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ABSTRACT

Virtual cell modeling aims to predict cellular responses to perturbations. Ex-
isting virtual cell models rely heavily on large-scale single-cell datasets, learn-
ing explicit mappings between gene expression and perturbations. Although
recent models attempt to incorporate multi-source biological information, their
generalization remains constrained by data quality, coverage, and batch effects.
More critically, these models often function as black boxes, offering predic-
tions without interpretability or consistency with biological principles, which
undermines their credibility in scientific research. To address these challenges,
we present VCWorld, a cell-level white-box simulator that integrates struc-
tured biological knowledge with the iterative reasoning capabilities of large lan-
guage models to instantiate a biological world model. VCWorld operates in a
data-efficient manner to reproduce perturbation-induced signaling cascades and
generates interpretable, stepwise predictions alongside explicit mechanistic hy-
potheses. In drug perturbation benchmarks, VCWorld achieves state-of-the-art
predictive performance, and the inferred mechanistic pathways are consistent
with publicly available biological evidence. Our code is publicly available at
https://anonymous.4open.science/r/VCWorld-B970.

1 INTRODUCTION

Cells, the fundamental units of life, maintain organismal function and homeostasis through a complex
interplay of biochemical processes (Alberts et al., 2002). A central challenge in modern biology
and drug discovery is to understand and predict how cells respond to external perturbations, such
as drug treatments or genetic edits (Liberali et al., 2015; Lotfollahi et al., 2019). The ability to
forecast these cellular state changes in silico would not only illuminate the mechanisms of complex
diseases but also accelerate the development of novel therapeutics by reducing the time and cost
of experimental screening (Del Sol et al., 2010). The concept of the virtual cell, which leverages
computational models to simulate cellular behavior, has emerged as a promising paradigm to address
this challenge (Bunne et al., 2024).

Recent advances in deep learning, coupled with significant progress in single-cell sequencing tech-
nologies, have spurred the development of various virtual cell models (Lopez et al., 2018; Lotfollahi
et al., 2023; Adduri et al., 2025; Tang et al., 2025; Klein et al., 2025). These models typically learn an
end-to-end mapping from a given perturbation to a corresponding gene expression profile, trained on
large-scale perturbation-response datasets. However, prevailing approaches suffer from two critical
limitations. First, they are heavily reliant on the scale, quality, and coverage of the training data.
The data-hungry nature makes these models expensive to train. More importantly, it also limits
their ability to generalize to novel perturbations that are not present in the training data (Li et al.,
2024; Ahlmann-Eltze et al., 2024). Second, these models operate as black boxes. While they may
yield predictive outputs, they fail to provide clear, verifiable mechanistic explanations for predic-
tions (Hassija et al., 2024; Noutahi et al., 2025). This lack of interpretability severely undermines
their trustworthiness and utility in scientific discovery, making them difficult for biologists to rely
upon for designing downstream experiments.

We argue that an ideal virtual cell model should not only provide accurate predictions but also be
data-efficient, interpretable, and aligned with established biological principles. Rather than relying
solely on statistical correlations, it ought to integrate fundamental biological knowledge to capture
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and anticipate cellular responses. Moreover, its reasoning process should be transparent, explicitly
revealing the causal mechanisms that underlie predictions and grounding them in the well-established
frameworks of cell signaling and gene regulation.

To overcome the above challenges, we introduce VCWorld, a cell-level white-box simulator(Figure
1). The core of VCWorld is a biological world model that simulates the dynamic response of a cell to
drug perturbations. Instead of relying solely on statistical patterns, VCWorld integrates structured
biological knowledge, such as signaling pathways, protein-protein interactions, and gene regulatory
networks, with the iterative reasoning capabilities of Large Language Models (LLMs) (Dubey et al.,
2024; Guo et al., 2025). This design allows the model to generalize from limited training data by
leveraging a vast repository of open-world biological knowledge. Crucially, VCWorld generates
a transparent, traceable reasoning path for each prediction, offering a step-by-step mechanistic
explanation that culminates in verifiable hypotheses. Furthermore, to facilitate finer-grained modeling,
we introduce GeneTAK, a new benchmark derived from the large-scale Tahoe-100M dataset (Zhang
et al., 2025). GeneTAK reframes cell-drug observations into gene-centric perturbation responses,
mitigating data sparsity and enabling models to focus directly on the nuanced impact of a drug on
individual genes. We highlight three main contributions of our study:

• We propose VCWorld, a novel cell-level white-box simulator architected as a biological
world model. It combines structured biological knowledge with LLM-based reasoning,
demonstrating a superior balance of data efficiency, interpretability, and predictive accuracy
that overcomes the limitations of existing black-box models.

• We construct and introduce GeneTAK, a new benchmark that transforms cell-drug pertur-
bation data into single-gene response profiles. This allows for more granular and robust
modeling of drug effects.

• We demonstrate that VCWorld achieves state-of-the-art performance on both the differen-
tial expression (DE) and directional (DIR) prediction tasks on the GeneTAK benchmark,
validating the effectiveness of our approach.

2 RELATED WORK

2.1 VIRTUAL CELL

Virtual cell was originally a computational tool for simulating intracellular biochemical reactions,
diffusion, membrane transport, and electro physiological processes (Loew & Schaff, 2001). With the
development of AI, the concept has evolved into predictive cell models that integrate large-scale multi-
modal biological data to forecast, explain, and guide experimental hypotheses (Bunne et al., 2024;
Noutahi et al., 2025). Existing research can be broadly categorized into three approaches: data-driven
methods combined with prior knowledge, such as GenePT (Chen & Zou, 2024) and GEARS (Roohani
et al., 2024); large-scale pretrained foundational models, like scFoundation (Hao et al., 2024) and
scGPT (Cui et al., 2024), trained on tens of millions of cells to learn general representations and
excel in perturbation prediction; and generative modeling approaches, including CPA (Lotfollahi
et al., 2023), STATE (Adduri et al., 2025), and CellFlow (Klein et al., 2025), which capture complex
perturbation effects through decoupled latent spaces, state transitions, or flow-based generation.
Further efforts, such as CellForge (Tang et al., 2025), aim to automate data analysis, literature review,
and model design, pushing virtual cell toward self-directed evolution. Unlike previous approaches
that mainly focus on end-to-end black-box models for cell perturbation prediction, our approach
leverages a language model with reasoning and retrieval capabilities to construct a framework that
emphasizes interpretability while also achieving superior performance.

2.2 LLMS FOR BIOLOGICAL REASONING AND PREDICTION

Recent research focus on leveraging Large Language Models (LLMs) for interpretable biologi-
cal reasoning, aiming to move beyond traditional black-box predictions. A core approach in this
area is the application of Chain-of-Thought (CoT) prompting (Wei et al., 2022) to integrate multi-
source heterogeneous data. For instance, frameworks like CoTox (Park et al., 2025) and DrugRea-
soner (Ghaffarzadeh-Esfahani et al., 2025) combine chemical structures, biological pathways, and
Gene Ontology (GO) terms to generate interpretable predictions for drug toxicity and approval
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Figure 1: The pipeline of VCWorld. For a given query, VCWorld first retrieves multi-modal biological
context from its integrated knowledge base, including pathway information, drug properties, and
similar experimental samples. This context is then used to prompt a LLM, which is used to analyze
mechanisms and infer how a specific gene will respond. The final output is a prediction for tasks
such as differential expression and directional change.

processes. This paradigm has also been extended to fundamental biological contexts, such as the
SUMMER framework (Wu et al., 2025), which utilizes retrieval-augmented generation (RAG) to
predict perturbation experiments under gene edits. To further enhance the reasoning capabilities
of these models, researchers are actively exploring more advanced training methodologies. These
studies (Istrate et al., 2025; Hasanaj et al., 2025) collectively demonstrate the strong potential of
CoT to effectively integrate multimodal biological data within the virtual cell domain, enabling more
nuanced and interpretable predictions compared to foundational models.

