously, by Lemma E.14 and Lemma E.15, we also have for 1 < k < ICy:

E[e¢5 - 1jpe-1)<al ] = 0, e]¢5 - it <ol < 4L1 (wp).

Define
Ykl = BICZ . 1\|¢k—1\|$21k5;c1.
The (standard) Azuma’s Inequality now implies that with probability at least 1 — 0.1/(2K)), for any

given [,1 <1< Ky:
l
1
Z Yk’ < 4L1(w0)\/2l log(4OK0) < —.
k=1 4n

By the Union Bound, there exists an event H,, happening with probability at least 0.9 such that the
following inequalities hold for each I = 1,2,..., Ky:

l
RE
k=1

In particular under the event H,, for any ! < min(K; — 1, Kj), using the definitions of Yy, Y, we
obtain

l

PIR

k=1

< 1, <—. (66)

! !
A 1 1
P h i L < = ‘ > el g,y <2| < o (67)
k=1 N lk=1 n
Now from Lemma E.15, it follows for all k& < &C; that
2
ez [ L-nH Akl g1 k
= +nD +
I e A &
a2 . . . 2 .
= |5 + 20hk-0) Dirtpis + [ Diawt Tt + |+ 20 @)k
12
=[5+ Qi+ Qo + Qs (68)

where we define
u k=1 . 2 .
Q=20 ) D" P Qo= 772HDk—1¢k—1 +ChI1, Qs = 209 TCh.
For k < K1, we have k — 1 < [C;. Thus by Lemma E.15 and (65), we have

Q1 1 < 20Ls(wo) B!, (69)

and

2
Qo < 22| D" Tt | w22 ch)
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<2 Lo(wo)? B2 [0 + 807 Ly (wo) 2|94
<1677 L (wo)? |91 (70)
The last inequality above follows as per Remark 12.

Now we complete the proof. Under the event , from (66), we prove (63) by induction on k (recall
our condition for k for Lemma E.16 is that 0 < k < min(KC; - 1, Ky)).

When k = 0, by Lemma E.15,9° = ey, 50 [#°] = |e1] = 1 < 2 and e]9° = e |* = 1 (recall e; is a
unit eigenvector), proving the base case.

Now for the inductive step, consider some k < min(X; — 1, Ky). Suppose Hz,l)l || < 2 holds for all
1,0 <1<k —1. Then because k < IC1, upon applying the above bounds (68), (69), (70) we have:

k k k
[ < 901" + 22 Quo+ Y Qo+ D Qs
s=1 s=1 s=1

k k koo
<1420 Lo(wo) B|p* | + 160° Ly (wo)? 3 [9° > + 20 3. (4°1) ¢
s=1 s=1 s=1

k ~
<1+42Lo(wo)B-4-nk+160" - L1(wo)* - 4-k+2n Y (> )¢5 Ljpe1)<2
s=1

ko T 1
<1+ 16L2(’UJO)B T]KQ + 27] Z’l/)s_l C; . 1“"/’571“32 <1+1 +27’] 5 =4.
s=1

To upper bound the above, we used our choice of step size 1 < SL zl(q(‘iﬁz)Bz and B < m

Remark 12, our above upper bounds on )15, (2,5, and that the event H,, implies (67).

as per

This completes the induction and proves (63).

With (63), we prove (64). Namely note for k¥ < min(K; — 1, Ky), summing and telescoping the
recursion for 1/1’C from Lemma E.15, we have:

k-1 k-1
elyr =eio+ y neiDp" + ) meiCy
s=0 s=0
k-1 k-1
>1-n ), 2La(wo) By +n ) 1Ca- Ljpe1)<2
s=0 s=0

k-1
>1-n-Kjp '2L2(w0)B'2+7] Z eICfI'l\l'll)S‘lHS? >1-—-—
5=0

[t

>

| N
N | =

8

Here to lower bound the final sum, we used that by = e; and the upper bound on H].l‘ from

Lemma E.15, the fact that we have already established ||4)®| < 2 for all s < k as we showed (63), and
that the event 7, implies (67).

This proves all parts of Lemma E.16. O

Finish. Now we prove Lemma E.13 via the same high-level strategy as the proof of Lemma 8, Fang
etal. (2019). Note on the event {1 > K, }, we have

250 = w’e (u+ge) —we(u) = (W (u +ger) -2°)) - (W (u) - 2°).

Thus by definition of K1, the event {K; > K} implies that

="

< H'wK"(u +qey) —.’L‘OH + ||wK° (u) —xOH <2B.

That is,
{Ki>K,} ¢ {||zK"

<2B}.
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However, consider the event H,,, (66) from Lemma E.16. On the event {K; > K,} nH,, we have
K, <min(K; - 1, Ky), and so by Lemma E.16, we have

1
ejp’e > 3
Thus by definition of 4" and recalling 6,,, > d> > 0, on the event {/C; > K,} nH, we have
HzKo—l 5. Vo ||l Ko 55 ) Ko [Ty Ko @E_B
=q(1+n6m)" Y > qo(1+nd2)" et >QO'q '2—3 )
0
where the last inequality uses (54). This means that
{K1>Ko}nH, S {HzK° > 3B}.
Putting our work together, we see that
{K1>K,}nH,c{|z"°| >3B} n{|z"| <2B} = 2.
Therefore
{K1>K,} cH, = P(K1 > K,) <P(H§) <0.1.
Recalling the definition of K, we conclude Lemma E.13. O

Remark 21. Note we only have e 9* > % for k£ < K1 due to the lack of global Lipschitz bounds on
the graedient and Hessian of F, unlike in the proof of Lemma 8, Fang et al. (2019).
E.5 Faster Descent

Setup: As in Subsection E.4, let K denote the escape time of B(z", B) for while loop of Algo-
rithm 2 when the while loop begins at 2°. In this section, we aim to prove Lemma E.2.

As in Subsection E.4, the difference between Lemma E.2 and Proposition 9 of Fang et al. (2019)
is that this result only holds at points in the F(wq)-sublevel set Lp p(y,). For the rest of this

section, we work under the assumptions of Lemma E.2; thus for the rest of this section, 20 is in the
F(wq)-sublevel set L g (w,)-

The idea here is similar to that of Subsection E.4. At a high level, we have the requisite control over
the gradient and Hessian since the iterates we consider are in a neighborhood of a point z° € £ F,F(wo)-
As in the previous part and as in Fang et al. (2019), we let

H :=v*F(z°),

and let N
= V(b Crir) - VF(2"), k>0 (71)

Note as A**! has mean 0 and as the stochastic gradient oracle is unbiased, we have that for all £ > 0,
E[£k+1|3k] — 0

Let S be the subspace spanned by all eigenvectors of V2 F (z”) whose eigenvalue is greater than 0,
and S* denotes the complement space. Also, let Ps € R and Ps: € R%*? denote the projection
matrices onto the spaces S and S*, respectively. Let u* = Ps(z* —°), and v* = Ps. (z* —z0). We
can decompose the update equation of SGD as:

uk+1 _ uk _ nPSVF(zk) _ 771)‘5’&]64—17
V" =0f P VE(2h) - P s
for k > 0. Clearly u®=0,v"=0.

Now decompose H = UAUT by the Spectral Theorem where U € R%*¢ is unitary and A € R% is
diagonal. Let A denote the diagonal matrix with diagonal entries equal to the positive (diagonal)
entries of A. Let Ay denote the diagonal matrix with diagonal entries equal to the zero or negative
(diagonal) entries of A. Now define

HS = UA>0UT,H5¢ = UAS()UT.
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Thus H s has range in S, and H s: has range in S*. Note H s, H 5. are both symmetric.
From here, define the following quadratic approximations:
1 1
Gs(u) = [’PSVF(:L'O)]TU + iuTHsu, Gs:(v) = [PSJ.VF(xO)]T'U + i'uTHSLv.
Now define the quadratic approximation
G(x) = Gs(u) + Gs: (v) where u = Ps(z - z°),v = Ps: (x - z°).
It is easy to see that
1
G(z) = [VF(")] (z-2°) + 5@~ 2°) H(z - 2°).
For convenience, let
VuF(z") =PsVF(2"), vV, F(z") =Ps. VF(z").
Similarly, let
£u=Pst" &, =Ps:E".

