
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROVABLY FAST DENSITY-BASED CLUSTERING IN
HIGH DIMENSIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

DBSCAN is a celebrated algorithm for density-based clustering, but its quadratic
runtime hinders scalability to large datasets. In recent years, there has been con-
siderable interest in accelerating DBSCAN. However, existing methods either
impose additional structure on the data (e.g., low-dimensionality), or lack rigor-
ous runtime and approximation guarantees. Building on a recent work of Okkels
et al. (2025), we propose an LSH-based algorithm that achieves the first provably
subquadratic runtime for approximate DBSCAN on arbitrary high-dimensional
datasets. Empirically, our algorithm delivers a significant speedup over the stan-
dard DBSCAN on a variety of benchmarks while incurring only small error. We
also show that our approach naturally yields a subquadratic-time approximation of
HDBSCAN (a popular hierarchical variant). Complementing our algorithms, we
prove quadratic-time lower bounds for exact DBSCAN and HDBSCAN, showing
that subquadratic runtimes are only possible with approximation.

1 INTRODUCTION

This paper is on density-based clustering, a core problem in data science and machine learning.
While center-based clustering methods (e.g., optimizing the k-means objective) group points by
their proximity to a fixed set of centers, density-based clustering seeks to identify connected regions
of high density—potentially with complicated, non-convex shapes—separated by low-density areas.
Due to this flexibility, density-based clustering has found applications across a broad range of fields,
from genomic data analysis (Edla & Jana, 2012) to object detection in autonomous driving (Wagner
et al., 2015).

The most celebrated algorithm for density-based clustering is DBSCAN (Ester et al., 1996). Given
a dataset of n points in a metric space, DBSCAN proceeds in two main phases. First, it identifies a
set of core points, those whose ε-neighborhoods (for some fixed ε > 0) contain a specified number
of dataset points (this threshold is denoted MinPts1). Second, it constructs a graph on the set
of core points, where an edge is drawn between any two points that are within distance ε. The
connected components of this graph are returned as the clusters, while all non-core points are marked
as noise. A straightforward implementation of DBSCAN requires Θ(n2) distance computations in
each phase, which is often impractical given the size of modern datasets. This has led to considerable
interest over the past decade in designing algorithms which simulate DBSCAN in subquadratic time,
particularly for datasets in the Euclidean space Rd.

Gunawan (2013) showed that in the Euclidean plane (d = 2), DBSCAN can be simulated in
O(n log n) time. Interestingly, this near-linear runtime does not extend to any higher dimension.
Indeed, Gan & Tao (2017) proved that, assuming a widely held conjecture in computational ge-
ometry, any algorithm that simulates DBSCAN in Rd for d ≥ 3 requires at least Ω(n4/3) time.
They complemented this with a randomized algorithm achieving a runtime of O(n2− 2

⌈d/2⌉+1
+δ) for

arbitrarily small constants δ > 0, and in particular, a runtime of Õ(n4/3) for the case of d = 3.

To circumvent the polynomial runtime in Rd, Gan & Tao (2017) also introduced a notion of approx-
imating the output of DBSCAN. Informally, a c-approximation of DBSCAN (with parameters ε and
MinPts) is any clustering that is coarser than the DBSCAN clustering with parameter ε but finer

1The parameter MinPts is generally assumed to be a constant.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

than the DBSCAN clustering with parameter cε. They showed that for any constant dimension and
constant approximation factor c, one can produce a c-approximate clustering in expected time O(n).
However, the runtime of their algorithm is exponential in d, leaving open the following question:

Is there an efficient algorithm for c-approximate DBSCAN in high dimensions?

This question was recently studied by Okkels et al. (2025). They propose an approach based on
locality-sensitive hashing (Indyk & Motwani, 1998; Andoni & Razenshteyn, 2015), which gives a
c-approximation of DBSCAN in time Õ(dn1+1/(2c2−1)). However, their runtime analysis relies on
a critical assumption about the dataset: that the number of points at distance cε from any given point
is on the order of MinPts. Since it is common to set MinPts ≪ n, this assumption breaks down
in settings of densely-packed clusters. The main contribution of our paper is an LSH-based algo-
rithm that computes a c-approximate DBSCAN clustering in subquadratic time without requiring
any assumptions on the dataset.

A primary drawback of DBSCAN is that its density parameters are shared across all clusters. This
motivated HDBSCAN (Campello et al., 2013), a quadratic-time algorithm for computing hierar-
chical density-based clusterings. Okkels et al. (2025) posed the question of whether an LSH-based
approach could yield an efficient approximation of HDBSCAN. We resolve this question in the
affirmative by giving a simple reduction from approximate HDBSCAN to approximate DBSCAN.

Our Contributions. We introduce LSH-DBSCAN and LSH-HDBSCAN: faster algorithms for
high-dimensional c-approximate DBSCAN and HDBSCAN. We prove that our algorithms satisfy
the formal approximation guarantee and have a subquadratic runtime on all inputs.

