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ABSTRACT
Recently, multi-scenario learning has achieved flourishing devel-
opment in recommendation and retrieval systems in E-commerce
platforms. Current numerous models have been proposed that at-
tempt to use a unified model to serve multiple scenarios. How-
ever, three critical challenges still remain to be carefully addressed.
First, users in different scenarios explicitly have different behavior
interests, which is vital for modeling but has been neglected in
previous works. Second, it is intuitive that relationships between
scenarios is intricate as various scenarios generally have common-
alities and specific characteristics, while previous solutions neglect
the complicated interrelations among scenarios. Moreover, current
state-of-the-art unified models may not work well in all scenarios,
since they usually face head scenario domination phenomenon due
to the different data distribution. To resolve these problems, we
propose a novel approach named Fusingmulti-Interest and scenario-
Mutual Network (FIMN), which mainly consists of four modules.
FIMN performs explicitly multi-interest fusing corresponding to
specific scenario and learns correlations across scenarios dynami-
cally, meanwhile the scenario distribution discrepancy problem can
be mitigated. Extensive experiments show the superiority of FIMN
towards the state-of-the-art methods. FIMN has been successfully
deployed in our online retrieval platform.

CCS CONCEPTS
• Information systems→ Retrieval models and ranking; Rec-
ommender systems.
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1 INTRODUCTION
With rapid development of the E-commerce platforms, recommen-
dation and retrieval systems play an increasingly critical role in
boosting business revenue and improving users’ online experience.
Naturally, multiple shopping scenarios are rapidly developed to
meet the diversified needs of users. Figure 1 lists five typical scenar-
ios of our app: (1) Trigger search: this scenario displays four related
queries according to users’ clicked item (i.e., trigger item). (2) Active
search: users typing queries in search bar means that they have
explicit intentions. (3) History search: this scenario lists queries that
users recently searched. (4) Interest search: this scenario lists queries
that may be of interest to users. (5) Suggest search: this scenario com-
plements and suggests terms entered by users. Clearly, these five
scenarios are very different from each other, and the user intents
and interests (e.g., user preference for a particular brand, price or
category) behind them also vary significantly. Traditional methods
[7, 9, 13, 22, 23, 35] deploy an independent model for each scenario
merely based on the feedback data collected from its own. However,

Trigger search

(a) Homepage

Active search

History search

Interest search

(b) Search page

Suggest search

(c) Suggest page

Figure 1: Examples of multiple scenarios in our app

separate models in scenarios with long-tail data distributions (e.g.,
Trigger search in our app usually has smaller traffic than others
as users pay less attention to the entrance of it when browsing in
the homepage) can not be trained sufficiently and may lead to non
convergence. Also, when considering online serving deployment,
multiple models usually require more complex computation and
maintenance cost. Currently, state-of-the-art models generally train
a unified model with merged data of all scenarios based on multi-
task learning methods [11, 14, 15, 24, 27, 28, 36]. Multi-task learning
is to develop a single model that outputs a couple of predictions
where each is for a certain task (e.g., CTR or CVR prediction), while
multi-scenario learning is to implement a single model that deals
with data in various scenarios. However, unified model leads to
the phenomenon that training process is dominated by the head
scenarios. Furthermore, all of them neglect the significant inter-
ests discrepancy among scenarios and lack effective interrelations
and correlations modeling between scenarios to further boost the
performance.

In summary, three major challenges of multi-scenario learning
problems are still ignored and urgently needed to be solved:

User interest discrepancy across scenarios. The interests and
intentions of users vary in different scenarios. Specifically, the same
interest has different intensities in different scenarios (e.g., users
in Suggest search prefer purchasing items with lower price as they
are more conservative compared with other scenarios, and they
prefer browsing more categories of items as having more divergent
interests in this scenario). To clarify this issue more clearly, Figure
2(a) shows the statistics of Average Order Price (AOP) and Average
Clicked Categories (ACC) in different scenarios (named as #D1 to
#D5), which are derived from our app from the date 21/08/2023 to
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Figure 2: Illustration of user interest and data distribution
discrepancy in our APP

the date 27/08/2023. #D1 to #D5 represent Active search, History
search, Suggest search, Interest search and Trigger search in order.
The ranges of AOP and ACC are shifted with a linear transformation
for data security simultaneously. From Figure 2(a), significant differ-
ences in purchasing price range and potential categories of interest
can be observed, and the intra-interest intensity discrepancy in
different scenarios is also demonstrated. Moreover, various user in-
terests have different contribution degrees under a specific scenario.
For example, users in Trigger search are more concerned about price
factor when making decisions and category factor has less effect as
recommended items and trigger item usually belong to the same
category in Trigger search. However, when a user types "nike" in
Active search, the price and category factor should be considered
simultaneously and the ranking model should decide which factor
leads from his historical behaviors. Therefore, the contributions
of various interests is different in a specific scenario. So far, many
works based on behavior sequence modeling [3, 10, 12, 20, 26, 35]
are not able to explicitly uncover the discrepancy of user interests
across scenarios.

Interrelations modeling across scenarios. Commonalities
and specific characteristics coexist among various scenarios because
of label space sharing and data overlapping. Effective scenario-
scenario interrelation learning will largely optimize performance
of each scenario as different scenarios can well benefit from each
other when using appropriate interaction methods. Although cur-
rent state-of-the-art methods [15, 27, 36] have made some efforts
to sufficiently leverage homogeneous and heterogeneous informa-
tion from different scenarios, we argue that they can not learn
interrelations and correlations between scenarios adaptively.

Distribution discrepancy across scenarios. Discrepancy of
scenarios’ data distributions is obvious as shown in Figure 2(b).
The top four scenarios take over 90% of user impressions (number
of users’ visits in a scenario), which leads to inferior performance
in the long-tail scenarios as training process is dominated by the
head scenarios. Both solutions [15, 27, 36] ignore this issue. Hence,
the influence of marginal scenarios need to be enhanced during
training.

