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Abstract

Large language models (LLMs) usually fall001
short on information extraction (IE) tasks002
and struggle to follow the complex instruc-003
tions of IE tasks. This primarily arises from004
LLMs not being aligned with humans, as main-005
stream alignment datasets typically do not in-006
clude IE data. In this paper, we introduce007
ADELIE (Aligning large language moDELs008
on Information Extraction), an aligned LLM009
that effectively solves various IE tasks, includ-010
ing closed IE, open IE, and on-demand IE.011
We first collect and construct a high-quality012
alignment corpus IEInstruct for IE. Then013
we train ADELIESFT using instruction tuning014
on IEInstruct. We further train ADELIESFT015
with direct preference optimization (DPO) ob-016
jective, resulting in ADELIEDPO. Extensive017
experiments on various held-out IE datasets018
demonstrate that our models (ADELIESFT and019
ADELIEDPO) achieve state-of-the-art (SoTA)020
performance among open-source models. We021
further explore the general capabilities of022
ADELIE, and experimental results reveal that023
their general capabilities do not exhibit a no-024
ticeable decline. We will release the code, data,025
and models to facilitate further research.026

1 Introduction027

Large language models (LLMs), especially after028

alignment with human expectations, such as in-029

struction tuning (Wei et al., 2022a; Chung et al.,030

2022; Longpre et al., 2023) or direct prefer-031

ence optimization (DPO) (Rafailov et al., 2023),032

have achieved impressive results on numerous033

tasks (OpenAI, 2022, 2023; Jiang et al., 2023; Anil034

et al., 2023; Anthropic, 2024). However, LLMs035

still fall short on information extraction (IE) tasks,036

particularly on closed IE tasks (Li et al., 2023a;037

Han et al., 2023; Peng et al., 2023a). LLMs usu-038

ally struggle to understand and follow the complex039

instructions of IE tasks (Peng et al., 2023a; Pang040

et al., 2023; Xu et al., 2023), e.g., complicated task041
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Figure 1: F1 scores (%) on closed, open, and on-demand
IE tasks in the few-shot setting. SoTA* denotes the best
performance of open-source models.

schema and specifications, which indicates exist- 042

ing LLMs are not aligned with human needs on IE 043

tasks (Peng et al., 2023a; Sainz et al., 2023). 044

To enhance LLM performance on IE tasks, ex- 045

isting efforts have primarily explored three aspects: 046

(1) Prompt engineering, which provides compre- 047

hensive information, e.g., annotation guidelines, to 048

LLMs, without fine-tuning model parameters (Pang 049

et al., 2023; Guo et al., 2023; Wei et al., 2023b; Wan 050

et al., 2023). (2) Code LLMs, which leverage their 051

capabilities of understanding structured informa- 052

tion to enhance the performance on IE tasks (Guo 053

et al., 2023; Sainz et al., 2023; Bi et al., 2023). 054

(3) Multi-task fine-tuning, which involves fine- 055

tuning LLMs on multiple IE datasets to enhance 056

their cross-task generalization capabilities in solv- 057

ing IE tasks (Wang et al., 2022a, 2023b; Sainz et al., 058

2023; Wang et al., 2023d). 059

However, these works do not sufficiently align 060

LLMs on IE tasks. The prompt engineering method 061

does not inherently align LLMs without tuning 062

model parameters. Works using code LLMs and 063

multi-task fine-tuning typically fine-tune models 064

on homogeneous data, e.g., instances with the same 065

input-output format, with a lack of diverse align- 066

ment data. Therefore, the fine-tuned models exhibit 067

limited generalization capabilities on IE tasks, in- 068
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cluding closed IE (Xu et al., 2023), open IE (Xu069