The core point identification step of LSH-DBSCAN closely follows that of Okkels et al. (2025). We
first construct an LSH family for the input dataset and hash all the points. To determine if a point
is core, we compute its distance to all points in the same bucket. For the cluster formation step, we
perform an LSH-assisted breadth-first search where we only look for neighbors of a point within its
bucket. The main theoretical result of our paper is the following guarantee.

Theorem 1.1 (informal; see Theorem 3.1). Given a set of n points in Rd, LSH-DBSCAN returns a
c-approximate DBSCAN clustering with high probability and runs in time Õ(dn1+1/(2c2−1)+o(1)).

Our LSH-HDBSCAN algorithm works by making logarithmically many calls to LSH-DBSCAN with
decreasing values of ε. It performs an intersection operation at each step to construct the cluster
hierarchy. We prove the following guarantee.

Theorem 1.2 (informal; see Theorem 3.2). Given a set of n points in Rd, LSH-HDBSCAN returns a
c-approximate HDBSCAN hierarchy with high probability and runs in time Õ(dn1+1/(2c2−1)+o(1)).

In addition to our algorithms, we provide a reduction from the bichromatic closest pair problem
to approximate DBSCAN which gives the following lower bound assuming SETH (a widely held
conjecture in complexity theory). For any α > 0, there is a γ > 0 such that computing (1 + γ)-
approximate DBSCAN takes Ω(n2−α) time. This means any strongly subquadratic algorithm for
DBSCAN must produce an approximation.

We empirically analyze the performance of LSH-DBSCAN with several approximation factors c on
four benchmarks: MNIST (Deng, 2012), Fashion-MNIST (Xiao et al., 2017), ALOI (Geusebroek
et al., 2005), and GloVe (Pennington et al., 2014). For each benchmark, we measure computation
speedup and clustering accuracy relative to exact DBSCAN. To eliminate dependence on machine
and implementation details, we measure computation speedup by the number of heavy operations
(i.e., hash and distance computations). For completeness, we also include raw runtime speedup re-
sults in the appendix. We quantify clustering accuracy by the fraction of misclassified points relative
to exact DBSCAN. Predictably, both the speedup and misalignment increase with the approximation
factor c. Across all benchmarks, LSH-DBSCAN achieves at least a 10× computation speedup with
misalignment less than 0.1.

Due to the quadratic runtimes of previous high-dimensional DBSCAN algorithms, it is common
practice to perform dimension reduction on the dataset and run DBSCAN on the resulting low-
dimensional instance. In the appendix, we include a discussion of this approach with an instructive

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

example of when it fails, highlighting the importance of faster algorithms for DBSCAN in high
dimensions.

Related Work. Beyond Okkels et al. (2025), there has been prior work on using LSH to develop
practical approaches for DBSCAN (Wu et al., 2007; Shiqiu & Qingsheng, 2019), though these meth-
ods lack theoretical guarantees on approximation quality. Sampling-based methods (Jang & Jiang,
2019; Jiang et al., 2020) achieve strong empirical performance. However, their accuracy guaran-
tees hold only for low-dimensional data and rely on strong assumptions about the underlying cluster
structure. Other theoretical work on DBSCAN has focused on improvements in low-dimensional
settings, particularly through the use of parallelization (Wang et al., 2020).

Organization of the Paper. Section 2 contains preliminaries that are used throughout the paper.
In Section 3, we present our algorithms LSH-DBSCAN and LSH-HDBSCAN and state our main
theoretical results (proofs deferred to Appendix A). Section 4 contains our main experimental results
and discussion (additional details in Appendix B).

2 PRELIMINARIES

Throughout this paper, we will let P denote a dataset of size n with a metric d. We will use ∆ to
denote the aspect ratio of P (the ratio between the the maximum and minimum distance). We will
also use the shorthand m to denote the MinPts parameter of DBSCAN and HDBSCAN.

We use the term clustering to refer to a partition of P where some points may be designated as noise,
i.e. a collection of disjoint clusters together with a (possibly empty) set of noise points.

2.1 PRELIMINARIES ON DBSCAN

We start by defining the DBSCAN algorithm (Ester et al., 1996).

Definition 2.1 (DBSCAN). Given a neighborhood radius ε > 0 and size threshold m ∈ N, the
(ε,m)-DBSCAN clustering of P is defined as the output of DBSCAN, the following deterministic
algorithm:

1. Core point identification. For each p ∈ P , define its ε-neighborhood as Nε(p), the set of
points p′ for which d(p′, p) ≤ ε. A point p ∈ P is called a core point if |Nε(p)| ≥ m.

Let Core(P) ⊆ P denote the set of all core points. All non-core points are labeled as noise.

2. Cluster formation. Construct Gε = (Core(P), E), where (p, p′) ∈ E if and only if
p′ ∈ Nε(p). Return the clustering given by the connected components of Gε.