Coping with the above three limitations, we propose FIMN, a
novel deep neural network for multi-scenario learning. Specifically,
we first devise the Scenario Enhancing Module (SEM), which is
inspired by the idea of monotonic learning [10, 30] to emphasize

the importance of scenarios with long-tail distributions. SEM thus
enables FIMN to handle the distribution problem mentioned in the
third challenge. The output representation of SEM is then delivered
to the Multi-aspect Interest Extractor (MIE) and Scenario-aware
Interest Fusion (SIF). In MIE, output from SEM is first crossed with
each field representation of target item using Factorization Ma-
chines (FM) [21] to get a new 2-order interactive representation. A
field-wise target attention (FTA) mechanism is designed to capture
users’ multi-aspect interests with the user behavior embeddings as
key and value, the interactive representation as query. MIE explic-
itly outputs several user interest representations corresponding to
different feature fields like price or category. Then, SIF performs
explicitly interests refinement corresponding to different scenarios,
and achieves fusing users’ scenario-specific multi-interest. Notice
that MIE and SIF can effectively address the first challenge. To
the end, by composing the outputs of previous modules, Scenario
Mutual Module (SMM) is introduced to well adress the second chal-
lenge, which considers correlations across scenarios and leverages
mutual information dynamically. The contributions of this paper
include:

• To the best of our knowledge, we make the first attempt to ex-
plicitly learn users’ interest discrepancy across scenarios, which
is a crucial challenge in multi-scenario learning on real-world
E-commerce platforms.

• We propose several novel components in FIMN to address the
aforementioned three challenges in the context of multiple sce-
narios, which significantly improves the effectiveness of multi-
scenario learning tasks.

• Extensive offline and online experiments show that the proposed
FIMN consistently and significantly outperforms all baselines.
Visualization analysis and some real users’ show-cases also verify
the effectiveness of FIMN coping with above challenges. Also
FIMN has already been deployed in our industrial system.

2 RELATEDWORK
Multi-scenario learning. Recently, Multi-Task Learning (MTL)[1,
2] has been actively researched in recommendation and retrieval
systems. It can learn useful information across different tasks. MoE
[11, 24] proposes to select sub-expert based on the shared-bottom
input. MMoE [15] adapts the MoE structure while having gating
networks trained to optimize each task. PLE [27] is presented to ad-
dress the seesaw phenomenon (i.e., improvement of one task often
leads to performance degeneration of the other tasks). Inspired by
the recent success in MTL, numerous similar works have emerged
in multi-scenario learning. SAML [6] introduces scenario-aware
embedding module to learn feature representations both in global
and scenario-specific view. Furthermore, SAR-Net [25] proposes a
unified multi-scenario architecture with some scenario-specific ex-
perts and scenario-shared experts. Lately, [33, 36] are proposed with
combingmulti-task andmulti-scenario. Besides, several studies (e.g.,
PEPNet [4], MARIA [28] and M2M [32]) pay attention to employ
dynamic weighting operations to model inter-scenario distinctions.
M5 [34] studies how to exploit the multi-modal multi-interest multi-
scenario characteristics to improve industrial matching.
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3 PRELIMINARIES
LetU = {𝑢1, . . . , 𝑢 |U | } represent a set of |U| users, I = {𝑖1, . . . ,
𝑖 | I | } be a set of |I | items, and S = {𝑠1, . . . , 𝑠 |S | } denote a set
of |S| scenarios. Given each 𝑖 ∈ I, 𝑢 ∈ U, and 𝑠 ∈ S, then
𝐴𝑖 =< 𝑎1

𝑖
, 𝑎2

𝑖
, . . . , 𝑎

|𝐴𝑖 |
𝑖

>, 𝐴𝑢 =< 𝑎1𝑢 , 𝑎
2
𝑢 , . . . , 𝑎

|𝐴𝑢 |
𝑢 > and 𝐴𝑠 =<

𝑎1𝑠 , 𝑎
2
𝑠 , . . . , 𝑎

|𝐴𝑠 |
𝑠 > represent item field containing |𝐴𝑖 | attributes,

user field containing |𝐴𝑢 | attributes and scenario field containing
|𝐴𝑠 | attributes respectively. Specifically, 𝐴𝑖 contains categorical
features (e.g., item_id, category_id and etc.) and numeric statistical
features such as the number of clicks to an item in the last month.
𝐴𝑢 and 𝐴𝑠 are similar to 𝐴𝑖 .

Given a query𝑞 ∈ 𝑄 initiated by a user𝑢, letB𝑢 = {𝑏𝑢1 , . . . , 𝑏
𝑢
| B | }

denote a chronological sequence of historical behaviors (e.g., click-
ing or purchasing) of user 𝑢 and |B| represents the predefined
maximum capacity of sequence, where 𝑏𝑢

𝑗
∈ I. Given a list of

target items for the query 𝑞, denoted by T𝑞 = {𝑇1, . . . ,𝑇| T𝑞 | } with
𝑇𝑗 ∈ I. With the above knowledge, the objective of the multi-
scenario learning problem can be formally defined as to predict the
probability 𝑃𝑟 (𝑇𝑧 |𝑞,T𝑞,B𝑢 , 𝑠) of the 𝑧𝑡ℎ item in T𝑞 be interacted by
user 𝑢 ∈ U under the scenario 𝑠 . Notice that the click-through rate
(CTR) prediction task is considered in our work.

4 THE FIMN APPROACH
In this section, we present the proposed FIMN model in detail.
Figure 3 illustrates the network architecture of our model.

4.1 Embedding Layer
As illustrated by Figure 3, there are five groups of features, i.e.,
scenario features, user behavior sequence, target item, user profiles
and query features. After the computation of the embedding layer
[17], the dense embedding vectors of the scenario features, target
item, user profiles and query are denoted by 𝒆𝒔 ∈ R𝑑𝑠 , 𝒆𝒕 ∈ R𝑑𝑡 ,
𝒆𝒑 ∈ R𝑑𝑝 and 𝒆𝒒 ∈ R𝑑 , respectively, where 𝑑 is the fixed dimension-
ality of each field vector and 𝑑𝑠 = |𝐴𝑠 | ∗𝑑 , 𝑑𝑡 = |𝐴𝑖 | ∗𝑑 , 𝑑𝑝 = |𝐴𝑢 | ∗𝑑 .
|𝐴𝑠 |, |𝐴𝑖 | and |𝐴𝑢 | are the number of fields in scenario, item and
user respectively. Similarly, the behavior sequence of a user is de-
noted as a matrix 𝑬𝒖

𝑩 = [. . . ; 𝒆(𝑏𝑢
𝑖
); . . . ]𝑇 ∈ R | B |×𝑑𝑡 , where |B| is

the number of user behaviors we select and each 𝒆(𝑏𝑢
𝑖
) ∈ R𝑑𝑡 rep-

resents the embedding vector of the 𝑖𝑡ℎ item historically interacted
by user 𝑢.