K= IC() A Ko.
Due to its ‘local’ nature around the z° in the F'(w)-sublevel set, we still have the following result
from Fang et al. (2019):

Lemma E.17 (Equivalent of Lemma 15, Fang et al. (2019)). Consider any u € L p(w,), and
consider any x € B(u, B). Then we have

Also denote the stopping time

LQ(’U)())B2
[VF(@) - VG(a)] < =220
Furthermore, for any symmetric matrix A, with 0 < a < m,for anyi1=0,1,...,and j =0,1,...,
2
we have .

||(I - CLA)ZA(I - aA)J ||2 < m

Proof. Notice that for all 0 <6 <1, 0z + (1 - 0)u € B(u, B). Thus as u € L p(w,), by Lemma E.8,
we have
|V?F(6z + (1 -0)u) - V*F(u)| < La(wo) - 0z —ul forall 0 < < 1.
Thus we have
[VF(z) - VG(x)| = ||VF($) -VF(z") - V*F(u)(z —u)||

L[ e -]

'/01{L2(’w0) 0|z —u“}d@H e —ul

L (wo)B?

< 5 .
The second part of the Lemma follows from the exact same proof of Lemma D.5 in Section D. It
is also proved in the proofs of Lemma 15, Fang et al. (2019), and in the proof of Lemma 16 of Jin
et al. (2017). For more detail, let the eigenvalues of A be {\;}. Thus for any 4, j > 0, the eigenvalues
of (I -aA)'A(I - aA)7 are {\x(1 - a\;)™™}. We now detail a calculation from Jin et al. (2017).
Letting g;(\) := A(1 — a\)? and setting its derivative to zero yields

Vgr(\) = (1 -aX)’ —tar(1-aX)™ = 0.

<

It is easy to check that \; =
(=00, Af].
This gives:

|(7 - aA) AT - aA) | = max \i (1 - aXx)"™ < A1 -al)™ <

e +1t)a is the unique maximizer, and g;() is monotonically increasing in

(1+i+35)a’

where \ = min{¢, Alijt-
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Lemma E.18. For any k < ICy, we have

ka” < o1 (wo).

Proof. Note for k < Ky, we have k — 1 < Ky and so £*~! € B(z°, B). Recall furthermore that
z¥ e LF F(wy)- Thus, by Lemma E.5 and Lemma E.3,

|€¥] = [V F (""" ¢k) - V)] < a1 (wo),
as desired. 0

Analyzing the Quadratic Approximation: We now analyze the quadratic approximation G(x) as
done in Fang et al. (2019). First we analyze the part in S:

Lemma E.19 (Equivalent of Lemma 16, Fang et al. (2019)). Set hyperparameters from (8). With
probability at least 1 — p/4, we have

Gs(u') - Gs(u”)

25 48 K,
= Y9G @) + no (wo) (10g(K0)+3)10g( 0)+nL2(w0)234K0
k=0

_ 25’7kz||vG @M + 0.

Proof. We follow a similar strategy as before of combining the proof of Fang et al. (2019) with
our self-bounding framework. To analyze Gs(-) we first consider an auxiliary Gradient Descent
trajectory, which performs the update:

Yy =yF - nvGs(y®), k>0,
0

and y° = u°. y* performs Gradient Descent on G's(-), which is deterministic given z°.

Noting G's has Hessian H g, and that H is the Hessian of F at the point 20el F,F(wo)» WE obtain
from Assumption 1.1 that
|Hs| < |H]| < Li(wo).

Since the following only concern G s, then identically to the proof of Lemma 16, Fang et al. (2019),
we obtain the following:

* By L (wq)-smoothness of G s (recall Gs has Hessian H g), we obtain the so-called ‘Descent
Lemma’:

. , , Lq(w 2
G5 < Gs () + (V0 —yh) + LI pon g

- G5 -af1- 24 jvGs

* Telescoping the above for 0 < k < K-1, and by our choice of  which satisfies L1 (wg) <
as per Remark 12, we obtain

Gs(y*) <Gs(y° )——kZIIVG s@H|”. (72)

To obtain Lemma E.19, we upper bound the difference between 4 and ™. For all k > 0, define

2=k gk

We aim to upper bound z* (in an appropriate sense) using the concentration argument of Fang et al.
(2019):
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Lemma E.20 (Equivalent of Lemma 17, Fang et al. (2019)). With probability at least 1 — p/6, we
have

3B~
k| < 98 L §(:05 73
”Z ” - 32 (6 )’ ( )
and ASK
2" Hs2" < 801 (wo)*n(log(Ko) +1) log(TO) +nLa(wo)*B*Ko » O(c™7). (74
Here O(-) hides F (wo)-dependence.
Proof of Lemma E.20. Clearly z° = 0. From the definitions of 4", y*, we have
2 =2 (VGs(uh) - VGs(yh)) - n(VuF (2") - VGs(u")) - ngy,"
= (I -nHs)z" ~n(VuF (2*) - VGs(u")) - 1€y, k>0. (75)

Unraveling the above recursion gives:
k o k-1 . ‘ ‘
2" ==Y I -nHs)" €&, -n Y (I-nHs)" "/ (VuF(z?) - VGs(w’)), k>0. (76)
j=1 §=0

Setting k = /C, Triangle Inequality gives

K-1
n Y (I-nHs) " (VuF(a') - VGs(uj))H-

j=0

AE +

’C . .
S I -nHg) €]
p

We separately bound these two terms:
* For the first term, for any fixed [ from 1 to Ky, and any j from 1 to min({, /Cg), we have
E[n(I -nHs)' &3] =0, [n(I -nHs)"7¢&,| < noi(wo).
The first equality uses ||§Z‘ H = H’P5§j || and that the stochastic gradient oracle is unbiased.
The inequality uses that P is a projection matrix, &” = |Ps€’|| < o1 (wo) which follows

as j < Ko and Lemma E.18, and ||(I -nHg)" || < 1 which follows as [ > j and Hs > 0.
(Note the importance that j < Ky, which gives us enough control over the noise term 5{;.)

Now to deal with the fact that the above control only applies for certain j, we define a
stochastic process as follows, analogously to our proof of Lemma E.13. For all fixed
1 <1< Ky, define a stochastic process Y; ; over all 1 < j <[ by:

I=j i n(I-nHs) g, :j<K
Vij=nI-nHs) 7€,1; 1k = {0 * sk
Recalling K = Ko A Ko, it’s easy to check that for any fixed [, Y} ; is §/-measurable.

Furthermore, n(I - nH S)Z‘j, 1;_1<x are both %/~ _measurable. Thus combining with the
earlier observations, we obtain that

E[Y.,;187 '] =0, 1Y1;] < now(wo).

Thus, by the Vector-Martingale Concentration Inequality Theorem C.1, we have with
probability 1 — p/(12Ky),

18K,

l
Y.
=1

18K, B
< 2001 (wp) z1og(—°) < 2n01 (wo)y [ Ko log( ) <o D
p

J
The last inequality uses our choice of parameters.

By a Union Bound, with probability at least 1 — p/12, (77) holds for all [ from 1 to Kj. In
particular, with probability at least 1 — p/12 we have for K (recall K < Kj) that

K B
> Yie,
i=1

Ea
where we define Y ; the obvious way. This holds because with probability at least 1 - p/12,

we have the bound (77) on ||Z§-=1 Y, ; || irrespective of which value of 1 <[ < Ky that
takes on. The first equality holds by our definition of Y7 ; for j <1 =K.

<

IC . .
S oI -nHs) ¢
j=1
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¢ For the second term, we have

K-1 K-1
n Z%(I—an)’C‘l‘j(VuF(wj) - VGs(u))| < > |VuF(z7) - VGs(w)]

&

<n HVF(xj)—VG(xj)”
j=0

< nLa(wo)B2Ky < B

a 2 © 32
The first inequality uses the Triangle Inequality and that || (I -nHg)k"1-7 ||2 < 1forj
from 0 to K — 1; this follows because |Hs| < Li(wg) and as n < m The second

inequality uses |Ps(VF(x) - VG(z))| < [VE(z) - VG(z)| because P is a projection
matrix. The third inequality follows from Lemma E.17, and the fact that for all j < K-1,
2/ e B(z°, B). The last inequality uses the choice of parameters.

Combining the above gives (73), the first part of Lemma E.20.

