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ABSTRACT

Neural Algorithmic Reasoning is an emerging area of machine learning which
seeks to infuse algorithmic computation in neural networks, typically by training
neural models to approximate steps of classical algorithms. In this context, much
of the current work has focused on learning reachability and shortest path graph
algorithms, showing that joint learning on similar algorithms is beneficial for gen-
eralisation. However, when targeting more complex problems, such “similar” al-
gorithms become more difficult to find. Here, we propose to learn algorithms by
exploiting duality of the underlying algorithmic problem. Many algorithms solve
optimisation problems. We demonstrate that simultaneously learning the dual def-
inition of these optimisation problems in algorithmic learning allows for better
learning and qualitatively better solutions. Specifically, we exploit the max-flow
min-cut theorem to simultaneously learn these two algorithms over synthetically
generated graphs, demonstrating the effectiveness of the proposed approach. We
then validate the real-world utility of our dual algorithmic reasoner by deploying
it on a challenging brain vessel classification task, which likely depends on the
vessels’ flow properties. We demonstrate a clear performance gain when using
our model within such a context, and empirically show that learning the max-flow
and min-cut algorithms together is critical for achieving such a result.

1 INTRODUCTION

Learning to perform algorithmic-like computation is a core problem in machine learning that has
been widely studied from different perspectives, such as learning to reason (Khardon & Roth, 1997),
program interpreters (Reed & De Freitas, 2015) and automated theorem proving (Rocktäschel &
Riedel, 2017). As a matter of fact, enabling reasoning capabilities of neural networks might drasti-
cally increase generalisation, i.e. the ability of neural networks to generalise beyond the support of
the training data, which is usually a difficult challenge with current neural models (Neyshabur et al.,
2017). Neural Algorithmic Reasoning (Velickovic & Blundell, 2021) is a recent response to this
long-standing question, attempting to train neural networks to exhibit some degrees of algorithmic
reasoning by learning to execute classical algorithms. Arguably, algorithms are designed to be gen-
eral, being able to be executed and return “optimal” answers for any inputs that meet a set of strict
pre-conditions. On the other hand, neural networks are more flexible, i.e. can adapt to virtually any
input. Hence, the fundamental question is whether neural models may inherit some of the positive
algorithmic properties and use them to solve potentially challenging real-world problems.

Historically, learning algorithms has been tackled as a simple supervised learning problem (Graves
et al., 2014; Vinyals et al., 2015), i.e. by learning an input-output mapping, or through the lens
of reinforcement learning (Kool et al., 2019). However, more recent works build upon the notion
of algorithmic alignment (Xu et al., 2020) stating that there must be an “alignment” between the
learning model structure and the target algorithm in order to ease optimisation. Much focus has
been placed on Graph Neural Networks (GNNs) (Bacciu et al., 2020) learning graph algorithms,
i.e Bellman-Ford (Bellman, 1958). Velickovic et al. (2020b) show that it is indeed possible to train
GNNs to execute classical graph algorithms. Furthermore, they show that optimisation must occur

1



Published as a conference paper at ICLR 2023

on all the intermediate steps of a graph algorithm, letting the network learn to replicate step-wise
transformations of the input rather than learning a map from graphs to desired outputs. Since then,
algorithmic reasoning has been applied with success in reinforcement learning (Deac et al., 2021),
physics simulation (Velickovic et al., 2021) and bipartite matching (Georgiev & Lió, 2020).

Moreover, Xhonneux et al. (2021) verify the importance of training on multiple “similar” algorithms
at once (multi-task learning). The rationale is that many classical algorithms share sub-routines,
i.e. Bellman-Ford and Breadth-First Search (BFS), which help the network learn more effectively
and be able to transfer knowledge among the target algorithms. Ibarz et al. (2022) expand on this
concept by building a generalist neural algorithmic learner that can effectively learn to execute even
a set of unrelated algorithms. However, learning some specific algorithms might require learning of
very specific properties of the input data, for which multi-task learning may not help. For instance,
learning the Ford-Fulkerson algorithm (Ford & Fulkerson, 1956) for maximum flow entails learning
to identify the set of critical (bottleneck) edges of the flow network, i.e. edges for which a decrease
in the edge capacity would decrease the maximum flow. Furthermore, in the single-task regime,
i.e. when we are interested in learning only one single algorithm, relying on multi-task learning can
unnecessarily increase the computational burden on the training phase.

Motivated by these requirements, we seek alternative learning setups to alleviate the need for training
on multiple algorithms and enable better reasoning abilities of our algorithmic reasoners. We find a
potentially good candidate in the duality information of the target algorithmic problem. The concept
of duality fundamentally enables an algorithmic problem, e.g. linear program, to be viewed from
two perspectives, that of a primal and a dual problem. These two problems are usually complemen-
tary, i.e. the solution of one might lead to the solution of the other. Hence, we propose to incorporate
duality information directly in the learning model both as an additional supervision signal and input
feature (by letting the network reuse its dual prediction in subsequent steps of the algorithm), an
approach we refer to as Dual Algorithmic Reasoning (DAR). To the best of our knowledge, there
exists no prior work targeting the usage of duality in algorithmic reasoning. We show that by train-
ing an algorithmic reasoner on both learning of an algorithm and optimisation of the dual problem
we can relax the assumption of having multiple algorithms to train on while retaining all the bene-
fits of multi-task learning. We demonstrate clear performance gain in both synthetically generated
algorithmic tasks and real-world predictive graph learning problems.