2.3 PERT-SEQ DATA REPRESENTATION

Large-scale perturbation datasets (Wu et al., 2024) are foundational for building predictive models of
cellular behavior. Recently, scientists have gradually expanded the scope of perturbations. Replogle
et al. (2022) enabled predictions of genetic perturbation effects on core cellular functions. Nadig
et al. (2024) first introduced the dose effect in the perturbation. Jiang et al. (2025) aided inference
of pathway signatures for perturbation-driven changes in disease scenarios. More recently, Wu
et al. (2025) released PerturBase, a dedicated database for single-cell perturbation sequencing data,
integrating 122 datasets from 46 studies across genetic and chemical perturbations. A landmark
in chemical perturbations is Tahoe-100M (Zhang et al., 2025), empowering AI models to predict
context-dependent responses to small-molecule drugs across vast cellular diversity. Given the large
size and coverage of the Tahoe-100M dataset, we use it as the primary dataset.

3 METHOD

3.1 TASK FORMULATION

The task of predicting single-cell gene expression responses to perturbations is conventionally defined
as a regression problem. Given a dataset D = {(xi, pi, yi)}Ni=1, where xi, yi ∈ Rd are the pre- and
post-perturbation expression profiles and pi is the perturbation, the goal is to learn a mapping function
f : Rd × P → Rd. However, the high dimensionality and sparsity of the data pose significant
challenges to achieving accurate predictions at the individual gene level. To this end, we reformulate
the problem as a gene-centric classification task. The fundamental predictive unit is a triplet (c, p, g),
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(a) (c)(b)

Figure 2: (a) Number of single-cell profiles per cell line. (b) Label distributions for the Differential
Expression (DE) and Directional Change (DIR) tasks. (c) Schematic for identifying highly variable
genes by comparing perturbed cells against a control group.

which queries the response of a specific gene g to a perturbation p in a given cell lineage c. For each
such triplet, we derive a corresponding binary label, let’s denote it as l ∈ {0, 1}, which represents
the outcome for our two fine-grained classification tasks: (i) Differential Expression (DE): l = 1 if
gene g is differentially expressed, and l = 0 otherwise. (ii) Directional Change (DIR): l = 1 for
upregulation and l = 0 for downregulation. This transformation converts the original dataset D into
a new, larger corpus of labeled triplets suitable for training a classifier.

These tasks can be addressed by a new paradigm that shifts from numerical regression to knowledge-
based inference. The approach utilizes a reasoning engine, such as a Large Language Model (LLM)
L, to process not only the query but also a rich set of biological context (BioContext). This context
is dynamically retrieved from external knowledge bases (e.g., signaling pathways, protein-protein
interactions). The problem is then transformed into a text-based inference function as follows:
f : L(c, p, g,BioContext) → Prediction.

3.2 GENETAK

To facilitate the comprehensive and fair assessment of large language models for perturbation
prediction, we present GeneTAK, a novel benchmark dataset. GeneTAK is curated from the Tahoe-
100M raw expression matrix and comprises 5 distinct cell lines across 348 drug perturbations,
designed explicitly to evaluate the generalization capabilities of models in this domain.

Dataset Curation. The GeneTAK expression matrix was first restricted to the 2,000 most highly
variable genes, aligning it with the common input dimensions of generative perturbation prediction
models. Subsequently, to ensure a diverse and representative selection of cell lines, we performed
a Principal Component Analysis (PCA) visualization (Greenacre et al., 2022) (see Appendix A).
Guided by this analysis, we selected a final set of five cell lines that includes both a main cluster and
several distinct outliers: C32, HOP62, HepG2/C3A, Hs 766T, and PANC-1. Notably, this selection is
consistent with the cell lines used in the work of STATE (Adduri et al., 2025), ensuring a degree of
comparability and fairness with previous benchmarks.

Then we generated labels for perturbation-gene pairs, denoted as (p, g). The labels were determined
by identifying differentially expressed genes (DEGs) for each perturbation using the Wilcoxon signed-
rank test (Woolson, 2007). To ensure label quality, we applied strict criteria based on a significant
adjusted p-value and consistent expression changes across biological replicates. The resulting dataset
of labeled pairs was then split by perturbation into training and test sets at a 3:7 ratio. This specific
ratio was intentionally chosen to simulate a challenging few-shot learning scenario, consistent with
the evaluation framework used by Adduri et al. (2025) and allowing for a direct comparison of
model performance under low-data conditions. The split maintains a similar distribution of DEGs per
perturbation in both sets. The final label distribution is shown in Figure 2, with a complete description
of all data processing methods provided in Appendix A.
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3.3 VCWORLD

Our proposed framework, VCWorld (Figure 1), transforms biological prediction into a multi-stage
reasoning process powered by a Large Language Model (LLM). It consists of three key stages: (1)
generating rich, symbolic representations for all biological entities; (2) retrieving a support set of
causal evidence guided by open-world biological knowledge; and (3) synthesizing all information
through a Chain-of-Thought process to produce an interpretable prediction.

3.4 CONSTRUCTION OF THE OPEN-WORLD BIOLOGICAL KNOWLEDGE GRAPH

To construct the open-world biological knowledge graph, we integrated several authoritative databases:
PubChem, which provides large-scale compound structures and bioactivity data (Kim et al., 2023);
DrugBank, which includes chemical, pharmacological, and clinical annotations of drugs and their
target associations (Knox et al., 2024); UniProt, which offers comprehensive protein sequences and
functional annotations (Consortium, 2019); Gene Ontology (GO), which defines a unified ontology
across molecular function, biological process, and cellular component (Ashburner et al., 2000);
Reactome, which curates systematically organized molecular reactions and pathways (Fabregat
et al., 2018); STRING, which compiles protein–protein interactions from experiments and predic-
tions (Szklarczyk et al., 2021); and CORUM, which catalogs experimentally validated mammalian
protein complexes (Ruepp et al., 2007). Together, these databases cover multi-scale biological
knowledge from compounds and drugs to genes, proteins, pathways, and complexes, ensuring the
comprehensiveness of the graph.

In the knowledge graph construction process, compounds, drugs, genes, proteins, pathways, and
complexes were represented as entity nodes, while interactions, annotations, and hierarchical rela-
tionships were encoded as heterogeneous edges. Cross-database integration was achieved through
standardized identifiers (e.g., InChIKey, UniProt ID, GO terms), followed by redundancy removal and
conflict resolution. The resulting graph systematically represents biomolecules and their interactions,
providing a foundation for cellular perturbation prediction.

