
Published as a Tiny Paper at ICLR 2024

TOWARD COMPUTATIONALLY EFFICIENT INVERSE
REINFORCEMENT LEARNING VIA REWARD SHAPING

Lauren H. Cooke*, Harvey Klyne*, Edwin Zhang*
Harvard University

Cassidy Laidlaw
University of California, Berkeley

Milind Tambe, Finale Doshi-Velez
Harvard University

ABSTRACT

Inverse reinforcement learning (IRL) is computationally challenging, with com-
mon approaches requiring the solution of multiple reinforcement learning (RL)
sub-problems. This work motivates the use of potential-based reward shaping to
reduce the computational burden of each RL sub-problem. This work serves as a
proof-of-concept and we hope will inspire future developments towards computa-
tionally efficient IRL.

1 INTRODUCTION

Inverse reinforcement learning (IRL) is the task of deriving a reward function that recovers expert
behavior within an environment (Ng & Russell, 2000) and can be computationally expensive to
solve. IRL algorithms typically consist of a loop in which every step requires finding the optimal
policy for the current reward estimate (e.g. Abbeel & Ng (2004); Ramachandran & Amir (2007);
Wulfmeier et al. (2016)). This means that within a single IRL optimization multiple reinforcement
learning (RL) problems need to be solved, each of which may be challenging. One can solve RL
tasks by planning actions sufficiently far into the future (Sutton & Barto, 2018), and the necessary
planning depth is a measure of the computational challenge of the problem. In the special case where
the RL optimization makes use of a sample-based solver, planning depth can be thought of in terms
of sample complexity (Kakade, 2003). Previous works have attempted to reduce the overall cost of
IRL by deliberately truncating the planning depth, accepting an approximation to the optimal policy
at each iteration (MacGlashan & Littman, 2015; Xu et al., 2022).

Since multiple reward functions can encode an optimal policy (Russell, 1998; Cao et al., 2021), we
have some choice about what reward function we optimize at each iteration. We envision using
potential-based reward shaping (Ng et al., 1999) to reduce the computational cost of each RL sub-
problem without altering any of the optimal policies. This itself is too large a goal for the present
work, so we focus our efforts on demonstrating a proof-of-concept in a simplified setting. In par-
ticular, we examine how sample trajectories from both optimal and random policies may be used
to select a potential function for an initial feasible reward (one which encodes the optimal policy),
which we call planning-aware reward shaping. Previous work on reward shaping includes Hu et al.
(2020); Dong et al. (2020); Cheng et al. (2021); Gupta et al. (2022); De Lellis et al. (2023). To be
clear, our present procedure does not directly address the problem of making IRL more computa-
tionally efficient, but we hope that the conclusions drawn may inspire future work.

2 PLANNING-AWARE REWARD SHAPING

Suppose we have been given a Markov Decision Process without a reward M\R = (S,A, γ, P),
and using optimal trajectories have learned a feasible reward R0 using some IRL algorithm. We also
assume access to a set of trajectories which have selected actions uniformly at random, and we use
this additional exploration information to make a one-step adjustment to R0. This adjustment takes

*Equal contribution. First author order is alphabetical.

1

Published as a Tiny Paper at ICLR 2024

the form of a potential function Φ : S → R, with our final reward function estimate taking the form

RΦ(s, a) := R0(s, a) + γEs′∼p(·|s,a)[Φ(s
′)]− Φ(s). (1)

The optimal policies for R0 and RΦ are the same for any Φ, and any equivalent reward may be
written in the form RΦ for some Φ (Ng et al., 1999). Crucially, the planning depths associated
with rewards RΦ may differ across choices of potential function Φ. We stress that the goal of
this work is to inspire future investigation into computationally efficient IRL, a problem we do not
claim to have solved here. Our goal is to choose a shaped reward RΦ which minimizes a certain
bound on an algorithm-agnostic measure of planning depth (Laidlaw et al., 2023). This bound has
been found to be strongly correlated with the sample complexities of modern deep learning RL
procedures — including DQN (Mnih et al., 2015) and PPO (Schulman et al., 2017) — across a
range of tasks. Denote by Qrand

Φ (s, a) the Q-function associated with the uniform-at-random policy
πrand(a | s) := 1/|A|, and write V ∗

Φ(s) for the value function associated with the optimal policy π∗.
Recall that the optimal policy π∗ does not depend on Φ. Following the derivation in Appendix A,
we find that our objective is minimized (potentially non-uniquely) by

Φ(s) =
{
max
a∈A

Qrand
0 (s, a) + V ∗

0 (s)
}
/2. (2)

Both V ∗
0 and Qrand

0 are learnable from the expert and random exploration trajectories respectively.
However, assuming access to the optimal value function V ∗

0 trivializes the forward RL challenge
(e.g. set R(s) = V ∗

0 (s) and act greedily over next actions). We anticipate that IRL algorithms may
be able to iteratively update the shaping potential Φ based on the current estimates of Qrand

0 and
V ∗
0 , which may improve the overall computational efficiency. We further remark that estimating

Qrand
0 is much easier than estimating V ∗

0 , so shaping based on (2) might have better finite-sample
performance than potentials based on estimates of V ∗

0 alone.