et al., 2023), and on-demand IE (Jiao et al., 2023).070

Furthermore, as these models are trained specif-071

ically for IE, their general capabilities, such as072

natural language understanding (Hendrycks et al.,073

2021), may experience a significant decline.074

Considering the above issues, we introduce075

ADELIE (Aligning large language moDELs on076

Information Extraction), an LLM aligned on IE077

tasks. Specifically, this work addresses the above078

limitations through two aspects: (1) Rich align-079

ment data. We construct a high-quality instruction080

tuning dataset for IE tasks, IEInstruct, including081

83, 585 instances of various IE tasks. IEInstruct082

includes a diverse set of instructions and input-083

output formats. We manually write several instruc-084

tions for different IE tasks, then expand the instruc-085

tion set using GPT-4 (OpenAI, 2023) similar to086

Self-Instruct (Wang et al., 2023e). We then aug-087

ment the instructions through various augmenta-088

tion techniques, such as adding annotation guide-089

lines (Sainz et al., 2023). IEInstruct also in-090

cludes diverse output formats, such as triplets, nat-091

ural language, and JSON. We also employ GPT-092

4 to generate chain-of-thought explanations (Wei093

et al., 2022c) for 8, 000 instances in IEInstruct.094

(2) Sufficient alignment. ADELIESFT is trained095

based on LLAMA 2 (Touvron et al., 2023), using096

supervised fine-tuning (SFT) (Ouyang et al., 2022)097

on a mixture of IEInstruct and generic alignment098

data used in TULU 2 (Ivison et al., 2023) to main-099

tain the model’s general capabilities. We further100

train ADELIESFT using the direct preference op-101

timization (DPO) objective (Rafailov et al., 2023)102

on IEFeedback, a preference dataset constructed103

using ADELIESFT, resulting in ADELIEDPO.104

We comprehensively evaluate ADELIESFT and105

ADELIEDPO on closed, open, and on-demand IE.106

Some results are shown in Figure 1. The re-107

sults demonstrate that our models achieve SoTA108

performance compared to previous open-source109

models and GPT-3.5. There is no significant de-110

cline in ADELIE’s general capabilities, such as111

MMLU (Hendrycks et al., 2021) and BBH (Suz-112

gun et al., 2023). Moreover, we analyze several113

key factors of the alignment process and provide114

several insightful findings, such as the mixture strat-115

egy of IE and general alignment data. We hope our116

extensive experiments and analyses will advance117

research on aligning LLMs.118

In summary, our contributions are threefold: (1)119

We construct high-quality alignment data for IE120

tasks: IEInstruct and IEFeedback. (2) Based 121

on this high-quality alignment data, we develop 122

ADELIESFT and ADELIEDPO, with advanced per- 123

formance on IE tasks. (3) We conduct extensive 124

experiments and analyses, providing meaningful 125

insights for the research on LLM alignment. 126

2 Related Work 127

2.1 Information Extraction Tasks 128

Conventional IE tasks are primarily categorized 129

into two types: closed IE and open IE. Closed IE 130

involves extracting structured information from un- 131

structured text, typically requiring the extracted 132

information to conform to a predefined schema. 133

Closed IE typically includes the following tasks: 134

(1) Named Entity Recognition (NER), which aims 135

to identify entities in text and categorizing them 136

into types defined in a schema (Yadav and Bethard). 137

(2) Relation Classification (RC), which classifies 138

the relationship into a predefined type between two 139

mentioned entities in the text (Han et al., 2020). 140

(3) Relation Extraction (RE), which aims to extract 141

entities and their relations end-to-end (Zhong and 142

Chen). (4) Event Detection (ED), which extracts 143

event triggers and classifies them into predefined 144

types (Wang et al., 2020). (5) Event Argument Ex- 145

traction (EAE), which aims to extract arguments, 146

e.g., time, for events (Wang et al., 2023c). (6) 147

Event Extraction (EE), which aims to extract events 148

and their arguments in end-to-end paradigm (Peng 149

et al., 2023b). (7) Event Relation Extraction (ERE), 150

which extracts coreference, temporal, causal, and 151

hierarchical relationships between events (Wang 152

et al., 2022c). Open IE aims to extract n-ary rela- 153

tion tuples from text, without relying on a prede- 154

fined schema (Zhou et al., 2022). 155

Beyond closed IE and open IE, Jiao et al. (2023) 156

proposed on-demand IE, aimed at extracting user- 157

desired information from unstructured text, such as 158

extracting the shape and taste of fruits, and organiz- 159

ing it into a structured tabular format. On-demand 160

IE is more flexible and aligns with real-world user 161

demand. This paper covers all these IE tasks, aim- 162

ing to enhance the model’s ability to address these 163

tasks through sufficient alignment. 164

2.2 LLMs for Information Extraction 165

LLMs often fall short on IE tasks (Li et al., 2023a; 166

Han et al., 2023) due to the complex specifica- 167

tions of these tasks (Peng et al., 2023a). Conse- 168

quently, numerous works have been proposed to 169
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enhance LLMs’ understanding of IE task specifica-170

tions to improve their performance. These works171

are primarily divided into three aspects: (1) Prompt172

engineering (Pang et al., 2023; Guo et al., 2023;173

Wei et al., 2023b; Wang et al., 2023a; Wan et al.,174

2023; Zhang et al., 2023; Xie et al., 2023), aims to175

enhance the model’s performance on IE tasks by176

providing sufficient prompts, such as incorporating177

guidelines information. Typically, these methods178

do not involve training model parameters. (2) Code179

LLMs (Guo et al., 2023; Sainz et al., 2023; Bi180

et al., 2023; Li et al., 2023c; Wang et al., 2023d),181

which adopt the Code LLMs’ capabilities of under-182

standing structured information on IE tasks, often183

perform better than natural language LLMs. (3)184

Multi-task fine-tuning (Lu et al., 2022; Wang et al.,185

2022a, 2023b; Sainz et al., 2023; Chen et al., 2023;186

Zhou et al., 2023), which trains LLMs on multiple187

IE datasets, enhancing the models’ performance on188

IE tasks, especially in cross-task scenarios. These189

works do not sufficiently align LLMs with IE tasks,190

due to the lack of diverse alignment data. These191

trained LLMs also exhibit a decline in general ca-192

pabilities. In this paper, we aim to sufficiently align193

LLMs on IE tasks with rich alignment data without194

compromising their general capabilities.195

3 Alignment Data Construction196

This section introduces the construction process197

of IEInstruct. The process mainly consists of 3198

steps: IE data collection (§ 3.1), input construction199

(§ 3.2), and answer generation (§ 3.3). Details of200

data construction are shown in appendix A.201

3.1 IE Data Collection202

We first collect multiple IE datasets, including203

closed IE (Xu et al., 2023), open IE (Liu et al.,204

2022), and on-demand IE (Jiao et al., 2023), cov-205

ering various domains, such as general, financial,206

and biomedical domains. We filter out 80% of NA207

data, which does not contain information needing208

extraction. To balance different datasets, we em-209

ploy the examples-proportional mixture (Wei et al.,210

2022b), with a dataset size limit of 5, 000. The data211

collection information is shown in Figure 2.212

3.2 Input Construction213

We construct diverse input to better align LLMs on214

IE tasks. As shown in Figure 3, the input primarily215

consists of an instruction and a piece of input text.216

The instruction usually includes 3 components:217

task description, schema description, and output218
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Figure 2: IE tasks, datasets, and respective proportions
in IEInstruct.

format description. The schema description is only 219

used in closed IE tasks, as open IE and on-demand 220

IE do not include a schema. Some inputs also 221

include several demonstrations, i.e., input-output 222

exemplars, for enhancing few-shot in-context learn- 223

ing capabilities. We introduce the augmentation 224

process of the 3 components of instructions and the 225

construction of few-shot demonstrations. 226

Task Description For each IE task, we first 227

manually craft 10 task descriptions. Then we 228

adopt GPT-3.5 (OpenAI, 2022) to generate 20 229

more descriptions. Specifically, to enrich the di- 230

versity of generated descriptions, similar to Self- 231

Instruct (Wang et al., 2022d), we employ an iterated 232

generation process, which uses 3 manually written 233

descriptions and 2 generated descriptions as the 234

prompt for GPT-3.5 to generate a new description. 235

Finally, we manually verify the generated descrip- 236

tions and filter out those with hallucinations. 237

Schema Description For closed IE tasks, in- 238

spired by GoLLIE (Sainz et al., 2023), we augment 239

the schema descriptions, i.e., category information, 240

from 3 aspects: (1) Schema shuffling and sam- 241

pling. We randomly shuffle the order of categories 242

in the schema and select a random subset of 1 to the 243

maximum number of categories to include in the 244

instruction. This technique aims to prevent model 245

overfitting on the schemata in the training corpora, 246

forcing the model to only output categories present 247

in the input schema. (2) Incorporation of guide- 248

lines. Guidelines are definitions of the schema, 249

which can enhance the model’s ability to under- 250

stand the schema definition, thereby improving the 251

model’s zero-shot generalization capabilities on un- 252
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Please extract event arguments and their roles for the events marked with <event> and </event> in 
the text, the possible roles must be chosen from the Roleset.  The Roleset is: ["Victim: The harmed 
person(s) / The person who died".]. First explain your thoughts step-by-step and then give the 
answer. Please give the answer in the tuple form "[Answer]: {word}: {role}; ".