The original DBSCAN algorithm also identifies border points: non-core points within distance ε of
a core point. Definition 2.1, sometimes referred to as DBSCAN∗ (Campello et al., 2013), omits this
step for simplicity. All results in this paper easily extend to the original DBSCAN definition.

Following Gan & Tao (2017), we define a notion of approximating the output of DBSCAN.

Definition 2.2 (Refinement). Let S be a set and let C, C′ be two clusterings of S. We say that C is a
refinement of C′, denoted C ⪯ C′, if every cluster in C is a subset of a cluster in C′.

Definition 2.3 (Approximate DBSCAN, Gan & Tao (2017)). Let ε > 0 and m ∈ N be parame-
ters. Given an approximation factor c ≥ 1, the c-approximate (ε,m)-DBSCAN problem asks for a
clustering C of P satisfying the following properties:

• C is a refinement of the (ε,m)-DBSCAN clustering of P .

• The (ε/c,m)-DBSCAN clustering of P is a refinement of C.

This notion of approximation is informally referred to as a “sandwiching” condition: the output
clustering C lies between coarser and finer DBSCAN clusterings. We note that the original definition

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

of Gan & Tao (2017) sandwiches the clustering in the interval [ε, cε] as opposed to [ε/c, ε]. These are
equivalent under a change of variables. We use our definition since the output of our approximation
algorithm is intuitively (and empirically) closer to the coarser clustering.

2.2 PRELIMINARIES ON HDBSCAN

We now define the HDBSCAN algorithm (Campello et al., 2013), which is a hierarchical extension
of DBSCAN. We first define a notion of cluster hierarchy, which is the output format of HDBSCAN.

Definition 2.4. A cluster hierarchy on a set S is a sequence T = (C1, . . . , CL), where each Ci is a
clustering of S, and

C1 ⪯ · · · ⪯ CL.

Definition 2.5 (HDBSCAN). Let P be a dataset with a metric d. Given a parameter m ∈ N, the
m-HDBSCAN hierarchy on P is defined to be the output of HDBSCAN, the following deterministic
algorithm:

1. Core radius computation. For p ∈ P , define ε(p) := inf{ε ∈ R : |Nε(p)| ≥ m}.

2. Mutual reachability. For p, p′ ∈ P , define dmr(p, p
′) := max{d(p, p′), ε(p), ε(p′)}

3. Tree formation. Compute an MST of the graph on P with edge weights given by dmr.

4. Cluster hierarchy formation. Let ε1 < · · · < εL be the sorted list of all pairwise distances
{d(p, p′) : p, p′ ∈ P}. For each i ∈ [L], compute the subgraph of the MST consisting of
edges with weight at most εi, and define Ci as the clustering of P given by the connected
components of this subgraph. Mark any point p with ε(p) > εi as noise. Return the
sequence {(Ci, εi) : i ∈ [L]}.

Remark 2.1 (Proposition 1 of Campello et al. (2013)). In the m-HDBSCAN hierarchy on P , the
sequence (C1, . . . , CL) forms a cluster hierarchy, where Ci is the (εi,m)-DBSCAN clustering of P .

Remark 2.1 motivates the following definition of approximate HDBSCAN (de Berg et al., 2017).

Definition 2.6 (Approximate HDBSCAN). For m ∈ N and c ≥ 1, a cluster hierarchy T =
(C1, . . . , CL) on P is a c-approximate m-HDBSCAN hierarchy if there exists a mapping

σ : (0,∞)→ [L]

such that, for every ε > 0, Cσ(ε) is a c-approximate (ε,m)-DBSCAN clustering of P .

2.3 PRELIMINARIES ON LOCALITY-SENSITIVE HASHING

Here, we define the notion of locality-sensitive hashing, or LSH.

Definition 2.7 (LSH family, Indyk & Motwani (1998)). Let (X, d) be a metric space, and let r > 0,
c ≥ 1, and p1, p2 ∈ [0, 1] be constants. An (r, cr, p1, p2)-sensitive hash family H is a distribution
over hash functions h : X → R such that for any p, q ∈ X , one has:

• d(p, q) ≤ r =⇒ Prh∼H[h(p) = h(q)] ≥ p1.

• d(p, q) ≥ cr =⇒ Prh∼H[h(p) = h(q)] ≤ p2.

For an integer t ∈ N, we useHt to denote the concatenation of t independent functions fromH.

Definition 2.8 (LSH-friendly metric space). We say that a metric space is LSH-friendly with quality
ρ if there exist parameters p1, p2 ∈ [0, 1] such that, for every r > 0 and c ≥ 1, the space admits an
(r, cr, p1, p2)-sensitive hash family whose quality parameter is ρ(c) = log(1/p1)/ log(1/p2).

