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Abstract—Variation of scales or aspect ratios has been one of the main challenges for tracking. To overcome this challenge, most
existing methods adopt either multi-scale search or anchor-based schemes, which use a predefined search space in a handcrafted way
and therefore limit their performance in complicated scenes. To address this problem, recent anchor-free based trackers have been
proposed without using prior scale or anchor information. However, an inconsistency problem between classification and regression
degrades the tracking performance. To address the above issues, we propose a simple yet effective tracker (named Siamese Box
Adaptive Network, SiamBAN) to learn a target-aware scale handling schema in a data-driven manner. Our basic idea is to predict the
target boxes in a per-pixel fashion through a fully convolutional network, which is anchor-free. Specifically, SiamBAN divides the
tracking problem into classification and regression tasks, which directly predict objectiveness and regress bounding boxes, respectively.
A no-prior box design is proposed to avoid tuning hyper-parameters related to candidate boxes, which makes SiamBAN more flexible.
SiamBAN further uses a target-aware branch to address the inconsistency problem. Experiments on benchmarks including VOT2018,
VOT2019, OTB100, UAV123, LaSOT and TrackingNet show that SiamBAN achieves promising performance and runs at 35 FPS.

Index Terms—Visual tracking, fully convolutional network, anchor-free, no-prior box.

1 INTRODUCTION

IVEN the state of a target in the initial frame of a video,
G visual tracking, being one of the most challenging task
in computer vision, aims to predict the states of the target in
the subsequent frames. In the past decade, visual tracking
has been attracting increasing attention due to its many po-
tential applications, such as intelligent surveillance, human-
machine interaction, robotics and autonomous driving.

In general, the state of the target is parameterized by a
bounding box surrounding the target, i.e., coordinates of the
top-left corner and the width and height. To obtain the accu-
rate target states, a considerable amount of top-performing
trackers with different characteristics have been proposed to
address various challenges, such as illumination variations,
background clutter, occlusions, fast motion, scale and ap-
pearance changes. Among these challenges, it is well-known
that variation of scales or aspect ratios greatly challenges
a tracker. However, most existing trackers adopt either
comparatively simple multi-scale search or heuristic anchor-
based schemes that may result in an inefficient search and
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Fig. 1. Different scale or aspect ratio handing methods: multi-scale
search (such as SiamFC, ECO), anchor-based (such as SiamRPN,
SiamRPN++), and anchor-free (such as ours) trackers.

degrade the tracking performance. Representative multi-
scale search-based trackers (as shown in Figure 1 (a)) [1],
[2], [3], [4], [5] are very time-consuming due to heavy image
pyramid operations. In addition, they fail to obtain accurate
scale estimation since a fixed aspect ratio is predicted. Re-
cently, SiamRPN [6] introduces a region proposal network
(RPN) into SiamFC [1]. By regressing the target region from
the pre-defined anchor boxes (as shown in Figure 1 (b)),
SiamRPN avoids the time-consuming multi-scale search and
the predicted bounding box of the target is more accurate.
Follow-up works such as DaSiamRPN [7], SiamRPN++ [8],
SiamDW [9], SPM [10], C-RPN [11] improve SiamRPN
through distractor-aware training, deeper network, multi-
stage prediction, etc. However, to accurately estimate the
bounding box of the target, these trackers rely on heuristic
knowledge to carefully design hyper-parameters such as the
numbers, sizes and aspect ratios of anchor boxes.

On the contrary, neuroscientists have shown that the bio-
visual primary visual cortex can quickly and effectively ex-
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Fig. 2. The tracking results predicted by the fusion scores (combined classification scores and target-aware scores) and classification scores.
The red and blue bounding boxes correspond to the highest fusion and classification scores, respectively. Fus and Cls represent the fusion and

classification scores, respectively.

tract the contours or boundaries of the observed objects from
complex environments [12]. In other words, humans can
recognize the locations and boundaries of objects without
any pre-defined anchor boxes. So can we design an accurate
and robust visual tracking framework without relying on
any candidate boxes? Inspired by the anchor-free detectors
[13], [14], [15], [16], [17], the answer is affirmative. To the
best of our knowledge, we are among the pioneers [18],
[19], [20] to utilize an anchor-free methodology to explore
visual tracking without candidate boxes, which leads to
competitive solutions [21], [22] to address the variations of
scales or aspect ratios in tracking literature. The basic idea
of the pioneering trackers [18], [19], [20] is to disassemble
visual tracking into classification and regression sub-tasks.
One of the limitations of these trackers lies in predicting the
spatial scores to assist the classification without considering
the quality of the predicted bounding boxes. In contrast,
we observe that considering the quality of the predicted
bounding boxes is important to associate classification and
regression. Consequently, we propose a new anchor-free
based tracker that is conceptually different and based on
a new target-aware strategy. Specifically, by utilizing the
expressive power of the fully convolutional network (FCN),
we present a simple yet effective visual tracking framework
named Siamese box adaptive network (SiamBAN) to tackle
the challenge of accurately estimating the bounding boxes
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of the tracked target. The framework consists of a Siamese
network backbone and multiple box adaptive heads, which
can be optimized end-to-end during training. SiamBAN
classifies a target and regresses its bounding box directly
in a per-pixel prediction fashion (as shown in Figure 1),
thereby transforming the tracking task into a classification-
regression problem. SiamBAN directly predicts the target-
background score and a 4D vector of each spatial position
on the correlation feature maps. The 4D vector describes
the relative offset from the centre point of the search region
corresponding to the spatial position to the four sides of the
bounding box.

In addition, we have observed that sometimes the clas-
sification scores are not proportional to the quality of the
bounding boxes, i.e., the bounding box with the highest
classification score may not be the optimal target state. As
shown in Figure 2, if the optimal target states are chosen
based only on classification scores, the green bounding
boxes would be the winners. But apparently, the red bound-
ing boxes are better options. Therefore, to have a better
correspondence between the predicted scores and bounding
boxes, we design a target-aware branch to estimate the
quality of the predicted bounding boxes. The final tracking
results are determined by a fusion score that combines both
the classification and target-aware scores. In the cases of Fig-
ure 2, the red bounding boxes corresponding to the highest
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fusion scores show that the classification and regression are
more consistent. During inference, we search for the target
in a window centered at the previous position. Through the
bounding box corresponding to the highest fusion score, we
can obtain the displacement and size change of the target
between frames.

The main contributions of this work are three-fold.

o We design a simple yet powerful Siamese box adap-
tive network for addressing the variations of scales
or aspect ratios in visual tracking. The no-prior box
design in SiamBAN avoids hyper-parameters and
complicated computation associated with the candi-
date boxes, making SiamBAN more flexible and fast.

o We propose a target-aware branch to effectively al-
leviate the inconsistency problem between classifica-
tion and regression, and thus make SiamBAN more
robust.

o SiamBAN not only achieves the state-of-the-art re-
sults, but also runs at 35 FPS on tracking benchmarks
including VOT2018 [23], VOT2019 [24], OTB100 [25],
UAV123 [26], LaSOT [27] and TrackingNet [28].

A preliminary version of this work has been presented in
a conference [18]. Compared to the preliminary version, we
make several extensions in this work. First, we add a target-
aware branch to assist classification. It learns to evaluate the
quality of the predicted bounding boxes by considering the
IoU of the predicted ones and the ground truth. Second, we
conduct experiments to validate whether the target-aware
branch can effectively alleviate the inconsistency problem
between classification and regression. The AUC on OTB100
[25], UAV123 [26], LaSOT [27] consistently increases from
0.696, 0.631, 0.514 to 0.702, 0.644, and 0.531, respectively. The
same observation was made for VOT2018 [23], VOT2019
[24] and TrackingNet [28]. Third, we perform additional
experiments and more analysis. Specifically, we show how
much a backbone network, the post-processing operations,
several weighting parameters and the classification branch
affects the performance of our tracker. In addition, we
systematically compare the new version of SiamBAN with
the state-of-the-art trackers with more detailed results and
comprehensive analysis, and add one more benchmark, i.e.
TrackingNet [28].

2 RELATED WORKS

Visual tracking is one of the fundamental research topics
in computer vision in recent decades. A comprehensive
survey of the related trackers is beyond the scope of this
paper, so we only briefly review two aspects that are most
relevant to our work: Siamese network based visual trackers
and anchor-free object detectors. Comprehensive surveys on
visual tracking methods can be found in [29], [30].

2.1 Siamese Network Based Visual Trackers

Recently, Siamese network based trackers attract great atten-
tion from the visual tracking community due to their end-to-
end training capabilities and high efficiency [1], [2], [3], [6],
(7], 18], [9], [10], [11], [19], [20], [31], [32], [33], [34], [35], [36],
[37], [38]. Typically, these trackers can be roughly divided
into three categories, i.e., multi-scale search based trackers
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[1], [2], [3], [32], [34], [35], [36], anchor-based trackers [6],
[71, [8], [9], [10], [11], [37], and anchor-free trackers [19], [20],
[38].