3.4.1 GENERATIVE NODE FEATURE REPRESENTATION VIA LLMS

Let the open-world biological knowledge be denoted as G = (V, E ,R), where V is the set of
biological entities (nodes), R is the set of relation types, and E ⊆ V ×R× V is the set of triples or
edges. The first stage of our framework focuses on defining each biological entity v ∈ V . To move
beyond simple numerical vectors, we generate a rich symbolic representation for each node. For each
node v, we first extract its local neighborhood subgraph, Nk(v), defined as the set of all triples within
a k-hop distance from v. We then construct a structured prompt Pv , using a template function fprompt:

Pv = fprompt(v,Nk(v)). (1)

This function serializes the node’s core attributes and its neighborhood triples into a natural language
query. Subsequently, our framework employs an LLM to function as a feature generator. The LLM
L then processes this prompt to generate a comprehensive textual description(see AppendixC), dv,
serving as the node’s initial feature representation:

dv = L(Pv) (2)

This process yields a context-aware representation dv ∈ T (where T is the space of all possible texts)
that preserves biological semantics, offering a more expressive alternative to static embeddings.

3.4.2 GRAPH-GUIDED CAUSAL EVIDENCE FRAMEWORK

With rich node representations established, the second stage retrieves relevant experimental cases
to form a basis for reasoning. Our training corpus D, consists of M labeled instances derived
from the original data, can be formulated as D = {(qi, li)}Mi=1. Here, each query qi is a triplet
(ci, pi, gi), and li is its associated ground-truth binary label (li ∈ {0, 1}). Given a new query
qinput = (cinput, pinput, ginput), our goal is to construct an evidence support set S(qinput) ⊂ D.

To ground the LLM’s prediction in empirical data, we introduce a structured retrieval mechanism that
goes beyond standard Retrieval-Augmented Generation (RAG) (Lewis et al., 2020). The core of this
mechanism is to identify and retrieve the most relevant historical cases from our training corpus D for
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given input query qinput. To quantify this relevance, we score the similarity between the input query
qinput and each query qi ∈ D. Instead of relying solely on semantic similarity, our method computes a
hybrid similarity score, Sim(qinput, qi), that also leverages knowledge-graph topology information:

Sim(qinput, qi) = α · Simsem(dqinput , dqi) + (1− α) · Simstruct(qinput, qi) (3)

where Simsem(·) is the semantic similarity, calculated as the cosine similarity between the LLM-
generated feature descriptions (from Eq. 2), and Simstruct(·) is a graph-based structural similarity
metric (i.e., path-based similarity). The hyperparameter α ∈ [0, 1] balances the contribution of the
semantic and structural components.

This score allows us to assemble a multifaceted evidence set. Instead of retrieving a single list of
similar items, we retrieve two disjoint subsets by searching within predefined outcome groups as
follows:

Analogue Cases (Sanalog): The top-ka instances from the subset of D with a positive outcome (i.e.,
label l = 1), ranked by their similarity to the input query.

Sanalog(qinput) = arg top-ka
qi∈{q∈D | l=1}

Sim(qinput, qi) (4)

Contrast Cases (Scontrast): The top-kc instances from the subset of D with a negative outcome (i.e.,
label l = 0), similarly ranked by similarity.

Scontrast(qinput) = arg top-kc
qi∈{q∈D | l=0}

Sim(qinput, qi) (5)

The final evidence support set is the union: S(qinput) = Sanalog ∪ Scontrast. This curated set provides a
balanced, contextual foundation upon which the final reasoning process is built.

3.4.3 EVIDENCE SYNTHESIS CHAIN-OF-THOUGHT REASONING

In the final stage, the LLM acts as a computational biologist, which we formulate as a Chain-of-
Thought (CoT) reasoning task. A final prompt, PCoT, is synthesized from the symbolic representation
of the query, dqinput , and the retrieved evidence set, S(qinput):

PCoT = fCoT_prompt(dqinput , Sanalog, Scontrast) (6)

The function fCoT_prompt formats these inputs using a structured template that first presents the
biological query, followed by the lists of analogue and comparison cases as evidence. Finally, it
instructs the LLM to provide step-by-step reasoning. (A detailed example is in Appendix A).

The LLM then processes this prompt to generate a text string, Ofinal, we then use a parsing function,
fparse, to extract the structured prediction l̂ and the textual explanation E from the output:

Ofinal = L(PCoT) (7)

(l̂, E) = fparse(Ofinal) (8)
This process compels the LLM to explicitly integrate qualitative knowledge (dqinput ) with empirical
evidence (S(qinput)), producing a self-validating and fully interpretable output. In this work, we use
Gemeni-2.5 Flash (Comanici et al., 2025) as our reasoning model.

4 EXPERIMENT

4.1 BASELINE

We benchmarked performance against several baselines using GeneTAK, including a linear model,
RANDOM, which is a naive baseline that is assumed to have a statistically accurate prediction of
50% for any binary classification task without any training or prior knowledge; three published deep
learning models: scVI (Lopez et al., 2018) is a conditional variational self-encoder that condition-
ally models perturbation effects in potential space, CPA (Lotfollahi et al., 2023) recognizes novel
perturbations by learning disentangled and linearly combined latent embeddings, STATE (Adduri
et al., 2025), the current SOTA model that demonstrates the best overall performance in the drug
perturbation prediction task.

6
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Table 1: Overall accuracy on two DE and DIR tasks. The best results are shown in bold, and the
second-best results are shown with underlines.

Task Model C32 HepG2C3A HOP62 Hs 766T PANC-1 Average

DE

RANDOM 0.50 0.50 0.50 0.50 0.50 0.50

scVI 0.66 0.48 0.64 0.61 0.68 0.61
CPA 0.27 0.18 0.21 0.30 0.17 0.23
STATE 0.16 0.38 0.41 0.08 0.47 0.30

VCWorld-Llama3 0.35 0.36 0.41 0.36 0.39 0.37
VCWorld (w/o Biocontext) 0.52 0.54 0.51 0.52 0.50 0.51
VCWorld (w/o CoT) 0.61 0.57 0.59 0.60 0.56 0.59
VCWorld 0.70 0.68 0.71 0.68 0.61 0.68

DIR

RANDOM 0.50 0.50 0.50 0.50 0.50 0.50

scVI 0.47 0.46 0.41 0.40 0.38 0.42
CPA 0.44 0.48 0.43 0.46 0.42 0.44
STATE 0.49 0.51 0.50 0.55 0.51 0.51

VCWorld-llama3 0.57 0.54 0.55 0.55 0.58 0.56
VCWorld (w/o Biocontext) 0.52 0.52 0.51 0.52 0.50 0.51
VCWorld (w/o CoT) 0.55 0.59 0.56 0.58 0.63 0.58
VCWorld 0.72 0.68 0.67 0.66 0.69 0.68

4.2 METRICS

We evaluate model performance on two primary aspects: differentially expressed gene (DEG)
prediction performance and LLM reasoning robustness. For a fair comparison, predictions from
baseline models that output continuous expression values (e.g., STATE, scVI) are first converted
into binary value. This is achieved by applying the Wilcoxon signed-rank test (Woolson, 2007) to
the predicted profiles, mirroring the ground-truth label generation process. All metrics below are
calculated on these standardized outputs.

Metric for DEG Prediction Performance. We evaluate DEG prediction performance using four
standard classification metrics: Accuracy, Precision, Recall, and the F1 Score. Accuracy provides a
global measure of the overall proportion of correctly classified genes. However, given that most genes
are not differentially expressed (a significant class imbalance), accuracy alone can be misleading.
To provide a more nuanced assessment of performance on the positive class (DEGs), we therefore
also report precision, which measures the ability to avoid false positives, and recall, which measures
the ability to avoid false negatives. The F1 Score, as the harmonic mean of Precision and Recall,
provides a single, balanced summary of these two aspects.