Fact 2.1 (Andoni & Razenshteyn (2015)). The Euclidean space Rd is LSH-friendly with quality
parameter ρ(c) = 1/(2c2 − 1) + o(1).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3 FAST ALGORITHMS FOR DBSCAN AND HDBSCAN

In this section, we present subquadratic-time algorithms for approximate DBSCAN and HDBSCAN
on arbitrary high-dimensional datasets.

Given a dataset P , let Tdist denote the time to compute a distance between two points in P . For a
given LSH family on P , let Thash denote the time to compute a hash value.

Theorem 3.1. Let P be an n-point dataset that is LSH-friendly with quality ρ. For any parameters
m ≤ n, ε > 0, c ≥ 1, and δ > 0, there is an algorithm that runs in expected time

O
(
(Tdist + Thash) · n1+ρm1−ρ log(n) log(n/δ)

)
and outputs a c-approximate (ε,m)-DBSCAN clustering of P , with probability at least 1− δ.

In particular, for Euclidean datasets P ⊂ Rd and constant values2 of m, Theorem 3.1 yields an
algorithm that computes a c-approximate DBSCAN clustering in time Õ(dn1+1/(2c2−1)+o(1)).

The hierarchical variant (LSH-HDBSCAN) works by making a logarithmic number of calls to
LSH-DBSCAN and therefore inherits the same runtime guarantees up to a logarithmic factor.

Theorem 3.2. Let P be an n-point dataset that is LSH-friendly with quality ρ and has aspect ratio
∆. For any parameters m ≤ n, c ≥ 1, and δ, γ > 0, there is an algorithm that runs in expected time

O
(
(Tdist + Thash) · n1+ρm1−ρ log(n) log(n/δ) · log1+γ ∆

)
and outputs a c(1 + γ)-approximate m-HDBSCAN hierarchy on P , with probability at least 1− δ.

As above, for Euclidean datasets P ⊂ Rd and constant values of m, c, γ, Theorem 3.2 yields an algo-
rithm that computes a c(1 + γ)-approximate HDBSCAN hierarchy in time Õ(dn1+1/(2c2−1)+o(1)).

In the following subsections, we present our algorithms LSH-DBSCAN and LSH-HDBSCAN. The
proofs of Theorems 3.1 and 3.2 are deferred to Appendix A.

3.1 THE LSH-DBSCAN ALGORITHM

We present an algorithm for approximating DBSCAN via locality-sensitive hashing.

Algorithm overview. LSH-DBSCAN (Algorithm 1) follows the two-phase structure of DBSCAN.

1. Core point identification. As in Okkels et al. (2025), we use an LSH family to compute
a subset of all core points at radius ε that is guaranteed to contain all core points at radius
ε/c. This is handled by Algorithm 2.

2. Cluster formation. We perform an LSH-assisted breadth-first-search on the ε-
neighborhood graph, which ensures that core points within distance ε/c are placed in the
same connected component. This is handled by Algorithm 3.

We assume the existence of an (ε/c, ε, p1, p2)-sensitive hash familyH on P for constants p1, p2 and
quality ρ = log(1/p1)/ log(1/p2). For each hash function h ∈ H and point p ∈ P , we define the
hash bucket Bh(p) := {p′ ∈ P : h(p′) = h(p)}.
The analysis of LSH-DBSCAN (proof of Theorem 3.1) is deferred to Appendix A.1.

Algorithm 1 LSH-DBSCAN

Input: Points P ; density parameters (ε,m); approximation factor c; failure probability δ
Output: A clustering C1, . . . , Ck of P

1: Ĉore← COREPOINTIDENTIFICATION(P, ε,m, c, δ)

2: Return CLUSTERFORMATION(Ĉore, ε, c, δ)

2Prior works on fast DBSCAN (Gan & Tao, 2017; de Berg et al., 2017) assume that m is a constant.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 COREPOINTIDENTIFICATION(P, ε,m, c, δ)

Input: Points P ; density parameters (ε,m); approximation factor c; failure probability δ

Output: Set of (approximate) core points Ĉore
1: Ĉore← {}
2: Compute parameters K ← log(n/m)

log(1/p2)
, T ← p−K

1 log(2nm/δ)

3: Sample T independent hash functions h1, . . . ,hT fromHK

4: Build all hash tables Bh1
, . . . BhT

5: for each point p ∈ P do
6: Check if there are ≥m points in Bh1

(p) ∪ · · · ∪BhT
(p) that are within distance ε from p

7: If so, update Ĉore← Ĉore ∪ {p}
8: end for
9: Return the set Ĉore

Algorithm 3 CLUSTERFORMATION(Ĉore, ε, c, δ)

Input: Core points Ĉore; density parameter ε; approximation factor c; failure probability δ
Output: A clustering C1, . . . , Ck of P

1: Compute parameters K ← log(|Ĉore|)
log(1/p2)

, T ← p−K
1 log(2n/δ)