Multi-scale search based trackers: SINT [31] treats the
visual tracking problem as an image verification problem,
and learns the similarity matching function through the
Siamese network. SINT first crops the image patches in
the adjacent area of the previous frame, and then finds
the image patch closest to the target in the feature space
for tracking. Although SINT uses the optical flow method
and adaptive sampling strategy to reduce the number of
candidate bounding boxes, the large number of candidate
region sampling makes its tracking speed far from meet-
ing of a real-time requirement. SiamFC [1] uses a Siamese
network to extract features, and performs cross-correlation
operations between the template and searched area to gen-
erate the response map. In the response map, the location
with the maximum value is determined as the optimal
location of the tracked target. Due to the fully convolutional
structure and no model update, SiamFC can run at 86 FPS.
However, SiamFC searches for the targets through a sliding
window. Thus, it can only roughly predict the target scales
by comparing the response values obtained from inputs of
multiple scales.

Inspired by SiamFC, a series of trackers with or without
online updating have been proposed. To enhance the online
adaptive ability of SiamFC, some methods [32], [33] with
online updating template features are proposed. CFNet [32]
combines correlation filters and Siamese networks for end-
to-end training. During online tracking, CFNet uses the up-
dating skills of the correlation filter to fine-tune the network
parameters, thereby improving the representation ability
of the template features. Instead of directly replacing the
template features with the features of the previous frames,
DSiam [33] learns the transformation of the features from
the first frame and previous frames. Thus, DSiam uses the
features transformed from the first frame as the updated
template. The transformed parameters can be solved quickly
in the Fast Fourier Transform (FFT) domain to ensure the
speed of DSiam.

On the other hand, to maintain the efficiency, some track-
ers [2], [3], [34], [35], [36] do not update their models during
tracking. RASNet [2] believes that the online update of the
network tends to overfit the targets and is computationally
expensive. It uses spatial and channel attention mechanisms
to enhance the representation power of the model. Based on
the structure of SiamFC, SA-Siam [3] uses complementary
semantic and appearance features to obtain two response
maps. The final results are obtained through the weighted
sum of the two response maps. The semantic features are
directly used for pre-training weights on ImageNet. Mean-
while, the appearance features are trained with random
initialization. In addition, SA-Siam also uses an attention
mechanism on the channel to fuse the features from dif-
ferent layers of the convolutional networks. StructSiam [34]
proposes a local structure learning method, which takes into
account both the local pattern of a target and its structural
relationship to effectively deal with the problem of non-
rigid appearance change and partial occlusion of the target.
SiamFC-tri [35] uses a triple loss to replace the logistic loss
in SiamFC. Therefore, it can effectively learn the relationship
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between samples and alleviate the imbalance of positive and
negative samples during the training process. By combining
pairwise positive and negative samples, the network is
guided to learn more discriminative features. MemTrack
[36] reads and writes historical target templates through
a memory network controlled by LSTM (Long Short-Term
Memory). The residual template obtained from the retrieved
memory is firstly adapted to the appearance changes. Then,
it is merged with the initial template from the first frame to
get the final template of the Siamese network. By just per-
forming forward operations during the inference process,
MemTrack effectively avoids updating its model through
time-consuming backpropagation. However, these trackers
[1], [2], [3], [32], [33], [34], [35], [36] need a multi-scale search
to cope with scale variation and cannot effectively handle
aspect ratio changes caused by target appearance variations.
Anchor-based trackers: Recently, some authors rely on
the anchor techniques to estimate a more accurate tar-
get bounding box. SiamRPN [6] introduces RPN [39] into
SiamFC and uses the features of the two branches of a
Siamese network to perform cross-correlation operations as
the inputs of RPN. RPN is composed of a classification
branch and a regression branch. The classification branch
is used to classify whether the preset anchor boxes fit
the tracking target. Meanwhile, the regression branch is
used to adjust the position and size of the anchor boxes.
On the basis of SiamRPN, DaSiamRPN [7] trains a model
with a stronger discriminative ability by enriching training
data and constructing negative samples with rich semantic
information. To improve the performance of SiamRPN, SPM
[10] designs a series-parallel matching structure, which uses
a coarse-to-fine paradigm to localize a target. To obtain more
accurate target localization, C-RPN [11] proposes a cascaded
RPN multi-stage tracking framework, in which difficult
negative samples are used to enhance the discriminative
ability of the model. SiamRPN++ [8], SiamMask [37] and
SiamDW [9] remove the influence factors such as padding
in different ways. Compared to the trackers [6], [7] using
AlexNet [40], the performance of these Siamese network
based trackers is greatly improved by utilizing modern deep
neural networks such as ResNet [41], ResNeXt [42] and
MobileNet [43]. Although anchor-based trackers [6], [8], [9],
[10], [11] can handle changes in scale and aspect ratio, one
of their limitations is the need to carefully design and fix
the parameters of the anchor boxes. This is because that
designing parameters often requires heuristic adjustments
and involves many tricks to achieve good performance.
Anchor-free trackers: In contrast to anchor-based track-
ers, a few of attempts have been made to utilize proposal-
free and anchor-free methodology to improve the perfor-
mance of a tracker. To the best of our knowledge, we
are among the first (i.e,, SiamBAN [18], SiamFC++ [19],
SiamCAR [20]) to utilize the anchor-free methodology in
tracking literature. SiamBAN, SiamFC++ and SiamCAR dis-
assemble tracking into two sub-tasks, i.e., classification and
state estimation. SiamFC++ and SiamCAR add a quality
assessment branch similar to FCOS [17] to the classifica-
tion branch to assist classification, while our tracker adds
a target-aware branch to assist classification. The quality
assessment branches of SiamFC++ and SiamCAR estimate
the prior spatial scores, only considering the supervision
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information from ground-truth bounding boxes. Neglecting
the predicted bounding boxes makes SiamFC+ and Siam-
CAR unable to connect classification and regression. Ocean
[38] is another anchor-free based tracker that learns object-
aware features to assist classification and uses an online
learning method to update its model. However, its object-
aware features and the features used for classification are
sampled from different locations. Consequently, the differ-
ent sampling locations may introduces the inconsistency
and ambiguity between its object-aware and classification
features, and thus degrade its performance. In this paper, we
propose a new anchor-free based tracker that is conceptually
different and based on a new target-aware strategy. Our
tracker directly predicts the bounding boxes of a target in a
per-pixel manner, which is efficient and flexible. To alleviate
the inconsistency problem between classification and re-
gression, our target-aware branch explicitly and effectively
evaluates the quality of the predicted bounding boxes.

2.2 Anchor-free Object Detectors

Over the years, anchor-free methodology has attracted more
and more attentions from object detection community. How-
ever, anchor-free detection is not a new concept. DenseBox
[13] first introduces an FCN framework to jointly perform
face detection and landmark localization. UnitBox [14] offers
another option for performance improvement by carefully
designing optimization losses. YOLOv1 [15] proposes to di-
vide the input image into a grid and then predicts bounding
boxes and class probabilities on each grid cell.

Recently, many new anchor-free detectors emerge. These
detection methods can be roughly classified into keypoint
based object detection [44], [45], [46] and dense detection
[16], [17]. Specifically, CornerNet [44] proposes to detect an
object bounding box as a pair of keypoints. ExtremeNet [45]
presents to detect four extreme points and one center point
of objects using a standard keypoint estimation network.
RepPoints [46] introduces the representative points to rep-
resent a target. The representative points can capture fine-
grained localization information and identify local areas
significant for object classification. FSAF [16] proposes a
feature selective anchor-free module to address the limi-
tations imposed by heuristic feature selection for anchor-
based single-shot detectors with feature pyramids. FCOS
[17] proposes to directly predict the possibility of object
existence and the bounding box coordinates without anchor
reference.

Compared to object detection, there are two key chal-
lenges in the visual tracking task, i.e. unknown categories
and discrimination between different objects. The anchor-
free detectors usually assume the categories of the objects
to be detected are pre-defined. However, the categories
of the targets are unknown before tracking. Meanwhile,
anchor-free detectors typically focus on detecting the objects
from different categories, while in tracking, it is necessary
to determine whether the two objects are the same one.
Therefore, a template branch that can encode the appearance
information is need in our framework to identify the target
and background.
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Fig. 3. The framework of the proposed Siamese box adaptive network. The left sub-figure shows its main structure, where ¢(z)3, ¢(x)%, p(x)>,
0(2)3, p(2)%, and ¢(z)® denote the feature maps of the backbone network. P.;;_ 11, Preg—ai> and Pyq,_qy; denote the classification, regression
and target-aware map, respectively. The right sub-figure shows each SiamBAN head, where DW-Corr means depth-wise cross-correlation operation.

3 SiAMBAN FRAMEWORK

In this section, we describe the proposed SiamBAN frame-
work. As shown in Figure 3, SiamBAN consists of a Siamese
network backbone and multiple box adaptive heads. The
Siamese network backbone is responsible for computing the
convolutional feature maps of a template patch and a search
patch, which uses an off-the-shelf convolutional network.
The box adaptive head includes a classification module and
a regression module. Specifically, the classification module
performs target-background classification on each point of
the correlation layers. Meanwhile the regression module
performs the bounding box and target-aware score predic-
tions on the corresponding positions, respectively.