LLM Reasoning Robustness. We define the Abandonment Rate (Q-score) to measure the robust-
ness of the LLM’s reasoning process. It is the frequency with which the model abstains from making
a prediction for a given query (e.g., by stating it has insufficient information). A lower rate signifies
higher robustness. The detailed formulas for all metrics are provided in Appendix B.

4.3 GENE-LEVEL PERFORMANCE

We consider the ability to capture gene-level expression changes as the most important evaluation
criterion. This task was split into DE and DIR components for evaluation, and we used Accuracy
to evaluate the model’s performance in correctly predicting the ground-truth labels. The results are
detailed in Table 1.

Our model, VCWorld, achieves an average score of 0.68 on both the DE and DIR tasks, significantly
outperforming all baseline models and demonstrating its strong predictive power and generalisability.
From the ablation study, we observe the following: (1) LLM reasoning capability is crucial: compared
to the Llama3-based version, VCWorld’s average score on the DE task improves from 0.37 to 0.68, an

7
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Table 2: Performance comparison of different models on DE task.

Task Model Metric C32 HepG2C3A HOP62 Hs 766T PANC-1 Average

DE

STATE
Precision 0.12 0.10 0.18 0.10 0.19 0.13

Recall 0.15 0.32 0.36 0.09 0.37 0.26
F1-Score 0.14 0.14 0.24 0.10 0.25 0.17

CPA
Precision 0.11 0.10 0.14 0.07 0.17 0.12

Recall 0.02 0.02 0.02 0.01 0.02 0.02
F1-Score 0.03 0.03 0.04 0.02 0.04 0.03

scVI
Precision 0.13 0.09 0.18 0.08 0.19 0.13

Recall 0.48 0.39 0.52 0.38 0.51 0.46
F1-Score 0.21 0.14 0.27 0.14 0.28 0.21

VCWorld
Precision 0.60 0.64 0.61 0.57 0.52 0.59

Recall 0.70 0.68 0.71 0.68 0.61 0.68
F1-Score 0.65 0.66 0.66 0.62 0.56 0.63

84% performance increase. This shows that model performance is highly dependent on the advanced
reasoning capability of the underlying large language model. (2) BioContext is a performance
cornerstone: after removing BioContext (VCWorld w/o BioContext), the model’s performance on
both tasks plummeted to near-random levels (0.51). This confirms that providing relevant biological
prior knowledge is crucial to guide the model towards effective reasoning. (3) CoT enhances
prediction accuracy: after enabling CoT reasoning, VCWorld’s mean score improved by about 15%
(from 0.59 to 0.68) compared to the no-CoT version (VCWorld w/o CoT). This indicates that CoT
effectively standardises the model’s inference path.

As for the capacity boundaries of the baseline models(B.2), we found that: (1) scVI performed well
on the DE task (mean score 0.61) and outperformed VCWorld on the PANC-1 dataset, demonstrating
its competitiveness in specific scenarios. In contrast, CPA and STATE performed poorly. (2) All
traditional baseline models (scVI, CPA, STATE) failed to significantly outperform the random base-
line (0.50) in the DIR task. This exposes their inherent limitations in capturing complex inter-gene
interactions and pathway-level effects, which likely stems from their reliance on fixed statistical
assumptions, contrasting with the flexible reasoning capabilities of our LLM-based framework. In
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Cell Lines
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Figure 3: The ablation experiments of VCWorld.

summary, these results not only highlight the superior performance of VCWorld but also systemati-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

cally validate our core design principles: leveraging advanced LLM reasoning, grounding predictions
in biological context, and structuring the inference process via a Chain-of-Thought.

4.4 CELL-LEVEL AND POPULATION-LEVEL ANALYSIS

We believe that examining the collective response of gene populations offers a more accurate
representation of cellular changes. To evaluate this, we quantified the number of DEGs predicted
across the GeneTAK dataset (see Appendix B).

The results show clear patterns. scVI predicts 3–5 times more DEGs than the ground truth. STATE
is less stable, but on average predicts about twice as many DEGs. These results indicate that both
models amplify perturbation effects and classify genes as DEGs too aggressively. This explains their
high Accuracy but low Precision, Recall, and F1 Score, which limits their reliability. In contrast, CPA
consistently underestimates DEG counts, reflecting a limited ability to capture perturbation effects.

To obtain a more balanced view, we further computed Precision, Recall, and the F1 Score (Table 2).
The results confirm the above observations: (1) VCWorld had the best overall performance. It has a
high and balanced precision (0.59) and recall (0.68), resulting in the highest F1 score (0.63); (2) scVI
has a high recall (0.46) but a low precision (0.13), but still the best baseline; (3) STATE has mediocre
performance on all metrics and a low overall score, with an F1 score of only 0.17; (4) Both STATE
and scVI amplified perturbation effects ,scVI predicts multiple times more DEGs than the ground
truth,while STATE predicts about twice as many DEGs.

These findings suggest that deep learning models often lack explicit constraints to regulate DEG
counts. They fail to capture the true intensity and scope of perturbation effects. In contrast, the design
of VCWorld directly addresses these limitations, which explains its superior performance.

4.5 ANALYSIS AND ABLATION STUDY

To evaluate the tendency of models to abstain from answering, we introduced the Q-score as a
dedicated metric for assessing LLM performance. Figure 3 reports the Q-scores after ablating
different components of the model(specific values see AppendixB.3 ). First, when we replaced
VCWorld’s reasoning “engine” (Gemini 2.5-flash) with Llama3-8B, the model’s adherence to
prompts dropped sharply: it failed to provide deterministic reasoning results and often abandoned
the reasoning process entirely. Second, VCWorld (w/o BioContext) performed only on par with
Llama3-8B. By contrast, VCWorld (w/o CoT) was able to produce answers at a relatively high
completion rate. Ultimately, the full VCWorld model outperformed the three variants by 40%,
40%, and 11%, respectively. These findings lead us to conclude that: (1) BioContext provides
indispensable references for reasoning; (2) CoT enhances the LLM’s ability to tackle the complex
task of drug perturbation prediction; and (3) LLMs require sufficient parameter capacity to support
such complex reasoning tasks.

5 CONCLUSION

We demonstrate the efficacy of VCWorld in the task of predicting changes in gene expression
following genetic perturbations. Our experiments show that VCWorld far outperforms current state-
of-the-art black-box models. However, its main contribution lies in aspects that are crucial for
scientific utility. Through extensive ablation studies and case studies, we demonstrate that VCWorld
is highly interpretable, with a human-readable, verifiable chain of reasoning for each prediction.

VCWorld still has room for improvement, with future directions including integrating a multi-agent
framework to enhance autonomous reasoning and sample retrieval, extending generalization across
diverse perturbation types such as gene, pathway, and combinatorial perturbations, and establishing
more systematic benchmarks to comprehensively evaluate and compare specialized prediction models.

9
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Yan, Rory Stark, Kun Zhang, and Thore Graepel. Perturbench: Benchmarking machine learning
models for cellular perturbation analysis. arXiv preprint arXiv:2408.10609, 2024.

