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ABSTRACT

DBSCAN is a celebrated algorithm for density-based clustering, but its quadratic
runtime hinders scalability to large datasets. In recent years, there has been con-
siderable interest in accelerating DBSCAN. However, existing methods either
impose additional structure on the data (e.g., low-dimensionality), or lack rigor-
ous runtime and approximation guarantees. Building on a recent work of Okkels
et al. (2025), we propose an LSH-based algorithm that achieves the first provably
subquadratic runtime for approximate DBSCAN on arbitrary high-dimensional
datasets. Empirically, our algorithm delivers a significant speedup over the stan-
dard DBSCAN on a variety of benchmarks while incurring only small error. We
also show that our approach naturally yields a subquadratic-time approximation of
HDBSCAN (a popular hierarchical variant). Complementing our algorithms, we
prove quadratic-time lower bounds for exact DBSCAN and HDBSCAN, showing
that subquadratic runtimes are only possible with approximation.

1 INTRODUCTION

This paper is on density-based clustering, a core problem in data science and machine learning.
While center-based clustering methods (e.g., optimizing the k-means objective) group points by
their proximity to a fixed set of centers, density-based clustering seeks to identify connected regions
of high density—potentially with complicated, non-convex shapes—separated by low-density areas.
Due to this flexibility, density-based clustering has found applications across a broad range of fields,
from genomic data analysis (Edla & Jana, 2012) to object detection in autonomous driving (Wagner
etal., 2015).

The most celebrated algorithm for density-based clustering is DBSCAN (Ester et al., 1996). Given
a dataset of n points in a metric space, DBSCAN proceeds in two main phases. First, it identifies a
set of core points, those whose e-neighborhoods (for some fixed € > 0) contain a specified number
of dataset points (this threshold is denoted MinPts!). Second, it constructs a graph on the set
of core points, where an edge is drawn between any two points that are within distance . The
connected components of this graph are returned as the clusters, while all non-core points are marked
as noise. A straightforward implementation of DBSCAN requires ©(n?) distance computations in
each phase, which is often impractical given the size of modern datasets. This has led to considerable
interest over the past decade in designing algorithms which simulate DBSCAN in subquadratic time,
particularly for datasets in the Euclidean space R<.

Gunawan (2013) showed that in the Euclidean plane (d = 2), DBSCAN can be simulated in
O(nlogn) time. Interestingly, this near-linear runtime does not extend to any higher dimension.
Indeed, Gan & Tao (2017) proved that, assuming a widely held conjecture in computational ge-
ometry, any algorithm that simulates DBSCAN in R? for d > 3 requires at least Q(n*/?) time.

They complemented this with a randomized algorithm achieving a runtime of O(n2_ 7T +5) for
arbitrarily small constants § > 0, and in particular, a runtime of O(n*/3) for the case of d = 3.

To circumvent the polynomial runtime in R?, Gan & Tao (2017) also introduced a notion of approx-
imating the output of DBSCAN. Informally, a c-approximation of DBSCAN (with parameters € and
MinPts) is any clustering that is coarser than the DBSCAN clustering with parameter ¢ but finer

!The parameter MinPts is generally assumed to be a constant.
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than the DBSCAN clustering with parameter cc. They showed that for any constant dimension and
constant approximation factor ¢, one can produce a c-approximate clustering in expected time O(n).
However, the runtime of their algorithm is exponential in d, leaving open the following question:

Is there an efficient algorithm for c-approximate DBSCAN in high dimensions?

This question was recently studied by Okkels et al. (2025). They propose an approach based on
locality-sensitive hashing (Indyk & Motwani, 1998; Andoni & Razenshteyn, 2015), which gives a
c-approximation of DBSCAN in time O(dn!*+1/(2¢*~1)). However, their runtime analysis relies on
a critical assumption about the dataset: that the number of points at distance ce from any given point
is on the order of MinPts. Since it is common to set MinPts < n, this assumption breaks down
in settings of densely-packed clusters. The main contribution of our paper is an LSH-based algo-
rithm that computes a c-approximate DBSCAN clustering in subquadratic time without requiring
any assumptions on the dataset.

A primary drawback of DBSCAN is that its density parameters are shared across all clusters. This
motivated HDBSCAN (Campello et al., 2013), a quadratic-time algorithm for computing hierar-
chical density-based clusterings. Okkels et al. (2025) posed the question of whether an LSH-based
approach could yield an efficient approximation of HDBSCAN. We resolve this question in the
affirmative by giving a simple reduction from approximate HDBSCAN to approximate DBSCAN.

Our Contributions. We introduce LSH-DBSCAN and LSH-HDBSCAN: faster algorithms for
high-dimensional c-approximate DBSCAN and HDBSCAN. We prove that our algorithms satisfy
the formal approximation guarantee and have a subquadratic runtime on all inputs.

The core point identification step of LSH-DBSCAN closely follows that of Okkels et al. (2025). We
first construct an LSH family for the input dataset and hash all the points. To determine if a point
is core, we compute its distance to all points in the same bucket. For the cluster formation step, we
perform an LSH-assisted breadth-first search where we only look for neighbors of a point within its
bucket. The main theoretical result of our paper is the following guarantee.

Theorem 1.1 (informal; see Theorem 3.1). Given a set of n points in R< LSH-DBSCAN returns a
c-approximate DBSCAN clustering with high probability and runs in time O(dn1+1/(2C2_1)+°(1)).

Our LSH-HDBSCAN algorithm works by making logarithmically many calls to LSH-DBSCAN with
decreasing values of . It performs an intersection operation at each step to construct the cluster
hierarchy. We prove the following guarantee.