Instruction

Text: He said Sharif <event> drowned </event>
[Step-by-Step Explanation]: 
1. Identify the main event: The event "drowned" is connected to the event type "Die".
2. Determine "Victim": The sentence is that Sharif has drowned. So "Sharif " is the "Victim" of this event. 
[Answer]: Sharif: Victim; 

Demostrations

Text: Miller becomes the second journalist in just two weeks to be <event> killed </event> covering 
the israeli-palestinian conflict

Input Text

Task Description

Schema Descripion

Output Format

[Step-by-Step Explanation]: 
1. Identify the main event: The sentence revolves around a journalist being killed.
2. Determine "Victim": The phrase "the second journalist in just two weeks to be killed covering the 
Israeli-Palestinian conflict" identifies the journalist as the victim.
[Answer]: The second journalist in just two weeks to be killed: Victim; 

Output

Output Format

Explanation

Figure 3: An example of the input and output in IEInstruct. 50% of the data in IEInstruct includes in-context
demonstrations. The instruction consists of the descriptions of task, schema, and output format. The output consists
of an explanation (for 30% of the instances in IEInstruct) and the answer adhering to the format in instruction.

seen tasks (Sainz et al., 2023). Therefore, we add253

guidelines information to 20% of the data in the254

training corpora. Similar to GoLLIE (Sainz et al.,255

2023), we also include several examples for each256

category in the guidelines. The remaining data257

does not include guidelines to prevent the model258

from memorizing schema definitions and to en-259

hance data diversity. (3) Replacing categories with260

symbols. We randomly replace category names261

with symbols (e.g., LABEL_1) to prevent the model262

from overfitting to category names (Sainz et al.,263

2023) and enhance the model’s in-context learning264

ability (Wei et al., 2023a).265

Output Format Description LLMs sometimes266

struggle to follow the required output format in IE267

tasks (Han et al., 2023). To enhance the model’s268

ability to follow format requirements, we introduce269

various output format descriptions in the instruc-270

tions, requiring the model to output accordingly.271

Specifically, for each closed IE and open IE task,272

there are mainly 3 types of formats: (1) Triplet273

format, specifying output in various triple formats,274

e.g., (head entity; relation; tail entity) or (head en-275

tity; tail entity; relation) for relation extraction. (2)276

JSON format, requiring the model to output JSON277

formatted results. (3) Natural language format,278

without specific format requirements, allowing the279

model to output in natural language. The construc- 280

tion process of outputs corresponding to format 281

requirements is detailed in § 3.3. On-demand IE 282

does not involve output format descriptions, as its 283

output is typically in a fixed Markdown format. 284

Few-shot Demonstrations Finally, to enhance 285

the model’s few-shot in-context learning capabili- 286

ties, we augment the training corpus with few-shot 287

demonstration inputs. Specifically, we randomly 288

select 50% of the training data and add 1 to 8 ran- 289

domly sampled examplars to the original input. 290

These examplars consist of a piece of input text 291

and the output result, with the output format adher- 292

ing to the requirements in the instruction. For each 293

instance, the demonstrations are randomly sampled 294

and shuffled to prevent the model from overfitting 295

to fixed demonstrations. 296

3.3 Answer Construction 297

We construct corresponding outputs according to 298

the format requirements in the instructions gener- 299

ated in § 3.2. Specifically, for each closed IE and 300

open IE task, the outputs include 3 formats: (1) 301

Triplet format. Following Wang et al. (2022b), we 302

convert the output into serialized triplet form. For 303

outputs containing multiple triplets, we randomly 304

shuffle the order of triplets to mitigate potential 305
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order bias (Li et al., 2023b). (2) JSON format. We306