Jesse Zhang, Airol A Ubas, Richard de Borja, Valentine Svensson, Nicole Thomas, Neha Thakar,
Ian Lai, Aidan Winters, Umair Khan, Matthew G Jones, et al. Tahoe-100m: A giga-scale single-
cell perturbation atlas for context-dependent gene function and cellular modeling. BioRxiv, pp.
2025–02, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A GeneTAK 13

A.1 DATA PROCESSING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.2 Distribution of GeneTAK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

B Experiment Details 14

B.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.2 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.3 Ablation Study of VCWorld . . . . . . . . . . . . . . . . . . . . . . . . . . 14

B.4 Knowledge Graph-to-Text Pipeline for Prompt Generation . . . . . . . . . . 15

C Prompts 16

D Ethics Statement 16

E Reproducibility Statement 16

F LLM Usage Statement 16

A GENETAK

A.1 DATA PROCESSING

We normalized all gene counts to Log(TP10k+1) values (log-transformed UMI count per 10k), where
the count cij of gene j in cell i is mapped to

log

(
cij∑
j cij

· 10, 000 + 1

)
. (9)

To focus on the most variably expressed genes, the top 2,000 highly variable genes (HVGs) were
selected using the Seurat v3 method, and retained in the expression matrix for downstream analyses,
with the HVG list exported for reproducibility. To determine differentially expressed genes (DEGs),
we ran the Wilcoxon signed-rank test (Wilcoxon, 1945) with Benjamini-Hochberg correction (Ben-
jamini & Hochberg, 2000) between non-targeting control (NTC) cells and perturbed cells, for each
perturbation.

We set FDRthreshold and logFCthreshold to screen perturbations with phenotypic effects, and
PVALthreshold to screen negative samples (samples with no significant change in gene expression).
Specifically, when

FDRthreshold ≤ 0.05 & logFCthreshold ≥ 0.25

(i.e., more than 1.28-fold change in expression), we consider them as samples with phenotypic effects.
Based on this, when

PVALneg_threshold ≥ 0.1,

we consider them as negative samples. In addition, we set Nneg_samples = 200 to limit the number of
negative samples, so as to avoid category imbalance.

A.2 DISTRIBUTION OF GENETAK

To keep consistent with the experimental settings in the state, the dataset of each cell line was split into
training and testing sets at a ratio of 30:70.During the experiment, VCWorld only retrieved samples
from the training set. Further details regarding the dataset and data split statistics are provided in
Table 3 and 4.
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Table 3: Number of cells in each cell line.

Cell line Control Perturbed

C32 29,651 1,023,165
HepG2C3A 20,451 771,838
HOP62 39,683 1,507,373
Hs 766T 17,802 713,734
PANC-1 43,878 1,578,616

Table 4: GeneTAK statistics for differentially expressed genes.

Cell line Split Total Non-DE Differentially expressed

Total Up Down

C32 Train 128 293 55 200 73 093 24 746 48 344
Test 89 961 38 800 51 161 16 643 34 518

HepG2C3A Train 102 253 55 200 47 053 16 820 30 233
Test 72 169 38 800 33 369 11 629 21 740

HOP62 Train 154 969 55 200 99 769 36 615 63 154
Test 108 777 38 800 69 977 25 472 44 505

Hs 766T Train 101 707 55 200 46 507 20 774 25 733
Test 71 891 38 800 33 091 14 420 18 671

PANC-1 Train 163 748 55 200 108 548 54 081 54 467
Test 115 568 38 800 76 768 38 131 38 637

B EXPERIMENT DETAILS

B.1 METRICS

B.1.1 ACCURACY

Accuracy measures the proportion of correctly predicted instances out of the total instances.

B.1.2 F1-SCORE

F1-score is the harmonic mean of Precision and Recall, providing a balance between correctly
identified positives (Precision) and coverage of actual positives (Recall).

B.1.3 Q-SCORE

Q-score = 1− AP

QP +AP

where AP means the number of answered prompts, QP means the number of prompts without a
normal answer.

B.2 BASELINE

All baselines were trained on 30% of the 45 cell lines from tahoe-100m and 5 test cell lines, and all
of our GeneTAK data was extracted from the remaining 70%, which eliminates the possibility of data
leakage, Table5 is the result obtained from the inference of all baseline models on the five cell lines

B.3 ABLATION STUDY OF VCWORLD

Table 6 shows the responses of all ablation experiments on each cell line, and the Q-score is calculated
from this part of the data.
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Table 5: Statistics of predicted number of DEGs

Task Model Count C32 HepG2C3A HOP62 Hs_766T PANC-1

DE

Truth Number 128 293 102 253 154 969 101 707 163 748

STATE Prediction 157 758 366 238 317 589 86 684 316 434
Correct 19 488 33 122 55 717 9077 60 640

CPA Prediction 21 475 21 204 19 524 19 838 19 253
Correct 2424 2076 2755 1394 3178

scVI Prediction 460 477 466 868 449 047 470 606 435 034
Correct 60 973 40 108 79 858 38 969 83 801

Table 6: Classification results of different VCWorld models across cell lines.

Task Model Metric C32 HepG2C3A HOP62 Hs 766T PANC-1

DE

/ Total 5691 5326 2527 3062 2404

VCWorld (W/O Biotext) Answered 3379 3040 1586 1934 1650
Accurate 1757 1642 809 967 842

VCWorld (W/O CoT) Answered 4462 4131 1978 2367 1863
Accurate 2722 2355 1167 1420 1043

VCWorld-llama3 Answered 3528 3409 1491 1257 1007
Accurate 1235 1227 611 453 393

VCWorld Answered 4874 5060 2162 2564 2061
Accurate 3412 3441 1535 1744 1257

B.4 KNOWLEDGE GRAPH-TO-TEXT PIPELINE FOR PROMPT GENERATION

To ensure the factual grounding and mitigate the risk of hallucination in our language model, we
developed a deterministic pipeline to programmatically construct input prompts from multiple struc-
tured biological knowledge graphs (KGs). This process transforms machine-readable graph data into
a human-readable, factual context that guides the model’s summarization task. The pipeline consists
of three primary stages: data integration and pre-processing, rule-based templated verbalization, and
fact aggregation for prompt assembly.

B.4.1 DATA INTEGRATION AND PRE-PROCESSING

Our pipeline integrates information from a diverse set of public biological knowledge bases, including
Ensembl and UniProt for descriptive annotations, and graph-structured databases such as the Gene
Ontology (GO), Reactome, CORUM, BioPlex, and STRING for relational information. Upon
ingestion, a pre-processing step is applied to enhance data quality. Notably, we filter out high-degree
nodes from relational graphs (e.g., generic GO terms like “protein binding” or highly promiscuous
interactors in STRING). This step reduces noise and focuses the downstream context on more specific
and informative biological relationships.

B.4.2 RULE-BASED TEMPLATED VERBALIZATION

The core of our methodology is a rule-based verbalization engine. Recognizing that each knowledge
source possesses a unique data schema, we designed a specific template to translate its structured
entries into natural language declarative statements.

For instance:

• A relationship from CORUM, representing (Gene_A, is_member_of,
Complex_X, in_cell_line_Y), is verbalized as: “Gene A is a member of
the Complex X in cell line Y.”
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• A protein-protein interaction from STRING, representing (Gene_A,
interacts_with, Gene_B) with associated evidence types [experimental,
database], is translated to: “Based on evidence from experimental evidence and
database evidence, Gene A may physically interact with Gene B.”