Theorem 1.2 (informal; see Theorem 3.2). Given a set of n points in RY, LSH-HDBSCAN returns a
c-approximate HDBSCAN hierarchy with high probability and runs in time O(dn1+1/(262’1)+°(1) ).

In addition to our algorithms, we provide a reduction from the bichromatic closest pair problem
to approximate DBSCAN which gives the following lower bound assuming SETH (a widely held
conjecture in complexity theory). For any o > 0, there is a v > 0 such that computing (1 + ~)-
approximate DBSCAN takes 2(n?~%) time. This means any strongly subquadratic algorithm for
DBSCAN must produce an approximation.

We empirically analyze the performance of LSH-DBSCAN with several approximation factors ¢ on
four benchmarks: MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), ALOI (Geusebroek
et al., 2005), and GloVe (Pennington et al., 2014). For each benchmark, we measure computation
speedup and clustering accuracy relative to exact DBSCAN. To eliminate dependence on machine
and implementation details, we measure computation speedup by the number of heavy operations
(i.e., hash and distance computations). For completeness, we also include raw runtime speedup re-
sults in the appendix. We quantify clustering accuracy by the fraction of misclassified points relative
to exact DBSCAN. Predictably, both the speedup and misalignment increase with the approximation
factor c. Across all benchmarks, LSH-DBSCAN achieves at least a 10x computation speedup with
misalignment less than 0.1.

Due to the quadratic runtimes of previous high-dimensional DBSCAN algorithms, it is common
practice to perform dimension reduction on the dataset and run DBSCAN on the resulting low-
dimensional instance. In the appendix, we include a discussion of this approach with an instructive
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example of when it fails, highlighting the importance of faster algorithms for DBSCAN in high
dimensions.

Related Work. Beyond Okkels et al. (2025), there has been prior work on using LSH to develop
practical approaches for DBSCAN (Wu et al., 2007; Shigiu & Qingsheng, 2019), though these meth-
ods lack theoretical guarantees on approximation quality. Sampling-based methods (Jang & Jiang,
2019; Jiang et al., 2020) achieve strong empirical performance. However, their accuracy guaran-
tees hold only for low-dimensional data and rely on strong assumptions about the underlying cluster
structure. Other theoretical work on DBSCAN has focused on improvements in low-dimensional
settings, particularly through the use of parallelization (Wang et al., 2020).

Organization of the Paper. Section 2 contains preliminaries that are used throughout the paper.
In Section 3, we present our algorithms LSH-DBSCAN and LSH-HDBSCAN and state our main
theoretical results (proofs deferred to Appendix A). Section 4 contains our main experimental results
and discussion (additional details in Appendix B).

2 PRELIMINARIES

Throughout this paper, we will let P denote a dataset of size n with a metric d. We will use A to
denote the aspect ratio of P (the ratio between the the maximum and minimum distance). We will
also use the shorthand m to denote the MinPts parameter of DBSCAN and HDBSCAN.

We use the term clustering to refer to a partition of P where some points may be designated as noise,
i.e. a collection of disjoint clusters together with a (possibly empty) set of noise points.

2.1 PRELIMINARIES ON DBSCAN
We start by defining the DBSCAN algorithm (Ester et al., 1996).

Definition 2.1 (DBSCAN). Given a neighborhood radius € > 0 and size threshold m € N, the
(e, m)-DBSCAN clustering of P is defined as the output of DBSCAN, the following deterministic
algorithm:

1. Core point identification. For each p € P, define its e-neighborhood as N¢(p), the set of
points p’ for which d(p’, p) < e. A point p € P is called a core point if |[N.(p)| > m.

Let Core(P) C P denote the set of all core points. All non-core points are labeled as noise.

2. Cluster formation. Construct G. = (Core(P), E), where (p,p’) € E if and only if
p’ € N:(p). Return the clustering given by the connected components of G..

The original DBSCAN algorithm also identifies border points: non-core points within distance € of
a core point. Definition 2.1, sometimes referred to as DBSCAN™ (Campello et al., 2013), omits this
step for simplicity. All results in this paper easily extend to the original DBSCAN definition.

Following Gan & Tao (2017), we define a notion of approximating the output of DBSCAN.

Definition 2.2 (Refinement). Let S be a set and let C, C’ be two clusterings of S. We say that C is a
refinement of C’, denoted C < C’, if every cluster in C is a subset of a cluster in C’.

Definition 2.3 (Approximate DBSCAN, Gan & Tao (2017)). Let ¢ > 0 and m € N be parame-
ters. Given an approximation factor ¢ > 1, the c-approximate (e, m)-DBSCAN problem asks for a
clustering C of P satisfying the following properties:

* C is arefinement of the (¢, m)-DBSCAN clustering of P.
* The (¢/¢, m)-DBSCAN clustering of P is a refinement of C.

This notion of approximation is informally referred to as a “sandwiching” condition: the output
clustering C lies between coarser and finer DBSCAN clusterings. We note that the original definition
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of Gan & Tao (2017) sandwiches the clustering in the interval [e, ce] as opposed to [¢/c, €]. These are
equivalent under a change of variables. We use our definition since the output of our approximation
algorithm is intuitively (and empirically) closer to the coarser clustering.

2.2 PRELIMINARIES ON HDBSCAN

We now define the HDBSCAN algorithm (Campello et al., 2013), which is a hierarchical extension
of DBSCAN. We first define a notion of cluster hierarchy, which is the output format of HDBSCAN.

Definition 2.4. A cluster hierarchy on a set S is a sequence 7 = (Cy,...,Cr), where each C; is a
clustering of S, and
C, = 2Cr.