2 PROBLEM STATEMENT

We study the problem of neural algorithmic reasoning on graphs. Specifically, we target learning
of graph algorithms A : G → Y that take in graph-structured inputs G = (V,E,xi, eij), with
V being the set of nodes and E the set of edges with node features xi and edge features eij , and
compute a desired output y ∈ Y. Usually, the output space of an algorithm A depends on its scope.
In the most general cases, it can either be R|V | (node-level output), R|V |×|V | (edge-level output)
or R (graph-level output). We mainly consider the class of algorithms outputting node-level and
edge-level outputs, which includes many of the most well-known graph problems, e.g. reachability,
shortest path and maximum flow. From a neural algorithmic reasoning perspective, we are par-
ticularly interested in learning a sequence of transformations (steps of the algorithm). Hence, we
consider a sequence of graphs {G(0), . . . , G(T−1)} where each element represents the intermediate
state of the target algorithm we aim to learn. At each step t we have access to intermediate node
and edge features, i.e. x

(t)
i , e

(t)
ij , called hints as well as intermediate targets y(t). As it is com-

mon in classical algorithms, some of the intermediate targets may be used as node/edge features
in the subsequent step of the algorithm. Such hints are thus incorporated in training as additional
features/learning targets, effectively learning the whole sequence of steps (algorithm trajectory).

In particular, we focus on learning maximum flow via the neural execution of the Ford-Fulkerson
algorithm. Differently from Georgiev & Lió (2020), who learn Ford-Fulkerson to find the indepen-
dent set of edges in bipartite graphs, we aim to learn Ford-Fulkerson for general graphs. We report
the pseudo-code of Ford-Fulkerson in the appendix. Ford-Fulkerson poses two key challenges: (i)
it comprises two sub-routines, i.e. finding augmenting paths from s to t, and updating the flow
assignment F (t) ∈ R|V |×|V | at each step t; (ii) F must obey a set of strict constraints, namely
the edge-capacity constraint and conservation of flows. The former states that a scalar value cij
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(capacity) is assigned to every (i, j) ∈ E and F must satisfy:

∀(i, j) ∈ E . Fij ≤ cij , (1)

i.e. flow assignment to an edge must not exceed its capacity. The latter states that the assignment
needs to satisfy:

∀i ∈ V \ {s, t} :
∑

(i,j)∈E

Fij +
∑

(j,i)∈E

Fji = 0 ∧
∑

(s,j)∈E

Fsj = −
∑

(j,t)∈E

Fjt (2)

i.e. the flow sent out from the source is not lost nor created by intermediate nodes. This also
leads to F = −F T , i.e. antisymmetry. An optimal solution F ∗ to the max flow problem is the
one maximising the total flow in the network, i.e.

∑
(s,j)∈E Fsj . We show how we address both

challenge (i) and (ii) directly in the model architecture, through the concept of algorithmic alignment
and by carefully adjusting and rescaling the model predictions.

3 METHODOLOGY

3.1 LEVERAGING DUALITY IN ALGORITHMIC REASONING

We leverage the concept of duality when learning to neurally execute classical graph algorithms. In
particular, most of the problems solved by classical algorithms (including maximum flow) can be
expressed in the form of constrained optimisation problems such as linear programming or integer
linear programming. In mathematical optimisation, the duality principle ensures that any optimisa-
tion problem may be viewed from two perspectives: the “direct” interpretation (called the primal
problem) and the dual problem, which is usually derived from the Lagrangian of the primal problem.
The duality principle ensures that the solutions of the two problems are either linked by an upper-
bound/lower-bound relation (weak duality) or equal (strong duality) (Boyd et al., 2004). Hence, the
two problems are interconnected.

In the context of neural algorithmic reasoning, we identify several reasons why primal-dual informa-
tion might be useful to consider. First, by incorporating primal-dual objectives, we let the network
reason on the task from two different and complementary perspectives. This can substantially sim-
plify learning of algorithms which require identifying and reasoning on properties which are not
explicitly encoded in input data. For instance, to effectively solve max-flow problems, the network
needs the ability to identify and reason on critical edges. By the max-flow min-cut theorem (Ford Jr
& Fulkerson, 2015), this set of edges corresponds to the minimum cut, i.e. dual problem, that sep-
arates the source node s from the sink t. Hence, correctly identifying the minimum cut is highly
relevant for producing a relevant max-flow solution.

Second, being able to output a better step-wise solution means that there is less chance for error
propagation throughout the trajectory of the neurally executed algorithm. This is especially true for
more complex algorithms, such as Ford-Fulkerson, consisting of multiple interlocked sub-routines.
There, an imprecise approximation of one sub-routine can negatively cascade on the results of the
following ones. Finally, learning jointly on the primal-dual can be seen as an instance of multi-task
learning, but relaxing the assumption of having multiple algorithms to train on.

In the following, we study dual algorithmic reasoning on the max-flow primal complemented with
min-cut dual information. Note that graph neural networks have been formally proven to be able to
learn minimum cut, even under uninformative input features (Fereydounian et al., 2022). This also
implies that solving min-cut can be a useful “milestone” for a network learning to solve max-flow.

3.2 ARCHITECTURE

We rely on the neural algorithmic reasoning blueprint (Velickovic & Blundell, 2021), building on
the encode-process-decode framework (Hamrick et al., 2018). The abstract architecture of the Dual
Algorithmic Reasoner (DAR) is depicted in Figure 1 for the Ford-Fulkerson algorithm. Since the
latter is composed of two sub-routines, we introduce two processors to align neural execution with
the dynamics of the algorithm. The first processor PBF learns to retrieve augmenting paths, while
PF learns to perform flow-update operations F (t). Both PBF and PF are implemented as graph
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Figure 1: High-level architecture of the Dual Algorithmic Reasoner (DAR) for the Ford-Fulkerson
algorithm. Refer to the text for a comprehensive explanation.

networks with Message-Passing Neural Network (MPNN) convolution (Gilmer et al., 2017):

h
(t+1)
i = ψθ

h
(t)
i ,

⊕
(j,i)∈E

ϕθ

(
h
(t)
i ,h

(t)
j , e

(t)
ij

) , (3)

where ψθ and ϕθ are neural networks with ReLU activations and
⊕

is a permutation-invariant
function, i.e. summation, mean or max.