devise a set of JSON formats for each task and307

transform the answers into corresponding JSON308

data. (3) Natural language format. We manually309

write several templates for natural language outputs310

for each task and construct corresponding natural311

language outputs based on these templates. For312

on-demand IE, we adopt the original answers in313

their datasets (Jiao et al., 2023).314

To enhance the model’s intensive understanding315

of IE task procedures, we augment a subset (10%)316

of instances with Chain-of-Thought (CoT) (Wei317

et al., 2022c) explanations for closed and open IE.318

To generate high-quality CoT explanations, we in-319

put both the input text and its ground truth answer320

to GPT-4. Specifically, we first sample 1, 000 in-321

stances for each task. We then use the text input322

and its corresponding answer as inputs to generate323

CoT explanations using GPT-4. We randomly se-324

lect 200 instances to assess the quality of the CoT325

explanations and find that GPT-4 generally gener-326

ates effective and informative step-by-step thoughts327

for the final answers.328

4 Model Training329

This section introduces the alignment training pro-330

cess, including SFT (Ouyang et al., 2022) and331

DPO (Rafailov et al., 2023) training. More training332

details are placed in appendix B.333

For the SFT training, to preserve the model’s334

general capabilities during alignment, we utilize335

the general alignment corpora used by TULU 2 (Ivi-336

son et al., 2023). Specifically, we mix IEInstruct337

(83, 585 instances) and 320, 000 instances of gen-338

eral alignment corpora as the training dataset. We339

adopt LLAMA 2 (Touvron et al., 2023) as the back-340

bone model and train the model for 6, 306 gradient341

steps, resulting in ADELIESFT.342

After the SFT phase, we continue to train343

ADELIESFT using the DPO objective. We first con-344

struct DPO training data, i.e., preference pairs (a345

preferred answer and a dispreferred answer). The346

original training objective of DPO requires online347

sampling of preference pairs from the model af-348

ter SFT (Rafailov et al., 2023) with human anno-349

tation. In practice, some works also use human-350

annotated offline preference pairs for training, such351

as those sampled from other more powerful mod-352

els (Ivison et al., 2023). In our implementation,353

to obtain more diverse data, we used a mix of on-354

line and offline data. Unlike previous work where355

preference pairs need human annotation, there ex- 356

ists ground truth for IE and hence the preference 357

pairs can be automatically constructed. Therefore, 358

similar to Chen et al. (2024), we use the model 359

itself outputs and original ground truths without 360

needing extra human-annotated preference pairs, 361

which is akin to self-improvement (Huang et al., 362

2023) and can sufficiently minimize manual in- 363

volvement and conserves labors. Specifically, we 364

employ the BLEU (Papineni et al., 2002) score 365

as the metric1 to automatically construct prefer- 366

ence pairs. We sample the output of ADELIESFT 367

5 times for an instance with the sampling temper- 368

ature as 1.0. If the difference between the highest 369

and lowest BLEU scores exceeds 10%, we treat the 370

corresponding outputs as a preference pair, where 371

the higher BLEU output is the preferred answer. 372

We denote this data as online data. We also take 373

the lowest BLEU output as the dispreferred answer 374

and the ground truth as the preferred answer, and 375

denote this data as offline data. Finally, we create 376

IEFeedback, containing 3k online preference pairs 377

and 7k offline preference pairs. Then, using the 378

DPO objective, we train for additional 937 gradi- 379

ent steps on ADELIESFT to obtain ADELIEDPO. 380

5 Experiments 381

5.1 Experimental Setup 382

Baselines For closed IE, we primarily compare 383

3 categories of models: (1) General open-source 384

LLMs, including LLAMA 2 (Touvron et al., 2023), 385

a powerful foundation model and TULU 2 (Ivi- 386

son et al., 2023), an instruction tuned LLAMA 2 387

model. We adopt the 7B version of these models. 388

(2) Proprietary LLMs, including GPT-3.5 (OpenAI, 389

2022) and GPT-4 (OpenAI, 2023). (3) Models opti- 390

mized for IE tasks, including GoLLIE (Sainz et al., 391

2023), a code LLM fine-tuned for IE tasks, and In- 392

structUIE (Wang et al., 2023b), an LLM trained on 393

multiple IE tasks. For open IE, we adopt the state- 394

of-the-art model, OpenIE6 (Kolluru et al., 2020), 395

as the baseline. For on-demand IE, we compare 396

with the ODIEDirect model (Jiao et al., 2023), which 397

is trained on on-demand IE training set. 398

Evaluation Dataset For closed IE and open IE, 399

we utilize held-out datasets for evaluation, i.e., the 400

datasets not included in the alignment corpora, to 401

better assess the models’ generalization capabili- 402

1We do not use the F1 score because some predictions are
unstructured and we can not directly compute their F1 scores.
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Model FewNERDNER SemEvalRC RichEREED RichEREEAE MATRESERE AVG

GoLLIE 29.7 29.2 21.0 39.2 25.9 29.0
InstructUIE 33.5 43.9† 40.8 17.4 30.2 33.2

ADELIESFT 32.7 21.8 24.5 45.8 47.8 34.5

Z
er

o-
Sh

ot

ADELIEDPO 32.1 22.9 26.9 47.9 47.9 35.5

LLAMA 2 04.4 08.2 03.0 08.9 03.8 05.7
TULU 2 24.4 25.1 11.8 24.4 16.8 20.5
GoLLIE 30.0 17.5 19.1 24.3 32.6 24.7
InstructUIE 35.6 38.3† 42.7 17.8 10.4 29.0
GPT-3.5* 44.1 24.0 18.8 28.7 41.0 31.3
GPT-4* 52.2 39.5 23.8 41.0 59.0 43.1

ADELIESFT 39.0 33.8 38.1 54.2 48.0 42.6

Fe
w

-S
ho

t

ADELIEDPO 37.9 34.2 39.7 53.5 48.1 42.7

Table 1: F1 scores (%) of investigated LLMs on held-out closed IE datasets. The highest scores are in bold and the
second highest are underlined. * means the scores of the models are sourced from Peng et al. (2023a). † indicates
that InstructUIE has been trained on the SemEval training set.

ties on IE tasks. Specifically, for closed IE, we em-403

ploy 4 commonly used datasets: the NER dataset404

FewNERD (Ding et al., 2021), the RC dataset Se-405

mEval (Hendrickx et al., 2009), the ED and EAE406

dataset RichERE (Song et al., 2015), and the ERE407

dataset MATRES (Ning et al., 2018). For open IE,408

we use the CaRB (Bhardwaj et al., 2019) and RO-409

BUST (Qi et al., 2023) datasets. For on-demand410

IE, we employ InstructIE (Jiao et al., 2023).411

Evaluation Setup For closed IE and open IE,412

we adopt zero-shot and few-shot (4-shot for closed413

IE and 5-shot for open IE) in-context learning for414

evaluation. The few-shot demonstrations are ran-415

domly sampled from the corresponding training416

set. For on-demand IE, we adopt zero-shot evalu-417

ation the same as in the original paper (Jiao et al.,418

2023). For LLAMA 2, TULU 2, GoLLIE, and419

InstructUIE, we re-evaluate them using the same420

demonstrations. The results for GPT-3.5, GPT-4,421

OpenIE6, and ODIEDirect are obtained from previ-422

ous work. Regarding evaluation metrics, we report423

F1 scores and employ the same calculation method424

as previous work. For details, please refer to Peng425

et al. (2023a) for closed IE, Qi et al. (2023) for426

open IE, and Jiao et al. (2023) for on-demand IE.427

More evaluation details are placed in appendix C.428

5.2 Experimental Results429

Results on Closed IE The results on held-out430

closed IE datasets are shown in Table 1. We can ob-431

serve that: (1) ADELIESFT performs significantly432

better than the original LLAMA 2 and surpasses433

all IE LLMs and GPT-3.5, even on par with GPT-434

4. This indicates that alignment on our rich data435

IEInstruct is effective. (2) DPO further enhances436

Model CaRB ROBUST AVG

Zero-Shot ADELIESFT 52.3 35.3 43.8
ADELIEDPO 53.0 36.6 44.8

Few-Shot

LLAMA 2 10.9 00.2 05.6
TULU 2 32.5 11.0 21.8
GPT-3.5* 51.6 27.5 39.6

ADELIESFT 55.3 38.5 46.7
ADELIEDPO 56.0 39.2 47.6

Fine-Tuning OpenIE6* 55.2 35.8 45.5

Table 2: F1 scores (%) of investigated LLMs on held-
out open IE datasets. The highest scores are in bold and
the second highest are underlined. * denotes the results
are obtained from Qi et al. (2023).

performance. ADELIEDPO performs consistently 437

better than ADELIESFT across most datasets. This 438

suggests that for extractive tasks with ground truth 439

answers, further alignment using DPO can also 440

self-improve model performance. However, the 441

improvement of DPO is generally modest, possi- 442

bly due to not using additional human-annotated 443

preference pairs. We leave using human-annotated 444

preference pairs for training DPO as future work. 445

(3) Incorporating in-context demonstrations dur- 446

ing the alignment process is necessary. Previous 447

work only focuses on zero-shot capabilities and 448

overlooks few-shot capabilities of LLMs, resulting 449

in no significant improvement or even a decline 450

when providing few-shot demonstrations, e.g., a 451

4.3% decline in F1 score for GoLLIE. In contrast, 452

ADELIESFT ’s few-shot performance is much better 453

than its zero-shot performance, which suggests that 454

ADELIESFT possesses few-shot in-context learn- 455

ing capabilities for closed IE tasks. It demonstrates 456

the effectiveness of including in-context demon- 457
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Model Table Header Table Content AVG