Definition 2.5 (HDBSCAN). Let P be a dataset with a metric d. Given a parameter m € N, the
m-HDBSCAN hierarchy on P is defined to be the output of HDBSCAN, the following deterministic
algorithm:

1. Core radius computation. For p € P, define e(p) := inf{e € R : |[N.(p)| > m}.

2. Mutual reachability. For p, p’ € P, define dy(p, p’) := max{d(p,p’),e(p),e(p’)}
3. Tree formation. Compute an MST of the graph on P with edge weights given by d;.
4

. Cluster hierarchy formation. Lete; < --- < ¢, be the sorted list of all pairwise distances
{d(p,p’) : p,p’ € P}. For each i € [L], compute the subgraph of the MST consisting of
edges with weight at most ¢;, and define C; as the clustering of P given by the connected
components of this subgraph. Mark any point p with e(p) > &; as noise. Return the
sequence {(C;,¢;) = i € [L]}.

Remark 2.1 (Proposition 1 of Campello et al. (2013)). In the m-HDBSCAN hierarchy on P, the
sequence (Cq,...,Cr) forms a cluster hierarchy, where C; is the (&;, m)-DBSCAN clustering of P.

Remark 2.1 motivates the following definition of approximate HDBSCAN (de Berg et al., 2017).

Definition 2.6 (Approximate HDBSCAN). For m € N and ¢ > 1, a cluster hierarchy 7 =
(C1,...,Cr) on P is a c-approximate m-HDBSCAN hierarchy if there exists a mapping

o:(0,00) = [L]

such that, for every € > 0, C, () is a c-approximate (g, m)-DBSCAN clustering of P.

2.3 PRELIMINARIES ON LOCALITY-SENSITIVE HASHING
Here, we define the notion of locality-sensitive hashing, or LSH.

Definition 2.7 (LSH family, Indyk & Motwani (1998)). Let (X, d) be a metric space, and let r > 0,
¢ > 1, and py,pa € [0, 1] be constants. An (r, cr, p1, p2)-sensitive hash family H is a distribution
over hash functions h : X — R such that for any p, ¢ € X, one has:

* d(p,q) <r = Praulh(p) = h(q)] = p1.
* d(p.q) = cr = Prpulh(p) = h(g)] < p2.
For an integer ¢ € N, we use H' to denote the concatenation of ¢ independent functions from .

Definition 2.8 (LSH-friendly metric space). We say that a metric space is LSH-friendly with quality
p if there exist parameters p1, p2 € [0, 1] such that, for every 7 > 0 and ¢ > 1, the space admits an
(r, er, p1, p2)-sensitive hash family whose quality parameter is p(c) = log(1/p1)/log(1/p2).

Fact 2.1 (Andoni & Razenshteyn (2015)). The Euclidean space R? is LSH-friendly with quality
parameter p(c) = 1/(2¢? — 1) + o(1).
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3 FAST ALGORITHMS FOR DBSCAN AND HDBSCAN

In this section, we present subquadratic-time algorithms for approximate DBSCAN and HDBSCAN
on arbitrary high-dimensional datasets.

Given a dataset P, let Ty;st denote the time to compute a distance between two points in P. For a
given LSH family on P, let T},,51, denote the time to compute a hash value.

Theorem 3.1. Let P be an n-point dataset that is LSH-friendly with quality p. For any parameters
m<mn,e>0,c>1,and§ > 0, there is an algorithm that runs in expected time

0 ((Tdist + Thash) - nttPml=r log(n) log(n/é))

and outputs a c-approximate (€, m)-DBSCAN clustering of P, with probability at least 1 — 0.

In particular, for Euclidean datasets P C R< and constant values? of m, Theorem 3.1 yields an
algorithm that computes a c-approximate DBSCAN clustering in time O (dn'*!/ (262’1)“’(1)).

The hierarchical variant (LSH-HDBSCAN) works by making a logarithmic number of calls to
LSH-DBSCAN and therefore inherits the same runtime guarantees up to a logarithmic factor.

Theorem 3.2. Let P be an n-point dataset that is LSH-friendly with quality p and has aspect ratio
A. For any parameters m < n, ¢ > 1, and §,~ > 0, there is an algorithm that runs in expected time

0 ((Tdist + Thash) - n*TPm* = log(n)log(n/d) - log, A)

and outputs a c(1 + 7)-approximate m-HDBSCAN hierarchy on P, with probability at least 1 — 4.

As above, for Euclidean datasets P C R? and constant values of m, ¢, 7, Theorem 3.2 yields an algo-
rithm that computes a ¢(1 + ~)-approximate HDBSCAN hierarchy in time O (dn!*+1/(2¢*=D+o(1)y,

In the following subsections, we present our algorithms LSH-DBSCAN and LSH-HDBSCAN. The
proofs of Theorems 3.1 and 3.2 are deferred to Appendix A.

3.1 THE LSH-DBSCAN ALGORITHM

We present an algorithm for approximating DBSCAN via locality-sensitive hashing.

Algorithm overview. LSH-DBSCAN (Algorithm 1) follows the two-phase structure of DBSCAN.

1. Core point identification. As in Okkels et al. (2025), we use an LSH family to compute
a subset of all core points at radius ¢ that is guaranteed to contain all core points at radius
¢/c. This is handled by Algorithm 2.

2. Cluster formation. @ We perform an LSH-assisted breadth-first-search on the e&-
neighborhood graph, which ensures that core points within distance ¢/c are placed in the
same connected component. This is handled by Algorithm 3.

We assume the existence of an (¢/c, &, p1, p2)-sensitive hash family  on P for constants p;, ps and
quality p = log(1/p1)/log(1/p2). For each hash function & € H and point p € P, we define the
hash bucket By, (p) := {p’ € P : h(p') = h(p)}.