4.2 Scenario Enhancing Module
Existing unified models may not work well in all scenarios due to
the data distribution discrepancy across scenarios. The train process
is always dominated by the head scenarios as described in the third
challenge. Inspired by the monotonic learning [10, 30], we propose
the Scenario EnhancingModule (SEM) to emphasize the importance
of long-tail scenarios. We first derive the frequency-based statistical
features from the inputs of scenario field. Features include the
impression probability of one scenario, the impression number of
one scenario, etc., which are all normalized to a small scale. Then
features are concatenated as a vector denoted as 𝒗𝒔 ∈ R𝑑𝑣𝑠 . Then
the output 𝒗𝒔𝒆 ∈ R𝑑𝑠 is computed as follows:

𝒗𝒔𝒆 = 𝛾 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐_𝑀𝐿𝑃 (−𝒗𝒔 )) (1)

where the 𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐_𝑀𝐿𝑃 (·) is a MLP layer whose weights are
all nonzero positive values, the output is then transformed with a
sigmoid function which limits the scale to [0, 𝛾]. 𝛾 is the scaling
factor that is set to 2. By using an element-wise product operation
as shown in Equation (2), the embedding vector of scenario features
𝒆𝒔 is converted to an enhanced representation:

𝒆̃𝒔 = 𝒆𝒔 ⊗ 𝒗𝒔𝒆 (2)

where ⊗ denotes element-wise product and 𝒆̃𝒔 ∈ R𝑑𝑠 . It is easy to un-
derstand that the value of 𝒗𝒔𝒆 rises monotonously as the frequency-
based statistical value declines. Under such circumstances, a smaller
statistical value of scenario indicates a longer-tail scenario but de-
rives a higher weight vector, corresponding to the purpose make
longer-tail scenario a bit more important semantically.

4.3 Multi-aspect Interest Extractor
To explicitly extract multiple interests of a user from several aspects,
we modify the widely used Multi-head target attention (MHTA)
[5, 18, 19, 29] to field-wise target attention (FTA).

Specifically, we first map the final output 𝒆̃𝒔 of SEM to a new
vector with the same dimensionality of each field in the target item,
i,e, 𝒆𝒔 =𝑾𝒆 𝒆̃𝒔 with 𝒆𝒔 ∈ R𝑑 ,𝑾𝒆 ∈ R𝑑×𝑑𝑠 is the projection matrix.
Then we split the target item embedding 𝒆𝒕 ∈ R𝑑𝑡 into |𝐴𝑖 | sub-
vectors. |𝐴𝑖 | denotes the fields number of target item or interests
number. The split strategy can be defined as:

𝑠𝑝𝑙𝑖𝑡 (𝒆𝒕 ) =
[
𝒆
𝒇1
𝒕 , . . . , 𝒆

𝒇|𝑨𝒊 |

𝒕

]
, 𝒆

𝒇𝒋
𝒕 ∈ R𝑑 (3)

We then employ Factorization Machines (FM) to get a new 2-order
interactive target representation between 𝒆𝒔 and 𝒆

𝒇𝒋
𝒕 . The purpose

of FM operation is to effectively distinguish the behaviors more
relevant to the target item under the circumstances of the current
scenario. The FM interaction is calculated as follows:

𝒆
𝒇𝒋
𝒕 = 0.5 ∗

((
𝒆𝒔 + 𝒆

𝒇𝒋
𝒕

)2
−

(
𝒆2𝒔 +

(
𝒆
𝒇𝒋
𝒕

)2))
(4)

where 𝒆
𝒇𝒋
𝒕 ∈ R𝑑 . Similar to the split strategy of target item, we

can also split the behavior sequence matrix into |𝐴𝑖 | sub-matrices,
which is computed as:

𝑠𝑝𝑙𝑖𝑡
(
𝑬𝒖
𝑩

)
=

[
𝑬𝒖
𝑩1
, . . . , 𝑬𝒖

𝑩 |𝑨𝒊 |

]
, 𝑬𝒖

𝑩𝒋
∈ R | B |×𝑑 (5)

The main part of FTA is dot-product attention. The calculation
of FTA is shown in Equation (6). And the calculation process of
dot-product attention in detail is described in Equation (7):

𝑰 𝒋𝒖 = 𝐹𝑇𝐴

(
𝒆
𝒇𝒋
𝒕 , 𝑬

𝒖
𝑩𝒋

)
= ℎ𝑒𝑎𝑑 𝑗𝑾

𝑶
𝒋 ,

ℎ𝑒𝑎𝑑 𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

(
𝒆
𝒇𝒋
𝒕 𝑾

𝑸
𝒋 , 𝑬𝒖

𝑩𝒋
𝑾𝑲

𝒋 , 𝑬𝒖
𝑩𝒋
𝑾𝑽

𝒋

) (6)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑸,𝑲 , 𝑽 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑸𝑲𝑇√︁
𝑑𝑘

)
𝑽 (7)

where 𝒆
𝒇𝒋
𝒕 ∈ R𝑑 , 𝑬𝒖

𝑩𝒋
∈ R | B |×𝑑 are input embedding matrices of

the 𝑗𝑡ℎ field in target item and behavior sequence respectively. |B|
is sequence length and 𝑑 is the embedding size of hidden vector
for each field of items. Matrices 𝑸,𝑲 , 𝑽 represent queries, keys and
values respectively. And 𝑑𝑞, 𝑑𝑘 , 𝑑𝑣 are embedding sizes for each
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Figure 3: Overall framework of the FIMN model.

row vector of 𝑸,𝑲 , 𝑽 .
√︁
𝑑𝑘 is used to avoid large value of the inner

product. Softmax activation function is used to convert the value
of inner-product into the adding weight of the value vector 𝑽 .
𝑾

𝑸
𝒋 ∈ R𝑑×𝑑𝑘 ,𝑾𝑲

𝒋 ∈ R𝑑×𝑑𝑘 ,𝑾𝑽
𝒋 ∈ R𝑑×𝑑𝑣 ,𝑾𝑶

𝒋 ∈ R𝑑𝑣×𝑑 are the
projection matrices.