Figure 1: Return (measured by R0) obtained
by DQN. We compare learning with R0 (pur-
ple), RΦ (green), and RMaxEnt (orange), av-
eraged across 500 random DQN seeds, each
training for 50K steps. Our shaped reward
RΦ enables DQN to converge to the opti-
mal value faster than the initial reward R0,
demonstrating a reduction of planning depth.
DQN fails to optimize RMaxEnt.

We demonstrate that an oracle version of our proce-
dure reduces the sample complexity for DQN (Fig-
ure 1), which we use as a proxy for planning depth.
We evaluate our method in a 5×5 deterministic grid-
world since we can easily find the optimal policy, yet
DQN struggles and takes tens of thousands of steps
to converge (Laidlaw et al. (2023, Tab. G.4)).

In these experiments, we first fix transition dynamics
and an initial reward R0 before solving for the opti-
mal policy π∗ by value iteration. As an IRL baseline,
we also perform Maximum Entropy IRL (Ziebart
et al., 2008) on π∗ to obtain a reward RMaxEnt. We
compute the optimal value function V ∗

0 and the ran-
dom policy Q-function Qrand

0 using Monte Carlo, the
potential function Φ using (2), and the shaped reward
RΦ using (1). Note that R0, RΦ, and RMaxEnt all en-
code the same optimal policy. We compare the plan-
ning depths of these three rewards using the sample
efficiency of DQN, finding that the shaped reward
RΦ enables DQN to converge to the optimal solu-
tion faster than the initial reward R0. We also find
that DQN fails to optimize RMaxEnt, with the policy
getting stuck in a local optimum state rather than reaching the goal state. Implementation details and
code to reproduce our experiments are included in Appendix B and the supplementary materials.

3 CONCLUSION

In this work, we motivate planning-aware reward shaping to reduce the computational complexity
of IRL. Compared to existing IRL approaches, we leverage the additional information included in
random trajectories to apply automatic reward shaping. Our hope is that our procedure may inspire
novel IRL algorithms which are more computationally efficient. While we focus on the IRL setting,
adaptive shaping procedures such as ours may also be of interest to the broader RL community.

2

Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The author acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the Twenty-First International Conference on Machine Learning, pp. 1–8, 2004.

Haoyang Cao, Samuel N. Cohen, and Łukasz Szpruch. Identifiability in inverse reinforcement learn-
ing. In Proceedings of the 35th Conference on Neural Information Processing Systems, pp. 1–11,
2021.

Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement learn-
ing. arXiv, pp. 2106.02757, 2021.

Francesco De Lellis, Marco Coraggio, Giovanni Russo, Mirco Musolesi, and Mario di Bernardo.
Guaranteeing control requirements via reward shaping in reinforcement learning. arXiv, pp.
2311.10026, 2023.

Yunlong Dong, Xiuchuan Tang, and Ye Yuan. Principled reward shaping for reinforcement learning
via Lyapunov stability theory. Neurocomputing, 393:83–90, 2020.

Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham M. Kakade, and Sergey Levine. Unpacking
reward shaping: Understanding the benefits of reward engineering on sample complexity. arXiv,
pp. 2210.09579, 2022.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu, and
Changjie Fan. Learning to Utilize Shaping Rewards: A New Approach of Reward Shaping. arXiv,
pp. 2011.02669, 2020.

Sham M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, University
College London, 2003.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv, pp.
1412.6980, 2014.

Cassidy Laidlaw, Stuart Russell, and Anca Dragan. Bridging RL Theory and Practice with the
Effective Horizon. arXiv, pp. 2304.09853, 2023.

James MacGlashan and Michael L. Littman. Between imitation and intention learning. In Qiang
Yang and Michael Wooldridge (eds.), Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, pp. 3692–3698, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, 2015.

Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In Proceedings
of the Seventeenth International Conference on Machine Learning, pp. 663–670, 2000.

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Proceedings of the Sixteenth International
Conference on Machine Learning, pp. 278–287, 1999.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcment learning. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence, pp. 2586–2591, 2007.

Stuart Russell. Learning Agents for Uncertain Environments (Extended Abstract). In Proceedings
of the Eleventh Annual Conference on Computational Learning Theory, pp. 101–103. Association
for Computing Machinery, 1998. ISBN 1581130570.