• Functional annotations from UniProt are extracted and formatted as statements like: “Func-
tions of Gene A include: [function description].”

This templated approach ensures that the conversion is consistent, deterministic, and preserves the
semantic content of the original source.

B.4.3 FACT AGGREGATION AND PROMPT ASSEMBLY

For each target gene, the declarative statements (facts) generated from all integrated sources are
aggregated into a single collection. We use a set data structure to automatically deduplicate identical
facts that may arise from data redundancy across different databases. To maintain prompt conciseness
and manage cognitive load for the model, we impose a ceiling on the maximum number of facts
included, prioritizing information from higher-fidelity sources like UniProt and curated pathway
databases.

Finally, this aggregated list of facts is formatted as a bulleted list and injected into a master prompt
template under the heading “Domain Knowledge:”. This final prompt provides the language model
with its role, a precisely defined task, operational constraints, and the crucial, factually grounded
context required to generate an accurate and reliable summary.

C PROMPTS

We provide the prompts used by VCWorld and the model’s response at the end of the paper. It
clearly demonstrates that VCWorld is interpretable, capable of aligning with real-world biological
knowledge, and has a traceable thinking process and final result.

D ETHICS STATEMENT

The work reported in this paper involves only computational experiments and publicly available
datasets. Therefore, no ethical approval was necessary.

E REPRODUCIBILITY STATEMENT

The datasets and code for NABench are available at https://anonymous.4open.science/
r/VCWorld-B970

F LLM USAGE STATEMENT

We use the Large Language Models (LLMs) for grammar checking of the paper to improve its overall
readability, while all other work is independently completed by the human authors.
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In Hs766T cells, how does Tofacitinib affect the expression of FTH1 ? 

User Prompt

[Start of Prompt]
You are an expert molecular biologist who studies how small molecule drugs affect gene expression using 
Perturb-seq. Your goal is to determine: Does a drug perturbation of Tofacitinib in Hs766T cells result in 
differential expression of FTH1?
You are given as input:
Description of the drug (Tofacitinib): description of drug that is to perturb the cell
Description of gene of interest (FTH1): description of gene, the impact on which you wish to infer
Context: description of cell line in which the genes are expressed
Examples: set of experimental observations that describe the impact of small molecule perturbations on 
related genes, to contextualize your answer
Output: Please extract the most relevant parts of the examples that address these five questions. Be 
specific.
Which of the observed perturbing drugs are most similar to Tofacitinib (if any, including Tofacitinib itself)?
When using Tofacitinib or similar drugs, what downstream pathways or genes are differentially expressed? 
Justify your answer with the observed outcomes.
Which of the observed genes of interest are most similar to FTH1 (if any, including FTH1 itself)?
What perturbations of upstream pathways or genes result in differential expression of FTH1 or similar genes (if 
any)? Justify your answer with the observed outcomes.
Is a perturbation of Tofacitinib in FTH1 likely to result in differential expression of FTH1? For example, if 2) 
and 4) are unrelated or only indirectly related, it is unlikely we will observe differential expression. On the other 
hand, if 2) and 4) significantly overlap in specific genes or pathways, we may observe differential expression. 
Your final answer should end with one of these three options and nothing else.
No. Perturbation of Tofacitinib does not impact FTH1.
Yes. Perturbation of Tofacitinib results in differential expression of FTH1.
There is insufficient evidence to determine how Perturbation of Tofacitinib affects FTH1.
[End of Prompt]

[Start of Input]
Description of molecule drug (Tofacitinib): Tofacitinib is a reversible Janus kinase (JAK) inhibitor that 
prevents the phosphorylation and activation of STAT transcription factors. This action blocks the JAK-STAT 
signaling pathway, which is involved in hematopoiesis and immune cell function. This perturbation may affect 
the transcription of cytokine-responsive genes that are regulated by the JAK-STAT pathway and are involved 
in inflammatory responses.
Description of gene of interest (FTH1): FTH1 is a ferritin heavy chain subunit enabling iron ion binding and 
sequestering, involved in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or 
oxidative stress could impact FTH1 expression to regulate cellular iron levels.
Context: Hs 766T  is a human pancreatic ductal adenocarcinoma (PDAC) cell line, established from the 
lymph node metastasis of a 73-year-old female patient. It carries hallmark pancreatic cancer alterations 
including KRAS G12D mutation, TP53 mutation, and CDKN2A inactivation, reflecting the canonical molecular 
landscape of PDAC. The cells grow adherently with an epithelial morphology, display a doubling time of 
~60–70 hours, and are microsatellite stable (MSS). Hs 766T is widely used in studies of pancreatic tumor 
progression, metastasis, stromal interactions, and therapeutic resistance, and is included in large-scale 
resources such as the NCI-60 panel for pharmacogenomic profiling.
Examples: 
Example 1:
Drug: c-Kit-IN-1
Gene: FTH1