3.1 Siamese Network Backbone

Modern deep neural networks [41], [42], [43] have been
proven to be effective in Siamese network based trackers
[8], [9], [37]. In our tracker, we adopt ResNet-50 [41] as
the backbone network. Although ResNet-50 with continu-
ous convolution striding can learn abstract feature repre-
sentations, it reduces feature resolution. However, Siamese
network based trackers need detailed spatial information
to perform dense predictions. To deal with this problem,
we remove the downsampling operations from the last two
convolution blocks. To improve the receptive field, we use
atrous convolution [47], which is proven to be effective for
visual tracking [6], [37]. In addition, inspired by multi-grid
methods [48], we adopt different atrous rates in our model.
Specifically, we set the stride to 1 in the conv4 and convb
blocks, the atrous rate to 2 in the conv4 block, and the atrous
rate to 4 in the conv5 block, respectively.

The Siamese network backbone consists of two identical
branches. One is called the template branch, which receives
the template patch as input (denoted as z). The other one
is called the search branch, which receives the search patch
as input (denoted as x). The two branches share parameters
in a convolutional neural network to ensure that the same
transformation is applied to both patches. To reduce the
computational burden, we add a 1 x 1 convolution to reduce
the number of output feature channels to 256. Meanwhile,
we only use the center 7 X 7 region features of the template
branch [8], [32], which can still capture the entire target

TABLE 1
The backbone architecture of our SiamBAN. Details of each building
block are shown in square brackets.

Search Branch =~ Template Branch

Block Backbone output size output size
convl 7 x 7,64, stride 2 125 x 125 61 x 61
3 x 3 max pool, stride 2
1x1,64
conv2_x %3 63 x 63 31 x 31
3x 3,64
11 x 1,256
1x 1,128
conv3_x 33,128 X 4 31 x 31 15 x 15
L1 x1,512]
1x 1,256
conv4_x 3 x 3,256 X 6 31 x 31 15 x 15
L1 % 1,1024]
1x1,512
convb5_x 3% 3,512 X 3 31 x 31 15 x 15
|1 x1,2048|
adjust 1x1,256 31 x 31 7%x7
xcorr depth-wise 25 x 25

region. For convenience, the output features of the Siamese
network are represented as ¢(z) and ¢(z), respectively.
Table 1 shows the details of our backbone architecture.

3.2 Box Adaptive Head

As shown in right panel of Figure 3, the box adaptive
head consists of a classification module and a regression
module. Both modules receive features from the template
branch (¢(z)) and the search branch ((z)). According to
our designing schema, each point of the correlation layers
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of the classification module needs to output two channels
for target-background classification. Meanwhile, each point
of the correlation layers of the regression module needs
to output four channels for predicting the target bounding
boxes.

Specifically, ¢(z) and ¢(z) are respectively followed
by a 1 x 1 convolution layer to obtain [¢(2)]as, [©(2)]req
and [p(x)]ets, [p(2)]reg- Each module combines the features
using a depth-wise cross-correlation layer [8]:

Pcls—feat = [@(I)]cls * [W(z)]cl& (1)

Preg—feat = [‘p(x)]reg * [90(2)]7-@5;’
where * denotes the convolution operation with [p(z)]cs
or [p(2)]req as the convolution kernel, Peys— feqr denotes the
classification features, Prcq— fcqt indicates the regression fea-
tures. Pps— feqt is followed by a 1 x 1 convolution layer and
four 3 x 3 convolution layers to output target-background
classification map P.s. Preg—feqt is followed by a 1 x 1
convolution layer and four 3x 3 convolution layers to output
regression map F..4.

For each location on the output maps, we can map it to
the input search patch. For example, the location (7, j) on
the output map corresponding to the location on the search
patch is ([[“5=] + (i — [§]) x s, ["52] + (7 — [5]) x s))
denoted as (p;, pj), where w and h represent the width
and height of the output maps, respectively. w;,, and him,
represent the width and height of the input search patches,
respectively. s represents the total stride of the network. For
the regression, the anchor-based trackers [6], [7], [8] treat the
location (p;, p;) as the center of the anchor box and regress
its center point, width and height. That is, for the position
(i, j), the regression can adjust all of its offset values.
Consequently, the position (i, j) may not be inside the pre-
dicted bounding box, which may result in inconsistencies
between classification and regression. Therefore, we do not
adjust the location (p;, pj) and only calculate its offset to
the bounding box. Make sure that the position (p;, p;) is
inside the predicted bounding box. In addition, since our
regression targets are positive real values, we apply exp(z)
at the last level of the regression module to map any real
value to (0, +00).

3.3 Multi-level Prediction

After utilizing ResNet-50 with atrous convolution, we can
use multi-level features for prediction. Although the spatial
resolutions of the conv3, conv4d and convb blocks of our
backbone network are the same, they have atrous convo-
lutions with different expansion rates. Thus, the difference
between their receptive fields is large, and the captured in-
formation is naturally complementary. Features from earlier
layers can capture fine-grained information, which is useful
for precise localization. Meanwhile, features from latter
layers can encode abstract semantic information, which is
robust to target appearance changes [49], [50]. To take full
advantage of different characteristics of multi-level features,
we use multiple box adaptive heads for prediction. The
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classification maps and the regression maps obtained by
each head are adaptively fused:

5
I pl
Pclsfall = Za Pcls’
=3
y @)
I pl
Preg—all = Z ﬁ Prega

=3

where o! and ! are the weights corresponding to each map,
respectively. They are optimized together with the network.
By combining the classification maps and the regression
maps independently, they can effectively focus on their own
sub-tasks.

3.4 Target-aware Tracking

After using multi-layer prediction, SiamBAN can achieve
state-of-the-art performance. However, as shown in Figure
2, we find that in some cases, classification and regression
are inconsistent, i.e.,, a higher classification score cannot
choose a more accurate bounding box. We find that the
reason is that during training, classification and regression
are independent of each other. Therefore, the classification
labels are not related to the predicted bounding boxes. In
order to make the tracking scores consistently reflect the
quality of the bounding boxes, we design a simple yet
effective strategy to evaluate the quality of the predicted
bounding boxes. Specifically, we add a target-aware branch
parallel to the regression branch to estimate the IoU of the
predicted bounding boxes and the ground truth. Therefore,
Preg—teat is followed by a 1 x 1 convolution layer and four
3 x 3 convolution layers to output the regression map P
and target-aware map P;,,. Except for the last convolution
layer, other convolution layers are shared in our tracker.
Similar to Equation (2), the target-aware maps obtained by
each head are adaptively fused:

5
Ptar—all = Z ’ylPtlarv (3)
=3

where 7! is the weight corresponding to each map. It is
optimized together with the network.

3.5 Ground-truth and Loss

Classification Labels, Regression Targets and Target-aware
Labels. As shown in Figure 4, the target on each search
patch is marked with a ground-truth bounding box. The
width, height, top-left corner, center point and bottom-right
corner of the ground-truth bounding box are represented by
Gwr Ghs (gwu Gy )/ (gxc’ gyc) and (nga 9y2)/ respectively.
With (gz., gy.) as the center and %*, % as the axes length,
we can get the ellipse E;:

(Pi = 92.)* | (P — 9y.)"
COERNCE
With (g.., gy.) as the center and %, 2 as the axes length,
we can get the ellipse Es:

+ =1. @)

(0= 9.)° , (0~ 9.)°

=1. 5
CAERN O3 o
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CE Loss \ﬁ‘

Cls Labels
d;
de
7 dy

Pcls—all

IoU Loss Search Patch

<

Reg Targets

Preg—all

Fig. 4. lllustrations of classification labels and regression targets. Predic-
tion values and supervision signals are as shown in this figure, where E;
and E represent the two ellipses, respectively. We use a cross entropy
and an loU loss for classification and box regression, respectively.

Given a location (p;, p;), we determine its classification
label according to three conditions. Firstly, its classification
label is positive if the location (p;, p;) falls within the ellipse
Es5. Secondly, its classification label is negative if the location
(pi, p;) falls outside the ellipse E;. Thirdly, its classification
label is ignored if the location (p;, p;) falls between the
ellipses E and E. Please note that the target-aware labels
are not fixed. They are adaptively generated based on the
IoU (Intersection over Union) of the predicted bounding
boxes and the ground-truth bounding boxes. The locations
(pi, pj) with positive labels are used to regress the bounding
box, and the regression targets can be formulated as:

dy = Di — Gy s
dy =Dj — Gy1» ©)
dr = guy — Dis
dy = gy, — pj,

where d;, d;, d, and dj, are the distances from the location to
the four sides of the bounding box, as shown in Figure 4.

It should be noted that the target-aware labels are not
fixed. They are adaptively generated based on the IoU of the
predicted bounding boxes and the ground-truth bounding
boxes.

Classification Loss, Regression Loss and Target-aware
Loss. We define our multi-task loss function as follows:

L= >\1Lcls + >\2Lreg + )\3Ltar7 (7)

where L5 and L;,, represent the cross entropy loss for the
classification and target-aware branches, respectively. L4
represents the IoU Loss for the regression branch. We set
A1 = A2 = A3 = 1, and the comparative experiments of
different weights can be found in Section 4.3 on parameter
sensitive analysis. Similar to GloU [51], we define the IoU
loss as:

Lyeg =1~ 10U, 8)
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where IoU represents the area ratio of intersection to union
of the predicted bounding box and the ground-truth bound-
ing box. The location (p;, p;) with a positive label is within
the ellipse E and the regression value is greater than 0. As
aresult, 0 < JoU < 1, while 0 < L,.4 < 1. The IoU loss can
make d;, d;, d, and dj, jointly be regressed.