Intuitively, the encode-process-decode architecture allows decoupling learning of the algorithmic
steps from the use of specific input features. Through the learned processor, the algorithm can be
neurally executed on a latent-space which is a learnt representation of the input features required
by the original algorithm. We will show how we can exploit this property to perform steps of the
Ford-Fulkerson algorithm even with missing input features.

More in detail, the DAR computational flow comprises two linear encoders, fv and fe, which are
applied respectively to node features x(t)

i and edge features e(t)ij to produce encoded node-level and
edge-level features:

Z
(t)
V = {z(t)

i = fv(x
(t−1)
i ) | ∀i ∈ V } , Z

(t)
E = {z(t)

ij = fe(e
(t−1)
ij ) | ∀(i, j) ∈ E}.

These encoded representations are used as inputs for the processor network PBF which computes
the latent node representations H(t) as:

H(t) = PBF (Z
(t)
V ,Z

(t)
E ,H(t−1))

with H(0) = {0 | ∀i ∈ V }. In our DAR instance, this processor performs Bellman-Ford steps to
retrieve the shortest augmenting path from s to t, following Georgiev & Lió (2020). H(t) is then
passed to a decoder network g producing the augmenting path p(t):

p
(t)
i = gBF (z

(t)
i ,h

(t)
i ). (4)

The augmenting path is represented as a vector of predecessors for all nodes in the graph, i.e. each
entry p(t)i is a pointer to another node j in the graph. This way, we are able to reconstruct a path
from any node (included t) back to the source node s. The augmenting path p(t) is then passed to
PF as an input feature. The target quantities of the algorithm, i.e. flow assignment F and minimum
cut c, are finally predicted as:

{F (t), c} = gF
(
PF (Z

(t)
V ∪ {p(t)},Z(t)

E ,H(t))
)
.

W.l.o.g. we choose to represent the minimum s-t cut c as node-level features, where ci = 0 indicates
that i is in the cluster of nodes of s, and ci = 1 otherwise. Note that the minimum s-t cut includes
all edges (i, j) for which ci = 0 and cj = 1. Furthermore, F (t) is reused as an input feature in the
next step of the algorithm (F (0) = 0).

We pay additional attention to the prediction of the flow assignment matrix F (t), in order to be
compliant with the maximum flow problem constraints described in subsection 3.1. In particular,
we transform F to ensure compliance with anti-symmetry, i.e. F ′ = F − F T . To satisfy edge-
capacity constraints we further rescale the matrix according to the hyperbolic tangent and the actual
value of the capacity cij for each (i, j) ∈ E, as such:

F = tanh(F )⊙ C, (5)
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(a) Ford-Fulkerson validation loss (b) Ford-Fulkerson reconstruction loss

Figure 2: (a) Ford-Fulkerson validation loss on synthetic data for PGNs. (b) normalised loss curve
of reconstructing Ford-Fulkerson with new encoders for lij , dij , ρij , with both the primal and dual
PGN-max. It applies to BVG data.

where Ci,j = cij for all edges in the graph. We note that this only satisfies the box constraint on
the edge capacities, however the conservation of flows might still be violated, i.e. nodes in the path
from the source to the target may either retain some amount of in-flow (sending out less than what is
received) or vice versa. To address this last constraint, we simulate the entire neural algorithm until
termination and apply a corrective procedure in order to correct all the flow conservation error. We
report the pseudocode of this procedure in the Appendix, along with additional details and results.

4 EXPERIMENTS

To assess the benefits of the dual algorithmic reasoning approach, we test the learning model in
two specific scenarios. First, we train and test the DAR pipeline on synthetic-generated graphs,
to evaluate the benefits in the key task of algorithmic learning (section 4.1). Then, to evaluate the
generality of the model we test it on a real-world graph learning task. Specifically, we compare
our model with several graph learning baselines on a biologically relevant vessel classification task
(Paetzold et al., 2021), comprehending large-scale vessel graphs (section 4.2). We stress that our
neural reasoners are not further re-trained on real-world data, thus forcing the model to use the
algorithmic knowledge attained on synthetic data to solve the new task.

4.1 SYNTHETIC GRAPHS

Data generation We consider two different families of graphs: (i) 2-community graphs, in which
communities are sampled from the Erdős–Rényi distributions with probability 0.75 and their nodes
are interconnected with probability 0.05; (ii) bipartite graphs. To thoroughly assess the general-
isation capabilities of our algorithmic reasoners, we exclusively trained all models on small 2-
community graphs and tested on 4x larger 2-community graphs (out-of-distribution) and 4x larger bi-
partite graphs (out-of-family). We highlight that bipartite graphs are solely used for testing purposes
and no further training occurs on them. To generate train, validation and test sets we follow the stan-
dard CLRS benchmark (Veličković et al., 2022) setup. Specifically, we sample 1000 2-community
training graphs with 16 nodes each. The validation set is used to assess in-distribution performance,
thus comprising 128 2-community graphs with still 16 nodes. To assess out-of-distribution and out-
of-family generalisation we consider respectively 128 test 2-community samples and 128 bipartite
samples, both of size of 64 nodes. Furthermore, we generate data of all intermediate steps of the
Ford-Fulkerson algorithm to be used as hints and additional training targets, in order to train the net-
work on all intermediate data manipulations. Algorithm features are once again generated following
the CLRS-30 standard and they comprise: (i) inputs: source node s, sink node t, edge-capacity ma-
trix C ∈ N|V |×|V | and additional weights W ∈ [0, 1]|V |×|V | for the Bellman-Ford processor; (ii)
hints (algorithm steps): augmenting paths p(t) and intermediate flow assignments F (t); (iii) outputs
(learning targets): final flow matrix F and minimum cut c. Lastly, capacities are sampled as integers
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Table 1: Mean Absolute Error (MAE) and accuracy of predicting the final F and intermediate flow
F̄ (t), and min-cut c (if applicable) on 2-community and bipartite graphs. (primal) corresponds to
training on max-flow only. (dual) corresponds to training with both primal-dual heads. (pipeline)
corresponds to learning min-cut first. (no-algo) corresponds to optimising directly max-flow, with-
out learning Ford-Fulkerson.