The analysis of LSH-DBSCAN (proof of Theorem 3.1) is deferred to Appendix A.1.

Algorithm 1 LSH-DBSCAN
Input: Points P; density parameters (e, m); approximation factor ¢; failure probability &
Output: A clustering C1,...,Cy of P
1. Core COREPOINTIDENTIFICATION(P, &, m, ¢, §)
2: Return CLUSTERFORMATION((TO?e, g,¢,0)

Prior works on fast DBSCAN (Gan & Tao, 2017; de Berg et al., 2017) assume that m is a constant.
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Algorithm 2 COREPOINTIDENTIFICATION(P, £, m, ¢, §)

R A A S ey

Input: Points P; density parameters (e, m); approximation factor c; failure probability §

L~

Output: Set of (approximate) core points Core
Core «+ {}

Compute parameters K < igig?//g;, T <« py % log(2nm/6)

Sample T independent hash functions hy, ..., hy from H#
Build all hash tables By, , ... Bp,,
for each pointp € P do
Check if there are >m points in By, (p) U - - - U Bp,..(p) that are within distance & from p

If so, update Core « Core U {p}
end for o
Return the set Core

Algorithm 3 CLUSTERFORMATION(@, €,¢,0)

9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

AN AN R

Input: Core points (T(Ez; density parameter &; approximation factor c; failure probability §
Output: A clustering C1,...,Cy of P

log(|Core ,
Compute parameters K < %, T < py ¥ log(2n/6)

Sample 7" independent hash functions hy, ..., hy from H%
Build all hash tables By, , ... Br,
Initialize ¢ < 1

while Jp € Core \ (C; U---UCy_1) do
Initialize a queue @ + {p}
Remove p from each table By, , ..., By
Initialize a new cluster Cy < {}
while || > 0 do
Dequeue a point v from Q)
Update Cy <— Cy U {u}
for each point v in By, (u) U - - - U Bp,.(u) do
If dist(u,v) < e,add v to Q
Remove v from each table By, U ---U By,
end for
end while
Increment ¢ <— ¢+ 1
end while
Return the clustering C1,...,Cy where k := /¢ — 1

T

3.2 THE LSH-HDBSCAN ALGORITHM

Here, we present an algorithm for computing an approximation to the output of HDBSCAN.

Algorithm overview. Our algorithm LSH-HDBSCAN (Algorithm 4) works by making a logarith-
mic number of calls to LSH-DBSCAN with geometrically scaling values of . This yields a sequence
of clusterings which guarantees the approximation condition of Definition 2.6. To ensure that our
output is a proper cluster hierarchy, we take successive intersections of these clusterings, a notion
we define below.

Definition 3.1 (Clustering intersection). Let C and C’ be two clusterings of a set S. We define CNC’
as the clustering of S obtained by taking all nonempty intersections between a cluster in C and a
cluster in C’. The noise points of C N C’ are given by the union of the noise points of C and C’.

The analysis of LSH-HDBSCAN (proof of Theorem 3.2) is deferred to Appendix A.2.

We note that finding D, exactly takes quadratic time, but it suffices to find a value in the range
[Drax, 2Dmax), which can be done in linear time.
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Algorithm 4 LSH-HDBSCAN

Input: Points P; density parameter m; approximation parameters c, 7y; failure probability §
Output: A cluster hierarchy 7 = (Cy,...Cr) on P with associated scales 1, ... ,£p,.
Let Dy, be the diameter of P and let A be the aspect ratio
L =1+ [log;,(A)]
for i in [L] do
€5 & Dmax : (1 + ’Y)l_i
C; + Ci—1 NLSH-DBSCAN(P, e;,m,c,6/L)
end for
Return {(C;,¢;) 14 € [L]}.

A A Rl

3.3 A QUADRATIC LOWER BOUND

The runtimes of LSH-DBSCAN and LSH-HDBSCAN approach O(n?) as the approximation factor
c tends to 1. We prove that this asymptotic behavior is unavoidable: assuming SETH (Impagliazzo
& Paturi, 2001), near-quadratic time is required for sufficiently fine approximations to DBSCAN,
even in Euclidean space. The proof is deferred to Appendix A.3.

Theorem 3.3. Assuming SETH, for any o > 0, there exists v > 0 such that computing a (1 + )-
approximate DBSCAN clustering requires time Q(n*>~%), even in the Euclidean space R®(1°8™), In
particular, computing the exact DBSCAN clustering requires time n?—°™).

The lower bound immediately extends to HDBSCAN.

Corollary 3.1. Assuming SETH, for any « > 0, there exists v > 0 such that computing a (1 + 7)-
approximate HDBSCAN clustering requires time Q(n?~%), even in the Euclidean space RO(ogn),
In particular, computing the exact HDBSCAN hierarchy requires time n>—°().

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the computational efficiency of LSH-DBSCAN on several benchmarks.
Specifically, we analyze the tradeoff between computational speedup and cluster misalignment of
LSH-DBSCAN relative to standard DBSCAN across different approximation factors c¢. Additional
experiments and details are included in Appendix B.

Setup. We evaluate LSH-DBSCAN by measuring computational efficiency and cluster misalign-
ment, which we specify below.

* Computational efficiency: We measure efficiency in terms of the total number of distance
and hash computations performed by LSH-DBSCAN, compared against the number of dis-
tance computations in DBSCAN. This choice ensures that our experiments are independent
of implementation and hardware details. It also aligns with our theoretical analysis in Sec-
tion 3, which identifies distance and hash computations as the asymptotic bottleneck of
LSH-DBSCAN. For completeness, raw runtime results are included in Appendix B.1.