LLAMA 2 36.5 08.2 22.4
TULU 2 66.9 47.4 57.2
GPT-3.5* 74.5 51.4 63.0
GPT-4* 74.5 59.1 66.8
ODIEDirect* 73.8 45.9 59.9

ADELIESFT 73.4 47.3 60.4
ADELIEDPO 73.7 47.3 60.6

Table 3: F1 scores (%) of investigated LLMs on the
on-demand IE task. The highest scores are in bold and
the second highest are underlined. * means the scores
of the models are sourced Jiao et al. (2023).

strations in the alignment process.458

Results on Open IE The results on held-out open459

IE datasets are shown in Table 2. The observations460

are similar to those in closed IE. ADELIESFT and461

ADELIEDPO perform much better than GPT-3.5, es-462

pecially on ROBUST, a robust open IE benchmark463

with ubiquitous syntactic transformations (Qi et al.,464

2023), which demonstrates the robustness of our465

models on open IE. Our models even outperform466

the SoTA fine-tuned model, OpenIE6, demonstrat-467

ing the effectiveness of alignment training.468

Results on On-demand IE The results of the469

on-demand task are shown in Table 3. On-demand470

IE uses two evaluation metrics: Table header, eval-471

uating how well the model follows instructions,472

and table content, assessing the extraction qual-473

ity (Jiao et al., 2023). We can observe that ADELIE474

achieves a competitive table header score to GPT-4,475

which suggests that ADELIE better understands476

and follows user instructions. It demonstrates that477

the alignment process effectively aligns ADELIE478

with user instructions and expectations.479

In general, ADELIE achieves remarkable results480

across all IE tasks, particularly in few-shot evalu-481

ation scenarios, which demonstrates their strong482

zero-shot and few-shot generalization capabilities483

and the effectiveness of our alignment corpora484

IEInstruct and IEFeedback.485

6 Analysis486

This section introduces further analyses of key fac-487

tors in training the models (§§ 6.1 and 6.2) and488

analyses on few-shot ICL capabilities (§ 6.3).489

6.1 Analysis on General Capabilities490

Alignment may impact the model’s general capa-491

bilities, namely “Alignment Tax” (Bai et al., 2022;492

Model Commonsense MMLU BBH AVGReasoning

FLAN-T511B 45.8 32.1 40.8 45.8
InstructUIE 42.5 30.4 13.1 42.5

LLAMA 2 55.5 45.7 35.7 52.2
+General 56.9 49.3 41.7 54.3

ADELIESFT 56.6 47.1 38.3 53.5
ADELIEDPO 56.8 47.3 38.9 53.8

Table 4: Performance (%) on general benchmarks.
“+General” is the model trained with only general align-
ment corpora for the same gradient steps as ADELIESFT.
InstructUIE is trained based on FLAN-T511B.

0% 10% 20% 30% 40% 50% 100%
Proportion of IE data

30
35
40
45
50
55
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or

e 
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IE
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Average of IE and General

Figure 4: Scores (%) on IE tasks (average of closed IE,
open IE, and on-demand IE) and general tasks (average
of commonsense reasoning, MMLU, and BBH) of our
model trained with varying proportions of IE data. We
finally adopt a proportion of 20% to train ADELIESFT.

Kim et al., 2023). We investigate the general capa- 493

bilities of previous LLMs for IE and ADELIESFT in 494

this section. Specifically, we select several widely- 495

used benchmarks for assessing general capabilities: 496

MMLU (Hendrycks et al., 2021), BBH (Suzgun 497

et al., 2023), and Commonsense Reasoning (in- 498

cluding HellaSwag (Zellers et al., 2019), Wino- 499

Grande (Sakaguchi et al., 2020), PIQA (Bisk et al., 500

2020), SIQA (Sap et al., 2019), ARC easy and chal- 501

lenge (Clark et al., 2018), and OpenbookQA (Mi- 502

haylov et al., 2018)). The experimental details are 503

placed in appendix C.3. 504

Table 4 presents the results. We can observe 505

that: (1) InstructUIE suffers a significant decline in 506

general capabilities compared to its original model, 507

FLAN-T511B (Wei et al., 2022b), which indicates 508

that using only IE data for alignment hurts the 509

model’s general capabilities. (2) ADELIESFT’s 510

performance improves compared to the original 511

LLAMA 2. Moreover, ADELIESFT performs on 512

par with the model trained specifically on general 513

alignment data (+General). This suggests that mix- 514

ing general and IE alignment data can both enhance 515

the model’s general and IE capabilities and hence 516
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Figure 5: Performance improvements (%) of the
model trained on varying scales of data, compared to
ADELIESFT before DPO training.

mitigate the impact of “Alignment Tax”. There-517

fore, we advocate for including IEInstruct in the518

alignment data to enhance the model’s capabilities.519

We further investigate the impact of data mix-520

ing strategy. Specifically, we observe the perfor-521

mance of models trained with varying proportions522

of IE data from IEInstruct in the overall align-523

ment data. The results are shown in Figure 4. We524

can observe that: (1) There is a substantial im-525

provement in IE tasks, even with only 10% of the526

training data being IE data. This suggests a lack of527

IE data in the existing mainstream alignment data.528

(2) Adding IE data in training leads to a decrease529

in the model’s general capabilities, but this decline530

is limited when the proportion is below 50%. This531

may be due to the insufficient capacity of the 7B532

model, and we leave training a larger model as fu-533

ture work. Considering the results on both IE and534

general tasks, we ultimately train ADELIE on the535

data including 20% IE data and 80% general data.536

6.2 Analysis on DPO Training537

We analyze the training data construction strategy538

for DPO, i.e., the construction of preference pairs,539

each consisting of a preferred answer and a dispre-540

ferred answer. As mentioned in § 4, we adopt both541

offline and online data for training. The distinction542

lies in that both preferred and dispreferred answers543

of online data are sampled from ADELIESFT’s out-544

puts, while the preferred answers of offline data are545

ground truths. We examine the impact of the pro-546

portion of offline data in the training dataset. We547

find that generally the model trained on 70% of-548

fline data and 30% online data performs best, with549

an average 47.7% F1 score across closed, open,550

and on-demand IE tasks. The detailed results are551

shown in Appendix C.4. We also explore the im-552

pact of data size on performance, as shown in Fig-553
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40
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ADELIESFT
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Figure 6: F1 scores (%) using a varying number of
in-context demonstrations on closed IE, excluding MA-
TRES (document-level) due to the limited context size.