Generated Prompt
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Drug Description: c-Kit-IN-1 acts as an ATP-competitive inhibitor, binding to the kinase domain of the c-Kit 
receptor tyrosine kinase. This prevents the autophosphorylation of the receptor and the activation of 
downstream signaling pathways. Perturbation with c-Kit-IN-1 may affect the expression of genes regulated by 
the c-Kit signaling pathway, such as those in the MAPK and PI3K pathways.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: B) Perturbation of this drug results in differential expression of the gene of interest.
Example 2:
Drug: AZD2858
Gene: FTH1
Drug Description: AZD2858 binds to the bromodomains of BET proteins, preventing them from binding to 
acetylated histones. This mechanism disrupts the transcriptional activation of key oncogenes, such as MYC. 
Perturbation with AZD2858 may affect the expression of BET target genes involved in cell proliferation.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: B) Perturbation of this drug results in differential expression of the gene of interest.
Example 3:
Drug: BI-78D3
Gene: FTH1
Drug Description: BI-78D3 is a small molecule inhibitor of the protein-protein interaction between the 
transcription factor NRF2 and its negative regulator KEAP1. By disrupting this interaction, it modulates the 
activity of the NRF2 pathway. Perturbation with BI-78D3 may affect the expression of genes regulated by the 
NRF2 antioxidant response element.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: B) Perturbation of this drug results in differential expression of the gene of interest.
Example 4:
Drug: Vemurafenib
Gene: FTH1
Drug Description: Vemurafenib is a competitive inhibitor of mutated BRAF-serine-threonine kinase, particularly 
the BRAF V600E mutation. It blocks the downstream MAPK signaling pathway to inhibit tumor growth and 
trigger apoptosis. This perturbation may affect the expression of genes regulated by the MAPK/ERK pathway, 
which are involved in cell growth and proliferation.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: A) Perturbation of this drug does not impact the gene of interest.
Example 5:
Drug: Ciclopirox
Gene: FTH1
Drug Description: Ciclopirox is an antifungal agent thought to function by chelating polyvalent metal cations, 
which inhibits enzymes involved in processes like mitochondrial electron transport. This perturbation may 
affect the expression of genes involved in cellular metabolism, stress responses, DNA repair, and cell cycle 
regulation.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: B) Perturbation of this drug results in differential expression of the gene of interest.
Example 6:
Drug: Afatinib
Gene: FTH1
Drug Description: Afatinib is an irreversible ErbB family blocker that covalently binds to the kinase domains of 
EGFR, HER2, and HER4. This binding irreversibly inhibits tyrosine kinase autophosphorylation, resulting in 
the downregulation of ErbB signaling. This perturbation may affect the expression of genes downstream of the 
ErbB signaling pathway that are involved in cell proliferation and survival.
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Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: B) Perturbation of this drug results in differential expression of the gene of interest.
Example 7:
Drug: BI-3406
Gene: FTH1
Drug Description: BI-3406 binds to the catalytic domain of SOS1, preventing it from engaging with and 
activating KRAS. This leads to the inhibition of KRAS signaling and a reduction in the proliferation of KRAS-
dependent cancer cells. Perturbation with BI-3406 may affect the expression of genes downstream of the 
KRAS signaling pathway.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: B) Perturbation of this drug results in differential expression of the gene of interest.
Example 8:
Drug: AZD1390
Gene: FTH1
Drug Description: AZD1390 is a potent inhibitor of Ataxia-Telangiectasia Mutated (ATM) kinase. This action 
prevents the activation of the DNA damage checkpoint and disrupts DNA repair processes. Perturbation with 
AZD1390 may affect the expression of genes involved in the DNA damage response and cell cycle 
checkpoints regulated by ATM kinase.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: A) Perturbation of this drug does not impact the gene of interest.
Example 9:
Drug: Palmatine (chloride)
Gene: FTH1
Drug Description: Palmatine (chloride) has multiple mechanisms of action, including acting as a poison for 
topoisomerases, which leads to DNA damage. It also inhibits indoleamine 2,3-dioxygenase 1 (IDO-1), an 
enzyme involved in immune tolerance. Perturbation with Palmatine (chloride) may affect the expression of 
genes involved in DNA replication and repair, as well as immune response pathways.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: A) Perturbation of this drug does not impact the gene of interest.
Example 10:
Drug: Regorafenib
Gene: FTH1
Drug Description: Regorafenib is a small molecule inhibitor of multiple membrane-bound and intracellular 
kinases, including VEGFR, KIT, PDGFR, FGFR, and RAF. This broad inhibition targets pathways involved in 
oncogenesis, tumor angiogenesis, and the maintenance of the tumor microenvironment. This perturbation 
may affect the expression of genes regulated by these various kinase signaling pathways that are involved in 
cell proliferation and angiogenesis.
Gene Description: FTH1 is a ferritin heavy chain subunit enabling iron ion binding and sequestering, involved 
in iron storage and intracellular iron ion homeostasis. Iron overload, iron deficiency, or oxidative stress could 
impact FTH1 expression to regulate cellular iron levels.
Result: A) Perturbation of this drug does not impact the gene of interest.
[End of Input]

[Start of Output]
1)
2)
3)
4)
5)
[End of Output]
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Investigating Tofacitinib's Impact
I'm focusing on Tofacitinib, a JAK inhibitor, and its potential to influence FTH1 expression in Hs766T cells. I've 
begun by examining Tofacitinib's mechanism, specifically its role in blocking JAK-STAT signaling pathways. 
This understanding will be crucial in predicting its effect on FTH1, the target gene. My next step involves 
researching the link between JAK-STAT and iron metabolism to understand the downstream effects 
on FTH1 expression.

Exploring Drug Similarities
I'm now comparing Tofacitinib to the example drugs, focusing on their mechanisms of action. I see c-Kit-IN-1, 
a tyrosine kinase inhibitor, as potentially relevant due to its kinase-inhibiting nature, though not directly 
targeting JAK-STAT. The other examples seem quite different, acting on epigenetic regulators or cellular 
stress responses. I'll need to assess if shared downstream pathways might indirectly link them to FTH1 
regulation.

Comparing Drug Kinase Inhibitors
I'm deep into the analysis of kinase inhibitors. Several example drugs share this mechanism with Tofacitinib, 
though they target distinct kinase families. I've noted c-Kit-IN-1, Vemurafenib, Afatinib, AZD1390 and 
Regorafenib as particularly relevant, due to their inhibition of kinases involved in various signal transduction 
pathways. I'm focusing now on identifying potential shared downstream pathways that might connect these 
drugs to FTH1 regulation, despite their diverse primary targets.

Refining Kinase Connections
Now I'm delving deeper into the potential links between the kinase inhibitors and FTH1. Given the examples, I 
see that while Tofacitinib directly blocks JAK-STAT, other drugs like c-Kit-IN-1, Vemurafenib, Afatinib, 
AZD1390, and Regorafenib might indirectly influence FTH1 through shared downstream pathways. I'm 
focusing on those pathways activated or inhibited by these kinase drugs to evaluate their relevance to FTH1 
regulation. This will necessitate cross-referencing published literature.

Identifying JAK-STAT Targets
I'm now focusing on identifying the specific cytokine-responsive genes regulated by the JAK-STAT pathway, 
which is affected by Tofacitinib. The goal is to determine if any of these target genes might indirectly influence 
FTH1 expression. While no drugs are directly analogous, some kinase inhibitors (c-Kit-IN-1, Afatinib) showed 
FTH1 differential expression, highlighting the need to understand potential shared pathways. I'm cross-
referencing literature to link Tofacitinib's pathway to FTH1's regulators.

Evaluating Pathway Links
I'm now focusing on how the JAK-STAT pathway, targeted by Tofacitinib, might intersect with FTH1 regulation. 
Considering the lack of direct JAK-STAT inhibitors in the examples, I'm examining if inflammatory 
responses, a key feature of JAK-STAT signaling, could indirectly influence iron homeostasis and FTH1 
expression. This will require further literature exploration.

Linking JAK-STAT to Iron
I'm now focusing on how the JAK-STAT pathway, which is targeted by Tofacitinib, might intersect with iron 
regulation in Hs766T cells. While I've examined cytokine-responsive genes, I'm now exploring potential 
connections between inflammatory responses and FTH1 expression, requiring extensive literature review.

Evaluating JAK-STAT Impact
The connection between Tofacitinib's JAK-STAT pathway and FTH1 regulation is under review. I'm focusing 
on the inflammatory responses driven by this pathway, as these might influence iron homeostasis. I'm also 
examining the literature regarding STAT transcription factor regulation of iron-related genes to predict FTH1 
expression shifts.

Predicting Tofacitinib's Effect
I'm now integrating information on JAK-STAT and iron regulation to predict if Tofacitinib will alter FTH1 in 
Hs766T. Given that the JAK-STAT pathway influences inflammatory responses and iron metabolism, it 
appears plausible that FTH1 expression will shift with Tofacitinib. This requires further review.

Thoughts
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I've determined that Tofacitinib, a JAK-STAT inhibitor, has a plausible link to FTH1 regulation in the Hs766T 
cells, primarily through the effects of inflammation on iron homeostasis. This requires further scrutiny, as there 
is currently no direct evidence from the examples.

Analyzing JAK-STAT's Influence
I'm now considering how Tofacitinib, which inhibits the JAK-STAT pathway, interacts with iron regulation. 
Although there are no direct JAK-STAT inhibitors among the examples, this is a plausible mechanism. FTH1 is 
known to be regulated by oxidative stress, metal chelation, and the KRAS pathway, all of which are linked.