Finally, by applying the FTA to all fields, we can obtain a multi-
aspect interests matrix 𝑬𝑼

𝑰 = [𝑰 1𝒖 ; ...; 𝑰
|𝑨𝒊 |
𝒖 ]𝑇 ∈ R |𝐴𝑖 |×𝑑 , in which

the 𝑗𝑡ℎ row vector denotes the interest representation correspond-
ing to the 𝑗𝑡ℎ field. Our proposed FTA is an explicit manner captur-
ing user interests, i.e, each field of the user interests corresponds
to a specific aspect (e.g., the category field represents the category
preference, the price field represents the price preference, etc.).

4.4 Scenario-aware Interest Fusion
To tackle the first challenge, the Scenario-aware Interest Fusion
(SIF) component in FIMN is designed to explicitly refines interests
w.r.t. specific scenario after extracting multiple interests in MIE. SIF
applies the MRFG to adjust the intra-interest intensity and inter-
interest contributions dynamically and refines scenario-specific
interests with Scenario-aware Interest Activations (SIA).

Multi-Resolution Fusion Gates. In the MRFG module, the
final output 𝒆̃𝒔 of SEM, which denotes the enhanced scenario rep-
resentation, is concatenated with the multi-aspect interests matrix

𝑬𝑼
𝑰 . The output is:

𝒙𝒇 𝒈 = 𝒆̃𝒔 ⊕ (⊘(𝑬𝑼
𝑰 )) (8)

where 𝒙𝒇 𝒈 ∈ R |𝐴𝑖 |∗𝑑+𝑑𝑠 and ⊕ indicates concatenation. ⊘(·) de-
notes stop gradient operation. Afterwards, the input of MRFG is
generated with a MLP layer as follows:

𝒙
′

𝒇 𝒈 = 𝑅𝑒𝑙𝑢 (𝒙𝒇 𝒈𝑾𝒇 𝒈 + 𝒃) (9)

where 𝒙
′

𝒇 𝒈
∈ R𝑑𝑔 , 𝑑𝑔 is the length of the input for MRFG.𝑾𝒇 𝒈 ∈

R( |𝐴𝑖 |∗𝑑+𝑑𝑠 )×𝑑𝑔 and 𝒃 ∈ R𝑑𝑔 are learnable weight and bias. 𝑅𝑒𝑙𝑢 (·)
is a non-linear activation function. Then the outputs of intra-gate
𝒗𝑰𝒂 and inter-gate 𝒗𝑰𝒆 can be derived from Equation (10) and Equa-
tion (11) respectively:

𝒗𝑰𝒂 = 𝛾 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝒙
′

𝒇 𝒈𝑾𝑰𝒂 + 𝒃𝑰𝒂

)
∈ R |𝐴𝑖 |∗𝑑 (10)

𝒗𝑰𝒆 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝒙
′

𝒇 𝒈𝑾𝑰𝒆 + 𝒃𝑰𝒆

)
∈ R |𝐴𝑖 | (11)

where 𝑾𝑰𝒂 ∈ R𝑑𝑔×( |𝐴𝑖 |∗𝑑 ) and 𝑾𝑰𝒆 ∈ R𝑑𝑔×|𝐴𝑖 | are projection
matrices corresponding to intra-gate and inter-gate. 𝒃𝑰𝒂 ∈ R |𝐴𝑖 |∗𝑑

and 𝒃𝑰𝒆 ∈ R |𝐴𝑖 | are bias vectors similarly. 𝛾 is a scaling factor to
further squash and double the effective signal and we set it to 2.

Scenario-aware Interest Activation. After obtaining the out-
put of intra-gate 𝒗𝑰𝒂 , we reshape it to a matrix with the same size
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as the multi-aspect interests matrix 𝑬𝑼
𝑰 . The reshaping process is:

𝑬𝑰𝒂 = 𝑠𝑝𝑙𝑖𝑡 (𝒗𝑰𝒂 ) = [𝒗1𝑰 𝒂 ; ...; 𝒗
|𝑨𝒊 |

𝑰 𝒂 ]𝑇 ∈ R |𝐴𝑖 |×𝑑 (12)

where 𝑬𝑰𝒂 ∈ R |𝐴𝑖 |×𝑑 is the reshaped output. Subsequently, Intra
Interest Activation can be formulated as:

𝑬̂𝑼
𝑰 = 𝑬𝑰𝒂 ⊗ 𝑬𝑼

𝑰 (13)

where 𝑬̂𝑼
𝑰 ∈ R |𝐴𝑖 |×𝑑 denotes the representation of Intra Interest

Activation, which considers the intensities discrepancy of a specific
interest in different scenarios by 𝒗𝑰𝒂 . ⊗ is element-wise product.

Finally, by using a weighted sum pooling operation as shown in
Equation (14) between inter-gate output 𝒗𝑰𝒆 and interest represen-
tations 𝑬̂𝑼

𝑰 of Intra Interest Activation, the output of Inter Interest
Activation is calculated in:

𝒆𝑰𝒇 =

|𝐴𝑖 |∑︁
𝑗=1

(
(𝒗𝑰𝒆 ) 𝑗 × (𝑬̂𝑼

𝑰 ) 𝑗
)

(14)

where (𝒗𝑰𝒆 ) 𝑗 is the 𝑗𝑡ℎ element of 𝒗𝑰𝒆 and (𝑬̂𝑼
𝑰 ) 𝑗 is the 𝑗𝑡ℎ row

vector of 𝑬̂𝑼
𝑰 . 𝒆𝑰𝒇 ∈ R𝑑 represents the final output representation

of the SIF module. Inter Interest Activation performs equipping dis-
criminative contributions to different interests in a specific scenario
by 𝒗𝑰𝒆 thus achieving scenario-aware interest fusing finally.