2: Sample T independent hash functions h1, . . . ,hT fromHK

3: Build all hash tables Bh1
, . . . BhT

4: Initialize ℓ← 1

5: while ∃p ∈ Ĉore \ (C1 ∪ · · · ∪ Cℓ−1) do
6: Initialize a queue Q← {p}
7: Remove p from each table Bh1

, . . . , BhT

8: Initialize a new cluster Cℓ ← {}
9: while |Q| > 0 do

10: Dequeue a point u from Q
11: Update Cℓ ← Cℓ ∪ {u}
12: for each point v in Bh1

(u) ∪ · · · ∪BhT
(u) do

13: If dist(u, v) ≤ ε, add v to Q
14: Remove v from each table Bh1 ∪ · · · ∪BhT

15: end for
16: end while
17: Increment ℓ← ℓ+ 1
18: end while
19: Return the clustering C1, . . . , Ck where k := ℓ− 1

3.2 THE LSH-HDBSCAN ALGORITHM

Here, we present an algorithm for computing an approximation to the output of HDBSCAN.

Algorithm overview. Our algorithm LSH-HDBSCAN (Algorithm 4) works by making a logarith-
mic number of calls to LSH-DBSCAN with geometrically scaling values of ε. This yields a sequence
of clusterings which guarantees the approximation condition of Definition 2.6. To ensure that our
output is a proper cluster hierarchy, we take successive intersections of these clusterings, a notion
we define below.

Definition 3.1 (Clustering intersection). Let C and C′ be two clusterings of a set S. We define C∩C′
as the clustering of S obtained by taking all nonempty intersections between a cluster in C and a
cluster in C′. The noise points of C ∩ C′ are given by the union of the noise points of C and C′.

The analysis of LSH-HDBSCAN (proof of Theorem 3.2) is deferred to Appendix A.2.

We note that finding Dmax exactly takes quadratic time, but it suffices to find a value in the range
[Dmax, 2Dmax], which can be done in linear time.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 4 LSH-HDBSCAN

Input: Points P ; density parameter m; approximation parameters c, γ; failure probability δ
Output: A cluster hierarchy T = (C1, . . . CL) on P with associated scales ε1, . . . , εL.

1: Let Dmax be the diameter of P and let ∆ be the aspect ratio
2: L = 1 + ⌈log1+γ(∆)⌉
3: for i in [L] do
4: εi ← Dmax · (1 + γ)1−i

5: Ci ← Ci−1 ∩ LSH-DBSCAN(P, εi,m, c, δ/L)
6: end for
7: Return {(Ci, εi) : i ∈ [L]}.

3.3 A QUADRATIC LOWER BOUND

The runtimes of LSH-DBSCAN and LSH-HDBSCAN approach Õ(n2) as the approximation factor
c tends to 1. We prove that this asymptotic behavior is unavoidable: assuming SETH (Impagliazzo
& Paturi, 2001), near-quadratic time is required for sufficiently fine approximations to DBSCAN,
even in Euclidean space. The proof is deferred to Appendix A.3.

Theorem 3.3. Assuming SETH, for any α > 0, there exists γ > 0 such that computing a (1 + γ)-
approximate DBSCAN clustering requires time Ω(n2−α), even in the Euclidean space RO(logn). In
particular, computing the exact DBSCAN clustering requires time n2−o(1).

The lower bound immediately extends to HDBSCAN.

Corollary 3.1. Assuming SETH, for any α > 0, there exists γ > 0 such that computing a (1 + γ)-
approximate HDBSCAN clustering requires time Ω(n2−α), even in the Euclidean space RO(logn).
In particular, computing the exact HDBSCAN hierarchy requires time n2−o(1).

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the computational efficiency of LSH-DBSCAN on several benchmarks.
Specifically, we analyze the tradeoff between computational speedup and cluster misalignment of
LSH-DBSCAN relative to standard DBSCAN across different approximation factors c. Additional
experiments and details are included in Appendix B.

Setup. We evaluate LSH-DBSCAN by measuring computational efficiency and cluster misalign-
ment, which we specify below.

• Computational efficiency: We measure efficiency in terms of the total number of distance
and hash computations performed by LSH-DBSCAN, compared against the number of dis-
tance computations in DBSCAN. This choice ensures that our experiments are independent
of implementation and hardware details. It also aligns with our theoretical analysis in Sec-
tion 3, which identifies distance and hash computations as the asymptotic bottleneck of
LSH-DBSCAN. For completeness, raw runtime results are included in Appendix B.1.

• Misalignment: While LSH-DBSCAN is guaranteed to approximate the output of
DBSCAN (Definition 2.3), we introduce a more interpretable notion of cluster misalign-
ment. Informally, given two clusterings C and C′, their misalignment is the fraction of
misclassified points with respect to the optimal cluster matching. A precise definition of
misalignment is given in Appendix B.2.