2-Community (out-of-distribution) Bipartite (out-of-family)

Model F F̄ (t) c F F̄ (t) c
PGN-max (primal) 0.266±0.001 0.294±0.002 - 0.56±0.23 0.82±0.17 -
PGN-mean (primal) 0.274±0.001 0.311±0.004 - 1.09±0.47 1.13±0.18 -
MPNN-max (primal) 0.263±0.008 0.289±0.004 - 0.75±0.47 0.78±0.11 -
MPNN-mean (primal) 0.278±0.008 0.313±0.003 - 0.75±0.47 0.92±0.22 -

PGN-max (dual) 0.234±0.002 0.269±0.001 100%±0.0 0.49±0.22 0.78±0.29 100%±0.0

PGN-mean (dual) 0.240±0.004 0.285±0.004 100%±0.0 1.10±0.30 1.05±0.12 99%±0.7

MPNN-max (dual) 0.236±0.002 0.288±0.005 100%±0.0 0.71±0.32 0.98±0.22 100%±0.0

MPNN-mean (dual) 0.258±0.008 0.268±0.002 100%±0.0 0.81±0.09 1.06±0.35 100%±0.0

PGN-max (pipeline) 0.256±0.001 0.293±0.003 61%±0.1 0.45±0.18 0.77±0.26 95%±0.1

PGN-mean (pipeline) 0.244±0.001 0.304±0.001 100%±0.0 0.98±0.44 1.03±0.32 99%±0.8

MPNN-max (pipeline) 0.261±0.002 0.312±0.005 61%±0.3 0.47±0.23 0.95±0.34 90%±1.1

MPNN-mean (pipeline) 0.255±0.002 0.292±0.002 100%±0.0 0.64±0.35 0.92±0.20 100%±0.0

Random 0.740±0.002 - 50%±0.0 1.00±0.00 - 50%±0.0
PGN-max (no-algo) 0.314±0.013 - - 0.78±0.02 - -

from U(0, 10) and then rescaled via a min-max normalisation for 2-community graphs, while they
are sampled as either 0 or 1 for bipartite graphs.

Ablation & neural architectures We performed an ablation study to assess the contribution from
the dual, by training the same DAR architecture without the additional min-cut head (consequently
the dual information does not flow back in PF in Figure 1). To deepen our analysis, we also consider
a neural architecture where the minimum cut is learnt prior the Ford-Fulkerson algorithm. Specif-
ically, we introduce a third processor that is trained solely on minimum cut, whose output is then
used as an additional feature for the architecture presented in Figure 1. Furthermore, we compare
two different types of processors: (i) a fully-connected Message-Passing Neural Network (MPNN)
(Gilmer et al., 2017), which implements equation 3 and exchanges messages between all pairs of
nodes; (ii) Pointer-Graph Network (PGN) (Velickovic et al., 2020a), which instead exchanges mes-
sages only between a node and its neighbours defined by the inputs and hints of the algorithm. For all
processors, we try different aggregation operators in equation 3, namely

⊕
= {max,mean, sum}.

We train all models for 20,000 epochs with the SGD optimiser and we average the results across 5
runs. We also use teacher forcing with a decaying factor of 0.999. This has the effect of provid-
ing the network with ground-truth hints for the early stage of the training phase, while letting the
network predictions flow in for the majority of training. To choose optimal hyperparameters, e.g.
learning rate, hidden dimension, we employ a bi-level random search scheme, where the first level
samples values of hyperparameters in a large range of values, while the second one “refines” the
search based on the first level results. We choose the best hyperparameters based on the validation
error on F . Aggregated validation loss curves are shown in Figure 2(a). For further details on the
model selection, refer to the appendix.

Results analysis We report results on Ford-Fulkerson simulation in Table 1. Specifically, we use
the Mean Absolute Error (MAE) as a metric for assessing the predictions of the final flow assignment
F , obtained as in equation 5. Similarly, we measure average performance on all the intermediate
flow assignment F̄ (t) in order to show how well the algorithm is imitated across all steps, which is
referred to as F̄ (t) in Table 1. Where applicable, we report accuracy on the minimum cut as well,
i.e. for dual and pipeline models. To better evaluate all models, we include a random baseline which
samples F at random and rescales it following equation 5 and a GNN trained to directly output
the flow matrix F without learning Ford-Fulkerson (marked as no-algo). First, Table 1 shows clear
performance advantage with respect to the two baselines, indicating that learning max-flow with
the support of algorithmic reasoning, i.e. learning of Ford-Fulkerson, is more effective. More
importantly, we notice how models incorporating the prediction of the dual problem consistently
outperform the primal baselines on both 2-community and bipartite graphs. Dual architectures also
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Table 2: Qualitative analysis on the prediction of F . Mean Absolute Error (MAE) is used as the
regression error from the ground truth maximum flow value. For simplicity, we only report results
of the best-performing models (PGNs).

primal dual pipeline
Metric PGN-max PGN-mean PGN-max PGN-mean PGN-max PGN-mean
|F − F ∗| 7.86± 0.47 8.68± 0.21 0.34± 0.04 0.41± 0.01 7.58± 0.10 0.38± 0.08

better imitate the algorithm across all intermediate steps compared to primal, as testified by lower
F̄ (t). This suggests that the dual min-cut information, despite being easy to learn (Fereydounian
et al., 2022), helps the model achieve a lower prediction error. This finding is also strengthened by
the observation that whenever the min-cut prediction is imprecise, e.g. {PGN, MPNN}-max pipeline
for 2-community, the prediction of F and F (t) become consequently worse. From our experiments,
the dual PGN architecture with max aggregator emerges as the best-performing model, at least for
what concerns 2-community graphs, being able to perfectly predict also the minimum cuts of all the
graphs in the test set. Contrastingly, learning min-cut first is less stable (while still outperforming
the primal baseline) confirming prior work findings on the effectiveness of multi-task learning.