The link between Tofacitinib, a JAK-STAT inhibitor, and FTH1 in Hs766T cells is clear. The JAK-STAT 
pathway is involved in inflammation, which impacts iron homeostasis. KRAS, deregulated in this cell 
line, feeds into the JAK-STAT pathway, which is shown to impact FTH1.

Which of the observed perturbing drugs are most similar to Tofacitinib (if any, including Tofacitinib 
itself)?

Tofacitinib is a Janus kinase (JAK) inhibitor that blocks the JAK-STAT signaling pathway. None of the drugs in 
the provided examples are JAK inhibitors. The most similar class of drugs are other kinase inhibitors, although 
they target different pathways. These include:
c-Kit-IN-1: A c-Kit receptor tyrosine kinase inhibitor.
Vemurafenib: A BRAF serine-threonine kinase inhibitor.
Afatinib: An ErbB family tyrosine kinase inhibitor.
AZD1390: An ATM kinase inhibitor.
Regorafenib: A multi-kinase inhibitor targeting VEGFR, KIT, PDGFR, FGFR, and RAF.

When using Tofacitinib or similar drugs, what downstream pathways or genes are differentially 
expressed? Justify your answer with the observed outcomes.

Tofacitinib is described as affecting cytokine-responsive genes regulated by the JAK-STAT pathway. The 
provided examples do not include drugs that target this pathway, so direct evidence is unavailable. The 
outcomes for other kinase inhibitors are inconsistent:
Perturbation with c-Kit-IN-1 (affecting MAPK and PI3K pathways) and Afatinib (affecting ErbB signaling) 
resulted in differential expression of FTH1.
Perturbation with Vemurafenib (affecting MAPK/ERK), AZD1390 (affecting DNA damage response), and 
Regorafenib (affecting multiple pathways including RAF) did not result in differential expression of FTH1.
This indicates that inhibition of some, but not all, kinase signaling pathways can lead to differential expression 
of FTH1.

Which of the observed genes of interest are most similar to FTH1 (if any, including FTH1 itself)?
The only observed gene of interest in all provided examples is FTH1 itself.

What perturbations of upstream pathways or genes result in differential expression of FTH1 or similar 
genes (if any)? Justify your answer with the observed outcomes.

Based on the examples, differential expression of FTH1 results from perturbations of several distinct pathways:
Kinase Signaling: Inhibition of c-Kit (Example 1: c-Kit-IN-1) and ErbB family kinases (Example 6: Afatinib).
KRAS Signaling: Inhibition of the SOS1-KRAS interaction (Example 7: BI-3406). This is particularly relevant as 
the Hs766T cell line has a KRAS mutation.
Antioxidant/Stress Response: Modulation of the NRF2 pathway (Example 3: BI-78D3), which directly regulates 
genes involved in oxidative stress, including FTH1.
Metabolic Stress/Ion Homeostasis: Chelation of metal cations (Example 5: Ciclopirox), which directly relates to 
FTH1's function in iron storage.
Epigenetic Regulation: Inhibition of BET bromodomain proteins (Example 2: AZD2858), which affects broad 
transcriptional programs.

Answer
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Is a perturbation of Tofacitinib in FTH1 likely to result in differential expression of FTH1? For example, 
if 2) and 4) are unrelated or only indirectly related, it is unlikely we will observe differential expression. On the 
other hand, if 2) and 4) significantly overlap in specific genes or pathways, we may observe differential 
expression.

The pathways impacted by Tofacitinib (JAK-STAT, inflammation, cytokine signaling) are highly related to 
pathways shown to regulate FTH1 (stress response, KRAS signaling). There is a well-established biological 
link between inflammation, cytokine signaling (mediated by JAK-STAT), and the regulation of iron 
homeostasis, where FTH1 is a key player. Furthermore, in the context of KRAS-mutated pancreatic cancer 
cells like Hs766T, the oncogenic KRAS pathway is known to drive inflammatory cytokine production, creating 
a dependency on JAK-STAT signaling. Since the examples show that inhibiting KRAS signaling directly results 
in differential expression of FTH1 (Example 7), it is highly probable that inhibiting the downstream JAK-STAT 
pathway with Tofacitinib will also result in differential expression of FTH1.

Yes. Perturbation of Tofacitinib results in differential expression of FTH1.
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You are an expert molecular biologist who studies how drug affect the cellular reaction using Perturb-seq.

Task: You are writing a brief overview of the small molecule drug{{pert}}, with a focus on its MoA and Targets. 

You will be provided a set of database entries about the drug. Ensure that your overview remains faithful to this 

domain knowledge.

Format:

- Write one to two sentences describing the primary MoA and target of {{pert}}.

- Write one sentence describing the potential downstream impact of perturbing drug {{pert}}.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene. Focus only on its function.

Domain knowledge:

{{entries}}

Brief overview of drug {{pert}}:

Prompt

You are an expert molecular biologist who studies how genes are related using Perturb-seq.

Task: You are writing a brief overview of the human gene {{name}}, with a focus on its molecular and cellular 

functions. You will be provided with a set of database entries about the gene. Ensure that your overview 

remains faithful to this domain knowledge.

Format:

- Write one to two sentences describing the primary molecular and cellular function of gene {{name}}.

- Write one sentence describing what types of perturbations might impact the expression of gene {{name}}. For 

example, you might consider pathways that are upstream of the gene or compensatory mechanisms.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene. Focus only on its function.

Domain knowledge:

{{entries}}

Brief overview of gene {{name}}:

Prompt
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You are an expert molecular biologist who studies how drug affect the cellular reactions using Perturb-seq.

Task: You are writing a brief overview of the small molecule drug{{pert}}, with a focus on the downstream 

effects of perturbing {{name}} .

Inputs: You are provided

- Description of perturbing drug {{pert}}

- Database entries relating {{pert}} to other drugs or targets.

Format:

- Write up to five sentences describing the molecular and cellular impact of perturbing drug{{pert}}.

Constraints:

- Omit the importance or impact of the gene. Focus only on its function.

- Omit all non-specific information and obvious statements, e.g. "this gene is involved in cellular processes."

- Remain faithful to all domain knowledge. Do not make up additional information.

- Maintain a professional tone throughout. Do not comment on your own writing. Do not add any notes or 

references.

Description of drug {{pert}}: {{summary}}

Relations to other drugs/targets:

{{entries}}

Downstream effects of perturbing drug {{pert}} :

Prompt

You are an expert molecular biologist who studies how genes are related using Perturb-seq.

Task: You are writing a brief overview of the human gene {{name}}, with a focus on molecular and cellular 

perturbations that may affect the levels of gene {{name}}. For example, you might consider pathways that are 

upstream of the gene or compensatory mechanisms.

Inputs: You are provided

- Description of gene of interest {{name}}

- Database entries relating {{name}} to other genes or pathways

Format:

- Write up to five sentences describing potential molecular and cellular perturbations that may impact the levels 

of {{name}}.

Constraints:

- Remain faithful to all domain knowledge. Do not make up additional information.

- Summarize all common aspects succinctly, but point out notable differences within these sets of genes.

- Maintain a professional tone throughout. Do not comment on your own writing. Do not add any notes or 

references.

- Omit the importance or impact of the gene. Focus only on its function.

- Omit all non-specific information and obvious statements, e.g. "this gene is involved in cellular processes."

Description of gene {{name}}: {{summary}}

Relations to other genes:

{{entries}}

Perturbations that may affect the levels of {{name}}:

Prompt
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