Now prove the second part of Lemma E.20, namely (74). Using the fact that (a + b)" A(a + b) <

2a" Aa + 2b” Ab for any symmetric positive definite matrix A and the recursion (76) for z*, we have
(z’C)TH s2°
o & K-j-1 ' > K-jgj
<o’ Y (I -nHs)* 77| Hs| Y (I -nHs)" 7€,
j=1 i=1

j=

1

+on? ('C (I~ nHs)* ' (VuF(a) - VGS(Uj))) Hs (Kzla ~nHs) I (VuF (@) - VGS(Uj)))
=0 j=0

Ng

<
Il

i 2
= 2|y S HY(I-nHs) €]
j=1
K-1K-1 ) ) .
122 N (VuF(2)) - vGs(w?)) (I - nHgs) " Hs(I -nHs) 7 (Vo F(a') - VGs(u'))
j=0 I=

2
L 2B4 K-1K-1 .
+ 2%% > 2T -nHs) " Hs(I-nHs) .
j=0 1=0

<2

’C . .
n S HY (I -nHs) €]
j=1

The last inequality follows by properties of projection matrices and by Lemma E.17, recalling that
forj <K -1,27 e Bz, B).

Now we bound each of these two terms separately:

* For the first term, for any fixed [, 1 <! < K, again we define a stochastic process for any
J,1<3<Iby:

1/2 1-j¢7 .
o 12,7 I-j¢i N1 n\HG (I -nHs)7&,) j<K
)/l,j —U(HS (I 77HS) é‘u)ljldC—{O( ) 2j>IC.
Analogously to earlier, recalling K < Ky, for fixed [, it is evident that Y7 ; is &7 -measurable,
nH&lg/2 (I-nHg)" 11k is %71 -measurable, and thus
E[Y,;3 ] = 0.
We furthermore have )
2 < no1(wo)
T1+2(1-j5)
which follows by noting for any 1 <! < Ky and j < K < KCp,

12,5

(Y1 -ty 6| <Pl | HY> (0 - B s) s (1 - nH )| 4]
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no(wo)?
T1+2(0-j)
This uses the second part of Lemma E.17, that [Hs| < L1(wo), that j < Ko which gives
||£&|| < o1(wo) by Lemma E.18, and our choice of 7 (which cancels one of the oy (wg)?
factors).

For a given [, by the Vector-Martingale Concentration Inequality Theorem C.1, we have
with probability 1 — p/(12K) that

!
> Vi
j=1

2
48K,

! 1
P )j=11+2(l—j)
48K0)

< 4noy (wo)? log (

<4dnoy (w0)2(10g(K0) +1)log ( (78)

The last step above uses [ < Ky, Zé-:l ﬁ <log(Kp) + 1.

By the Union Bound, with probability at least 1 — %, (78) holds for all [ from 1 to K.
Because 1 < K < K, using the definition of Y] ; for [ < K, we obtain with probability at

_ P
least 1 15 that

< 4oy (wo)? (log(Ko) + 1) 1og(

2

n

K .
S HY*(I-nHg)X ¢,
j=1

K
> Yie,
pi

48K, )

* For the second term, using the second part of Lemma E.17 and that K < K, and then
rearranging order of the sum and performing explicit calculation yields

L 234 K-1K-1 .
2 La(wo) Z Z ” (I- UHS)K_l_]HS(I_ nHS)IC—l—l ”

4 j=0 1=0
Lo(wo)2 B4 Kogl Kol 1

- 4 o0 iz l+g+l
.. La(wo)’B* Q(Ki*” min(1+j,2Ko -1 - j)
<n——— -

4 iz 1+
< nL(wo)*B*Ko
S5

Combining the above two bounds proves (74), the second part of Lemma E.20. O

We introduce one more Lemma, an intermediate step in the proof of Fang et al. (2019).

Lemma E.21. We have with probability at least 1 — p/12 that

303k [V )]
B 16

(VGs(y"),u* -y~) +8no1 (wo)?log(48 Ky /p) + nLa(wg)? B Ky/2.

Proof of Lemma E.21. Let y* = argmin, Gs(y); this exists as G is convex in the subspace S, by
the definition of S. By the optimality condition of y*, we have:

VuF(2%) = -Hsy". (79)
Let ;F/k = y* — y*. From the update rule of y* and the optimality condition (79), we obtain:
Hsy" =vGs(y").g"" = 9" - nHsy". (80)
Consequently, using (80) and (76), we have:
(VGS(Z/C),UK - le)
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= (y’C z’C>HS
& et gk ok k k
kzl( &y )HS(I—UHS)’C"““ _77];)@ VuF'(27) - VGs(u )>Hs(1—an)’C'k'

Now we bound both of these sums in a manner similar to the proof of Lemma E.20:

* For the first term: For any fixed [, 1 <[ < K, define a real-valued stochastic process for any
k, 1<k <min(l,Ky) by:

~k-1 ¢k
o , Y k1 k<K
Yi,k _ (yk 1>§Z)Hs(Ians)L‘k“ Tpo1<fc = {éy £u>Hs(I 1H g )l-k+1 e

Analogously to earlier, recalling K < Ko, it’s easy to check that for any fixed [, Y} 1, is "
measurable, and that all terms defining Y} j, are %*~1 measurable except fﬁ Thus,

E[Yi.[§* '] =0
We furthermore have for any fixed [,1 <l < Kpand k,1 <k <1,

T
[Vikl” < o1 (wo)?*[VGs (" )]
To justify why the above holds, clearly this is evident for k& > /C. For k < IC < Ko, note that

. 2
|<H3 k- 1,€Z>|(I nH g)l-k+1
(VG

< o1 (wo)?| VGs () [P (I - nH )|
SU1(“’0)Z”VGs(yk71)”2.

2 ~f—
Vel = (5" 1a§ﬁ)Hs(I—nH5)l*k+1

Here we used that H g is symmetric, that (80), that HI -nH fg’”l H < 1 which we have argued
earlier in the proof of Lemma E.20, and that ||£,fj” <o1(wo) as k <1< Ky by Lemma E.18
and properties of projection matrices.

Now for any [, 1 <[ < Ky, by the Azuma—Hoeffding inequality, we have with probability at
least 1 — p/(12K)) that

-1
< \J 2201 (wo)2 log(24K,/p) 3| VGs(y*)| .
k=0

!
N> Yk

k=1

Taking a Union Bound, it follows that with probability at least 1 — p/12, the above holds for
all l with 1 <[ < K.

Because 1 < K < K always holds, using the definition of Y} ;, for k < K, we obtain with
probability at least 1 — {5 that

Hs(I nHg)k-k+1

K-1
< \j 2101 (wo)? log(24Ko/p) Y. [VGs(y*)|
k=0

1i + 801 (wo)? log(48 Ko /p)

where we used AM-GM in the last step. This holds because we have this upper bound on
|Z§€:1 Y, k| irrespective of which value of [,1 < [ < K that K takes on. The first equality
holds by our definition of Y ;, for k < K.

¢ For the second term: note

K-1

nkz:(y VUF(Z ) VGS( k))Hs(I -nHg)K-k
0
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&

i ngk

= 3 (VGs(y'C% VaF(@") - VO () 1y

??
,_.o

<1 3 VGO || VuF (=) - Vs (uh)]
k=

0
N |vGs )|

< 8 +2n Z |VuF(@*) - vGs(uh)|
-1 K
< UZk:O ||vfs(y )H LQ('LUO)2B4K

The first step above uses that H s is symmetric and (80). The second step uses that £ < K
and that | I - nH s| < 1, as argued in the proof of Lemma E.20. The third step uses AM-GM.
The last step uses that /C < K and Lemma E.17; for k < K, we have z* ¢ B(z’, B).

Combining these above two bounds proves Lemma E.21. O

Now we finish the proof of Lemma E.19. As done in Fang et al. (2019), we combine Lemma E.20,
Lemma E.21 with (72) to prove Lemma E.19 as follows. In particular, taking a Union Bound over the
events from Lemma E.20 and Lemma E.21, we obtain with probability at least 1 — p/4 that

Gs(0) = Gs () + {9Gs (). ~9F) + L (0 -y ) HE@E )

1
<Gs(y™) + (VGs(™) u -y") + S (" -y Hs (" -y")

<Gs(y’c)+* ZHVG oIl

+ 47701(100) (log(Ko) + 3) log(48Ko/p) + La(wo)*nB* Ko.

Here the first two lines used the definition of G and S. The last line above applied Lemma E.21
together with the second part of Lemma E.20.