3.6 Training and Inference

Training. Our entire network can be trained end-to-end on
large-scale datasets. We train SiamBAN with image pairs
sampled on videos or still images. The training sets include
ImageNet VID [52], YouTube-BoundingBoxes [53], COCO
[54], ImageNet DET [52], GOT10k [55] and LaSOT [27]. The
size of the template patch is 127 x 127 , while the size of the
search patch is 255 x 255.

Compared to anchor-based trackers [6], [8], we use less

negative samples. Please note that the number of negative
samples is still much greater than that of positive samples in
our tracker. In the experiments, we collect 64 samples from
a pair of images. Among these samples, there are 16 positive
samples, while the rest are negative samples.
Inference. During inference, we crop the template patch
from the first frame and feed it to the feature extraction
network. The extracted template features are saved. Thus,
we do not have to calculate them in subsequent tracking
process. For subsequent frames, we crop the search patches
and extract features based on the target positions in the
previous frames. Then, we perform prediction in the search
regions to obtain the final classification map Fps—q, the
final regression map Prcg—qu and the final target-aware
map Piqr—aii, respectively. The final predicted scores are ob-
tained by the weighted summation of the final classification
scores and the final target-aware scores:

Pscore - (1 - W)Pcls—all + wptar—allv (9)

where P54 denotes the predicted values of the final
classification map and Pj,,—q the predicted values of the
final target-aware map. In our experiments, the value of w
is set as 0.6, and the ablation study on the different values
of w can be found in Section 4.3.

In addition, we can get the predicted bounding boxes by
the following equation:

Doy =Di —d; Y,
Py, =05 —di 7,
Py = Pi +d. Y,
Py, =i+,

(10)

where d;“?, d;*?, d7*9 and d;“? denote the prediction values
of the regression map. (pz,, py,) and (ps,, py,) are the
top-left corner and bottom-right corner of the predicted
bounding boxes, respectively.

After the predicted bounding boxes are generated, we
use the cosine window and scale change penalty to smooth
target movements and changes [6]. Then, the predicted
bounding box with the best score is selected and its size
is updated by linear interpolation with the state in the pre-
vious frame. Algorithm 1 summarizes the tracking process
of SiamBAN.
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Algorithm 1: Tracking with SiamBAN

Input: frame sequences { X{_, } and ground-truth
bounding box b; of X, trained model
SiamBAN;

Output: Tracking results {b/_, };

1 Extract target template z in X using by;
2 Extract features {cp(z)}?:3 for z from SiamBAN;

3 Obtain features { [@l(z)]cls}?:?) and features

5 5
{[¢'(2)]reg },_g of 2 from {¢'(2) },_y;
4 fort =2toT do
5 Extract the search region x in X, using b,
6 Extract features {gol(;v) };:3 for x from SiamBAN;
7 | Obtain features {[¢'(x)]es },_, and features
5 5

{[cpl(x)]mg}lz?) of z from {¢' (2)},_ss
8 Obtain classification features { Pqs— feat}lszg and
regression features { Preg— feat}?:3 using
Equation (1);
9 Obtain classification map {Pcls}l5=3 —

5
{Pclsffeat}lzg;

10 | Obtain regression map {PTeg}?=3 and
5 5
target-aware map {Piar };_g < { Preg— feat };_3;
11 Obtain final classification map P.;s—q; and final
regression map Pr.4_qy using Equation (2);
12 Obtain final target-aware map Piqy—q1 using

Equation (3);

13 Compute fusion score Ps..e using Equation (9);
14 Get predicted bounding boxes using Equation
(10);

15 | Select the best bounding box as tracking result b;;
16 end

4 EXPERIMENTS
4.1 Implementation Details

We initialize our backbone networks with the weights pre-
trained on ImageNet [52] and the parameters of the first
two layers are frozen. Our network is trained with stochastic
gradient descent (SGD) with a minibatch of 28 pairs. There
are 20 epochs in total, using a warmup learning rate of
0.001 to 0.005 in the first 5 epochs and a learning rate
exponentially decayed from 0.005 to 0.00005 in the last 15
epochs. In the first 10 epochs, we only train the box adaptive
heads. In the last 10 epochs, we fine-tune the backbone
network with one-tenth of the current learning rate. The
weight decay and momentum are set to 0.0001 and 0.9,
respectively. The initialized values of o!, 3' and ~' are set
to 1, 1 and 1, respectively. Our approach is implemented
in Python using PyTorch on a PC with Intel Xeon(R) 4108
1.8GHz CPU, 64G RAM, Nvidia GTX 1080Ti. The code is
available at https:/ /github.com/hqucv/siamban.

4.2 Comparison with State-of-the-art Trackers
4.2.1

We compare our SiamBAN with the state-of-the-art trackers
on six tracking benchmarks, i.e., VOT2018 [23], VOT2019
[24], OTB100 [25], UAV123 [26], LaSOT [27] and TrackingNet

Quantitative Evaluation
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Fig. 5. Expected averaged overlap performance on VOT2018 [23].
SiamRPNpp is SiamRPN++, the same below.

N l ® Ours [0.337)
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DiMP [0.321]

0% T 1 |7 DCFST [0.317]
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SiamCRF _RT [0.262]
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Fig. 6. Expected averaged overlap performance on VOT2019 [24].

[28]. Our tracker achieves the state-of-the-art results and
runs at 35 FPS.

VOT2018 [23]. We evaluate our tracker on the Visual Object
Tracking challenge 2018 (VOT2018), which consists of 60
video sequences with an average length of 356 frames.
During the evaluation process, the tracker is initialized
using the ground truth annotation in the first frame of a
video sequence and re-initialized once it loses the targets.
The overall performance of the tracker is evaluated using
the EAO (Expected Average Overlap), which combines ac-
curacy (average overlap during successful tracking periods)
and robustness (failure rate). Figure 5 and Table 2 report
the comparison results between our tracker and several
top-performing trackers including UPDT [5], SiamRPN [6],
LADCEF [56], ATOM [57], Siam R-CNN [58], SiamRPN++
[8], SiamFC++ [19], DiMP [59], and Ocean [38]. Among
these trackers, Siam R-CNN achieves the best accuracy, but
its robustness is worse than ours. With online learning,
DiMP obtains the best robustness. Our tracker, without any
online learning, gains robustness close to DiMP. Compared
with SiamRPN++, our tracker achieves similar accuracy.
Meanwhile, it improves the robustness and EAO by 33.8%
and 13.4% respectively. Our tracker has the highest EAO
and ranks second in terms of robustness. As expected, our
tracker not only accurately estimates the target location but
also maintains good robustness. This is because our tracker
can effectively handle the variations of scales or aspect
ratios.

VOT2019 [24]. We evaluate our tracker on Visual Ob-
ject Tracking challenge 2019 (VOT2019). The VOT2019 se-
quences are replaced by 20% compared to the VOT2018.
Figure 6 and Table 3 show the EAO, robustness and accuracy
of our trackers, SiamCRF_RT [24], SPM [10], SiamRPN++
[8], SiamMask [37], ARTCS [24], SiamDW_ST [9], DCFST
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TABLE 2

Detailed comparisons on VOT2018 [23]. The best two results are highlighted in red and blue fonts. DiMP is the ResNet-50 version (DiMP-50),
Ocean is the offline Ocean, the same below.

UPDT SiamRPN LADCF ATOM Siam R-CNN SiamRPN++ SiamFC++ DiMP Ocean

[5] [6] [56] [57] [58] 8] [19] I
EAO(T) 0.379 0.384 0.389 0.401 0.408 0.417 0.430 0.441 0.470 0473
Accuracy(1) 0.536 0.588 0.503 0.590 0.617 0.604 0.590 0.597 0.603 0.598
Robustness(l.) 0.184 0.276 0.159 0.203 0.220 0.234 0.173 0.152 0.164 0.155
TABLE 3
Detailed comparisons on VOT2019 [24]. DiMP is realtime version, as reported in [24].
SiamCRF_RT SPM SiamRPN++ SiamMask ARTCS SiamDW_ST DCFST DiMP Ocean Ours
[24] [10] (8] [37] [24] 9] [24] [59] [38]
EAO(T) 0.252 0.262 0.275 0.285 0.287 0.287 0.299 0.317 0.321 0.337
Accuracy (1) 0.549 0.577 0.599 0.594 0.602 0.600 0585 0582 0595  0.604
Robustness() 0.346 0.507 0.482 0.461 0.482 0.467 0.376 0.371 0.376 0.351
TABLE 4
Detailed comparisons on TrackingNet [28] in terms of AUC, precision (P) and normalized precision (Prnorm).
ECO CFNet SiamFC UPDT MDNet DaSiamRPN UpdateNet ATOM DiMP Ours
[4] [32] [1] [5] [60] [7] [61] [57] [59]
AUC(1) 0.554 0.578 0.571 0.611 0.606 0.638 0.677 0.703 0.740 0.716
P(1) 0.492 0.533 0.533 0.557 0.565 0.591 0.625 0.648 0.687 0.685
Prorm(1) 0.618 0.654 0.663 0.702 0.705 0.733 0.752 0.771 0.801 0.794
[24], DiMP [59] and Ocean [38], respectively. Compared with illumination change
Ocean, our tracker is better in terms of EAQO, robustness and (0:2030510) _
accuracy. Although SiamRPN++ achieves similar accuracy x 0274,0406)
to our tracker, our tracker decreases robustness by 27.2% + ¥
and increases EAO by 22.5%. Among these trackers, our .
tracker has the highest accuracy and EAO, which show o037 i o) p 0
that our tracker can accurately estimate the target bounding X i A\
boxes. These results verify that the proposed target-aware ¥ ®
branch can effectively alleviate the inconsistency problem Th) +
.. . . 9 overall
between classification and regression, and thus makes our . + 03 2 (0.262,0.337)
tracker more robust. o¥=g ¥
Comparison of attributes on VOT2019. All sequences of %
VOT2019 are per-frame annotated by the following visual s change X