Our implementation uses the E2LSH hash family (Datar et al., 2004). All experiments were run on
a machine with 12x AMD Ryzen 5 7640U core (4.9GHz), 16GB RAM, and kernel 6.16.7-arch1-1.

Datasets. We measure the computational efficiency and cluster misalignment of LSH-DBSCAN
on four datasets: MNIST, Fashion-MNIST, ALOI, and GloVe.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Parameter settings. Aside from GloVe, we chose ε and m so that the output of exact DBSCAN is
roughly consistent with ground truth clusters. Since GloVe has no underlying clustering, we choose
the parameters to give a nontrivial clustering. In all tests, we set δ = 0.5. Note that the correctness
guarantees of Theorem 3.1 hold even when the hash repetition parameter K in Algorithms 2 and 3
is set smaller than the theoretical value. In our experiments, scaling K by factors of 0.8 and 0.4 in
Algorithms 2 and 3, respectively, led to improved computation speedups.

Table 1: The DBSCAN parameters ε and m with the resulting number of clusters.

ε m |C|
MNIST 1000 100 2
Fashion-MNIST 800 10 35
ALOI 7500 3 29
GloVe 5 4 6

Table 2: Computation speedup and misalignment of LSH-DBSCAN for different approxi-
mation factors c. Each cell shows comp. speedup / misalignment relative to DBSCAN.

c
MNIST Fashion-MNIST ALOI GloVe

N = 60000, d = 784 N = 60000, d = 784 N = 24000, d = 27648 N = 60000, d = 100

2.0 6.24 / ≤0.001 3.23 / 0.008 0.78 / ≤0.001 1.10 / 0.007
3.0 19.19 / 0.002 15.72 / 0.079 3.75 / 0.006 8.28 / 0.044
4.0 20.58 / 0.002 34.69 / 0.114 5.63 / 0.016 20.91 / 0.061
5.0 35.65 / 0.007 52.45 / 0.114 11.03 / 0.015 35.97 / 0.063
6.0 13.63 / 0.003 75.53 / 0.128 17.63 / 0.034 45.38 / 0.055
7.0 20.33 / 0.005 82.25 / 0.115 9.09 / 0.53 61.20 / 0.069
8.0 27.59 / 0.009 103.55 / 0.123 11.55 / 0.031 78.36 / 0.082
9.0 36.51 / 0.013 122.18 / 0.132 15.10 / 0.041 67.34 / 0.059

Discussion of results. Across all benchmarks, both the computation speedup and misalignment
tend to grow with the approximation factor c. The speedup is smallest on ALOI, consistent with its
smaller dataset size (theoretically, our speedup ratio scales polynomially with n). On both ALOI
and MNIST, the variation in speedup and misalignment across different c is relatively mild, which
may be related to MNIST having a stable cluster of 1’s and ALOI having well-separated clusters. By
contrast, GloVe and Fashion-MNIST exhibit more pronounced speedups and larger misalignments,
perhaps owing to their weaker cluster structure under the given parameters.

Visualization of the algorithm. In Figure 1, we provide a visualization of how LSH-DBSCAN
clusters a subset of ALOI data with different approximation factors c. This visualization aligns with
the intuition that denser and more well-separated clusters tend to remain stable as c increases.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Exact DBSCAN
(6 clusters)

LSH-DBSCAN with c = 2
(6 clusters, misalignment = 0.000)

LSH-DBSCAN with c = 3
(6 clusters, misalignment = 0.014)

LSH-DBSCAN with c = 4
(9 clusters, misalignment = 0.062)

LSH-DBSCAN with c = 5
(11 clusters, misalignment = 0.118)

True Labelings
(6 objects)

Figure 1: 2D PCA visualization of exact DBSCAN and LSH-DBSCAN on objects
{103, 31, 410, 487, 749, 9} of ALOI. We use parameters ε = 7500 and m = 3 across approxi-
mation factors c ∈ {2, 3, 4, 5}. Each plot includes the number of clusters and the misalignment
score relative to exact DBSCAN. The final plot illustrates the ground truth labeling.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 REPRODUCIBILITY STATEMENT

For our theoretical results in Section 3, we have included full proofs in Appendix A. To ensure
reproducibility of our experimental results, we have attached a .zip file (anonymized) of all our
experimental code as supplementary material. All random seeds have been fixed.

• For our runtime experiments, run

python experiments/{dataset} runtime.py

for dataset ∈ {mnist,fashion mnist,aloi,glove}.
• For our ALOI visualization, run

python experiments/aloi visualization.py

• For our PCA failure experiment (Appendix B.3), run

python experiments/pca failure.py

.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate near
neighbors. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Comput-
ing, STOC ’15, pp. 793–801, New York, NY, USA, 2015. Association for Computing Machin-
ery. ISBN 9781450335362. doi: 10.1145/2746539.2746553. URL https://doi.org/10.
1145/2746539.2746553.

Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering based on
hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi Motoda, and
Guandong Xu (eds.), Advances in Knowledge Discovery and Data Mining, pp. 160–172, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37456-2.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the Twentieth Annual Symposium on
Computational Geometry, SCG ’04, pp. 253–262, New York, NY, USA, 2004. Association for
Computing Machinery. ISBN 1581138857. doi: 10.1145/997817.997857. URL https://
doi.org/10.1145/997817.997857.

Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster db-scan and hdb-scan in low-
dimensional euclidean spaces, 2017. URL https://arxiv.org/abs/1702.08607.

Li Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. doi: 10.1109/MSP.2012.
2211477.

Damodar Reddy Edla and Prasanta K. Jana. A prototype-based modified dbscan for gene cluster-
ing. Procedia Technology, 6:485–492, 2012. ISSN 2212-0173. doi: https://doi.org/10.1016/
j.protcy.2012.10.058. URL https://www.sciencedirect.com/science/article/
pii/S2212017312006032. 2nd International Conference on Communication, Computing
amp; Security [ICCCS-2012].

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining, KDD’96, pp. 226–231. AAAI
Press, 1996.

Junhao Gan and Yufei Tao. On the hardness and approximation of euclidean dbscan. ACM Trans.
Database Syst., 42(3), July 2017. ISSN 0362-5915. doi: 10.1145/3083897. URL https:
//doi.org/10.1145/3083897.

Jan-Mark Geusebroek, Gertjan Burghouts, and Arnold Smeulders. The amsterdam library of object
images. International Journal of Computer Vision, 61:103–112, 01 2005. doi: 10.1023/B%
3AVISI.0000042993.50813.60.

Ade Gunawan. A faster algorithm for dbscan. Master’s thesis, Technische University Eindhoven,
2013.

Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst. Sci.,
62(2):367–375, March 2001. ISSN 0022-0000. doi: 10.1006/jcss.2000.1727. URL https:
//doi.org/10.1006/jcss.2000.1727.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Comput-
ing, STOC ’98, pp. 604–613, New York, NY, USA, 1998. Association for Computing Machin-
ery. ISBN 0897919629. doi: 10.1145/276698.276876. URL https://doi.org/10.1145/
276698.276876.

Jennifer Jang and Heinrich Jiang. DBSCAN++: Towards fast and scalable density clustering. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp.
3019–3029. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
jang19a.html.

11

https://doi.org/10.1145/2746539.2746553
https://doi.org/10.1145/2746539.2746553
https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857
https://arxiv.org/abs/1702.08607
https://www.sciencedirect.com/science/article/pii/S2212017312006032
https://www.sciencedirect.com/science/article/pii/S2212017312006032
https://doi.org/10.1145/3083897
https://doi.org/10.1145/3083897
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://proceedings.mlr.press/v97/jang19a.html
https://proceedings.mlr.press/v97/jang19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Heinrich Jiang, Jennifer Jang, and Jakub Łacki. Faster dbscan via subsampled similarity queries.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
NIPS ’20, 2020. ISBN 9781713829546.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform manifold
approximation and projection. Journal of Open Source Software, 3(29):861, 2018. doi: 10.
21105/joss.00861. URL https://doi.org/10.21105/joss.00861.

Camilla Birch Okkels, Martin Aumüller, Viktor Bello Thomsen, and Arthur Zimek. High-
dimensional density-based clustering using locality-sensitive hashing. In EDBT 2025, pp. 694–
706, 2025. doi: 10.48786/EDBT.2025.56.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
2014. URL http://www.aclweb.org/anthology/D14-1162.

Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pp. 1260–1268, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355599. doi: 10.
1145/3188745.3188916. URL https://doi.org/10.1145/3188745.3188916.

Ye Shiqiu and Zhu Qingsheng. Dbscan clustering algorithm based on locality sensitive hashing.
Journal of Physics: Conference Series, 1314:012177, 10 2019. doi: 10.1088/1742-6596/1314/1/
012177.

Szymon Snoeck, Noah Bergam, and Nakul Verma. Compressibility barriers to neighborhood-
preserving data visualizations, 2025. URL https://arxiv.org/abs/2508.07119.

Thomas Wagner, Reinhard Feger, and Andreas Stelzer. Modification of dbscan and application to
range/doppler/doa measurements for pedestrian recognition with an automotive radar system. In
2015 European Radar Conference (EuRAD), pp. 269–272, 2015. doi: 10.1109/EuRAD.2015.
7346289.

Yiqiu Wang, Yan Gu, and Julian Shun. Theoretically-efficient and practical parallel dbscan. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data, 2020.

Yi-Pu Wu, Jin-Jiang Guo, and Xue-Jie Zhang. A linear dbscan algorithm based on lsh. pp. 2608 –
2614, 09 2007. ISBN 978-1-4244-0973-0. doi: 10.1109/ICMLC.2007.4370588.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. CoRR, abs/1708.07747, 2017. URL http://arxiv.org/
abs/1708.07747.