The performance gap also increases when testing out-of-family on bipartite graphs, where dual and
pipeline with max aggregator are both very competitive. We note that for bipartite graphs we record
higher mean and standard deviations. While this behaviour is emphasised by the fact that capacities
are sampled as either 0 or 1, i.e. leaving more chances for prediction errors, this testifies that
generalisation to arbitrary graph distributions is still a challenging task.

Qualitative analysis To further evaluate the performance of DAR, we perform a qualitative study,
whose results are presented in Table 2. For 2-community graphs we assess how close the pre-
dicted flow matrix F is to the optimal max-flow solution without considering errors for intermediate
nodes. This gives a measure of how well the network can predict the maximal flow value in the
graphs and use it in the predicted solution. To achieve that, we ignore intermediate errors and only
measures flow signal exiting the source node s and entering the sink node t, i.e.

∑
(s,j)∈E Fsj and∑

(j,t)∈E Fjt. Thus, we take the maximum (absolute value) between the two and compare this value
to the ground truth maximum flow value F ∗. From Table 2 we observe that all the dual architectures
exhibit a solution which reflects the true maximum flow quantity in the input graphs, i.e. ≈ 0.30 of
MAE from the optimum on average. This analysis further solidifies our claim that a DAR model can
positively transfer knowledge from the dual to the primal problem resulting in more accurate and
qualitatively superior solutions. This claim is also supported by the fact that both primal architec-
tures and dual architectures for which min-cut results are worse miss the optimal solution by a large
margin (compare PGN-max pipeline min-cut results in Table 1 and higher MAE in Table 2).

4.2 REAL-WORLD GRAPHS

Benchmark description We assess generality and potential impact of the DAR pipeline by con-
sidering a real-world edge classification task, for which prior knowledge of the concept of max-flow
might be helpful. We test both the primal and the DAR architectures on the Brain Vessel Graphs
(BVG) benchmark (Paetzold et al., 2021). This benchmark contains 9 large-scale real-world graphs,
where edges represent vessels and nodes represent bifurcation of the vessel branches in a brain net-
work. The task is to classify each edge in three categories: capillaries, veins and arteries based on
the following features: vessel length lij ; shortest distance between bifurcation points dij ; and curva-
ture ρij . Note that the three classes can be distinguished by the radius of the vessel, or equivalently,
by the amount of blood flow that can traverse the vessel. Hence, being able to simulate the blood
flow in the entire brain network is likely to be advantageous to effectively solve the task. As an
additional challenge, note that the classification task is highly imbalanced, i.e. 95% of samples are
capillaries, 4% veins and only 1% arteries.

We test the models on three BVG graphs, namely CD1-E-1 (the largest, with 5,791,309 edges),
CD1-E-2 (2,150,326 edges) and CD1-E-3 (3,130,650 edges). BVG data also include a synthetic
brain vessel graph for validation purposes, comprising 3159 nodes and 3234 edges.
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Algorithm reconstruction The main difference with our synthetic tasks is that here we need to
estimate the vessel diameter/radius which is a quantity that can be related with the vessel capacity,
i.e. how much blood (flow) can traverse the edge. Therefore, the capacity is a learning target rather
than one of the features to feed our algorithmic reasoner with. Here, we exploit the generality of the
encode-process-decode architecture and learn to reconstruct the Ford-Fulkerson neural execution.
Specifically, we reuse PGN-max networks pre-trained on 2-community graphs (section 4.1).

As the capacity is no longer an input feature, we drop the capacity encoder from fv and introduce
three new encoder layers in fv , one for each feature of the vessel graph benchmark, i.e. lij , dij , ρij .
Thus, we freeze all the parameters in the pre-trained models apart from the introduced encoder
layers. Hence, we only train the weights of lij , dij , ρij to learn Ford-Fulkerson steps in absence of
input information about capacity. In other words, the model learns to use lij , dij , ρij to estimate
the edge flows in the network, which act as proxy information for edge capacities, i.e. our primary
objective in the BVG task. We perform these learning steps of algorithm reconstruction on the
synthetic vessel graph provided by the BVG benchmark. Source and sink nodes s, t are chosen
as two random nodes whose shortest distance is equal to the diameter of the graph. We train to
reconstruct the algorithm for 15000 epochs, with Adam optimiser (Kingma & Ba, 2015) and learning
rate 1e-5. Figure 2(b) compares the loss curves for the primal and DAR models, on the task.

Thus, we simulate one single step of Ford-Fulkerson on CD1-E-X through PGN-max primal and
dual models and extract hidden learnt representations for each node, which are then summed to-
gether to get edge embeddings. These edge embeddings will be used as additional input features for
the graph neural networks (described below) which we train to solve brain vessel classification. Fi-
nally, we highlight how this approach allows us to easily dump the embeddings, as the reconstructed
encoders and processors will not be training further on real-data.

Neural architectures We consider graph neural networks from the BVG benchmark paper as our
baselines, namely Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017) and ClusterGCN (Chiang et al., 2019) with GraphSAGE convolution (C–
SAGE). The general architecture consists of several graph convolutional layers with ReLU acti-
vations followed by a linear module. Additionally, we use the embeddings extracted by PGN-max
(primal) and PGN-max (dual) to train a simple linear classifier (LC) to assess how much information
these embedding add with respect to the original lij , dij , ρij features. We also use those representa-
tions in combination with GraphSAGE and C–SAGE. Specifically, our embeddings are concatenated
together with the GraphSAGE’s and C–SAGE’s learnt embeddings prior the final linear layer. As
an additional sanity check, we also train Node2Vec (Grover & Leskovec, 2016) on each of the three
datasets and concatenate its learnt embeddings the same way. All models are trained with early
stopping of 300 epochs and optimal hyperparameters taken from the BVG paper, which we report
in the appendix for completeness. Finally, we average the results across 3 trials.