4.5 Scenario Mutual Module
It is apparent that different scenarios have distinguishing contri-
butions to the current one. To further consider interrelations and
correlations across scenarios in the second challenge, we design a
novel Scenario Mutual Module (SMM) to sufficiently leverage the
information from other scenarios, thus subsidiary contributions are
infused to the current scenario to improve performance adaptively.
The input [𝑴1; ...;𝑴 |S| ] ∈ R |S |×𝑑 of SMM is composed of the
reshaped outputs of previous modules:

[𝑴1; ...;𝑴 |S| ] = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒 (𝒆̃𝒔 ⊕ 𝒆𝑰𝒇 ⊕ 𝒆𝒕 ⊕ 𝒆𝒑 ⊕ 𝒆𝒒) (15)

where 𝑴𝒊 denotes the 𝑖𝑡ℎ scenario representation. SMM first uses
a vanilla additive target attention mechanism with the the 𝑖𝑡ℎ sce-
nario representation, i.e., 𝑴𝒊 , as the query to adaptively learn the
weight for the representation vector of other scenarios. Thus dif-
ferent weights are assigned to each representation vector of other
scenarios according to its relevance to the current one. The mutual
weight of the 𝑗𝑡ℎ, 𝑗 ≠ 𝑖 scenario representation vector 𝑴𝒋 , i.e., 𝛼 𝑗 ,
is computed as follows:

𝛼 𝑗 =
𝑒𝑥𝑝

(
𝑎 𝑗

)∑ |S |
𝑘≠𝑖

𝑒𝑥𝑝 (𝑎𝑘 )
,

𝑎 𝑗 = 𝒛𝑇 𝑡𝑎𝑛ℎ
(
𝑾 𝒊𝑴𝒊 +𝑾𝒋𝑴𝒋

) (16)

where𝑾 𝒊 ∈ R𝑑ℎ×𝑑 ,𝑾𝒋 ∈ R𝑑ℎ×𝑑 , 𝒛 ∈ R𝑑ℎ are learnable parameters.
Then, by using a weighted sum pooling operation as shown in
Equation (17), the representations of other scenarios are fused as
𝑴̂𝒊 ∈ R𝑑 .

𝑴̂𝒊 =

|S |∑︁
𝑗≠𝑖

𝛼 𝑗𝑴𝒋 (17)

After that, a light dynamic gating network is employed to adaptively
control the weights of 𝑴𝒊 and 𝑴̂𝒊 . The final output 𝑴̃𝒊 ∈ R𝑑 of
SMM for the 𝑖𝑡ℎ scenario is:

𝑴̃𝒊 = 𝜃𝑴𝒊 + (1 − 𝜃 ) 𝑴̂𝒊,

𝜃 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑾𝒎

(
𝑴𝒊 ⊕ 𝑴̂𝒊

)) (18)

where 𝑾𝒎 ∈ R1×2𝑑 is learnable parameter, and 𝜃 ∈ [0, 1] is a
scalar.

4.6 Prediction Module
In Prediction Module, several scenario-specific DNN towers are
used to map each scenario’s output of SMM to the final probability,
which represents the CTR prediction score of target item in the
current scenario. The probability that user 𝑢 ∈ U will interact with
item 𝑇𝑗 ∈ I in the 𝑖𝑡ℎ scenario is calculated as follows:

𝑝𝑖𝑇𝑗
= 𝑆𝑖𝑔𝑚𝑜𝑖𝑑

(
𝑀𝐿𝑃

(
𝑴̃𝒊

))
(19)

Then we used the widely used cross entropy loss as the objective
function.

4.7 Model Complexity
We perform model complexity analysis of FIMN to illustrate that
our model meets the standards for online deployment. As the SEM
and Prediction Module are composed of simple DNNs, We therefore
analyze the additional computation cost introduced by MIE, SIF
and SMM. The target attention operation in MIE has O(|B| × |𝐴𝑖 | ×
𝑑) complexity, SIF takes at most O(𝑑𝑔 × (|𝐴𝑖 | ∗ 𝑑 + |𝐴𝑠 | ∗ 𝑑)) to
finish the interest refinement and mutual operation in SMM incurs
O(|S|2 × 𝑑) complexity. |𝐴𝑖 |, 𝑑𝑔 , |𝐴𝑠 | and |S| are relatively small
values compared to |B|, the complexity can be approximated as
O(|B| ×𝑑). The truncation length |B| of user behavior is fixed to a
small constant, therefore, the complexity of our model is acceptable
for online serving.

5 EXPERIMENTS
In this section, we conduct plenty of experiments to validate the
efficacy of FIMN.

5.1 Experiment Settings
5.1.1 Datasets. we conduct our experiments over three real-world
datasets as follows. Statistics of them are listed in Table 1.
• AliCCP1. AliCCP is a public dataset released by Taobao with

prepared training and testing set, which is widely used in the
relevant literature [16] for recommendation area. We split the
dataset into three scenarios (abbreviated as #C1 to #C3) according
to the context feature value as previous work [14]. The splitting
method of the dataset follows the official guidance given in [16].

• Alimama2. This dataset is provided by Alimama[8], an online
advertising platform in China. It is made up of 8 days of ad
records from 2017. We divided the dataset into 3 scenarios based
on the feature pvalue_level_id.

1https://tianchi.aliyun.com/dataset/408
2https://tianchi.aliyun.com/dataset/dataDetail?dataId=56

https://tianchi.aliyun.com/dataset/408
https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
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• Ours. It contains user search logs covering five scenarios (de-
noted as #D1 to #D5 for simplicity, corresponding to scenarios
in the introduction section), randomly sampled at our APP from
the date 20/08/2023 to the date 04/09/2023. We use logs of the
last day in the dataset as testing set, and the remaining logs are
used as training set.

Table 1: Statistics of three datasets. (M-million)

Dataset Users Items Samples Scenarios
AliCCP 0.4M 4.3M 1.76M 3
Alimama 0.8M 0.47M 26M 3
Ours 1.2M 3.3M 394.7M 5

5.1.2 Metrics. We adopt widely-used accuracy metric, i.e, AUC,
to evaluate model performance. AUC denotes the area under the
ROC curve over the testing set. It is worth mentioning that a small
improvement of AUC is likely to lead to a significant increase in
CTR at our app. Besides, RelaImpr metric is introduced to measure
relative improvement over models following [31, 35]:

𝑅𝑒𝑙𝑎𝐼𝑚𝑝𝑟 =

(
𝐴𝑈𝐶 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑜𝑑𝑒𝑙) − 0.5
𝐴𝑈𝐶 (𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙) − 0.5

− 1
)
× 100% (20)

For each method, we repeat the experiment five times and report
the averaged results. The statistical significance test is conducted
by using 𝑡 − 𝑡𝑒𝑠𝑡 .