3

Published as a Tiny Paper at ICLR 2024

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv, pp. 1707.06347, 2017.

R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Introduction. Adaptive
Computation and Machine Learning series. MIT Press, 2018. ISBN 9780262352703.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy deep inverse reinforce-
ment learning. arXiv, pp. 1507.04888, 2016.

Yiqing Xu, Wei Gao, and David Hsu. Receding horizon inverse reinforcement learning. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Proceedings of the Thirty-
Sixth Conference on Neural Information Processing Systems, 2022.

Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Anthony Cohn (ed.), Proceedings of the 23rd National Conference on
Artificial Intelligence, pp. 1433–1438, 2008.

APPENDIX

A REWARD SHAPING OPTIMIZATION OBJECTIVE

Laidlaw et al. (2023) consider algorithm-agnostic proxies for the sample complexities of modern
deep RL approaches across measures of correlation, tightness, and accuracy. They introduce the
effective horizon H := mink k+ log|A| mk, where k is a tuning parameter in a simple Monte Carlo
algorithm (see Laidlaw et al. (2023, Alg. 1)) and mk is the minimum sample size this algorithm
requires to find an optimal policy with probability at least 1/2. It is not feasible to compute H
in closed form, but they find that a particular bound serves as a good proxy (Laidlaw et al. (2023,
Thm. 5.4)). Considering an MDP with finite-time horizon T and γ = 1, it holds that:

H ≤ min
k=1,...,T

k + max
t∈T,s∈S,a∈A

log|A|

(
Qk

t (s, a)V
∗
t (s)

∆k
t (s)

2

)
+ logA 6 log(2T |A|k),

where
∆k

t (s) = max
a∈A

Qk
t (s, a)− max

a′ /∈argmaxa Qk
t (s,a)

Qk
t (s, a

′),

and Qk
t , V ∗

t , and ∆k
t are defined as in Laidlaw et al. (2023).

We relax this bound by fixing k = 1 — which we think is reasonable considering how k is fixed to 1
in practice (e.g. Laidlaw et al. (2023, Sec. F.1)) — but the potential function Φ we derive generalizes
to other choices of k. We consider MDPs with T = ∞, γ < 1 and time-invariant policies, motivating
the following optimization for our planning-aware reward shaping:

max
Φ:S→R

{
max

s∈S,a∈A
log|A|

(
Qrand

Φ (s, a)V ∗
Φ(s)

∆Φ(s)2

)}
. (3)

This is strictly increasing in the following criteria:

ℓ(Φ;R0) := max
s∈S,a∈A

Qrand
Φ (s, a)V ∗

Φ(s)

∆Φ(s)2
.

In fact, for any policy π the associated Q-function and value function transform linearly under
reward shaping (Ng et al., 1999, Cor. 2):

Qπ
Φ(s, a) = Qπ

0 (s, a)− Φ(s); V π
Φ (s) = V π

0 (s)− Φ(s).

Therefore ∆Φ(s) = ∆0(s) for all potentials Φ, so the objective reduces to

ℓ(Φ;R0) = max
s∈S,a∈A

{
Qrand

0 (s, a)− Φ(s)
}{

V ∗
0 (s)− Φ(s)

}
∆0(s)2

.

The potential function (2) solves this quadratic for every s ∈ S, and is thus a global minimizer. The
solution can be found by straightforwardly taking the derivative of Equation 3 and setting to 0.

4

Published as a Tiny Paper at ICLR 2024

B IMPLEMENTATION DETAILS FOR EXPERIMENTS

In Figure 1 we plot the returns achieved by each optimization procedure at each training episode by
taking an average across 500 random seeds, along with 95% bootstrapped confidence intervals. Each
seed determined one individual training process, wherein we train for 500 episodes of 100 steps each,
for a total of 50K training steps. Returns are evaluated at the end of each episode with respect to the
initial reward function R0, regardless of which reward function is used during training. This ensures
that returns are comparable between objectives. We set a 100 timestep limit on the environment.

Hyperparameter Value

DQN HP Optimizer Adam (Kingma & Ba, 2014)
Critic architecture MLP
Critic learning rate 1e-3
Critic hidden layers 1
Critic hidden dim 24
Critic activation function ReLU
Mini-batch size 1024
Number of gradient steps 50K
Discount factor 0.99
Target update rate 1
Target update period 8
Loss Function Huber Bellman Error

Table 1: Hyperparameters for the DQN algorithm used in Section 2.
.

To perform DQN we use an MIT-licensed implementation (github.com/mswang12/minDQN)
with hyperparameters as in Table 1. Code to reproduce our experiments is included in the supple-
mentary materials.

5

github.com/mswang12/minDQN

	Introduction
	Planning-aware reward shaping
	Conclusion
	Reward shaping optimization objective
	Implementation details for experiments