attributes: camera motion, illumination change, occlusion,
size change, and motion change. Frames that do not cor-
respond to any of the five attributes are represented as
unassigned. Compared with VOT2018, VOT2019 is more
challenging. Thus, we further conduct attribute comparison
experiments on VOT2019. We compare the EAO of the
visual attributes of the top-performing trackers. As shown
in Figure 7, our tracker achieves relatively more balanced
results. Our tracker ranks first on attributes of camera mo-
tion. Our tracker ranks second on attributes of illumination
change, occlusion, size change. This shows that our tracker
is robust to camera motion while having the ability to cope
with illumination change, occlusion, size change. In terms
of motion change, except for DiMP, the performance of our
tracker and other compared trackers are not promising. The
reason is that the motion change typically leads to signifi-
cant appearance changes or blur on VOT2019. However, for
simplicity and computational efficiency reasons, we do not
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(0.142,0.268)

+ SiamCRF_RT O SPM ~3¢~ SiamRPNpp -~ SiamMask ARTCS

SiamDW_ST DCFST DiMP Ocean ﬁ Ours

Fig. 7. Comparison of EAO on VOT2019 [24] for the following visual
attributes: camera motion, illumination change, occlusion, size change
and motion change. Frames that do not correspond to any of the
five attributes are marked as unassigned. The values in parentheses
indicate the EAO range of each attribute and overall of the trackers.

use any online learning algorithms to update our tracker.
OTB100 [25]. OTB100 is a widely used public tracking
benchmark consisting of 100 sequences. Our SiamBAN
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Fig. 8. Success and precision plots on OTB100 [25].

Success plots of OPE on UAV123
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Fig. 9. Success and precision plots on UAV123 [26].

tracker is compared with numerous state-of-the-art trackers
including SiamCAR [20], SiamRPN++ [8], ECO [4], DiMP
[59], Ocean [38], SiamFC++ [19], C-COT [62], ATOM [57],
C-RPN [11]. Figure 8 illustrates the success and precision
plots of the compared trackers. Our tracker achieves better
results than that of SiamRPN++. The benefit of our tracker
comes from the non-prior box design in the proposed simple
yet effective Siamese box adaptive network. Compared with
other anchor-free trackers [19], [20], [38], our tracker per-
forms better. The proposed SiamBAN ranks first in terms of
AUC and precision, demonstrating the effectiveness of our
tracker. These results indicate that our target-aware branch
can provide more reliable bounding boxes predictions to
alleviate the inconsistency problem between classification
and regression in typical anchor-free style trackers.
UAV123 [26]. UAV123 is an aerial video benchmark, which
contains 123 sequences captured from a low-altitude aerial
perspective. The benchmarks can be used to assess whether
a tracker is suitable for deploying to a UAV in real-time
scenarios. We compare our tracker with other 9 state-of-
art real-time trackers, including DiMP [59], ATOM [57],
SiamRPN++ [8], SiamCAR [20], DaSiamRPN [7], SiamRPN
[6], ECO [4], ECO-HC [4], and SRDCEF [63]. Figure 9 shows
the success and precision plots. Due to having a better
correspondence between the predicted scores and bounding
boxes, our tracker outperforms a typical anchor-free tracker
(i.e., SiamCAR) by 3.37% and 4.1% in AUC and precision,
respectively. Overall, our tracker achieves competitive per-
formance.
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Success plots of OPE on LaSOT Precision plots of OPE on LaSOT
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Fig. 10. Success and precision plots on LaSOT [27].

LaSOT [27]. LaSOT is a high-quality, large-scale dataset
with a total of 1,400 sequences. The length of sequences in
LaSOT are longer than that of sequences in the previous
datasets. An average sequence length in LaSOT is more
than 2,500 frames. Each sequence has various challenges
from the wild where a target may disappear and reappear
in the view. This property will tests the ability of a tracker
to re-track the target. We evaluate our tracker on the testing
set consisting of 280 videos and compare it with trackers
including DiMP [59], Ocean [38], ATOM [57], SiamRPN++
[8], C-RPN [11], MDNet [60], VITAL [64], StructSiam [34],
DSiam [33]. The results including success plots and pre-
cision plots are illustrated in Figure 10. Compared with
SiamRPN++, the proposed tracker improves AUC and pre-
cision by 7.1% and 10.2%, respectively. Our tracker ranks
second in terms of AUC and precision, indicating that our
tracker can achieve superior performance in longer and
more challenging sequences. The robustness of our tracker
lies in the systematically fusion of three key components,
i.e., a classification module, a regression module, and a
target-aware branch.

TrackingNet [28]. TrackingNet is a large-scale benchmark
for visual tracking in the wild for training and testing,
including more than 30K videos with more than 14 million
dense bounding box annotations. We evaluate our tracker
on the testing set, which contains more than 500 videos
without publicly available ground-truth. Table 4 shows
the comparison results of our tracker with other trackers
(i.e., ECO [4], CENet [32], SiamFC [1], UPDT [5], MDNet
[60], GFS-DCF [65], DaSiamRPN [7], UpdateNet [61] and
ATOM [57]) in terms of AUC, precision and normalized
precision, respectively. These experimental results are ob-
tained through an online evaluation server. Among the
compared trackers, DIMP achieves the best tracking results.
Our tracker ranks second in terms of AUC, precision and
normalized precision. Notably, this dataset has various cat-
egories of wild scenes, and thus the experimental results
show that our tracker can achieve promising performance
in the tested wild scenes.

4.2.2 Qualitative Evaluation

Figure 11 shows the qualitative comparison results on six
challenging sequences (i.e., Basketball, CarScale, Diving,
Gym, Jump, Skatingl) from OTB100 [25], which contain

eptember 30,2022 at 00:49:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3195759

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Ocean

11

MOCHD.

Bajing 2008

Ours

Fig. 11. Qualitative comparison on six challenging sequences from OTB100 [25], i.e., Basketball, CarScale, Diving, Gym, Jump, Skatingl.

similar objects, scale variations, deformation, motion blur,
and illumination variations, etc. For clarity of visualization,
we only show the qualitative comparison results between
our tracker and other five top-performing trackers, i.e.,
Ocean [38], DiMP [59], ECO [4], SiamRPN++ [8], and Siam-
CAR [20]. Overall, our tracker can achieve better perfor-
mance in complex scenes. In the Basketball sequence, due
to the interference of similar athletes, except Ocean and our
tracker, all the other trackers lose the target in frame #700.
In the ClarScale, the scale of a car significantly change. As a
result, the ECO with a multi-scale searching schema cannot
accurately estimate the scale of the car. In the Diving and
Gym sequence, due to the different poses of the athletes,
some trackers (i.e., Ocean, ECO, and DiMP) cannot generate
accurate bounding boxes in frames such as frame #280
of sequence Gym. In the Jump sequence, due to motion
blur, neither SiamRPN++ nor ECO can accurately estimate
the bounding boxes of the target. Meanwhile, our tracker
can obtain accurate results. Due to similar dancers and
illumination variations in Skatingl sequence, some trackers
(i.e., DIMP and SiamRPN++) lost the targets. In frame #390,
only SiamCAR and our tracker can accurately estimate the
bounding boxes of the target.
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4.2.3 Limitations and Discussion

Despite our tracker has obtained competing performance
compared with the state-of-the-art trackers, we observe that
it does not perform well in case of fast motion and heavily
occlusion, which are still opening challenges for tracking.
Our failure cases from two typical sequences (i.e., Ball3
and Agility) are shown in Figure 12. For clearly illustration,
we also show the results of other three top-performing
trackers, i.e., Ocean [38], DiMP [59], SiamRPN++ [8]. For
the case of fast motion, our tracker as well as the other
three ones fails to localize the ball in the Ball3 sequence
due to its fast motion. Similar to most existing trackers [8],
[38], [59], our tracker chooses a fixed searching window
size for simplicity and computational efficiency reasons.
Thus, our tracker fails when the ball is outside our local
searching area. An interesting extension would be to use a
coarse-to-fine searching scheme or collect history frames to
predict target motion. Firstly, for the coarse-to-fine searching
scheme, we can online train a global detector to provide the
coarse localization of the potential candidates at the coarse
level. Then, at the fine level, we can use the SiamBAN to
verify a local region centered on the predicted locations
from the coarse stage. For the case of heavily occlusion, our
tracker fails to track the dog in the Agility sequence due
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Fig. 12. Failure cases on two challenging sequences (i.e., Agility, and Ball3) from VOT2019 [24].

to the serious occlusion caused by the interfering objects.
Like most Siamese network based trackers [6], [8], [19],
we didn’t introduce special design to deal with occlusion.
One possible solution is to design special occlusion classifier
[66] and re-detection module [67]. In this way, our tracker
can judge whether the occlusion exists. Once the occlusion
happens, our tracker can combine re-detection and motion
prediction to re-localize the targets.