* Misalignment: While LSH-DBSCAN is guaranteed to approximate the output of
DBSCAN (Definition 2.3), we introduce a more interpretable notion of cluster misalign-
ment. Informally, given two clusterings C and C’, their misalignment is the fraction of
misclassified points with respect to the optimal cluster matching. A precise definition of
misalignment is given in Appendix B.2.

Our implementation uses the E2LSH hash family (Datar et al., 2004). All experiments were run on
a machine with 12x AMD Ryzen 5 7640U core (4.9GHz), 16GB RAM, and kernel 6.16.7-arch1-1.

Datasets. We measure the computational efficiency and cluster misalignment of LSH-DBSCAN
on four datasets: MNIST, Fashion-MNIST, ALOI, and GloVe.
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Parameter settings. Aside from GloVe, we chose ¢ and m so that the output of exact DBSCAN is
roughly consistent with ground truth clusters. Since GloVe has no underlying clustering, we choose
the parameters to give a nontrivial clustering. In all tests, we set 6 = 0.5. Note that the correctness
guarantees of Theorem 3.1 hold even when the hash repetition parameter K in Algorithms 2 and 3
is set smaller than the theoretical value. In our experiments, scaling K by factors of 0.8 and 0.4 in
Algorithms 2 and 3, respectively, led to improved computation speedups.

Table 1: The DBSCAN parameters € and m with the resulting number of clusters.

3 m |C|
MNIST 1000 100 2
Fashion-MNIST 800 10 35
ALOI 7500 3 29
GloVe 5 4 6

Table 2: Computation speedup and misalignment of LSH-DBSCAN for different approxi-
mation factors c. Each cell shows comp. speedup / misalignment relative to DBSCAN.

MNIST Fashion-MNIST ALOI GloVe
¢ N = 60000, d =784 N =60000,d="784 N = 24000, d = 27648 N = 60000, d = 100
2.0 6.24 / <0.001 3.23/0.008 0.78 / <0.001 1.10/0.007
3.0 19.19/0.002 15.72/0.079 3.75/0.006 8.28 /0.044
4.0 20.58 /0.002 34.69/0.114 5.63/0.016 20.91/0.061
5.0 35.65/0.007 52.45/0.114 11.03/0.015 35.97/0.063
6.0 13.63/0.003 75.53/0.128 17.63/0.034 45.38 /0.055
7.0 20.33/0.005 82.25/0.115 9.09/0.53 61.20/0.069
8.0 27.59/0.009 103.55/0.123 11.55/0.031 78.36/0.082
9.0 36.51/0.013 122.18/0.132 15.10/0.041 67.34/0.059

Discussion of results. Across all benchmarks, both the computation speedup and misalignment
tend to grow with the approximation factor c. The speedup is smallest on ALOI, consistent with its
smaller dataset size (theoretically, our speedup ratio scales polynomially with n). On both ALOI
and MNIST, the variation in speedup and misalignment across different c is relatively mild, which
may be related to MNIST having a stable cluster of 1’s and ALOI having well-separated clusters. By
contrast, GloVe and Fashion-MNIST exhibit more pronounced speedups and larger misalignments,
perhaps owing to their weaker cluster structure under the given parameters.

Visualization of the algorithm. In Figure 1, we provide a visualization of how LSH-DBSCAN
clusters a subset of ALOI data with different approximation factors c. This visualization aligns with
the intuition that denser and more well-separated clusters tend to remain stable as ¢ increases.
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Figure 1: 2D PCA visualization of exact DBSCAN and LSH-DBSCAN on objects
{103, 31,410, 487,749,9} of ALOIL We use parameters ¢ = 7500 and m = 3 across approxi-
mation factors ¢ € {2,3,4,5}. Each plot includes the number of clusters and the misalignment
score relative to exact DBSCAN. The final plot illustrates the ground truth labeling.
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5 REPRODUCIBILITY STATEMENT

For our theoretical results in Section 3, we have included full proofs in Appendix A. To ensure
reproducibility of our experimental results, we have attached a . zip file (anonymized) of all our
experimental code as supplementary material. All random seeds have been fixed.

* For our runtime experiments, run
python experiments/{dataset}_runtime.py

for dataset € {mnist, fashionmnist,aloi,glove}.

¢ For our ALOI visualization, run

python experiments/aloi_visualization.py

* For our PCA failure experiment (Appendix B.3), run

python experiments/pca_failure.py

10
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A OMITTED PROOFS IN SECTION 3

In this appendix, we provide the full proofs of our algorithmic guarantees (Theorems 3.1 and 3.2)
and our lower bound (Theorem 3.3).

A.1 PROOF OF THEOREM 3.1

We first prove that Algorithm 2 satisfies the desired runtime and approximation guarantee. We note
that a very similar subroutine was analyzed in Okkels et al. (2025).

Lemma A.1 (Lemma 4.4 of Okkels et al. (2025)). The expected running time of Algorithm 2 is

o ((Tdist + Thasn) - 7' t*m! = log(n) log(n/é)) .

Proof. We first bound the time spent computing hashes. For each p € P and ¢ € [T], we compute
the hash value h;(p) twice: once when building the hash tables By,,, ..., By, and once when
iterating over all buckets containing p. Since h; is the concatenation of K hash functions, the total
time spent doing hash computations is

O(Thash . TLKT)

We now consider the time spent computing distances. Consider the loop iteration corresponding to

a point p € P. To determine whether p should be added to C/o?e, the algorithm only needs to find
up to m distinct points at distance at most ce from p. So, the number of distance computations we
perform is at most the number of false positives: points in By, (p) U - - - U By, (p) at distance > ¢
from p.