5.1.3 Baselines. To demonstrate the effectiveness of our proposed
model, we compare FIMN with two categories of approaches in
previous works. (1) Single-task based: DeepFM [9] and DIN [35]; (2)
Multi-task based: MMoE [15], PLE [27], SAR-Net [25] and HiNet
[36].

5.1.4 Variants of FIMN.. To evaluate the effectiveness of each mod-
ule in FIMN, FIMN is also compared with its variants in the ex-
periment. Variants are named with "FIMN-", where "-" represents
removing the component from FIMN.

5.1.5 Parameter Setting. We use Adam optimizer with batch size of
4096 and run the experiments with the learning rate of 0.001 for all
comparison methods. A Gaussian distribution (𝜇 = 0 and 𝜎 = 0.05)
is used to initialize the parameters in DNN. The truncation length
of user behavior (if used) is 30. The scaling factor 𝛾 is 2 following
[4].

5.2 Effectiveness of FIMN
We show the comparison results of FIMN and baselines on both
datasets in Table 2. All the performance differences are statistically
significant at 0.05 level.
• All multi-task based solutions (i.e., MMoE, PLE, SAR-Net and

Hinet) consistently outperform other single-task based methods
(i.e, DeepFM and DIN) on two datasets, revealing the power of
multi-task learning for improving the ranking results.

• Although MMoE achieves better overall performance than the
single-task based baselines, it is obvious to observe the seesaw
phenomenon across scenarios in our dataset. As reported in Table
2, MMoE has inferior performance in scenario #D4 and scenario

#D5 compared with the best single-task based model DIN. PLE
alleviates the phenomenon by splitting experts into two groups,
i.e, scenario-shared and scenario-specific partly. Moreover, this
issue is slighter on AliCPP dataset as Shared Bottom and MMoE
almost have similar performance at low traffic scenario #C3
compared with DIN. This is because scenarios in AliCPP dataset
are relatively more similar to each other but our dataset has more
different characteristics across scenarios. Note that the overall
result of SAR-Net is similar to the PLE in our experiments.

• The proposed FIMN significantly outperforms all baselines across
all scenarios on three datasets as shown in Table 2. Specifically,
compared with the next-best solution Hinet, FIMN averagely
improves the overall AUC by 2.88% RelaImpr on three datasets,
which is a big progress made by an industrial recommendation or
retrieval system. Also FIMN achieves satisfactory improvement
in long-tail scenarios such as #D5 in our app, #C3 in AliCCP
and #C3 in Alimama, i,e, FIMN remarkably increases the AUC
by 7.83% RelaImpr, 2.25% RelaImpr and 3.05% RelaImpr in above
three scenarios respectively, compared with the best baseline
Hinet. FIMN achieves superior performance as the three chal-
lenges mentioned before are well addressed.

5.3 Ablation Study
As indicated by the Table 3, each component (i.e., SEM, MIE, SIF
and SMM) makes a considerable contribution to ensure the quality
of the predicted results of FIMN in all scenarios. Comparing FIMN
with FIMN-MIE and FIMN-SIF, we can observe that introducingMIE
and SIF can significantly improve the prediction accuracy as they
explicitly model user interest discrepancy across scenarios. Besides,
the performance gap between FIMN and FIMN-SMM indicates that
modeling interrelations and correlations among scenarios conduces
to better performance. The AUC degradation caused by deleting
SEM is more significant in long-tail scenarios (i.e., #D5 in our app,
#C3 in AliCCP and #C3 in Alimama) than others, which verifies
that SEM can effectively handle distribution discrepancy problem.

5.4 Visualization Analysis
We conduct a visual analysis to intuitively demonstrate the effec-
tiveness of FIMN in coping with the first two main challenges.

Analysis of Intra-gate.We first average the reshaped output of
intra-gate 𝑬𝑰𝒂 ∈ R |𝐴𝑖 |×𝑑 by row over 2000 samples and get a |𝐴𝑖 |
dimension vector 𝒗𝑰𝒂 ∈ R |𝐴𝑖 | , where |𝐴𝑖 | is the number of interests
or the item feature fields. Each value in 𝒗𝑰𝒂 denotes the intensity
of an interest in the current scenario. Figure 4 (a) and Figure 4
(b) illustrate the distribution of interest intensities across different
scenarios on the price interest and category interest respectively.
The distribution is generated with kernel density estimation based
on observed data. As shown in Figure 4, the distribution deviation
of price interest and category interest intensities across scenarios is
very significant. Specifically, the SIF module can effectively consider
the intensities discrepancy of a specific interest in different scenar-
ios, i.e., users in different scenarios have significant discrepancy in
price range selection preference and category preference.

Analysis of Inter-gate. Each element in 𝒗𝑰𝒆 ∈ R |𝐴𝑖 | represents
the contributions of an interest in the current scenario. And the
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Table 2: Comparison of different methods on three datasets (Best values are in bold; next-best values are underlined).

Methods AliCCP Alimama Ours
#C1 #C2 #C3 Overall #C1 #C2 #C3 Overall #D1 #D2 #D3 #D4 #D5 Overall

DeepFM 0.6104 0.6072 0.5916 0.6085 0.5692 0.5738 0.5691 0.5729 0.6952 0.6968 0.7400 0.6931 0.6783 0.7027
DIN 0.6123 0.6091 0.5928 0.6103 0.5721 0.5762 0.5724 0.5751 0.6968 0.6966 0.7420 0.6983 0.6841 0.7041

MMoE 0.6216 0.6157 0.5929 0.6169 0.5784 0.5810 0.5779 0.5793 0.6992 0.6994 0.7452 0.6973 0.6811 0.7065
PLE 0.6214 0.6161 0.5937 0.6172 0.5786 0.5819 0.5798 0.5806 0.7004 0.7001 0.7463 0.6987 0.6839 0.7073

SAR-Net 0.6215 0.6163 0.5979 0.6171 0.5785 0.5816 0.5799 0.5807 0.7002 0.7003 0.7466 0.6985 0.6820 0.7075
Hinet 0.6223 0.6174 0.5978 0.6194 0.5806 0.5834 0.5821 0.5829 0.7010 0.7030 0.7409 0.7042 0.6909 0.7088
FIMN 0.6246 0.6229 0.6001 0.6231 0.5829 0.5857 0.5846 0.5852 0.7061 0.7069 0.7538 0.7104 0.7059 0.7146

RelaImpr 1.88% 4.68% 2.25% 3.10% 2.85% 2.76% 3.05% 2.77% 2.55% 1.90% 2.91% 3.02% 7.83% 2.78%

Table 3: Comparison of different FIMN variants on three datasets (Best values are in bold; next-best values are underlined).