ure 5. We find that 10, 000 instances is sufficient 554

to train the model, and using more data increases 555

computational costs without significant improve- 556

ments. This may be due to not using additional 557

human-annotated data, leading to model overfit- 558

ting. Therefore, IEFeedback ultimately consists of 559

2, 996 online and 6, 989 offline instances. We train 560

ADELIESFT on IEFeedback using DPO objective, 561

resulting in ADELIEDPO. 562

6.3 Analysis on Few-shot ICL Capabilities 563

Closed IE typically includes a schema with mul- 564

tiple predefined categories and hence needs more 565

in-context demonstrations to effectively illustrate 566

these categories (Li et al., 2024), which necessitates 567

the few-shot in-context learning (ICL) capabilities 568

of the model. We observe ADELIESFT’s few-shot 569

ICL capabilities, as presented in Figure 6. We find 570

that ADELIESFT performs consistently better with 571

more demonstrations, even though ADELIESFT is 572

trained with a maximum of only 8 demonstrations. 573

In contrast, InstructUIE and GoLLIE suffer a de- 574

cline with more few-shot demonstrations. This 575

demonstrates the effectiveness of using in-context 576

demonstrations during the alignment process. 577

7 Conclusion 578

This work introduces ADELIE, a series of 579

LLMs aligned for information extraction tasks. 580

ADELIE includes ADELIESFT, which is super- 581

vised fine-tuned on IEInstruct with high-quality 582

83, 585 instances, and ADELIEDPO, which fur- 583

ther trains ADELIESFT on 9, 985 preference pairs 584

(IEFeedback) using DPO. Extensive experiments 585

demonstrate that ADELIE achieves impressive re- 586

sults on IE tasks, particularly in the few-shot setting. 587

We hope our work can provide meaningful insights 588

for future model alignment efforts. 589
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Limitations590

The limitations of this work are mainly threefold:591

(1) The preference pairs used for DPO training are592

automatically constructed without additional hu-593

man annotation, which may limit the performance594

of DPO-trained models. We leave using human-595

annotated preference pairs for DPO training as the596

future work. (2) We train only with a 7B scale597

model due to computational limits. Employing a598

larger-scale model can yield better performance,599

but it does not impact the conclusions of this pa-600

per. (3) This paper only involves English data. In601

the future, we will try to support more languages,602

and we encourage researchers to explore aligning603

models for multilingual information extraction.604

Ethical Considerations605

We discuss potential ethical concerns of this work:606

(1) Intellectual property. Our work utilizes multi-607

ple widely-used IE datasets, and we strictly adhere608

to the licenses of these datasets. We will share609

IEInstruct and IEFeedback the CC BY-SA 4.0610

license2. IEInstruct and IEFeedback include611

some data only accessible to Linguistic Data Con-612

sortium3 (LDC) members, e.g., ACE 2005 (Christo-613

pher et al., 2005). For these parts, we will release614

only the data processing scripts. (2) Intended615

use. This paper introduces ADELIE, aiming to616

align LLMs and enhance their performance on IE617

tasks. (3) Potential risk control. IEInstruct and618

IEFeedback are collected and constructed based619

on widely-used public data and data obtained from620

GPT-3.5 and GPT-4. We believe that these data621

have been well anonymized and sanitized by their622

original publishers and OpenAI. We also randomly623

sampled 100 instances and found no sensitive data.624

(4) AI assistance. We adopt GPT-4 for paraphras-625

ing some sentences when writing this paper.626
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Appendices1051