4.3 Ablation Study

In this subsection, we provide a diagnostic analysis of our
SiamBAN. Due to space limitations, we only show the
ablation study on OTB100 [25]. However, similar results
can be obtained on other five datasets. Firstly, we show
how much a backbone network affects the performance of
our SiamBAN. Then, we investigate how much the multi-
level prediction, sample label assignment, the target-aware
branch and post-processing operations contribute to the
overall tracking performance, respectively. Thirdly, we per-
form a sensitivity analysis on several weighting parameters
in our multi-task loss function (i.e., Equation (7)) and a
target-aware weighting parameter in our final predicted
scores (i.e., Equation (9)). Fourthly, we investigate the im-
pact of the classification branch on our SiamBAN. Finally,
we compare the conference version [18] and the current
version of SiamBAN.

Backbone Architecture. Since our SiamBAN is an open
framework in which any backbone networks can be in-
tegrated and its success depends on the availability of
good features, a following question arises: How sensitive
is our SiamBAN to the representation power of a back-
bone network? To answer this question, we have tested
difference backbones including AlexNet [40], MobileNet-
v2 [43], ResNet-18 [41], ResNet-34 [41], ResNet-50 [41] on
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TABLE 5
The performance of our SiamBAN with different backbones as the
feature extractors on OTB100 [25].

Backbones AlexNet MobileNet-v2 ResNet-18 ResNet-34 ResNet-50
AUC (1) 0.669 0.673 0.672 0.684 0.702

OTB100 [25]. The comparison results are shown in Table
5. When the depth of the network is gradually increased
from AlexNet to ResNet-50, the AUC of the corresponding
SiamBAN steadily improves from 0.669 to 0.702. Obviously,
for different backbone networks, a good performance can
be obtained across a wide range of backbone networks.
The experiments have shown that the performance of our
SiamBAN is impacted less by the different backbone net-
works. This property significantly eases the selection of a
backbone network and other (potentially more efficient and
robust) backbone networks may also be considered in the
literature.

Discussion on Multi-level Prediction. To explore the role
of different level features and the effect of aggregation of
multi-level features, we perform an ablation study on multi-
layer prediction. It can be found from Table 6 that when only
single-layer feature is used, conv4 performs best. Compared
with the single-layer features, when using the aggregation of
the two-layer features, the performance has been improved.
Among the different combination of the two-layer features,
the performance of our tracker is best when aggregating
both conv4 and convb. Finally, after aggregating three layers
of features, our tracker achieves the best results.
Discussion on Sample Label Assignment. The sample
label assignment plays a key role in the performance of a
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Fig. 13. Three sample label assignment methods: ellipse labels, circle
labels, rectangular labels. E1, Eq, C1, C2, R1, R2 represent ellipse Eq,
ellipse E», circle Cq, circle Cs, rectangle R, rectangle Rz, respectively.

tracker. However, many Siamese network based trackers [1],
[32], [33] do not pay enough attention to it. For example,
SiamFC considers the elements of a score map within the
radius R of the center to be positive samples. Its label
assignment method only considers the center position of the
target, ignoring the size of the targets. Intuitively, the sample
label assignment methods should be adaptively customized
for targets with different sizes and shapes. Therefore, we
design a label assignment method that takes into account
the target scale and aspect ratio. Please note that we also set
a buffer to ignore the ambiguous samples. Please see Section
3.5 for more details.

To illustrate the advantages of our label assignment
method, we evaluate two variants of our tracker with the
other two label assignment methods. As shown in Figure
13, for convenience, we refer to these three types of labels
as ellipse, circle, and rectangle labels, respectively. For fair
comparison, we define circles (i.e., ¢y and C3 ) and rectan-
gles (R and Ry) in a similar way to define ellipses (E> and
E»). Specifically, with (g5, gy.) as the center and Y9=*9",
VIuwXIh as the radius, we can get the circles Cy and C. The
position and size of the rectangle R; are the same as those of
the ground-truth bounding box. The center of the rectangle
Ry is set to (g, 9y.). Meanwhile, its width and height are
set to &> and %', respectively.

As shown in Table 6, with the same number of iter-
ations and training datasets, our tracker outperforms its
two variants with circle and rectangle labels. We believe
that the reason is that ellipse labels can provide more ac-
curately positive and negative samples than that of circular
and rectangular labels. Benefit from the accurate samples,
our tracker can effectively distinguish the targets from the
backgrounds.

Discussion on Our Target-aware Branch. To test the contri-
butions of the target-aware branch, we evaluate a degraded
tracker of our trackers by removing the target-aware branch
and verify its performance on OTB100. Specifically, we
remove the target-aware branch in both the training and
testing phases, and the degraded tracker is consistent with
our conference version [18]. As shown in Table 6, the AUC
score on OTB100 decreases from 0.702 to 0.696 when we
remove the target-aware branch. This clearly validates the
advantage of the proposed target-aware branch.

Discussion on Post-processing Operations. In our tracker,
the post-processing step includes the cosine window
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TABLE 6
Quantitative comparison results of our tracker and its variants with
different detection heads and different label assignment methods on
OTB100 [25]. L3, L4, L5 represent conv3, conv4, conv5, respectively.
Circle, Rectangle, Ellipse, Target-aware represent circle labels,
rectangle labels, ellipse labels, target-aware branch, respectively.

L3 14 L5 Circle Rectangle Ellipse Target-aware AUC (1)
v v 0.675
v v 0.683
v v 0.662
v v v 0.687
v v v 0.681
v v v 0.689
v v v 0.686
v v Vv v 0.688
v v Y v 0.696
v vV v v 0.702

TABLE 7

AUC under different combinations of the post-processing operations on
OTB100 [25]. W, S, P denote the cosine window penalty, scale and
aspect ratio penalty, and bounding box smoothing, respectively.

W P s AUC (1)

0.653
v 0.697
0.657
0.659
0.696
0.701
0.657
0.702

AN
N N
EENENEEN

penalty W, scale and aspect ratio penalty P, and bounding
box smoothing S. To test how much they affect the tracking
performance, we have added an ablation experiment on
OTB100 as shown in Table 7. After completely turning off
the post-processing step, our tracker has an AUC of 0.653.
When our tracker adopts one post-processing operation
(i.e., the cosine window penalty), its AUC significantly
increases from 0.653 to 0.697. When our tracker uses two
post-processing operations (i.e., the combination of the co-
sine window penalty and the bounding box smoothing), it
obtains an AUC with 0.701. Our tracker achieves the best
AUC with 0.702 when all three post-processing operations
are used. This ablation analysis verifies the advantage of the
post-processing operations for our tracker.
Parameter Sensitive Analysis. Our SiamBAN contains
some key weighting parameters in training and prediction
stages, i.e., several weighting parameters in our multi-task
loss function (i.e., Equation (7)) and a target-aware weight-
ing parameter in our final predicted scores (i.e., Equation
(9)). Thus, one may puts forward the following questions:
(1) how the performance of our SiamBAN will be affected
by the small changes of the parameter values; and (2) how
to select the parameters. To answer the questions, we check
the AUC for different parameter settings. We only change
one parameter at a time due to too much combinations.
Specifically, to explore the effect of different weights in
the multi-task loss function, we have tested the different
weights on OTB100 as shown in Table 8, from which we
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TABLE 8
AUC under different weighting parameter values of our multi-task loss
function on OTB100 [25].