Now combining the above with (72), we obtain

31
Gs(u) <Gs(™) + ¢ ZIIVG W)’
+ 41701(wo) (log (ko) +3) log(48Ko/p) + La(wo)*nB* Ko
0 25 K-l k12
<Gs(u’) - 22 3 [vGsyh)|
32 (=
+4noy (wo)? (log(Ko) +3) log (48 Ko /p) + L2 (wo)? B* Ko,
where we also used y° = u”. This proves Lemma E.19. O
We now analyze the orthogonal complement of S, S* as in Fang et al. (2019), where the
analysis again goes through since the iterates are ‘local’, being prior to the escape time K:
Lemma E.22 (Equivalent of Lemma 18, Fang et al. (2019)). Deterministically, we have:
K 0y _ w A ky |2 24, 72
GSL(v ) < Gsi(’U ) - Z n(VGSL(v;C,l),&,) - § Z HVGSL(z )H + L2(w0) B 77K0
k=1 k=0

Note by choice of parameters that Ly(wo)?B*nK2 = O(e'®), where again the O(-) hides F(wy)-
dependence.

Proof. By definition of G s., and using definition of S* which implies H s. < 0, we obtain

}(vku _ vk)THgl (,Uk+1 _ ,Uk)

Gs: (vk“) =Gs: (vk) + <VGSL (vk) R han vk> ty
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<Gs: (v7) +(VGs: (v) 0 —oP)
=Gs: (V) = n(vGs: (v*), Vo F(z*) +£")
= Gs: (v) - | VG @) - (19Gs: (v%), Vo F(a") - VGs: (v*))
-n(VGs: (v"). &)
<Gs: (v) ~n(vGs: (04),€51) - 2 [vGs 08| + 20| 90 F @) - ¥Gs: (o))"
The last step uses AM-GM.

Substituting and telescoping the above for & from 0 to /C — 1, we have:

Gs: (v")
K 77 - 2 K-1 2
<Gs:(0”) = Y (VGs:(vF7),€5) - 3 ZHvG&(mk)” +2n Y | Vo F(z") - VGs: (vF)]|
k=1 k=0 k=0
X n L 2BnK
<G - (TG (0.5 - TS w0 ()| 20 B0,

=
Il

1

Eo

Here, the second inequality uses that by Lemma E.17, for all k < K - 1, we have 2* ¢ B(z°, B) and
)

|90 F(@) - G (1] = [P, (VF@") - V(@) | < [P - vy | < 2200

This completes the proof. O

Completing the Proof: Now we have all the ingredients in hand to prove Lemma E.2.

Proof of Lemma E.2. Again, we follow the strategy of Fang et al. (2019) and adapt it to our setting
here where we do not have global bounds on the Lipschitz constants of the gradient and Hessian.
With Lemma E.19 and Lemma E.22 in hand, the idea will be to show

Ko-1 e ll2 Ko-1 B2 ~
S [v6s @ + S [vGs@h = ),
k=0 k=0

and to bound the noise term

K
= 2 (VG (v" 7). &)

k=1
We break the proof of Lemma E.2 into two cases:

1. ||VF($O)|| > 50’1(’[,00).
2. |[VF ()| < 501 (wo).

Case 1: This case is more straightforward as the gradient is large, and will not use the quadratic
approximation we developed earlier.

Consider any k,0 < k < K - 1. Thus 2* € B(z°, B), and so u € B(z°, B) for all u € z0z*. By
Lemma E.7, as 2° € L p(y,), We have ” < L1 (wg) for all such u. Thus as HVF(:I:O)H >
501 (wo) and by our choice of parameters,

[VE@E")| > |[vF(@%)| - |[vE (") - VE ()| > 501 (wo) — L1 (wo)B > gal(wo). (81)

k+1

Similarly, as 2"*! = ¥ -V f (2*; 11 ) and again as 2° € LF,F(w,)» We have ||V2F(u)|| < Li(wg)

for all u € zFz*+1 by Lemma E.7. Applying Lemma A.1, for all 0 < k < K — 1, we obtain:

F(z*1) - F(z*) < (VF(z"), 2" - 2¥) + L1(2wo) |+ _$k”2
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2
= |vFEH)| - n(vF(@E"),E) + %Hvﬂmk) e
< | VEGE")|) - n(VE @), €Y + Ly (wo)n? | VE @) + Ly (wo)n? €.
< 77(‘%2 + %)HVF(ﬁk)”z + 27701(1-00)2 + Ly (wo)n’o1 (wo)?

25
< —37277||VF(:1:’“)||2 + 200>,

25 8 B2
<-nl—-— F .
- 77(32 81) [vF @]
Note here that we need to consider a bound on the Lipschitz constant of the gradient between
and z*; see Remark 15. Here, we used the update rule of SGD, AM-GM and Young’s Inequality,
that L (wg)n < = by our choice of hyperparameters, Lemma E.18, and finally (81) in the last step.

K-1

16
Telescoping the above inequality from k = 0 to I — 1, we get:
25 8 \K& 2
F(z’c)—F(a:O)s—n(———) M vE@EN| (82)
32 81/ =

To upper bound the right hand side above, note by Triangle Inequality that

K
xlC_xO+nZ€k
k=1

c
n > &
k=1

By the Vector-Martingale Concentration Inequality Theorem C.1 and the bound ||§ k || < o1 (wo) for
all k < K by Lemma E.5, we obtain with probability at least 1 — p/12:

K B
‘ ny &* < 2no1 (wo)/ Ko log(48/p) < 6 (84)
k=1

Here, we used the fact that 1< = 1;-1<x and consequently 1<k is %% 1-measurable, and that
E[¢¥3* ] =0, [€¥| < o1 (wo) forall k < K.

K-1
n Y, VF(z")
k=0

K-1
5 ety
k=0

> 2" - 2°| - ‘ . (83)

Ko &
n Y & <k
k=1

Suppose the above event implying (84) occurs, which has probability at least 1 — %. Under this event,
suppose that z* is able to leave the ball B(z°, B) in K|, iterations or less. If this is the case, then we
have K = Ky < K, and so ||:1:’C ~z || > B. Thus conditioned on the aforementioned event implying
(84), if 2* is able to leave the ball B(z", B) in K, iterations or less, we obtain

2

1( 1 )2>15232 152 B2

>—|B-— > > ,
16 1629k~ 162nK,

S IvrEh)’ 1”2 P(a*)
\V4 ’ > — \V4 ’
nk:o v nk 1<=077 v nk

where we combined (83), (84) to lower bound H Zf;ol ﬂVF(:l:k) ” Here the first step holds by the
elementary inequality ”Zé:o aZ-H2 <1y} o]ai|?. and the last step uses K > K.

Consequently by combining with (82), with probability at least 1 - 3, if z" is able to leave the ball
B(z, B) in K, iterations or less, we have

25 8 ) 152 B2 <
32 81) 162K,

B2
T

F(¥) < F(z°) -( F(a)

Case 2: Suppose ||VF(:I:0) H < 501 (wp). To obtain the desired result, we first define and prove the
following Lemmas. Proving these Lemmas in turn utilizes the Lemmas on quadratic approximation
we have established earlier.
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Lemma E.23. Forall 0 < k <K -1, we have

11
||VG§L (’Uk)H < ?0'1(100).

Proof. By the condition in this case, properties of projection matrices, and as v° = 0,
[VGs: ()| = [VoF(z°)| < |[VF(z")| < 501 (wo).
Note for k£ < K — 1, we have
Hvk —’UO” = H’PSL (z" —xO)H <B.
Thus
[vGs: ("] < |[vGs: (@) + |[vVGs: (vF) - VG5 (0°) |

< 50’1(11)0) + Ll('wo)B
11

< —o.

The above uses our choice of hyperparameters, and that

|vGs: (") - vGs: )| = |Hs: (v* -v°)|| < |H]| ||v’C -v

which in turn follows because z° € £ F,F(wo) and by Assumption 1.1. O

The next Lemma is obtained by combining Lemma E.19 and Lemma E.22, and it gives us
a way to upper bound F(z*) - F(z°).

Lemma E.24 (Equivalent of Lemma 19 in Fang et al. (2019)). If ||VF(:1:O)H < bo1(wp), with
probability 1 - &, we have

K O X k— 1 3 1 B2
K-
™ 2 257]
oy ZH GSL(U’WH TS vGs 6
k=0 k=0

Proof. For k < K — 1, we have z* € B(z°, B). Consequently the entire line segment z°z* lies in
B(z°, B). As z° € L, p(w,). by Lemma E.7, we have

|VE(@") - VE(=®)| < Li(wo) |2 - 2°| < Ly (wo)B.
Thus by our choice of parameters, as per Remark 12,
11
[vE @] < [VF@E)] + |[VF(") - VF ()] < 501 (wo) + Ly (wo) B < o1 (wo).