Since H is (g/¢, €, p1, p2)-sensitive, it follows that any p’ € P with dist(p,p’) > ¢ will satisfy
Pr[h;(p) = h;(p') for some i € [T]] < TpX = Tm/n

Therefore, the expected number of false positives for a given p € P is at most O(T'm). We conclude
that the time spent computing distances is at most

O(Taist - Tnm).

Thus, the expected runtime of Algorithm 2 is at most:
O ((Tdist + Thash) . TKnm) =0 ((Tdist + Thash) : n1+/)m1—p IOg(n) IOg(’I'L/(S)) ’
where we used that m < n and K = O(logn). O

Lemma A.2 (Lemma 4.1 of Okkels et al. (2025)). Let Core be the set of points returned by Algo-
rithm 2. Let Core, ;. and Core. denote the set of core points in the (¢/c, m)- and (¢,m)-DBSCAN

clusterings of P, respectively. With probability at least 1 — 6 /2, we have Core, . C Core C Core,.

Proof. The second inclusion Core C Core, is deterministically true, since the algorithm only in-
cludes a point p in Core if it has found at least m distinct points within distance € of p.

It remains to prove the first inclusion Core, ;. C Core. Since H is (¢/c, €, p1, p2)-sensitive, we have
that for any pair of points p, p’ where dist(p, p’) < ¢/e,

)
Prlhi(p) # ha(p') forall i € [T1) < (1 = pf)" < exp (~Tpf) = 5.
nm
There are at most n points in Core, /.. For each such point, we include it in Core if we find at least
m of its neighbors. So, by a union bound over nm pairs, we include all of Core, . with probability

atleast 1 — §/2. O

We now prove that Algorithm 3 satisfies the desired runtime and approximation guarantees.
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Lemma A.3. The expected runtime of Algorithm 3 is O ((Tdist + Thash) - ' TP 1og(n/5)).

Proof. We first bound the time spend computing hashes. For each p € Core and i € [T], we
compute the hash value h;(p) at most twice: once when building the hash tables Bp,, ..., Bn,.,
and once more if p is ever dequeued from () (which can happen only once, since p is immediately
removed from all hash tables). Thus, letting N := |Core|, the time spent computing hashes is at

most
O(Thash - NKT).

We now bound the time spent computing distances. Each point p € P is enqueued to () at most
once, so the total number of distance computations d(u, v) where the distance is less than ¢ is at most
N. It remains to bound the number of false positive pairs (u,v): those that are at distance > ¢ but
are hashed together in some table By,,. Since H is (¢/c, &, p1,p2) sensitive, for any dist(u,v) > e,
we have

Pr[h;(u) = h;i(v) for some i € [T]] < TpX = T/N.
So, the expected number of false positive pairs is at most O(7T'N). We conclude that the total amount
of time spent computing distances is

O(Tgist - TN).

Lastly, we observe that given a point p € P and its hash values hq(p), . .., hr(p), removing p from
all hash tables Bp, , ..., By, can be supported in time O(NT log n) by storing each hash bucket as
a binary search tree. We conclude that the expected runtime of Algorithm 3 is at most:

O ((Tuist + Thash +1) - NKT) = O ((Tdist + Thast) - 01+ log(n) log(n/5)> .
Here, we use that N < n and K = O(logn). O

Lemma A4. Let C1,...,Cy be the clusters produced by Algorithm 3 using Core as the set of core

points. Define G. . and G as the graphs on Core where edges connect pairs of points at distance
less than € /c and ¢, respectively. Then, with probability at least 1 — § /2,

* any two points in the same connected component of G . are in the same cluster,

* and any two points in different connected components of G. are in different clusters.

Proof. The proof is analogous to that of Lemma A.2. We only add a point u to a cluster Cy if there
is an existing point in C; at distance < ¢ from u. Therefore, if two points are in the same cluster Cy,
then they must be in the same connected component of G, proving the second bullet point.

It remains to prove the first bullet point. Let N := |C§)r\e|. Since H is (¢/¢, €, p1, p2)-sensitive, it
follows that for any pair of points u, v € P where dist(u,v) < /¢,
0
Pr[h;(u) # hi(v) foralli € [T]] < (1 — pI)T <exp (—Tp{() =N

Now, take any spanning forest on G ., and observe that its connected components are identical to
those of G /.. By a union bound over all <N edges (u, v) in the spanning forest, the probability
that all pairs (u, v) share a hash bucket is at least 1 — 6 /2. Conditioned on this event, each connected
component of G /. will lie within a single cluster Cy, proving the first bullet point. O

Combining the above lemmas, we obtain the proof of our main theorem.

Theorem 3.1. Let P be an n-point dataset that is LSH-friendly with quality p. For any parameters
m<n,e>0,c>1,and§ > 0, there is an algorithm that runs in expected time

0] <(Tdist + Thash) : n1+pm1—p log(n) log(n/é))

and outputs a c-approximate (€, m)-DBSCAN clustering of P, with probability at least 1 — 0.

Proof of Theorem 3.1. The runtime guarantee follows from Lemmas A.1 and A.3. The approxima-
tion guarantee follows from Lemmas A.2 and A.4. [
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A.2 PROOF OF THEOREM 3.2
We begin with the following lemma regarding clustering intersections.

Lemma A.5. If a clustering is a refinement of both C and C', then it is a refinement of C N C'. If
either C or C' is a refinement of a clustering, then so is C N C'.

Proof. Suppose a clustering A is a refinement of C and C’. Then, any two points in the same cluster
of A must be in the same cluster of C and in the same cluster of C’. Thus, they are in the same
cluster of C N C’. Noise points of C or C’ must be noise points in A, so noise points of C N C’ must
also be noise points in A. So, A is a refinement of C N C’.