A A2 A3 AUC (1)
05 1.0 1.0 0.688
1.0 05 1.0 0.693
1.0 1.0 0.5 0.694
1.0 05 0.5 0.696
05 1.0 0.5 0.688
05 05 1.0 0.689
1.0 1.0 1.0 0.702
TABLE 9

AUC under different values of target-aware weight w on OTB100 [25].

w 0 0.2 0.4 0.6 0.8 1
AUC (1) 0.681 0.688 0.692 0.702 0.693 0.682

can see that the best AUC score (0.702) can be obtained
even simply setting them to 1, 1, and 1, respectively. In
addition, the experiments have also illustrated that our
multi-task loss function is not very sensitive to the small
changes of the weight values. It is obvious that, for the
weighting parameters, a good value can be chosen across
a wide range of values. This property also show that a good
set of weighting parameter values is easily obtained.
Moreover, to explore the impact of different target-aware
weights on our SiamBAN, we have tested its performance
with different values of w (in Equation (9)) on OTB100 [25].
As shown in Table 9, the AUC of our SiamBAN gradually
increases as the value of w changes from 0 to 0.6. When
the value of w is set to 0.6, the AUC of our SiamBAN
achieves the highest value of 0.702. Then, its performance
decreases when w continues to increase. When the value of
w is set to 0 or 1 (i.e., only Pes—qn or Pigr—qu is used as
the final predicted scores), our SiamBAN does not perform
well, which follows our observations that both P.,_.;
and Pi,,_ 4 make the contributions to our SiamBAN. This
clearly validates that our simple yet effective fusing method
in the prediction scores can improve the tracking perfor-
mance.
The Contributions from the Classification Branch. To
explore the impact of the classification branch of our
SiamBAN, we have evaluated its two variants by modify-
ing the classification branch and tested their performance
on OTB100. The first variant of SiamBAN is denoted as
SiamBAN-V1, in which the classification branch is removed
from our SiamBAN in both the training and inference stages.
The implemention of the SiamBAN-V1 is achieved by re-
moving the upper branch on the right panel of Figure 3.
Thus, SiamBAN-V1 only contains the regression and target-
aware branches. The second variant of SiamBAN is denoted
as SiamBAN-V2, in which the classification "arm” from the
depth-wise cross-correlation onward (last two blocks in the
upper green branch of Figure 3) is moved to the lower
branch, i.e., attaching it to the output of the depth-wise
cross-correlation in the lower “arm” during the training and
inference stages. As shown in Table 10, SiamBAN-V1 with-
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TABLE 10
AUC on OTB100 [25] for different variants of our SiamBAN by
modifying the classification branch.
Trackers AUC (1)
SiamBAN 0.702
SiamBAN-V1 0.674
SiamBAN-V2 0.683
TABLE 11
Comparison of conference version (SiamBAN,,,, f) and current version
(SiamBAN).
Tracker VOT2018 VOT2019 OTB100 UAV123 LaSOT TrackingNet
ackers EAO EAO AUC AUC AUC  Prorm
SiamBAN_ s 0.452 0327 0.696 0.631 0.514 0.791
SiamBAN 0.473 0.337 0.702 0.644 0.531 0.794

out the classification branch is worse than the trackers with
the classification branch, e.g., SiamBAN and SiamBAN-V2.
The comparison results clearly verify that the classification
branch makes the significant contributions to our SiamBAN.
Moreover, our SiamBAN is better than SiamBAN-V2, which
verifies that our SiamBAN can effectively combine the clas-
sification, regression and target-aware branches in a box
adaptive head to make them focus on their own sub-tasks.
Comparison of Different Versions of SiamBAN. To facili-
tate the comparison between the conference version [18] and
the current version of SiamBAN, we show their performance
on the six challenging tracking benchmarks in Table 11. As
shown in Table 11, we can see that the current version of
SiamBAN consistently outperforms its conference version
on each used benchmark in EAO, AUC or P,,,m,. Further-
more, compared to the conference version, the robustness
(failure rate) of the current version of SiamBAN on VOT2018
and VOT2019 drops from 0.178 to 0.155 and from 0.396
to 0.351, respectively. These experimental results validate
that our SiamBAN can improve its tracking performance
by incorporating the target-aware branch to effectively alle-
viate the inconsistency problem between classification and
regression.

5 CONCLUSIONS

In this paper, we exploit the expressive power of the fully
convolutional network and propose a simple yet effective
visual tracking framework named SiamBAN, which does
not require a multi-scale searching schema and pre-defined
candidate boxes. SiamBAN directly classifies objects and re-
gresses bounding boxes in a unified network. Therefore, the
visual tracking problem becomes a classification-regression
problem. In addition, to have better correspondence be-
tween the classification scores and the regressed bounding
boxes, SiamBAN further uses a target-aware branch to as-
sist the classification branch to locate the target. Extensive
experiments on six visual tracking benchmarks demonstrate
that SiamBAN achieves the state-of-the-art performance and
runs at 35 FPS, confirming its effectiveness and efficiency.

eptember 30,2022 at 00:49:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3195759

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

ACKNOWLEDGMENTS

This work was supported by the Project of Guangxi
Science and Technology (No. 2022GXNSFDA035079 and
GuiKeAD21075030), the National Natural Science Foun-
dation of China (No. 61972167, 61772494, 61872112), the
Guangxi “Bagui Scholar” Teams for Innovation and Re-
search Project, the Guangxi Collaborative Innovation Cen-
ter of Multi-source Information Integration and Intelligent
Processing, and the Guangxi Talent Highland Project of Big
Data Intelligence and Application.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(71

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-convolutional siamese networks for object tracking,”
in European Conference on Computer Vision. — Springer, 2016, pp.
850-865.

Q. Wang, Z. Teng, ]J. Xing, J. Gao, W. Hu, and S. Maybank,
“Learning attentions: residual attentional siamese network for
high performance online visual tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4854-4863.

A. He, C. Luo, X. Tian, and W. Zeng, “A twofold siamese network
for real-time object tracking,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 4834-4843.

M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Felsberg, “ECO:
Efficient convolution operators for tracking,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 6638-6646.

G. Bhat, J. Johnander, M. Danelljan, F. Shahbaz Khan, and M. Fels-
berg, “Unveiling the power of deep tracking,” in European Confer-
ence on Computer Vision, 2018, pp. 483-498.

B. Li, . Yan, W. Wu, Z. Zhu, and X. Hu, “High performance
visual tracking with siamese region proposal network,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
8971-8980.

Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu, “Distractor-
aware siamese networks for visual object tracking,” in European
Conference on Computer Vision, 2018, pp. 101-117.

B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “SiamRPN++:
Evolution of siamese visual tracking with very deep networks,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp- 4282-4291.

Z. Zhang and H. Peng, “Deeper and wider siamese networks for
real-time visual tracking,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 4591-4600.

G. Wang, C. Luo, Z. Xiong, and W. Zeng, “SPM-Tracker: Series-
parallel matching for real-time visual object tracking,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
3643-3652.

H. Fan and H. Ling, “Siamese cascaded region proposal networks
for real-time visual tracking,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 7952-7961.

D. Purves, G. J. Augustine, D. Fitzpatrick, W. C. Hall, A.-S.
LaMantia, J. O. McNamara, and L. E. White, Neuroscience. 4th.
Oxford University Press, 2008, vol. 857.

L. Huang, Y. Yang, Y. Deng, and Y. Yu, “DenseBox: Unifying
landmark localization with end to end object detection,” arXiv
preprint arXiv:1509.04874, 2015.

J. Yu, Y. Jiang, Z. Wang, Z. Cao, and T. Huang, “UnitBox: An
advanced object detection network,” in 24th ACM International
Conference on Multimedia. ACM, 2016, pp. 516-520.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 779-788.

C. Zhu, Y. He, and M. Savvides, “Feature selective anchor-free
module for single-shot object detection,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 840-849.

Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional
one-stage object detection,” in IEEE International Conference on
Computer Vision, 2019, pp. 9627-9636.

Z. Chen, B. Zhong, G. Li, S. Zhang, and R. Ji, “Siamese box adap-
tive network for visual tracking,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6668-6677.

X . ©2022 IEEE, Personal use is permitted, but republication/redistribution re%uires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: GuangXi Normal University. Downloaded on

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

15

Y. Xu, Z. Wang, Z. Li, Y. Yuan, and G. Yu, “Siamfc++: Towards
robust and accurate visual tracking with target estimation guide-
lines.” in AAAI, 2020, pp. 12 549-12 556.

D. Guo, J. Wang, Y. Cui, Z. Wang, and S. Chen, “Siamcar: Siamese
fully convolutional classification and regression for visual track-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition,
2020, pp. 6269-6277.

S. Cheng, B. Zhong, G. Li, X. Liu, Z. Tang, X. Li, and J. Wang,
“Learning to filter: Siamese relation network for robust tracking,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2021,
pp. 4421-4431.

W. Han, X. Dong, F. S. Khan, L. Shao, and ]. Shen, “Learning to fuse
asymmetric feature maps in siamese trackers,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2021, pp. 16 570-16 580.
M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder,
L. Cehovin Zajc, T. Vojir, G. Bhat, A. Lukezic, A. Eldesokey et al.,
“The sixth visual object tracking VOT2018 challenge results,” in
European Conference on Computer Vision, 2018, pp. 0-0.

M. Kristan, ]. Matas, A. Leonardis, M. Felsberg, R. Pflugfelder, J.-
K. Kamarainen, L. Cehovin Zajc, O. Drbohlav, A. Lukezic, A. Berg
et al., “The seventh visual object tracking VOT2019 challenge
results,” in IEEE International Conference on Computer Vision Work-
shops, 2019, pp. 0-0.

Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 37,
no. 9, pp. 1834-1848, 2015.

M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simu-
lator for uav tracking,” in European Conference on Computer Vision.
Springer, 2016, pp. 445—461.

H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu,
C. Liao, and H. Ling, “LaSOT: A high-quality benchmark for large-
scale single object tracking,” in IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 5374-5383.

M. Muller, A. Bibi, S. Giancola, S. Alsubaihi, and B. Ghanem,
“TrackingNet: A large-scale dataset and benchmark for object
tracking in the wild,” in European Conference on Computer Vision,
2018, pp. 300-317.

P.Li, D. Wang, L. Wang, and H. Lu, “Deep visual tracking: Review
and experimental comparison,” Pattern Recognition, vol. 76, pp.
323-338, 2018.

S. M. Marvasti-Zadeh, L. Cheng, H. Ghanei-Yakhdan, and
S. Kasaei, “Deep learning for visual tracking: A comprehensive
survey,” IEEE Transactions on Intelligent Transportation Systems,
2021.