Recalling ||§ K H < o1(wp) by Lemma E. 18, we obtain from our choice of parameters as per Remark 12

- _ 13 B
|z" - 2% < |20 - 2" + 9| vE@E ) + €5 < B+ ?7701(’100) <B+ 00" (85)
Using this, we then bound the difference between F(z") and G(z*). As 2 = 2! -
NV f(@® 1 ¢k), as 7 e B(2°,B), and as ° € L p(w,), We have |V2F(u) - V2F(z%)| <

Lemma E.8. Applying Lemma A.2 and recalling that
Gs(u’) + Gs: (vF) = G(2* - 20), we obtain

Lo(wg)B?
—

Here, we used (85) in the last steg)C Note here that we need to consider a bound on the Lipschitz
constant of the Hessian between £~ and ; see Remark 15.

F(x®) - F(z°) - Gs(u®) - Gs: (v) < M”ﬂc’C —:|90||3 < (86)
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Now, take a Union Bound over Lemma E.19 and Lemma E.22. We now add the bounds from
Lemma E.19 and Lemma E.22 to upper bound G's (u*) + Gs: (v*) and use that G s (u®) + Gs: (v°) =
0. Combining with (86), we obtain with probability at least 1 — p/4 that

F(z5) < F(z°) - nz(vcsl(uk 1).€5) + dnor (wp)? (1+3log(K0))log(48)
k=1

25 3Lay(wo)B*nKy  La(wo)B?
R
k=0
Note by our choice of hyperparameters (analogous to the choice of hyperparameters from
Fang et al. (2019)), we have the following bounds: 4nc;(wg)?(1 + 31og(Ko))1og(%8) <

B2 3Lo(wo)B*nK, < B2 Lo(wo)B® < B2
256m Ko’ 2 = 128nKy’ 5 = 80nKo*®

Combining these above inequalities with (87), with probability at least 1 — p/4, we obtain

i 3 1\ B?
F K <F 0y _ Gs: -1) 5 orp 0 ) 1
() < F(2°) n’;(v s1(Vg-1),€ >+(256 + 80)77](0

K- 2
-2 vas - 2T s

k=0
This implies Lemma E.24. O

By Lemma E.24, we want to lower bound the gradient norm of Ggsi,Gs. We do this in
the following Lemma, assuming z* leaves the ball B(z°, B) in K|, iterations.

Lemma E.25 (Equivalent of Lemma 20 in Fang et al. (2019)). With probability 1 - £, if x* exits
B(z°, B) in Ky iterations (i.e. K = Ko < Ky), we have

7 ZHVGSL(D )|+ ZHVGS( )

”2 16982
512nKg

Proof. At a hlgh level, the proof 1dea is similar to the proof of Case 1 earlier. Telescoping the
recursions v* = v¥71 — ¢k — v, F(z*) and y* = y*~1 -V Gs(y"*), we obtain

K-1

n Y (VGs:(v*) + VGs(y"))
k=0

-1 KZ_ZI(VGSL (") + VGs(yk))H

‘ k=0

K-
= |v* -v +nZ( M- VGsi(0F) + Vo F(2")) + 9~ —4°

K-1 H

\%

-1
K_o04p Z§§+1+(u’c—u0)—(z’c—zo)
k=0

Here, we used that z¥ = u* — y* and the Triangle Inequality.

Next, recall z¥ — 2° = u* + v* for all & > 0, and w° = v° = 0. Thus ¥ — 2° = v* - v° + u* — u°.

Furthermore notice

n Y (VGs:(v") - Vo F ()]

k=0

VGsi(v*) - Vo F(z") = HSL(VG(wk) - VF(:IIk)).
For all k < K - 1 we have 2" € B(z°, B), so as 2° € L (y,), Lemma E.17 gives

Lo(wo)B?

nlcil(VGsx(vk)—VvF(a:k)) 5

k=0

S?’]KQ'

Applying these observations and Triangle Inequality again, we obtain

-1 K KoL B2
‘nz(va&(vk)waswk)) S I T horsy =GO
k=0 k=1
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> ot -2 - [ -2 - 5 (88)

\zsv

and Lemma E.17 combined with the fact that projection matrices do not increase norm and that
z* e B(z°, B) for k < K, and the final statement is by the choice of hyperparameters.

Using Lemma E.20 and that 2° = 0, we obtain with probability at least 1 — 15 that
K_,0 ” P 3B
32"

Now recall that 1p<xc = 1x_1<x 1S %*~1-measurable, which implies
E[&5 1 (kercy[8°71] = 0

as the stochastic gradient oracle is unbiased. Furthermore, recall ||.£k|| < o1(wp) for k < K, and
projection matrices do not increase norm. Thus by the Vector-Martingale Concentration Inequality
Theorem C.1, with probability at least 1 — £, we have

12°
K i Ko .
Uqu = angvl{de}
k=1 k=1

Thus taking a Union Bound over the events implying (89), (89) and combining with the earlier display
(88), with probability at least 1 — &, we have

|2 - (89)

4 B
S2770'1(’LUQ) Ky 10g( 8) 16 (90)

nz’vasmv'fwcg(yk) > o -2 - 2.

k=0

Thus with probability at least 1 — %, if z* exits IB%(:L'O, B) in K, iterations (that is, if we have Ky > K),

we have
K-1

n Z VGSL(vk)+VG3(yk) 2||:1:'C x0||—§23—§,
k=0 16 16
and so
2
n Z [vGs: @)+ Z [ves@h)| > Hn S (VGs: (v°) + VGs(yh))

o1 (B_g) _169B%  169B°
~ K 16 ) 512K ~ 512nK,’

2
In the first step above we used the elementary inequality ||Zé:1 aiH <IY |a; H2 and Young’s
Inequality. This proves Lemma E.25. O

We now combine Lemma E.24, Lemma E.25 to prove Lemma E.2. First recall by Lemma E.24, with
probability 1 — p/4, we have

& 3 1\ B?
F®) <) -1 N (V6 0 D6+ (555 ) o
— 25
S vGs M - 20 fraswhl” o1
k=0 k=0

We first control Zle (VGSL (v* Y, {,’f) by concentration. For all k£ from 1 to K, note

E[n(VGs: (v" "), €0 Learc|Fh-1] = 0
because 1x<xc = 1x_1<ic, so all terms in 77<VGSJ. (vk’l),ﬂf)lkgc except Eﬁ are §*'-measurable.
Furthermore, by Lemma E.23 and Lemma E.18, for all k£ < X, we have

” < 117701("1)0)2

[n{vGs: (@), &) 1iex
2
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and
E[{UWG& (Uk_l),€§>1ksic}2\3k_l] <n’o1(wo) i<k [VGs: (Uk)”Z-

Taking § = m in the Data-Dependent Bernstein Inequality Theorem C.2, we obtain with

probability at least 1 — £,

K
> -n(VGsi ("), €8)

Ko

~(VGs: (0" 1), €0 Lperc
1

s 1lnal(w0)210g(?>l<>gpﬂfo>) \}n o1 (wp)? Zuvcsl(vk)u lo (?ﬂogpﬂftﬁ)

92)

El
I

We upper bound each of these terms in the maximum. With our choice of parameters and one
application of AM-GM, we have

3log( K B?
llnal(wo)Qlog( 8 0)) < 007Ky’
and
R 3log( K, 3log( K, K= 2
4J Pa? Y WG&(leog(g}Eo)) S3210g(g]§0))7701(w0)2 1 Z [vGs )
k=0 =
B2 nlC—l fex 112
< —= Gse
3k, * s 2 1V0s 00

Consequently the second upper bound dominates the maximum from (92). Substituting the above
into (92), with probability at least 1 — <, we obtain

X

S (TG (1)) < 2

T]IC
& 32K, éZHVGS* )

Combining with (91), we obtain with probability at least 1 — 1—’2’ that

F@) - F@") < (5o + 5o+ 312)3——— 2||VG (M) -2 ZHVG W

Taking a Union Bound with the event from Lemma E.25, we obtain with probability at least 1 — 5 3p,
if ¥ moves out of the ball B(z, B) within K| iterations (i.e. K = Ko < Kj), then

3 169 3 1 1\ B? B?
F(mKO)—F(mO):F(z’c)—F(acO)s—(f- _ 5 1 )7<— .
4 512 256 80 32)nK, Tnk,
This proves Lemma E.2 in Case 2.
Combining Case 1 and Case 2, we obtain Lemma E.2. O

E.6 Finding Second Order Stationary Points

Here, we finish the proof by showing with high probability, if the algorithm does not escape B(z°, B)
in K iterates, then the average of the K iterates is a SOSP. In particular, we aim to prove Lemma E.1.
Here is where Lemma E.12 is used. In the following, we define £” as in (71). Furthermore, note the
proofs of Lemma E.17 and Lemma E. 18 still go through under the conditions of Lemma E.1, so we
may apply those Lemmas in our proof here.