Models AliCCP Alimama Ours
#C1 #C2 #C3 Overall #C1 #C2 #C3 Overall #D1 #D2 #D3 #D4 #D5 Overall

FIMN-SEM 0.6238 0.6222 0.5974 0.6225 0.5816 0.5846 0.5838 0.5841 0.7053 0.7062 0.7531 0.7062 0.6979 0.7138
FIMN-MIE 0.6224 0.6215 0.5983 0.6216 0.5796 0.5826 0.5818 0.5822 0.7029 0.7033 0.7501 0.7084 0.7031 0.7115
FIMN-SIF 0.6213 0.6201 0.5976 0.6208 0.5785 0.5812 0.5803 0.5807 0.7015 0.7024 0.7482 0.7063 0.7020 0.7103
FIMN-SMM 0.6231 0.6217 0.5986 0.6220 0.5807 0.5834 0.5841 0.5833 0.7034 0.7046 0.7523 0.7078 0.7039 0.7125

FIMN 0.6246 0.6229 0.6001 0.6231 0.5829 0.5857 0.5846 0.5852 0.7061 0.7069 0.7538 0.7104 0.7059 0.7146
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Figure 4: Distribution of interests intensities and contribu-
tions among scenarios

range of them is (0, 1) due to the softmax transformation of inter-
gate in Equation (11). Figure 4 (c) and Figure 4 (d) illustrate the
distribution of price and category interest contributions in scenario
#D1 and #D2 respectively. We can see that different interests have
diverse contributions in scenario #D1 or #D2, which corresponds
to the fact that price or category factor has different effect when
users make decisions under a specific scenario. For example, users

in Trigger search are more concerned about price but may consider
both price and category when in Active search.
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Figure 5: Visualization of mutual weights among different
scenarios

Analysis of Mutual weights. The heat map in Figure 5 shows
the mutual weights of scenario information output by additive at-
tention mechanism in Equation (16). We found that information
contributions have discrepancy among scenarios. For example, to
assist in better learning of target scenario #D2, information from
#D1 and #D4 have higher weights compared with other scenar-
ios. This phenomenon obviously proves SMM’s ability to learn
interrelations and correlations between scenarios.
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6 ONLINE A/B TEST
We conduct fair online A/B test based on the real traffic in our app.
To be specific, we deploy FIMN and comparison methods in online
serving system and execute inference tasks on daily requests of
users. We take the averaged results from 02/01/2024 to 08/01/2024,
FIMN obtains 3.52% overall CTR gains over Hinet (the best base-
line in our experiment) online. 3.52% is a significant increase in a
mature industrial system. Online test results compared with Hinet
of each scenario are illustrated in Figure 6. It shows that FIMN has
significant yet consistent improvement across the five scenarios.
It is worth noting that FIMN has achieved more significant CTR
revenue in #D5 (long tail scenario, Trigger search), further prov-
ing the ability of the proposed model to address the challenge of
data distribution discrepancy. FIMN has already been deployed in
industrial system serving for hundreds of millions of people.
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Figure 6: Online A/B test results by each scenario

7 DEPLOYMENT AND EFFICIENCY
7.0.1 Deployment of FIMN.. All experiments are implemented in
PAI (Platform of Artificial Intelligence) 3. Specifically, 6 parameter
servers and 30 workers are used in this architecture. Every param-
eter server owns 3 CPU cores with 8GB RAM, being responsible
for storing part of the parameters. Each worker has 6 CPU cores
and 16GB memory, which fetches a portion of training samples,
computes and delivers the computed results (e.g., gradients of pa-
rameters) to parameter servers. Then, the trained FIMN model is
uploaded to the real-time prediction (RTP) center to serve online
traffic and FIMN performs daily parameter updating process based
on the latest collected training data.

7.0.2 Efficiency evaluation. Following the deployment strategy of
FIMN, we deploy each comparison method at our app. The training
time and online inference time of different methods are shown in
Table 4. In Table 4 we can observe that there is significant differ-
ence in training and inference time between DIN and DeepFM as
target attention mechanism used in DIN consumes more time when
3https://help.aliyun.com/product/30347.html

calculating the similarity of 𝑸 and 𝑲 . Another observation is that
multi-task based methods (i.e., MMoE, PLE, SAR-Net and Hinet)
consistently get longer training and inference time compared with
other methods, due to more parameters are involved in them. Note
that the online inference time of all methods is within 25 millisec-
onds, which makes them meet the requirements of deployment in
industrial applications.

Table 4: Evaluation of efficiency of different methods on our
dataset (h-hour; m-minute; s-second; ms-millisecond).

Methods Training time Inference time
DeepFM 2h 03m 29s 11ms
DIN 2h 13m 12s 17ms

MMoE 2h 52m 27s 23ms
PLE 3h 2m 25s 23ms

SAR-Net 3h 11m 37s 25ms
Hinet 3h 06m 19s 22ms
FIMN 3h 09m 44s 23ms

8 CASE STUDY
After the successful online deployment of FIMN, We can collect
enough user feedback logs to help better explaining the effec-
tiveness of the proposed FIMN model in coping with the before-
mentioned challenges, representative cases for two real-world users
are illustrated in Figure 7 (a) and Figure 7 (b) respectively. Three his-
tograms represent the average price of the items that users clicked
in the past seven days by scenarios, the average price of the items
that FIMN and Hinet recommend in different scenarios, respec-
tively. It is obvious that the average price of items recommended
by FIMN is closer to users’ historical preferences than Hinet in
all scenarios of the two users, which proves that FIMN can more
effectively capture user interest discrepancy across scenarios.
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Figure 7: Case study of FIMN for real-world users

9 CONCLUSION
We propose a novel FIMN model to address multi-scenario learning
problems. Extensive offline and online experiments demonstrate the
superiority and effectiveness of FIMN in tackling three long-lasting
challenges of multi-scenario modeling.

https://help.aliyun.com/product/30347.html
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Anon.