Now, suppose instead that C is a refinement of A. Any two points in the same cluster of
C NC' must be in the same cluster of C and thus also in the same cluster of .A. Any noise point of .4
must be a noise point of C and thus also a noise point of C N C’. O

We are now ready to prove our main theorem on LSH-HDBSCAN.

Theorem 3.2. Let P be an n-point dataset that is LSH-friendly with quality p and has aspect ratio
A. For any parameters m < n, ¢ > 1, and §,7 > 0, there is an algorithm that runs in expected time

O ((Tdist + Thash) - 2 7Pm! =P log(n) log(n/d) - log; A)

and outputs a ¢(1 + ~y)-approximate m-HDBSCAN hierarchy on P, with probability at least 1 — 6.

Proof. The main loop of Algorithm 4 runs O(log; . (A)) times, so the runtime bound follows
directly from Theorem 3.1 and the fact that the intersection of two clusterings can be computed in
O(n) time. Moreover, the output is a cluster hierarchy since it is given by successive intersections
of clusterings. All that remains to prove is the approximation guarantee.

By a union bound, with probability 1 — ¢, all calls to LSH-DBSCAN return a c-approximate
DBSCAN clustering; we condition on this event for the remainder of the proof.

Let £ > 0 be given, and for each r € (0, c0), let A, denote the exact (r, m)-DBSCAN clustering of
P. We first consider two trivial cases for e:

» If e < e, then we may set o(¢) = L: both A, and Cy, are equal to the empty clustering

* If & > €1, then we may set o(¢) = 1: both A, and C; are equal to the clustering { P} since

m<n

Finally, suppose € € [e1,,£1]. We define o(¢) to be the largest index ¢ € [L] for which ¢; < . By
construction, we have

e/(1+7)<eg<e.

We claim that C; is a ¢(1 + +)-approximate (e, m)-DBSCAN clustering. To see this, let /5; denote
the output of LSH-DBSCAN(P, ;, m, ¢, §/L). For the upper refinement, we have

Ci 2B XA, =2 A..
For the lower refinement, we use the fact that A, Je = B; for all j < 4, which implies
Ci=BiN--NBi) = A, e = Acje(14+)-
This completes the proof. O

A.3 PROOF OF THEOREM 3.3

Here, we prove our near-quadratic time conditional lower bound against DBSCAN by reducing from
the bichromatic closest pair problem.
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Definition A.1 (Approximate Bichromatic Closest Pair). Let (X,d) be a metric space and let
A, B C X be sets of size n. Let dyin (A4, B) denote the BCP distance, defined as
dmin (A4, B) = i d(a*,b").
A B)= )

For v > 0, the (1 + v)-approximate bichromatic closest pair problem (BCP) asks for a pair (a, b) €
A x B satisfying d(a,b) < (1 +7) - dmin(A4, B).

Rubinstein (2018) proved a near-quadratic time lower bound against any algorithm that computes a
(1 + 7)-approximation of the BCP distance.

Lemma A.6 (Theorem 4.1 of Rubinstein (2018)). Assuming SETH, for every o > 0, there exists
v > 0 such that the following holds. Given two sets A, B C {0, 1}0(10g "), each of size n, computing
a (1 + v)-approximation to dyin(A, B) under the Euclidean metric requires time Q(n?~%).

Lemma A.7. Let v € (0,1). Suppose there is an algorithm that, for any n-point set in a metric
space (X, d) with aspect ratio A, computes a (1 + v)-approximate (¢,2)-DBSCAN clustering in
time T'(n, A). Then, there exists an algorithm which computes a (1 + O(v))-approximation to the
BCP distance in (X, d) in time

0 ((T(n, A) +n)- k’gA) .

Proof. Let A be an algorithm for computing a (1 + )-approximate (2,e)-DBSCAN clustering.
Given size-n subsets A, B C X, we compute a (1 + -y)-approximation to the BCP distance
dmin(A, B) as follows.

1. Arbitrarily choose a pair (a,b) € A x B and seti = 0.
2. Repeat the following process:

(a) Compute &; :=d(a,b)/(1 + )"

(b) Run A to obtain C(*), a (1 + ~)-approximate (¢;, 2)-DBSCAN clustering of A U B.
(¢) If no cluster in C(*) contains both a point in A and a point in B, return ; - (1 4 7).
(d) Otherwise, increment ¢ <— ¢ + 1 and repeat.

Let n denote the output of the above algorithm. We will first show that 7 satisfies the desired
approximation guarantee. Observe that if £; > dpin(A, B) - (1 + ), then there is a pair (a*,b*) €
Ax B atdistance d(a*,b*) < &;/(14+). Therefore, any approximate (2, ;)-DBSCAN clustering of
AUB must place a* and b* in the same cluster. From this we conclude that 7 < dyin(A, B)-(1+7)%.

Next, observe that if &; < dpin, then in any (1++)-approximate (2, ;)-DBSCAN clustering of AUB,
no clusters contain both a point in A and a point in B. From this we conclude that 1 > dpin (A, B).
Combining the two observations, we have

n/dmin(A, B) € [1, (1 + 7)2}-
Therefore, 1 is a (1 + )2 = (1 + O(7))-approximation of dpi, (4, B).