Results analysis Results on the BVG benchmark are reported in Table 3. As the learning problem
is highly imbalanced, we use the balanced accuracy score (average of recall for each class) and the
area under the ROC curve as metrics to evaluate the performance.

Looking at LC performance, we see that the algorithmic reasoner embeddings (both primal and dual)
are informative, resulting in an average 16.6% increase in balanced accuracy and 10.5% in ROC
across the three datasets when compared to simple features. Dual embeddings also show superior
performance compared to primal embeddings, as testified by consistent increments in both metrics.
Figure 2(b) hints that this might be due to a better algorithm reconstruction in the dual, which results
in more informative representations. LC performance also gives a clear indication of how well the
algorithmic reasoner is able to positively transfer knowledge acquired on synthetic algorithmic tasks
to unseen real-world predictive graph learning ones.

When considering the use of learnt embedding in combination with GNN architecture, we note
significant performance improvements over vanilla (i.e. non algorithmically enhanced) GNNs. C–
SAGE with dual embeddings achieves the best performance on all three datasets with a consistent
performance gap for CD1-E-3 and CD1-E-2. Interestingly, dual embeddings consistently outper-
form Node2Vec embeddings. This is remarkable, considering that Node2Vec is trained directly on
the CD1-E-X data, whereas DAR only performs inference on them. A reason to this performance
gap might be that Node2Vec essentially widens the local perceptive field of graph neural networks
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Table 3: Balanced accuracy (Bal. Acc.) and area under the ROC curve (ROC) performance metrics
on large-scale brain vessel graphs. LC refers to a linear classifier. In addition to the standard archi-
tectures, we consider variants where the final linear classification layer takes in additional Node2Vec
(Grover & Leskovec, 2016) learnt embeddings and embeddings extracted from PGN-max primal and
dual architectures.

CD1-E-3 CD1-E-2 CD1-E-1
Model Bal. Acc. ROC Bal. Acc. ROC Bal. Acc. ROC
LC 39.3%±0.2 52.3%±0.6 36.9%±0.5 55.9%±0.1 45.5%±0.1 61.7%±0.0

LC (N2V) 43.9%±0.2 55.5%±0.1 71.9%±0.1 62.6%±0.0 46.1%±0.1 60.0%±0.0

LC (primal) 48.6%±0.4 59.4%±0.4 58.7%±0.1 63.8%±0.2 45.3%±0.1 59.9%±0.1

LC (dual) 53.8%±0.3 66.2%±0.2 67.3%±0.1 71.8%±0.0 48.1%±0.5 62.1%±0.3

GCN 58.1%±0.5 67.9%±0.2 74.6%±1.7 78.7%±0.1 59.0%±0.2 67.9%±0.2

SAGE 63.5%±0.2 70.9%±0.3 73.9%±0.6 82.5%±0.2 64.7%±0.7 74.2%±0.2

SAGE (N2V) 65.0%±0.1 71.9%±0.1 84.1%±1.9 82.5%±0.4 65.9%±0.1 74.8%±0.1

SAGE (primal) 64.5%±0.2 72.0%±0.2 83.8%±0.4 83.7%±0.4 66.2%±0.5 74.8%±0.3

SAGE (dual) 66.7%±0.4 75.0%±0.2 85.2%±0.1 85.5%±0.2 66.4%±0.3 74.8%±0.1

C–SAGE 68.6%±0.8 74.2%±0.5 81.8%±0.5 85.6%±0.2 59.3%±0.9 68.3%±0.5

C–SAGE (N2V) 68.6%±0.2 74.1%±0.1 84.8%±0.2 84.8%±0.5 67.4%±0.6 75.9%±0.2

C–SAGE (primal) 67.3%±0.2 73.6%±1.9 82.5%±1.9 84.0%±1.5 67.7%±0.1 75.8%±0.2

C–SAGE (dual) 70.2%±0.2 76.3%±0.1 85.6%±0.2 86.7%±0.3 68.1%±0.2 75.8%±0.1

with random walks as an attempt to capture global graph features. On the contrary, DAR utilises a
more principled approach based on the simulation of graph flow. This means that the learnt latent
space encodes the information necessary to reconstruct the flow assignment and consequently edge
capacities, these being more informative for the specific task. DAR models also exhibit very good
generalisation capabilities. In fact, we recall that the networks are only trained on graphs with 16
nodes and extract meaningful representations for graphs with millions of nodes, being able to pro-
vide a clear performance advantage over baselines. This might also indicate a way worth pursuing
to realise sustainable data-efficient learning models for graphs.