SUPPLEMENTARY MATERIALS
A IMPACT OF PARAMETERS
Appendix A discusses the impact of different parameters on the
performance of the proposed FIMN.

A.1 Impact of Scaling Factor
Figure 8 displays the impact of the scaling factor 𝛾 set for SEM
and intra-gate in MRFG. As shown in the figure, when the value
of factor equals to 2, FIMN achieves its best performance in terms
of AUC, while increasing value beyond 2 reduces its performance.
Hence, we set the scaling factor in FIMN and its variants to 2 in all
experiments.

A.2 Impact of Different Lengths of Behaviors.
Figure 9 illustrates the impact of different lengths of user behav-
iors. Obviously, setting |B| to a larger value can improve AUC
performance, since more historical useful information is extracted
to improve the effect of the model. Figure 9 also shows the im-
pact of different lengths on the training time. Longer user behavior
sequences require more computation when calculating target atten-
tion. We observe that |B| = 30 is a tradeoff point which provides
a relatively significant boost in accuracy and less consumption in
training time (minutes). Hence, |B| is set to 30 in FIMN and its
relevant variants in all experiments.

A.3 Impact of Different Dimensions of Vectors.
Figure 10 illustrates the impact of different dimensions 𝑑 of each
field vector. As demonstrated by the figure, when the numerical
value of the dimension increases, AUC also shows a trend of im-
provement. This is mainly due to the use of more parameters and
deeper information. However, more parameters means longer train-
ing time. Increasing 𝑑 from 8 to 32 improves the performance of
FIMN, while increasing 𝑑 beyond 32 bringing no remarkable benefit
and significantly consuming more training time. This indicates that
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Figure 8: Varying the number of scaling factor.

32 is a reasonable number of dimension for FIMN. Hence, 𝑑 = 32 is
used in all experiments for FIMN and its related variants.

B FREQUENTLY-USED OF NOTATIONS
Table 5 summarizes the frequently-used notations and their descrip-
tions.
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Figure 9: Varying the lengths of behaviors.
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Figure 10: Varying the dimensions of field vectors.
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Table 5: Description of Frequently-used Notations

Notations Descriptions

U = {𝑢1, . . . , 𝑢 |U | } A set of |U| users. 𝑢𝑖 is the 𝑖𝑡ℎ user in the set.
I = {𝑖1, . . . , 𝑖 | I | } A set of |I | items. 𝑖𝑛 is the 𝑛𝑡ℎ item in the set.
S = {𝑠1, . . . , 𝑠 |S | } A set of |S| scenarios. 𝑠𝑘 is the 𝑘𝑡ℎ scenario in the set.
𝐴𝑖 =< 𝑎1

𝑖
, 𝑎2

𝑖
, . . . , 𝑎

|𝐴𝑖 |
𝑖

> Item field containing |𝐴𝑖 | attributes w.r.t. item 𝑖 ∈ I.
𝐴𝑢 =< 𝑎1𝑢 , 𝑎

2
𝑢 , . . . , 𝑎

|𝐴𝑢 |
𝑢 > User field containing |𝐴𝑢 | attributes w.r.t. user 𝑢 ∈ U.

𝐴𝑠 =< 𝑎1𝑠 , 𝑎
2
𝑠 , . . . , 𝑎

|𝐴𝑠 |
𝑠 > Scenario field containing |𝐴𝑠 | attributes w.r.t. scenario 𝑠 ∈ S.

𝑞 ∈ 𝑄 A query initiated by a user 𝑢.
B𝑢 = {𝑏𝑢1 , . . . , 𝑏

𝑢
| B | } A sequence of historical behaviors (e.g., clicking or purchasing) of user 𝑢.

T𝑞 = {𝑇1, . . . ,𝑇| T𝑞 | }, 𝑇𝑗 ∈ I A list of target items for the query 𝑞.
𝒆𝒔 , 𝒆𝒕 , 𝒆𝒒 Embedding vectors of the scenario features, target item, user profiles and query.
𝑬𝒖
𝑩 = [. . . ; 𝒆(𝑏𝑢

𝑖
); . . . ]𝑇 Embedding matrix of the user behavior sequence.

𝒆̃𝒔 An enhanced representation of scenario 𝑠 . It is the output of the module SEM.
𝒆𝒔 =𝑾𝒆 𝒆̃𝒔 A new vector w.r.t. scenario 𝑠 with the same dimensionality of each field in the target item.
𝑬𝑼
𝑰 = [𝑰 1𝒖 ; ...; 𝑰

|𝑨𝒊 |
𝒖 ]𝑇 A multi-aspect interests matrix. Each row vector denotes the specific interest representation.

𝒙𝒇 𝒈 A concatenation vector of the enhanced scenario representation and multi-aspect interests matrix.
𝒙
′

𝒇 𝒈
The input of MRFG. It is generated from 𝒙𝒇 𝒈 with MLP.

𝒗𝑰𝒂 , 𝒗𝑰𝒆 The outputs of intra-gate and inter-gate in module MRFG.
𝑬𝑰𝒂 A reshaped matrix of 𝒗𝑰𝒂 with the same dimensionality of 𝑬𝑼

𝑰 .
𝑬̂𝑼
𝑰 The representation of Intra Interest Activation considering the intensities discrepancy of interests.

𝒆𝑰𝒇 The output of Inter Interest Activation. It is a weighted sum pooling vector of 𝒗𝑰𝒆 and 𝑬̂𝑼
𝑰 .

[𝑴1; ...;𝑴 |S| ] The input of SMM. It is composed of the reshaped outputs of previous modules. 𝑴𝒊 denotes the 𝑖𝑡ℎ
scenario representation.

𝑴̃𝒊 The final output of SMM module for the 𝑖𝑡ℎ scenario.
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