To bound the runtime of this algorithm, observe that each iteration of Step 2 takes T'(n, A) time to
produce the clustering C(*) and O(n) time to determine whether any cluster in C®) contains a pair

in A x B. The number of iterations of step 2 is at most log;, A = O (%) . O
Theorem 3.3. Assuming SETH, for any o > 0, there exists v > 0 such that computing a (1 + ~)-
approximate DBSCAN clustering requires time 2(n?=<), even in the Euclidean space ROUogn) I

particular, computing the exact DBSCAN clustering requires time n?~°1),

Proof. Let a > 0. Combining Lemmas A.6 and A.7, there is a constant v > 0 such that the
following holds: under SETH, any algorithm for solving (1 4 +)-approximate DBSCAN on inputs
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in {0, 1}90°8") requires time

n27oz 9 )
Q — Q —a—0
’legA (n )7

since log A = O(loglogn). The theorem follows by a parameter change in . O

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 RUNTIME COMPARISON RESULTS

For completeness, we include raw runtime speedup results for our experiment in Section 4.

Table 3: Runtime speedup and cluster misalignment of LSH-DBSCAN for different ap-
proximation factors c. The first row contains runtimes of DBSCAN in seconds. All other
cells show time speedup / misalignment relative to the exact clustering.

MNIST Fashion-MNIST ALOI GloVe

¢ N = 60000, d =784 N =60000,d="784 N = 24000, d = 27648 N = 60000, d = 100
exact 22402.55s 13839.67s 9092.66s 11467.41s
2.0 15.83 /7 <0.001 5.45/0.008 0.34 / <0.001 1.04/0.007
3.0 26.88 /0.002 31.00/0.079 1.63/0.006 10.35/0.044
4.0 38.27/0.002 69.42/0.114 3.25/0.016 33.46/0.061
5.0 66.03 /0.007 83.45/0.114 5.94/0.015 39.48 /0.063
6.0 22.31/0.003 139.55/0.128 8.71/0.034 51.82/0.055
7.0 33.82/0.005 45.20/0.115 6.19/0.53 76.35/0.069
8.0 47.36 /0.009 158.64 /0.123 7.66/0.031 49.84 /0.082
9.0 64.02/0.013 204.14/0.132 9.75/0.041 50.80/0.059

B.2 FORMAL NOTION OF MISALIGNMENT

Here, we formalize our notion of misalignment between clusterings, which captures the fraction of
misclassified points.

Definition B.1. LetC = {C4,...,C}} be a clustering of a set S. For p € S, define C(p) = i where
p € C;, and C(p) = 0 if no such ¢ exists.

Definition B.2 (Misalignment). Given two clusterings C = {C1,...,Cx} and C' = {C1,...,C},}
of a set S, the misalignment of C’ and C is

min|{p € §: C(p) # 7(C'(»))}]

where the minimum is over all permutations 7 : [max(k, k')] — [max(k, k')].

B.3 FAILURE OF DIMENSION REDUCTION

While our paper focused on subquadratic-time algorithms for approximating DBSCAN in high di-
mensions, significantly faster algorithms are known for low-dimensional settings, even for exact
DBSCAN (Gan & Tao, 2017; Wang et al., 2020). Therefore, it is common in practice to first apply
dimension reduction (e.g., PCA, UMAP) and then run a fast low-dimensional DBSCAN. However,
dimensionality reduction is known to distort neighborhood structures (Snoeck et al., 2025), suggest-
ing that such methods may not always yield accurate clusterings.

We illustrate this failure of dimension reduction with a simple dataset where PCA performs poorly.
The dataset (Figure 2) consists of n = 1000 images, each a 100 x 100 white grid containing a
randomly shifted square. Half of the images contain a black 50 x 50 square, and the other half
contain a gray 60 x 60 square. Because of their difference in size and brightness, running DBSCAN
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in the original ambient space (d = 10000) easily separates the two clusters. By contrast, a two-
dimensional PCA substantially mixes these two classes (Figure 3). In fact, we show that even a
12-dimensional PCA distorts the points enough to prevent DBSCAN from recovering the original
clustering.

(a) Black 50 x 50 square (b) Gray 60 x 60 square

Figure 2: Synthetic squares dataset. Consists of 1000 randomly shifted squares, 500 black and
500 gray.

Figure 3: Two-dimensional PCA projection of the synthetic squares dataset. The two classes (black
50 x 50 vs. gray 60 x 60 squares) mix heavily, showing that PCA fails to separate them.

Table 4: Exact DBSCAN misalignment (m = 3) on the synthetic squares dataset. Mis-
alignment is measured relative to the ground truth clustering.

Dataset € Range Max Cluster Size  Misalignment
Squares (original, m = 3) [3300, 5500] 500 0
Squares (12D PCA, m = 3) [600, 607] - > (0.486

< 600 277 > 0.446

> 607 754 > 0.254

Table 4 summarizes the misalignment of exact DBSCAN (with m = 3) on both the original dataset
and its 12-dimensional PCA projection. The misalignment bounds were computed as follows:

* Original dataset. For ¢ € {3300, 5500}, running (e, m)-DBSCAN recovers the true clus-
tering exactly, which implies that the misalignment is 0 for all € € {3300, 5500}.

* 12D PCA projection. For ¢ = 600 and ¢ = 607, running (g, m)-DBSCAN produces
clusterings with maximum cluster sizes 277 and 754, respectively. This implies that for
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all e < 600 and £ > 607, the maximum cluster size is either < 277 or > 754. Since the
ground truth clustering consists of two clusters of size 500, we have

- max cluster size\ max cluster size
misalignment > max {2 . (0.5 — ), — 0.5} ,

n n

which gives the indicated bounds. For e € [600,607], we iterated over all pairwise dis-
tances in this range and observed that the minimum misalignment is 0.486.

One popular alternative to PCA is UMAP (Mclnnes et al., 2018), a dimension reduction technique
that focuses on preserving local distances. However, few theoretical guarantees are known for
UMAP. Moreover, its time complexity is bottlenecked by an approximate nearest neighbor compu-
tation at every dataset point, and thus it inherits the same theoretical limitations as LSH-DBSCAN.
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