A Data Collection1052

This section introduces details on data construc-1053

tion of IEInstruct, including details of Input Con-1054

struction (appendix A.1) and Answer Construction1055

(appendix A.2). In the data construction phase,1056

we utilized gpt-3.5-turbo-1106 for GPT-3.5 and1057

gpt-4-0125-preview for GPT-4. The tempera-1058

ture parameter was set at 0.7, with all other param-1059

eters at their default settings.1060

A.1 Input Construction1061

For constructing the Task Description and Output1062

Format Description, we initially manually wrote 101063

task descriptions and 5 output format descriptions1064

for each task. We employed GPT-4 to generate task1065

descriptions with the same semantics but varied1066

expressions, as well as diverse output formats.1067

Table 5 is an example used in the open IE task.1068

Each generation includes five components: (1) In-1069

struction: a description of the task. (2) Fail output:1070

a response for when the task fails, which should1071

correspond to the final requirement of the instruc-1072

tion. (3) Input template: a description of the output1073

format in natural language, which must include1074

multiple forms, such as triplets or natural language.1075

(4) Output template: the output format correspond-1076

ing to the input template. Table 7 details the num-1077

ber of augmented descriptions generated for each1078

task.1079

A.2 Answer Construction1080

We employed GPT-4 to generate Chain-of-Thought1081

explanations. Figure 3 illustrates examples of the1082

explanations produced. We generate questions1083

based on the Prompt template in Table 6. More-1084

over, to enhance diversity, we imposed a length1085

constraint on the generated explanations, setting1086

limits randomly between 70 and 200 words.1087

B Training Details1088

This section introduces the training data details1089

(appendix B.1), and training hyper-parameters (ap-1090

pendix B.2). We performed each experiment once.1091

B.1 Datasets details1092

IEInstruct The process of constructing1093

IEInstruct involves the following steps: we1094

sampled 5, 000 instances from these raw datasets.1095

Then, we followed the process outlined in § 31096

and filtered out instances longer than 2, 048 1097

tokens to prevent them from affecting the training 1098

effectiveness. 1099

Finally, we compiled the IEInstruct dataset, 1100

which consists of a total of 83, 585 high-quality 1101

IE data instances. Table 7 shows the number of 1102

instances for each training dataset. 1103

IEFeedback To generate IEFeedback, we sam- 1104

pled 50, 000 entries from raw datasets for pro- 1105

cessing in a manner similar to IEInstruct. The 1106

sole distinction lies in the consistency of the out- 1107

put format with that required by the evaluation 1108

datasets, as shown in appendix C.1, aimed at facili- 1109

tating more accurate BLEU scoring. For calculat- 1110

ing BLEU scores, we used sentence_bleu func- 1111

tion from nltk.translate.bleu_score, with 1112

SmoothingFunction set to method3. Table 8 dis- 1113

plays the information for the IEFeedback dataset, 1114

which consists of a total of 9, 985 instances. 1115

B.2 Training Hyperparameters 1116

SFT training To train the models, we employ 1117

supervised fine-tuning, which is the most effective 1118

method for aligning the models. The models were 1119

trained for 2 epochs with an effective batch-size of 1120

128, a learning-rate of 2e−5 with cosine scheduler 1121

and a warm-up phase of 0.03. To better facilitate 1122

learning in few-shot settings and document-level 1123

information extraction, the context length is set to 1124

2048 tokens. we conduct SFT on Nvidia A100 1125

GPUs, totaling approximately 120 GPU hours. 1126

DPO training Similar to SFT, we train the DPO 1127

model for 3 epochs. Model is trained with a global 1128

batch size of 32. And we employ a linear learning 1129

rate scheduler with a peak learning rate of 5e− 7 1130

and a 0.1 warm-up phase. The final ADELIEDPO 1131

model is initialized from the SFT model, which 1132

was trained for 2 epochs and further optimized for 1133

3 DPO epochs. we conduct DPO on Nvidia A100 1134

GPUs, totaling approximately 8 GPU hours. 1135

C Experimental Details 1136

This section introduces the details of the ex- 1137

periment, including the details of the evalua- 1138

tion(appendix C.1), the inference details of the 1139

comparison baseline (appendix C.2), and the detail 1140

results about analytical experiments (appendix C.3, 1141

appendix C.4). 1142
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Prompt
You need to follow the template list to come up with a set of diverse templates.
The task indicated by this template is the “Open Information Extraction” task.
We need to write the instruction, input format and corresponding output format template for it.
Instruction is an introduction to OpenIE tasks.
The instruction template content should include the following strings to facilitate subsequent replace-
ment of the content: {text}.
The answer template content should include the following strings to facilitate subsequent replacement
of the content: {subject}, {predicate}, {object}, {time}, {location}.
Here are the requirements:
1. Try not to repeat the verb for each template to maximize diversity.
2. The language used for the template also should be diverse. For example, use interrogative sentences,
imperative sentences, etc.
3. Input and output templates ([Answer]: ..) should also be as diverse as possible.
4. Do not repeat the format of the answer template, nor repeat the examples given.
5. Input and output must correspond to each other.
6. The templates should be in English.

Template 1:
(1) Instruction: Open information extraction requires the extraction of all relations in the sentence, i.e.,
predicates, the subjects and objects corresponding to these relations, and the possible time and place
thesis elements. Please extract all the relational tuples in the following sentence: {text}. If there are no
relations in the text, please answer "NA".
(2) Fail output: NA.
(3) Input template: Please give the answer in the tuple form "[Answer]: ({predicate}; {subject};
{object}; {time}; {location})".
(4) Answer template: ({predicate}; {subject}; {object}; {time}; {location}),
...
Please follow the format given in the example to generate 1 templates.

Response
Template 6:
(1) Instruction: In the task of Open Information Extraction, your goal is to dissect the given text to
unearth the underlying relationships. This involves pinpointing the subjects, predicates, and objects, as
well as noting any relevant temporal or spatial details. Should the text lack relational tuples, kindly
respond with ’No relationships identified.’. Text: {text}.
(2) Fail output: No relationships identified.
(3) Input template: What connections can you draw between the subject and object, including any
pertinent temporal or spatial details?
(4) Answer template: Between "{subject}" and "{object}", the connection "{predicate}" is established,
occurring at "{time}" and within "{location}".

Table 5: An example prompt for Open IE to generate task description and output format description.
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Prompt
Please generate a step-by-step explanation for [Answer] based on [Question], and give reasons for each
step.
The generated explanation should make use of the content in the [Question] as much as possible, and
must be consistent with the [Answer].
It will eventually be provided at the front of the answer.
No more than {words_number} words.

[Question]: {input}
[Answer]: {output}
[Step-by-Step Explanation]:

Table 6: A prompt template for generating explanations of answers, where placeholders {words_number}, {input},
and {output} are replaced during usage.

Tasks Datasets Domain #Instances #total #task desc. #output format desc.

CoNLL-2003 (Tjong Kim Sang, 2002) General 5000
ACE2005NER (Christopher et al., 2005) General 5000
Ontonotes 5 (Pradhan et al., 2013) General 5000
BC5CDR (Li et al., 2016) Biomedical 1666
GENIA (Kim et al., 2003) Biomedical 1667

NER

MIT-Restaurant (Liu et al., 2013) Queries 1667

20000 31 15

TACRED (Zhang et al., 2017) General 5000RC FewRel (Han et al., 2018) General 5000 10000 31 15

SciERC (Luan et al., 2018) Scientific 3332
NYT11 (Takanobu et al., 2019) News 3334RE
ADE (Gurulingappa et al., 2012) Biomedical 3334

10000 31 15

ACE2005ED (Christopher et al., 2005) General 4067ED MAVEN (Wang et al., 2020) General 5000 9067 35 15

PHEE (Sun et al., 2022) Biomedical 2500EE CASIE (Satyapanich et al., 2020) Cybersecurity 2500 5000 35 15

ACE2005EAE (Christopher et al., 2005) General 4420
RAMS (Li et al., 2021) General 5000EAE
Maven-arg (Wang et al., 2023c) General 5000

14420 27 15

ERE MAVEN-ERE (Wang et al., 2022c) General 4278 4278 30 15

OpenIE OpenIE6 (Kolluru et al., 2020) General 5000 5000 17 15

ODIE INSTRUCTIE (Jiao et al., 2023) General 4904 4904 - -

Table 7: Training Datasets for the IEInstruct dataset.

16



Tasks Datasets #Instances ∆

NER
CoNLL-2003 883 0.74
ACE2005 854 0.79
Ontonotes 5 855 0.82

RC TACRED 812 0.83
FewRel 733 0.84

ED ACE2005 753 0.83
MAVEN 770 0.78

EAE
ACE2005 810 0.79
RAMS 767 0.78
Maven-arg 851 0.71

ERE MAVEN-ERE 541 0.92

ODIE INSTRUCTIE 617 0.87

OpenIE OpenIE4 739 0.81

Table 8: Detailed information for the IEFeedback
dataset. ∆ represents the average difference in scores
between the preferred and dispreferred answers in each
dataset, with the score of the ground truth set to 1.