Proof. We adopt the proof strategy of Fang et al. (2019) in a similar way as we have thus far.

84



* By Lemma E.12, with probability 1 — £ (namely if the event (66) from Lemma E.12 occurs),
then if Ayix (V2F(Z)) < —d3, ¥ will move out of the ball B(z°, B) within K iterations.
By taking the contrapositive, we see that with probability 1 — 5, if ¥ does not move
out of the ball B(z", B) in K| iterations, then Ay (VZF(z")) > —d5. In this case, we
have z* € B(2°, B) for all 1 < k < Ky, so Z € B(z’, B). Thus by Lemma E.8 and as

:1:0 € ‘CF,F(wo)’
)\MIN(V2F(E)) 2 )‘MIN(VQF(xO)) - L2('w0)”5_x0H > =05 = La(wo) B > -170,

where the final inequality follows from our choice of parameters. That is, with probablllty
1 - 2, if 2* does not move out of the ball B(z°, B) in K| iterations, then Ay (VZF(Z)) >
—17(5

* To complete the proof and show Z is a SOSP, we will show that |V F(Z)| is small. To this
end, we upper bound Kio H Ziiol £k H using concentration. In deriving this bound we do not
yet suppose that z* does not move out of B(z®, B) in its first K iterations. Consider

As 1 1<k, is §¥~1-measurable,
E[€" Lherc, [ =
Furthermore by Lemma E.18, for k£ < Ky we have

€7 Lierco | < o1 (wo).

Thus the Vector-Martingale Concentration Inequality Theorem C.1 gives with probability at

least 1 — 2p/3 that
201 (wg)+/ Ko log(6/p
Lesico || < (10) % (6/p) < Lo(wo) B
0

93)

The last inequality follows from our choice of parameters.

Now conditioning on the above event implying (93) which occurs with probability at least
1 - 2p/3, suppose z* does not move out of the ball B(z°, B) in K|, iterations. Then we
have Ky > Ky, and so from (93), we have

Ko

Z f 1ksl€o

k=1

< Lz(wo)BQ.

Furthermore, if £* does not move out of the ball B((IIO, B) in K iterations, then we have

T ¢ B(z°, B). We find an upper bound |VF(Z)|>. We again consider the quadratic
approximation G(z) at z° defined in Subsection E.5, and follow the notation from there.
Noting G(-) is a quadratic and so its gradient is a linear map, we obtain

1 Kop-1 i
|G<m>|=‘K > e
1 Kp-1 Kp-1
z VE (M) + ||— > VG(xk)—VF(xk)‘
0 k=0
_ L Ko-1 _ k k k
= el Z& Z VG(a") - VF(2")
B k Lg(’wo).B2
o TR
16 1 2, O
< (Ol )LQ('LUO)B KO ];& .
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Here we used the choice of parameters, that ¥ € B(z°, B) for all 0 < k < K combined
with Lemma E.17 and that 2° € £ F,F(w,)> and Triangle Inequality repeatedly.

Note because z° € ﬁF,F(wO) andas T € IB%(:I:O, B), by Lemma E.17, the above implies

Ko
>, ¢

k=1

L B? 1
IVF(@)| < |[VG(@)| + % <17Ly(wo)B? + i < 18Ly(wo)B?.
0

Consequently, with probability at least 1-2p/3, if £* does not move out of the ball B(z°, B)
within K iterations, then
|[VF ()| < 18La(wo) B>,

Taking a Union Bound, it follows that with probability at least 1 — p, if ¥ does not escape B(z°, B)
within the first K iterations, we have both

|VF(Z)| < 18La(wo) B%, A (VEF(T)) > -176.
This proves Lemma E.1. O

F Examples

F.1 Phase Retrieval

By Theorem 3.4 and Theorem 3.5, it suffices to show that 1) F},, satisfies Assumption 1.2 and 2) Fi,;
is a strict saddle problem (that is, all SOSPs are near-optima in a suitable sense). In the rest of this
subsection, denote Fy,; by F' for short. As shown in Candes et al. (2015); De Sa et al. (2022), Section
2.3 and Lemma 16 part a respectively, direct calculation shows F'(w) takes the form

Fw)=w(I- @) w) o+ (o] - 1% o)

As |lw*| = 1, we have F(w) > 0. Furthermore, we have inf,, g« F'(w) = 0, attained for example at
w = xw™. Also note for any fixed w, F' is absolutely continuous on a compact neighborhood of w.
F satisfies Assumption 1.2: By De Sa et al. (2022), Lemma 20, we have that

[V2F (w)] < pr (F(w))
for p1(z) = 9/ + 10. It remains to show that

|98 Fw)]| < po(F w))

for some increasing, non-negative p2, where || V3F(w) || refers to operator norm of the third order
tensor. Equivalently, we will show that for any w and any unit vector u, we have

|V2F (w + 6u) - V2F (w)|

P F .

As shown in the proof of Lemma 20, De Sa et al. (2022), we obtain from direct calculation that
V2F(w) =21 - 2(w*) (w*)" +3(|lw|* - 1)I + 6ww". (95)
Thus, by repeatedly applying Triangle Inequality and Lemma A.3 and as |u| = 1,
|V2F(w + 6u) - VQF(w)”op
- HS(Hw +oul® - |Jw|HI +6(w + 6u) (w + ou)" - waTHOp

<3||w + dul - w|]|- (Jw + dul + w])

+ 6| (w + ou)(w+ 6u)" —w(w+du)" +w(w+u)’ —waHOp

<3d|ul|(2w] +6) + 6(H5u(w + 5u)T||Op + Hw(éu)T”Op)
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< 6w (3(2[wl +6) + 6w + du| +6]w])
< 0wl (18]Jw| + 94).
Here, we used the inequality ||z + y|| - |z|| < |y|-

Consequently,

HVZF('w +0u) — V2F(w)||o
lim P <lim 18|w| + 96 < 18]w| + 1.
-0 6”’[],” -0

By Lemma 16 part d, De Sa et al. (2022), using Jensen’s Inequality we have
2
F(w) 2 (Jw]”-1)%
Note for |w| > 2, this implies
18|w| + 1 < 18(|w] + 1)2(||w|\ - 1)2 < 18F (w).
Combining with the case |w| < 2, we obtain

||V2F('w +0u) - VQF(w)”0
lim P <18|w| + 1 < 18F(w) + 37,
50 0w

so we can just take po(2) = 18z + 37.

Next, we check that F'is a strict saddle problem: We check this here. Similar results, in slightly
different of a setting where we solve phase retrieval from samples from data, are shown in Sun et al.
(2018).

Suppose |V F(w)| < 6 for < (55)*. Note by Lemma 16 part b, De Sa et al. (2022), (w*, VF(w)) =
3( HwH2 - 1){w,w*). By Cauchy-Schwartz and recalling w* is a unit vector, this gives

52 |w [|[VEw)] 2 [{w*, VF(w))| = 3[Jw]® - 1|-|(w,w")]. (96)

« Suppose |[(w,w*)| > /6. Combining this with (96) gives

Ve

[Jw]? - 1] < 5

By Lemma 16 part c, De Sa et al. (2022),
2 2 2 *\2
[VE(w)|” = 12[w|"F(w) - 8([w]” - (w,w")")
2 2
= (12]w[” - 8) F(w) + 6([[w]” - 1)%,
where the last equality follows from the explicit form F'(w) from (94). Thus using
‘Hsz - 1‘ < g, we obtain
6% 2 [VF(w)|” = (12]w|” - 8) F(w) + 6(|w|” - 1) > (4 - 4V/5) F(w).

For § < i, this gives
52 52
< R

4-4/5 27

« Otherwise, suppose |(w,w*)| < /3. Note by differentiating (94), as shown in the proof of
Lemma 16 part b, De Sa et al. (2022),

F(w) <

VE(w) = 2w - 2w, w*yw* + 3(|Jw|® - Dw = -2(w,w*)w* + 3|w|* - Dw.
Thus by Triangle Inequality,
[3Jw[* = 1] - [w] < | VF(w) | + 2w, w*) Jw*| <5 +2v/5 <4V5.

Consequently either |w| < 26"/ or ‘3Hw||2 - 1‘ <254,
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In the first case, by Cauchy Schwartz and (95), notice for any unit vector u that
' VAF(w)u = uT(QI —2(w*)(w*)" +3(|w|? - DI + 6wa)]u
< —flul® + 3Jul* - (28%)% + 6 - (2617*)?