5 CONCLUSION

We have presented dual algorithmic reasoning (DAR), a neural algorithmic reasoning approach
that leverages duality information when learning classical algorithms. Unlike other approaches, we
relax the assumption of having multiple algorithms to be learnt jointly and show that incorporating
the dual of the problem targeted by algorithms represents a valuable source of information for learnt
algorithmic reasoners. We showed that learning together the primal-dual max-flow-min-cut problem
can substantially improve the quality of the predictions, as testified by the quantitative and qualitative
evaluations of the models. Furthermore, dual algorithmic reasoners have demonstrated to generalise
better, showing positive knowledge transfer across different families of graph distributions and ex-
tracting informative representations for large-scale graphs while only being trained on toy-synthetic
graphs. In this context, we also demonstrated for the first time how more classical graph learning
tasks can be tackled through exploitation of algorithmic reasoning, via algorithm reconstruction. On
a final note, we identify several problems and algorithms that may benefit from a dual reasoning ap-
proach. First, max-flow and min-cut may be representative for a wide class of primal/dual pairs, for
which strong duality holds. There, the dual solution can be used to recover the primal optimum (and
vice versa), equivalently to max-flow and min-cut. Examples of such problems are shortest path and
min-cost flow problems. More interestingly, we may generalise this approach to target also weak
primal-dual problems, in which the dual objective is an approximation of the primal objective. Even
in the case of weak duality, dual information is valuable, as testified by the numerous algorithms
exploiting primal-dual relations (Balinski, 1986; Pourhassan et al., 2017). Particularly interesting
problems to target may be the Travelling Salesman Problem (Cormen et al., 2009), for which a dual
formulation includes learning to output a 1-tree (Bazaraa & Goode, 1977), and the Weighted Vertex
Cover problem, for which the dual can effectively be used to develop 2-approximation heuristics
(Pourhassan et al., 2017). We believe that results showed in this manuscript should strongly mo-
tivate further work in this direction, extending the analysis to other pairs of primal-dual problems,
such as the ones suggested in this section.
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A PSEUDO-CODE

A.1 FORD-FULKERSON PSEUDO-CODE

We consider a standard Ford-Fulkerson implementation, shown in Algorithm 1.

Algorithm 1 Ford-Fulkerson
Input: G = (V,E, c), s, t;
fuv = 0 : ∀(u, v) ∈ E
while ∃ augmenting path p = s, . . . , t in Gf do;

df = min{cuv : (u, v) ∈ p};
for each (u, v) ∈ p do

fuv = fuv − df
fvu = fvu + df

end for
end while
return f

A.2 CORRECTIVE FLOW PROCEDURE PSEUDO-CODE

The corrective procedure is shown in Algorithm 2. We discriminate between negative nodes i−, if
(
∑

(i,j)∈E Fij+
∑

(j,i)∈E Fji) < 0, i.e. the node keeps some of the flow, and positive nodes i+ if the
sum of in-flow and out-flow is instead positive. Thus, we enforce the flow conservation constraint
in two simple steps. First, all negative nodes i− sends back to the source s an amount of flow equal
to the magnitude of the constraint violation without considering edge-capacities. All positive nodes
instead, lower the amount of out-flow towards the sink t. After this step, the conservation of flows
is satisfied but we have introduced capacity violations in the graph. Hence, in the second step we
impose back capacity constraints. Starting from the source s, we find paths with capacity violations
and clamp the flow value to the maximum capacity. Thus, we readjust the flow sent from s until all
capacities violations are corrected and no flow conservation error occurs.

Algorithm 2 Flow correction algorithm
Input: G = (V,E), F : flow matrix, C: capacity matrix, s: source, t: sink
V − = {v | v ∈ V ∧

∑
(i,v)∈E Fiv +

∑
(v,i)∈E Fvi < 0}

V + = {v | v ∈ V ∧
∑

(i,v)∈E Fiv +
∑

(v,i)∈E Fvi > 0}
for each v− ∈ V − do

ε = |
∑

(i,v)∈E Fiv +
∑

(v,i)∈E Fvi|
find a path from v− to s and send back ε amount of flow to s

end for
for each v+ ∈ V + do

ε = |
∑

(i,v)∈E Fiv +
∑

(v,i)∈E Fvi|
find a path from v+ to t and reduce the out-flow by ε

end for
εs = |

∑
(s,i)∈E Fsi −

∑
(s,i)∈E Csi|

while εs > 0 do
find a path from s to t and reduce the out-flow by enforcing capacity constraints
recompute εs

end while
return F
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Table 4: First-level and second-level random searches details.
Level Hyperparameter Min. value Max. value Distribution

Level 1
Learning rate 1e-5 1e-1 log-uniform
Weight decay 1e-5 1e-1 log-uniform

Hidden dimension 16 512 uniform

Level 2
Learning rate 1e-3 1e-2 log-uniform
Weight decay 1e-3 4e-3 log-uniform

Hidden dimension 60 100 uniform

B HYPERPARAMETER OPTIMISATION

B.1 SYNTHETIC GRAPHS

We sample n = 50 configurations for each level of the bi-level random search. In Table 4 we
report details for the first and second level random searches, where the second refines the first based
on validation results of the primal model. Winner hyperparameters for primal model are: hidden
dimension = 68, learning rate = 0.009341, weight decay = 0.003420. Winner hyperparameters
for dual model are: hidden dimension = 65, learning rate = 0.009868, weight decay = 0.001734.
Pipeline shares hyperpameters with dual.

B.2 BRAIN VESSEL BENCHMARK

Optimal hyperparameters for BVG data are presented in Table 5. We perform minimal hyperparam-
eters optimisation for C–SAGE for CD1-E-1, as the optimal hyperparameters reported in Paetzold
et al. (2021) did not perform well. Specifically, we optimised number of layers and number of
hiddens by grid-searching over {2, 3, 4} and {64, 128}, respectively.

Table 5: Optimal hyperparameters used for the BVG benchmark. Note that C–SAGE needs more
epochs for CD1-E-3.