R. Tao, E. Gavves, and A. W. Smeulders, “Siamese instance search
for tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1420-1429.

J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and P. H.
Torr, “End-to-end representation learning for correlation filter
based tracking,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 2805-2813.

Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang,
“Learning dynamic siamese network for visual object tracking,”
in IEEE International Conference on Computer Vision, 2017, pp. 1763
1771.

Y. Zhang, L. Wang, J. Qi, D. Wang, M. Feng, and H. Lu, “Struc-
tured siamese network for real-time visual tracking,” in European
Conference on Computer Vision, 2018, pp. 351-366.

X. Dong and J. Shen, “Triplet loss in siamese network for object
tracking,” in European Conference on Computer Vision, 2018, pp. 459—
474.

T. Yang and A. B. Chan, “Learning dynamic memory networks for
object tracking,” in European Conference on Computer Vision, 2018,
pp. 152-167.

Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. Torr, “Fast
online object tracking and segmentation: A unifying approach,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp- 1328-1338.

Z. Zhang, H. Peng, J. Fu, B. Li, and W. Hu, “Ocean: Object-aware
anchor-free tracking,” in European Conference on Computer Vision,
2020.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1137-1149, 2017.

eptember 30,2022 at 00:49:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3195759

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

A. Krizhevsky, L. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems, 2012, pp. 1097-1105.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770-778.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated resid-
ual transformations for deep neural networks,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 1492-1500.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

H. Law and ]. Deng, “CornerNet: Detecting objects as paired
keypoints,” in European Conference on Computer Vision, 2018, pp.
734-750.

X. Zhou, J. Zhuo, and P. Krahenbuhl, “Bottom-up object detection
by grouping extreme and center points,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 850-859.
Z.Yang, S. Liu, H. Hu, L. Wang, and S. Lin, “RepPoints: Point set
representation for object detection,” in IEEE International Confer-
ence on Computer Vision, 2019, pp. 9657-9666.

L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 40,
no. 4, pp. 834-848, 2017.

P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cot-
trell, “Understanding convolution for semantic segmentation,” in
2018 IEEE Winter Conference on Applications of Computer Vision.
IEEE, 2018, pp. 1451-1460.

C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Robust visual
tracking via hierarchical convolutional features,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 11, pp.
2709-2723, 2019.

Y. Qi, S. Zhang, L. Qin, Q. Huang, H. Yao, J. Lim, and M.-H. Yang,
“Hedging deep features for visual tracking,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 41, no. 5, pp. 1116—
1130, 2019.

H. Rezatofighi, N. Tsoi, ]. Gwak, A. Sadeghian, I. Reid, and
S. Savarese, “Generalized intersection over union: A metric and a
loss for bounding box regression,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 658—666.

O. Russakovsky, J. Deng, H. Su, ]J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet
large scale visual recognition challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211-252, 2015.

E. Real, J. Shlens, S. Mazzocchi, X. Pan, and V. Vanhoucke,
“YouTube-BoundingBoxes: A large high-precision human-
annotated data set for object detection in video,” in IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
5296-5305.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft COCO: Common objects
in context,” in European Conference on Computer Vision. Springer,
2014, pp. 740-755.

L. Huang, X. Zhao, and K. Huang, “GOT-10k: A large high-
diversity benchmark for ggeneric object tracking in the wild,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
T. Xu, Z.-H. Feng, X.-J. Wu, and ]. Kittler, “Learning adaptive dis-
criminative correlation ffilters via temporal consistency preserving
spatial feature selection for robust visual object tracking,” IEEE
Transactions on Image Processing, 2019.

M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg, “ATOM:
Accurate tracking by overlap maximization,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 4660-4669.

P. Voigtlaender, J. Luiten, P. H. Torr, and B. Leibe, “Siam r-cnn:
Visual tracking by re-detection,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6578-6588.

G. Bhat, M. Danelljan, L. Van Gool, and R. Timofte, “Learning dis-
criminative model prediction for tracking,” in IEEE International
Conference on Computer Vision, 2019.

H. Nam and B. Han, “Learning multi-domain convolutional neu-
ral networks for visual tracking,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2016, pp. 4293-4302.

© 2022 IEEE, Personal use is permitted, but republication/redistribution re

Authorized licensed use limited to: GuangXi Normal University. Downloaded on

16

[61] L.Zhang, A. Gonzalez-Garcia, J. v. d. Weijer, M. Danelljan, and F. S.
Khan, “Learning the model update for siamese trackers,” in IEEE
International Conference on Computer Vision, 2019, pp. 4010-4019.

[62] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond
correlation filters: Learning continuous convolution operators
for visual tracking,” in European Conference on Computer Vision.
Springer, 2016, pp. 472—-488.

[63] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learn-
ing spatially regularized correlation filters for visual tracking,” in
IEEE International Conference on Computer Vision, 2015, pp. 4310-
4318.

[64] Y.Song, C.Ma, X. Wu, L. Gong, L. Bao, W. Zuo, C. Shen, R. W. Lau,
and M.-H. Yang, “VITAL: Visual tracking via adversarial learn-
ing,” in IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 8990-8999.

[65] T. Xu, Z.-H. Feng, X.-J. Wu, and ]. Kittler, “Joint group feature
selection and discriminative filter learning for robust visual object
tracking,” in IEEE International Conference on Computer Vision, 2019,
pp- 7950-7960.

[66] M. Mathias, R. Benenson, R. Timofte, and L. Van Gool, “Handling
occlusions with franken-classifiers,” in IEEE International Confer-
ence on Computer Vision, 2013, pp. 1505-1512.

[67] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-
detection,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 34, no. 7, pp. 1409-1422, 2011.

Zedu Chen received the M.S. degree in com-
puter science from the Huagiao University, Xi-
amen, China in 2021. He is currently a visit-
ing scholar in Guangxi Normal University, Guilin,
China. His research interests include computer
vision and machine learning.

Bineng Zhong received the B.S., M.S., and
Ph.D. degrees in computer science from the
Harbin Institute of Technology, Harbin, China, in
2004, 2006, and 2010, respectively. From 2007
to 2008, he was a Research Fellow with the
Institute of Automation and Institute of Comput-
ing Technology, Chinese Academy of Science.
From September 2017 to September 2018, he
is a visiting scholar in Northeastern University,
Boston, MA, USA. From November 2010 to Oc-
tober 2020, he is a professor with the School of
Computer Science and Technology, Huagiao University, Xiamen, China.
Currently, he is a professor with the Department Computer Science,
Guangxi Normal University, Guilin, China. His current research interests
include pattern recognition, machine learning, and computer vision.

Guorong Li received the B.S. degree in tech-
nology of computer application from the Renmin
University of China, in 2006, and the Ph.D. de-
gree in technology of computer application from
the Graduate University of Chinese Academy of
Sciences in 2012.

IEEE perm|35| ee httgs .Ilwww.ieee.org/publications/rights/index.html for more information.
ber 30,2 00:49:44 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3195759

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 17

Shengping Zhang received the Ph.D. degree
in computer science from the Harbin Institute
of Technology, Harbin, China, in 2013. He is
currently a Professor with the School of Com-
puter Science and Technology, Harbin Institute
of Technology in Weihai. He had been a post-
doctoral research associate with Brown Univer-
sity and with Hong Kong Baptist University, and
a visiting student researcher with University of
California at Berkeley. He has authored or co-
authored over 60 research publications in ref-
ereed journals and conferences. His research interests include deep
learning and its applications in computer vision.

Rongrong Ji is currently a Professor and the
Director of the Intelligent Multimedia Technol-
ogy Laboratory, and the Dean Assistant with
the School of Information Science and Engineer-
ing, Xiamen University, Xiamen, China. His work
mainly focuses on innovative technologies for
multimedia signal processing, computer vision,
and pattern recognition, with over 100 papers
published in international journals and confer-
ences. He serves as an Associate/Guest Editor
for international journals and magazines such as
Neurocomputing, Signal Processing, Multimedia Tools and Applications,
the IEEE MultiMedia Magazine, and the Multimedia Systems. He also
serves as program committee member for several Tier-1 international
conferences.

Zhenjun Tang received the B.S. and M.Eng.
degrees from Guangxi Normal University, Guilin,
P.R. China, in 2003 and 2006, respectively,
and the Ph.D. degree from Shanghai University,
Shanghai, PR. China, in 2010. He is now a
professor with the Department of Computer Sci-
ence, Guangxi Normal University. His research
interests include image processing, video pro-
cessing, and multimedia security. He has con-
tributed more than 70 international journal pa-
pers. He is a reviewer of more than 30 SCI
journals, such as IEEE journals, Elsevier journals and Springer journals.

Xianxian Li received the PHD degree in com-
puter science and technology from Beihang Uni-
versity, Beijing, China. He is currently a profes-
sor with the School of Computer Science and
Engineering, Guangxi Normal University. His re-
search interests include machine learning, data
security, blockchain and distributed system.

X . ©2022 IEEE, Personal use is permitted, but republication/redistribution re%uires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: GuangXi Normal University. Downloaded on September 30,2022 at 00:49:44 UTC from IEEE Xplore. Restrictions apply.