<-1+368%< —g,
10

since § < (55)*
In the second case, using (95), notice as |w*| = 1, we have
w V2 F(w)w* =w* 3w]” - Dw* - 2[w*|* + 6|(w, w*)[*

5261/4—2+66g—§.

Consequently in either case, V2F (w) has at least one negative eigenvalue with value at
most —%.

Consider € smaller than a universal constant, and take § = \/z in the above result. It follows from
the analysis here that if we find an SOSP to tolerance ¢ as per the definition (2), we obtain w with

Thus, it follows that running Perturbed GD or Restarted SGD as described in Theorem 3.4 or
Theorem 3.5 respectively, we will obtain w with suboptimality F'(w) < €, where the number of oracle
calls depends on 1/¢, d, F'(wy) in the same way as in Theorem 3.4 or Theorem 3.5 respectively.

F.2 Matrix PCA

Again by Theorem 3.4, Theorem 3.5, it suffices to show that 1) Fj,, satisfies Assumption 1.2 and 2) is
a strict saddle problem (that is, all SOSPs are near-optima in a suitable sense). We will show this, with
the parameters governing the strict saddle property depending on the spectral gap Ay (M) — \o(M).!2
In the rest of this subsection, denote F, by I’ for short. Recall the loss function for PCA takes the
form

1 2
F(w) = §||wa —M||F7
where M is a symmetric PD matrix. Note for any fixed w, F' is absolutely continuous on a compact
neighborhood of w. Note F'(w) > 0 always holds. While it is not true that inf,, g« F'(w) = 0, to
enforce this, we can consider the shifted function G := F - inf,ga F'(w). The derivatives of G are
identical to those of F', and furthermore G(z) - G(y) = F(z) — F(y) for all z,y. Thus to apply

Theorem 3.4, Theorem 3.5 and show that Perturbed GD or Restarted SGD can globally optimize G
and therefore F' by finding SOSPs, it remains to show F’ satisfies Assumption 1.2 and is strict saddle.

F satisfies Assumption 1.2: Direct calculation, also in Jin et al. (2021a), yields
VF(w) = (ww" - M)w, V2F(w) = |w|*I + 2ww’ - M. 97)
We now check self-bounding regularity for the Hessian and third order derivative tensor. First observe
w' (ww")w = |w|.
Combining with Lemma A.3, we obtain

] = " |72

1/2
< (Jww" - M|, +[M],,)
< Jww” - M|} a2

<2F(w)* + | M |2 (98)

op

"2Thus our result will be vacuous when the spectral gap is 0.
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Now we check the self bounding conditions. For the Hessian, note from (97) and (98) and using
Lemma A.3,

[V F(w)],, <3lwl®+ M|, <3Q2Fw)"* +|M|%) + |M],,.

op —
Thus we can take p; () = 3(2z'/4 + [M| )% + | M|,

For the third order derivative tensor, following the strategy in Subsection F.1, we will show that for
any w and any unit vector u, we have

) |V2E (w + 6u) - VQF(w)”op

Applying (97) and Lemma A.3 and note
(w+0u)(w+ou) —ww' = (w+du)(w+ou)’ - (w+duw)w' + (w+du)w’ —ww'
= (w+ ou)(du)" + duw’.
This gives
. |V2F (w + 6u) - V2F(w)||op
11m

80 g

(Jw + Su|” - [w]*) + 2] (w + bu) (w + 6u)" —ww’|,,

R 5]
i w6l = - 2lw] + 5lu]) + Sl (2lw] + 5lu])
R 5l
i Sl L]+ Slul) + Sl (2fw] + 5]u])
R o]

- tim ]| + 20]ul

= 4fw]

<8F(w)'* + 4|M| 7.
Here we used the inequality ||z +y| — |z|| < |y||. The last step used (98). Thus we can take
pa(w) = 8211+ A M| 11

Next, we check F' is a strict saddle problem: We check this here. A similar verification is done in
Ge et al. (2017).

Letvy,...,v  be the (unit) eigenvectors of M corresponding to Ay (M) > Ao(M) > - > \y(M) >
0 respectively (recall M is assumed to be PD). Thus the v; form an orthonormal basis of R<.
Furthermore for convenience let \; := \;(M) for all 1 <4 < d. As M is symmetric and PD, by the
Spectral Theorem, we can write

d
M = Z )\iviv;.
i=1

A1-22)?
16

of F are w = £/ \jv;. We will show that w is close to these minimizers: in particular, that

min{”w -V % w + \/)\_lv1||2} <e.

Write w = c1v1 + - + cqvq. Thus, our goal is to show that |(cf + -+ + ¢3) = A{| < \/2. By (97), we
have

Suppose w is a SOSP to tolerance ¢ for € < min{l, 2\ - A2)?/ 2}. Note the minimizers

d
e2 [VF(w)| = [ Mw - Jw|*w| - ”z;«g et )=\ e

That is, we have

d
A((E+ )= \) <e (99)

-1

K2
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Furthermore by (97), we have

U

VAF(w) = (cf + -+ I +2) cicuv] — Y Awgv, .
g i1

Since w is a SOSP, for all vx, 1 < k < d, we have
Ve <OV (w)vg = (€3 + -+ ¢2) + 268 — A (100)
‘We now break into cases:

* Suppose for all i, we have |(cf +oe ) - )\i| > /. From (99), this gives Zle c?<e.
Taking k£ =1 in (100), we obtain

d
~VEL3Y - M <3e- A = A\ <VEH+3E,

i=1
i . (A1-X2)?
contradicting that € < mm{l, 11762}
* Else, suppose there exists ¢ such that |(c% + ot 0(21) - )\i| < /€. Suppose that i > 2. Then
taking k£ = 1 in (100), we obtain

2)\1

A —)\
e+ VE+2EE -\ = 2> e 2

where the last inequality uses \; < Ay and € < (’\1 A2 ) .

Note furthermore that as ¢ < (>‘1 ’\2) ,as |(c% +ot ) - /\Z-| <\/E,and as \; < Ay < Aq,
we have |(cf +ot ) - )\1‘ > M. Thus (99) implies

)\1_)\2 9 2
(A=A
4 16( 1 2)a

250+
contradicting that € < £(\; - Ag)?/2.

(e ++2) = M| < VG, as

desired.

Thus, it follows that running Perturbed GD or Restarted SGD as described in Theorem 3.4 or Theo-
rem 3.5 respectively, we will obtain w that is distance at most / from a global minimizer of F' for

€< min{l M s - )5/2} Here the number of oracle calls depends on 1/e, d, F'(wg) the

same way as in Theorem 3.4 or Theorem 3.5 respectively. For ¢ > min{l M (/\ -A )5/ 2}

(A1-29)?

22 S (N - ,\2)5/2} in the guarantees

we can replace € by any real strictly smaller than min{l7
from Theorem 3.4 or Theorem 3.5.

G Simulations

Our algorithmic results Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4, and Theorem 3.5 have
strong practical implications. They directly suggest that under generalized smoothness, the step sizes
7 that lead to convergence/successful optimization become smaller for larger initialization F'(wy)
and larger self-bounding functions p;(-), p2(+). For example in Theorem 3.1, we set ) = i)

yvh(e;;s Li(wo) = max{1, po(F(wo) + 1), po(F(wo))po(F(wo) + 1), p1(F(wo) + 1)} was defined

That is, our work suggests that larger suboptimality at initialization and larger self-bounding functions
shrink the ‘window’ for choosing a working 7 in practice, when the loss function satisfies generalized
smoothness. This has strong practical implications: it implies that for losses with non-Lipschitz
gradient/Hessian, one should tune 7 based on suboptimality at initialization. This contrasts sharply
with the Lipschitz gradient/Hessian case, see e.g. (Bubeck et al., 2015; Jin et al., 2017; Fang et al.,
2019), where the range of working 7 is fixed in terms of the Lipschitz constant of the gradient and/or
Hessian, and does not depend on the initialization.

In this section, we empirically validate this implication of our work.
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G.1 Synthetic Simulations with GD

Simulation Details: We consider F(w) = [Aw|” for p = 2,3,4,5,6, where A =
diag(55, 15, -, 5.1). When p = 2, F(w) is smooth. When p > 3, F(w) is not smooth, but it

is straightforward to verify that it satisfies Assumption 1.1, similar to our verifications in Subsec-
tion A.2. One can furthermore verify that as p increases, the corresponding self-bounding function
p1(-) from Assumption 1.1 increase. This choice of generalized smooth function was motivated by
Gaash et al. (2025), who used || Aw||* with the exact same A in their experiments to study optimization
with first-order methods under generalized smoothness.