C.1 Evaluation Details1143

During the inference stage, we set the temperature1144

to 0.01 to ensure reproducible results.1145

Evaluation Input Construction The input com-1146

position of the evaluation test dataset is consistent1147

with the training set, as shown in Figure 3. The only1148

difference is that the output format description for1149

each task is singular to facilitate automated evalua-1150

tion. Table 9 details the output format descriptions1151

used for each task.1152

Evaluation Metrics In the closed IE tasks, we1153

utilized exact matching to calculate the F1 score.1154

For the open IE tasks on two benchmarks, we em-1155

ployed the same F1 calculation method as used1156

by Qi et al. (2023). In on-demand IE tasks, follow-1157

ing Jiao et al. (2023), we adopted a soft matching1158

strategy for assessing table headers and used the1159

ROUGE-L F1 score to evaluate table content.1160

C.2 Inference Details1161

We present the inference details of each1162

baseline comparison. (1) For general open-1163

source LLMs, including LLAMA 2 7B1164

(meta-llama/Llama-2-7b4) and TULU 21165

7B (allenai/tulu-2-7b5). The test set and the1166

prompts used for testing are completely consistent1167

with ADELIESFT. (2) For models optimized for IE1168

tasks, including GoLLIE 7B (HiTZ/GoLLIE-7B61169

4https://huggingface.co/meta-llama/Llama-2-7b
5https://huggingface.co/allenai/tulu-2-7b
6https://huggingface.co/HiTZ/GoLLIE-7B

and InstructUIE (ZWK/InstructUIE7. We ob- 1170

served that these models are sensitive to prompts, 1171

and directly using the testing prompts from 1172

ADELIESFT leads to a sharp decline in model 1173

performance. Therefore, while keeping the test 1174

data unchanged, we adjusted the prompts to match 1175

the official formats of these models. For GoLLIE, 1176

as it did not provide formats for ERE and RC 1177

tasks, We modified the format of the RE task for 1178

adaptation purposes. 1179

C.3 Analysis on General Capabilities 1180

For the MMLU task, we conducted testing using 5- 1181

shot. For the BBH task, we conducted testing using 1182

3-shot with COT. For the remaining commonsense 1183

reasoning tasks, we employed a uniform 0-shot 1184

approach. Table 10 presents test results for detail. 1185

C.4 Analysis on DPO Training 1186

Table 11 presents the results in the DPO train- 1187

ing analysis experiment. We observed a trend in 1188

which the average performance initially increased 1189

and then decreased with the increase in the offline 1190

rate. The highest performance was achieved at 0.7, 1191

reaching 47.73% (although the result displayed for 1192

1.0 is also 47.7%, it is actually 47.68%). 1193

7https://huggingface.co/ZWK/InstructUIE
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[NER]
Please give the answer in the form "[Answer]: {entity}: {type}; ".
[RC]
Please give the answer in the tuple form "[Answer]: ({subject}; {relation}; {object}); ".
[ED]
Please give the answer in the form "[Answer]: {event}: {class}; ".
[EAE]
Please give the answer in the form "[Answer]: {word}: {role}; ".
[ERE]
Please give the answer in the tuple form "[Answer]: ({first event}; {relation}; {second event}); ".
[Open IE]
Please give the answer in the tuple form "[Answer]: ({predicate}; {subject}; {object}; {time};
{location})". If one or more of the last three elements does not exist, it can be omitted.

Table 9: The output format description for the hold-out tasks.

Model MMLU BBH HellaSwag ARC easy ARC challenge WinoGrande OpenbookQA SIQA PIQA AVG

ADELIESFT 47.1 38.3 57.3 78.6 46.9 69.3 32.8 32.9 78.5 53.5
ADELIEDPO 47.3 38.8 57.5 78.9 47.3 69.2 33.0 33.1 78.8 53.8

LLAMA 2 45.7 35.7 57.1 76.3 43.3 69.1 31.6 32.9 77.9 52.2
+General 49.3 41.7 57.9 78.7 47.4 69.4 33.0 32.8 78.8 54.3

FLAN-T511B 32.1 40.8 46.4 62.4 34.7 54.7 19.2 31.8 71.3 45.8
InstructUIE 30.4 13.1 39.6 58.0 31.0 50.9 17.8 33.4 66.7 42.5

IE Proportion=0.1 46.3 41.1 57.5 76.8 45.4 70.2 32.6 33.0 78.1 53.4
IE Proportion=0.3 31.7 38.3 55.1 75.7 43.9 69.9 31.2 32.9 78.1 50.7
IE Proportion=0.4 47.3 39.0 57.7 79.4 47.8 69.1 32.8 33.4 78.3 53.9
IE Proportion=0.5 47.7 39.0 57.8 77.6 44.4 70.6 31.0 33.5 78.2 53.3
IE Proportion=1.0 38.9 23.2 56.5 74.1 40.0 69.5 31.6 32.9 77.5 49.4

Table 10: The performance of the models on general tasks in the analysis study for general capabilities.

Models FewNERDNER SemEvalRC RichEREED RichEREEAE MATRESERE CaRB ROBUST Table Header Table Content AVG

ADELIESFT 39.0 33.8 38.1 54.2 48.0 55.3 38.5 73.4 47.3 47.5

#T
ra

in
in

g 10k 37.9 34.2 39.7 53.5 48.1 56.0 39.2 73.7 47.3 47.7
20k 34.9 36.2 33.0 46.4 47.4 54.3 37.3 73.3 47.2 45.6
30k 36.9 34.9 38.3 53.4 47.3 55.4 38.4 73.7 47.4 47.3
40k 36.6 34.3 38.8 52.2 46.7 55.8 39.0 72.5 46.6 46.9

O
ffl

in
e

D
at

a
R

at
e 0.0 38.7 34.1 37.6 54.1 46.9 55.1 38.0 73.8 47.3 47.3

0.3 38.4 33.2 39.8 53.8 47.3 55.2 38.2 73.7 47.5 47.5
0.5 38.6 34.2 40.7 53.8 47.5 55.2 38.2 73.4 47.1 47.6
0.6 38.2 33.9 38.6 53.7 47.3 55.4 38.5 73.8 47.6 47.4
0.7 37.9 34.2 39.7 53.5 48.1 56.0 39.2 73.7 47.3 47.7
0.8 37.9 34.4 39.2 53.8 47.8 55.6 38.8 73.6 46.9 47.6
1.0 37.8 35.1 40.0 53.7 47.7 55.5 38.8 73.7 46.9 47.7

Table 11: The performance of models in the DPO training analysis experiment across various IE tasks. The phrase
"Training Offline" denotes maintaining data proportions at 0.7 across different DPO training sets. "Offline Data
Rate" refers to the proportion of offline data when the training set size is 10k.
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