Dataset GCN SAGE C–SAGE Node2Vec

CD1-E-3

lr=3 · 10−3 lr=3 · 10−3 lr=3 · 10−3 lr=1 · 10−2

no. layers=3 no. layers=4 no. layers=4 walk length=40
no. hiddens=256 no. hiddens=128 no. hiddens=128 walks per node=10
dropout=0.4 dropout=0.4 dropout=0.2 no. hiddens=128
epochs=1500 epochs=1500 epochs=5000 epochs=5

CD1-E-2

lr=3 · 10−3

no. layers=4
as above as above no. hiddens=128 as above

dropout=0.2
epochs=1500

CD1-E-1

lr=3 · 10−3

no. layers=3
as above as above no. hiddens=64 as above

dropout=0.2
epochs=1500

C ADDITIONAL RESULTS

Qualitative study Here, we present an additional qualitative study for all models in Table 1 on
synthetic graphs, both 2-community and bipartite. To further strengthen qualitative findings of Ta-
ble 2, we aim to measure to what extent the optimal max-flow value can be linearly decodable from

13



Published as a conference paper at ICLR 2023

Table 6: R2 score of predicting the maximum flow value from learnt graph representations hg . R2

metric emits score in (−∞, 1], with 1 being the best possible score.

primal dual pipeline
Graphs PGN-max PGN-mean PGN-max PGN-mean PGN-max PGN-mean

2-community 0.69± 0.12 −0.59± 0.33 1.00± 0.00 0.93± 0.01 0.80± 0.05 −0.13± 0.29
bipartite −0.79± 0.81 −115.6± 64 0.98± 0.01 −115.2± 64 −0.69± 0.33 0.98± 0.01

the learnt node representations. Specifically, we compute ground truth optimal max-flow value f∗g
for all graphs in the test sets. Thus, for all models we neurally execute Ford-Fulkerson, collect learnt
node embeddings hi and obtain graph representations hg through a MAX-POOL operation. Thus, we
fit linear models on {hg} and compute theR2 score to evaluate the quality of the predictions. Table 6
shows that from dual embeddings we are able to linearly decode the optimal max-flow value almost
perfectly, i.e. ≥ 0.99 on average across the two graph distributions, confirming once again that
learning min-cut and max-flow together is beneficial and yields more informative representations.

Enforcing flow conservation As explained in section 3.2 of the main paper, the max-flow output
of the algorithmic reasoner (equation 5) is a noisy version (F̃ ) of a real correct solution F , as it may
not satisfy the conservation of flows constraint (equation 2). We can enforce the flow conservation
through Algorithm 2. Figure 3 provides a visual example of how the flow conservation is corrected
by the corrective procedure of Algorithm 2, showing that it is possible to extract a correct solution
from the neural output. In the figure, we represent negative nodes i− (see subsection A.2) with
blue and positive nodes i+ with red. Sources s should always be “positive” nodes (flow is always
sent out) while sinks should be “negative” (flow is always received). White nodes in Figure 3(b)
represent nodes for which equation 2 holds.

(a) Flows pre-correction (b) Flows post-correction

Figure 3: This figure shows the (normalised) flow conservation error for all nodes (x axis) of each
test graph (y axis). (a) shows the predicted F conservation error prior Algorithm 2. (b) shows the
corrected F conservation error. Through Algorithm 2 we are able to correct all the inner error (white
represents zero error), with s and t being the only nodes which respectively send and receive flow.

Putting together Node2Vec and dual embeddings In Table 3, Node2Vec and dual embeddings
arose as the most informative node embeddings for solving the brain vessel classification task.
Therefore, we run an additional experiment by concatenating together these two embeddings and
learning neural networks to solve the BVG task the same way as it was done in subsection 4.2
for primal/dual/N2V embeddings separately. We report these results in Table 7. We record higher
results for these combined embeddings compared to using the two embeddings separately, hinting
that Node2Vec and dual representations encode two different kinds of information that might be
effectively combined, i.e. structural (the former) and blood flow (the latter).
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Table 7: Additional BVG results for concatenation of Node2Vec and dual embeddings. To be com-
pared to Table 3 in the main paper.

CD1-E-3 CD1-E-2 CD1-E-1
Model Bal. Acc. ROC Bal. Acc. ROC Bal. Acc. ROC
LC (dual-N2V) 53.9%±0.1 66.3%±0.1 77.8%±0.1 74.3%±0.1 48.2%±0.2 62.1%±0.1

SAGE (dual-N2V) 70.1%±0.3 76.5%±0.1 89.2%±0.2 86.3%±0.2 67.5%±0.2 76.0%±0.1

C–SAGE (dual-N2V) 70.4%±0.1 76.7%±0.1 88.3%±0.3 85.0%±0.3 67.0%±0.2 75.8%±0.3

Table 8: Validation results on 2-community graphs for all models.

Model F F̄ (t) c

PGN-max (primal) 0.218± 0.002 0.272± 0.006 -
PGN-mean (primal) 0.199± 0.001 0.281± 0.004 -
MPNN-max (primal) 0.215± 0.003 0.271± 0.003 -
MPNN-mean (primal) 0.235± 0.008 0.304± 0.005 -

PGN-max (dual) 0.183± 0.001 0.250± 0.002 100%± 0.0
PGN-mean (dual) 0.184± 0.001 0.266± 0.004 100%± 0.0
MPNN-max (dual) 0.185± 0.001 0.246± 0.002 100%± 0.0
MPNN-mean (dual) 0.184± 0.001 0.246± 0.002 100%± 0.0

PGN-max (pipeline) 0.189± 0.002 0.262± 0.003 98.2%± 0.1
PGN-mean (pipeline) 0.193± 0.001 0.264± 0.002 100%± 0.0
MPNN-max (pipeline) 0.188± 0.003 0.257± 0.003 98.3%± 0.1
MPNN-mean (pipeline) 0.204± 0.001 0.278± 0.002 100%± 0.0

Random 0.553± 0.003 - 50%± 0.0
PGN-max (no-algo) 0.256± 0.002 - -

D VALIDATION RESULTS

To better evaluate the algorithmic generalisation of our models, we report validation results on syn-
thetic data in Table 8. Additionally, we report additional plots showing loss of MPNN-* models in
Figure 4, similarly to Figure 2(a) for PGNs. Lastly, we also report validation performance for all
variants of C–SAGE models, i.e. vanilla, primal, dual and pipeline, on brain vessel classification
(see Figure 5).

Figure 4: Ford-Fulkerson validation loss for MPNN processors.
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Figure 5: Validation performance of C–SAGE variants on CD1-E-X in terms of balanced accuracy.
Truncated lines in CD1-E-3 plot represent early stopping.
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