For each p =2,3,4,5, 6, we consider the following settings for GD:

 Step sizes: We consider 30 step sizes {771‘}?317771 < -+ < 30 evenly spaced on a log scale
between 1078 and 10, inclusive.

» Initialization: For each step size 7);, we initialize GD at 4 distributions 7; = N’ (ﬁ, ¢;I20) for
¢; €{2.5,5,7.5,10}. For each of these 4 distributions 7;, we draw 100 points wg ~ 7; to
use as our initialization.

* Number of steps: For each 7); and each wq ~ 7;, we run GD initialized at wg with step size
n; for T' = 1000 iterations. Here as F' is known, we analytically compute the gradient.

For each p and initialization 7;, we consider all 30 possible n;, which we plot on the z-axis. For
each 7;, we consider all 100 initializations wq ~ ;. For each initialization wo, letting {w;} be the
resulting sequence of iterates of GD, we compute W for T' = 1000. For n; that led to faithful
convergence of GD, on the y-axis, we then plot the mean of % over those 100 initializations

as a blue dot, with blue vertical error bars indicating +2 standard deviations. We considered the

ratio W because for L-smooth functions, established optimization theory predicts that this

converges at a rate independent of F'(wg) and only depending on 7" and L (Bubeck et al., 2015).

The simulations for Subsection G.1 were run on a Jupyter notebook in Python in Google Colab Pro,
connected to a single NVIDIA T4 GPU. Our code can be found in the attached files.

Divergence of GD and working step sizes: We observe that for some 7); larger than some threshold
depending on p and 7;, the iterates of GD diverge. In particular, the resulting ratio W becomes

massive, often on the order of 10° or more, indicating that 7; was too large for GD to converge. To
identify the smallest n; where this first occurs, or equivalently find the largest working step size

among {n; }3%,, for a given m; and 7;, we computed the average Hv}f((#wf))u over the 100 initializations.

If this average was 100 or more times larger than this average for 7);_1, we took this as an indication
that the iterates of GD with this step size 7); or larger step sizes diverge, and for this p and 7, we
stopped considering any larger 7,7, i’ > 7. We then save this 7; to indicate the smallest 7; for which
divergence occurred. This 7; is indicated with a red line in the following plots.

This smallest 7; for which divergence occurred plays a crucial role in validating our theoretical claims.
Established optimization theory predicts that for smooth functions (here, when p = 2), this 7; is
identical across different initializations (Bubeck et al., 2015). Meanwhile for generalized smooth
functions, as per our remarks earlier and from Subsection 3.6, we predict that as F'(wg) increases,
the range of working step sizes, and consequently also the smallest 7; for which divergence occurs,
will decrease. Note as c; increases (recall 7; ~ N'(0,c;I20) and ¢; € {2.5,5,7.5,10}), we expect
F(wq) to increase, at least on average or with high probability over the 100 initializations wq ~ ;.

Results: Our simulations validate this theory very accurately. Note in the following figures that
the y-axis is normalized, as we plot IVEwD)] here T' = 1000. Thus larger ¢; lead to comparable

) F(wo)
values on the y-axis.

* When p = 2: In Figure 1, we plot the results in the manner described above for all 4
initializations 7;. As is predicted by established optimization theory for smooth functions
(Bubeck et al., 2015), the first step size leading to divergence 7); is identical across all the ;.

* When p = 3,4, 5,6: We plot the results in the manner described above for all 4 initializations
m; in Figure 2, Figure 3, Figure 4, Figure 5 respectively. Unlike the p = 2 case, in all of
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Figure 1: GD simulation results for p = 2. For all 7, the smallest 7); leading to divergence is ~ 1.17.

these cases, the first step size leading to divergence 7); generally decreases as the covariance
cjIog of m; increases from 2.5 to 10.

We also notice the following, both in line with our theoretical claims:

* For a given p, consider how this first step size 7; leading to divergence decreases as the
covariance cjIy of m; increases from 2.5 to 10. We find that the rate of this decrease
increases as p increases. The ratio of the first n; leading to divergence for m; vs 74 is
approximately 4.18,4.18,8.53,17.43 for p = 3,4, 5, 6 respectively.

As remarked earlier, for larger p, the corresponding self-bounding function p; (+) is larger
for F(w) = |Aw|” (see Subsection A.2 for a similar verification). Thus this behavior is
consistent with our results, as the step size from all of our results depends on F'(w) through

p1(-)-

* Fixing 7; and comparing across p, we see that the first step size leading to divergence 7;
decreases as p increases. Again this is not a surprise considering our theoretical results, as
for larger p, both F'(wq) for wy ~ 7; and the self-bounding function p; (-) become larger.

For each p € {2,3,4,5,6} and 7;, we also record the smallest 7; for which divergence occurred in
Table 1 on page 92, which highlights the aforementioned trends.

Uy :N(ﬁ, 25]20)

Ty = N(6750120)

Uy :N(ﬁ, 75120)

Uy :N(G, 10[20)

hSESER SRS Bt
1
S U W N

1.17-10°
2.81-1071
3.29-1072
7.88-1073
9.24-107*

1.17-10°
1.37-107¢
3.29.1072
3.86-1073
4.52-1074

1.17-10°
1.37-107¢
1.61-1072
9.24-107*
5.30-107°

1.17-10°
6.72-1072
7.88-1073
9.24-107*
5.30-107°

Table 1: The smallest 7); leading to divergence for a given p and initialization ;.
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Figure 2: GD simulation results for p = 3. For 7; = N'(0,2.5I ), the first divergence is at ; ~ 0.281.
For 7; = N'(0,5I ), N (0, 7.54), the first divergence is at 7; ~ 0.137. For m; = (0, 10I5), the

first divergence is at 7; ~ 0.0672.
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Figure 3: GD simulation results for p = 4. For 7; = N'(0, 2.5I50), N(0, 5I5), the first divergence
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G.2 Synthetic Simulations with SGD

Simulation Details: We adopt the exact same settings as in Subsection G.1. The only difference is
that we study SGD rather than GD, and hence we simulate stochastic gradients. We do so similarly
to Gaash et al. (2025): we artificially add \/ (ﬁ, 0.011 20) to VF at each iteration of SGD.!3 The
simulations for Subsection G.2 were again run on a Jupyter notebook in Python in Google Colab Pro,
connected to a single NVIDIA T4 GPU. Our code is in the attached files.

Results:  Our conclusions are similar to those from Subsection G.1. When p = 2, as predicted by
established optimization theory for smooth functions, the first step size leading to divergence 7; is
identical across the 7; (see Figure 6). In contrast for p = 3,4, 5, 6, this 7); generally decreases as the
covariance c;I 5o of 7; increases from 2.5 to 10 (see Figure 7, Figure 8, Figure 9, Figure 10). We note
that while the general trends are similar to those from Subsection G.1, we can clearly see the presence

of the stochastic gradients in these plots. In many of these plots, W becomes roughly constant

for 1) large enough such that 7" = 1000 yields reasonable convergence; for such 7, by T = 1000, the
true gradients are small enough and the noise from the stochastic gradients takes over.

Once more, consider how the first step size leading to divergence 7); decreases as the covariance
c¢;jI20 of m; increases from 2.5 to 10. We find that the rate of this decrease generally increases as
p increases. We also again see that fixing 7; and comparing across p, the first step size leading to
divergence 7); decreases as p increases. As discussed in Subsection G.1, both of these phenomena
are consistent with our theoretical results. For each p € {2,3,4,5,6} and 7;, we again record the
smallest n; for which divergence occurred in Table 2 on page 95.

7Tj ZN(6,2.5I20) 71'j ZN(675.0I20) 7Tj :N(677.5120) 7T]' :N(ﬁ, 10[20)

p=2 1.17-10° 1.17-10° 1.17-10° 1.17-10°
p=3 2.81-1071 1.37-107! 6.72-1072 1.37-107!
p=4 3.29-1072 3.29-1072 1.61-1072 7.88-1073
p=5 7.88.1073 1.89-1073 9.24-107* 4.52-1074
p=6 4.52-1074 4.52-1074 1.08-107* 5.30-107°

Table 2: Smallest 7); leading to divergence for a given p and initialization ;.

*Note our result for convergence of SGD to FOSPs, Theorem 3.3, applies for Gaussian noise as per Remark 7.
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Figure 6: SGD simulation results for p = 2. For all 7,
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