12

https://doi.org/10.21105/joss.00861
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/3188745.3188916
https://arxiv.org/abs/2508.07119
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A OMITTED PROOFS IN SECTION 3

In this appendix, we provide the full proofs of our algorithmic guarantees (Theorems 3.1 and 3.2)
and our lower bound (Theorem 3.3).

A.1 PROOF OF THEOREM 3.1

We first prove that Algorithm 2 satisfies the desired runtime and approximation guarantee. We note
that a very similar subroutine was analyzed in Okkels et al. (2025).

Lemma A.1 (Lemma 4.4 of Okkels et al. (2025)). The expected running time of Algorithm 2 is

O
(
(Tdist + Thash) · n1+ρm1−ρ log(n) log(n/δ)

)
.

Proof. We first bound the time spent computing hashes. For each p ∈ P and i ∈ [T], we compute
the hash value hi(p) twice: once when building the hash tables Bh1

, . . . , BhT
, and once when

iterating over all buckets containing p. Since hi is the concatenation of K hash functions, the total
time spent doing hash computations is

O(Thash · nKT).

We now consider the time spent computing distances. Consider the loop iteration corresponding to
a point p ∈ P . To determine whether p should be added to Ĉore, the algorithm only needs to find
up to m distinct points at distance at most cε from p. So, the number of distance computations we
perform is at most the number of false positives: points in Bh1(p) ∪ · · · ∪ BhT

(p) at distance > ε
from p.

SinceH is (ε/c, ε, p1, p2)-sensitive, it follows that any p′ ∈ P with dist(p, p′) ≥ ε will satisfy

Pr[hi(p) = hi(p
′) for some i ∈ [T]] ≤ TpK2 = Tm/n

Therefore, the expected number of false positives for a given p ∈ P is at most O(Tm). We conclude
that the time spent computing distances is at most

O(Tdist · Tnm).

Thus, the expected runtime of Algorithm 2 is at most:

O
(
(Tdist + Thash) · TKnm

)
= O

(
(Tdist + Thash) · n1+ρm1−ρ log(n) log(n/δ)

)
,

where we used that m ≤ n and K = O(log n).

Lemma A.2 (Lemma 4.1 of Okkels et al. (2025)). Let Ĉore be the set of points returned by Algo-
rithm 2. Let Coreε/c and Coreε denote the set of core points in the (ε/c,m)- and (ε,m)-DBSCAN

clusterings of P , respectively. With probability at least 1− δ/2, we have Coreε/c ⊆ Ĉore ⊆ Coreε.

Proof. The second inclusion Ĉore ⊆ Coreε is deterministically true, since the algorithm only in-
cludes a point p in Ĉore if it has found at least m distinct points within distance ε of p.

It remains to prove the first inclusion Coreε/c ⊆ Ĉore. SinceH is (ε/c, ε, p1, p2)-sensitive, we have
that for any pair of points p, p′ where dist(p, p′) ≤ ε/c,

Pr[hi(p) ̸= hi(p
′) for all i ∈ [T]] ≤ (1− pK1)T ≤ exp

(
−TpK1

)
=

δ

2nm
.

There are at most n points in Coreε/c. For each such point, we include it in Core if we find at least
m of its neighbors. So, by a union bound over nm pairs, we include all of Coreε/c with probability
at least 1− δ/2.

We now prove that Algorithm 3 satisfies the desired runtime and approximation guarantees.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Lemma A.3. The expected runtime of Algorithm 3 is O
(
(Tdist + Thash) · n1+ρ log(n/δ)

)
.

Proof. We first bound the time spend computing hashes. For each p ∈ Ĉore and i ∈ [T], we
compute the hash value hi(p) at most twice: once when building the hash tables Bh1 , . . . , BhT

,
and once more if p is ever dequeued from Q (which can happen only once, since p is immediately
removed from all hash tables). Thus, letting N := |Ĉore|, the time spent computing hashes is at
most

O(Thash ·NKT).

We now bound the time spent computing distances. Each point p ∈ P is enqueued to Q at most
once, so the total number of distance computations d(u, v) where the distance is less than ε is at most
N . It remains to bound the number of false positive pairs (u, v): those that are at distance > ε but
are hashed together in some table Bhi . Since H is (ε/c, ε, p1, p2) sensitive, for any dist(u, v) ≥ ε,
we have

Pr[hi(u) = hi(v) for some i ∈ [T]] ≤ TpK2 = T/N.

So, the expected number of false positive pairs is at most O(TN). We conclude that the total amount
of time spent computing distances is

O(Tdist · TN).

Lastly, we observe that given a point p ∈ P and its hash values h1(p), . . . ,hT (p), removing p from
all hash tables Bh1

, . . . , BhT
can be supported in time O(NT log n) by storing each hash bucket as

a binary search tree. We conclude that the expected runtime of Algorithm 3 is at most:

O
(
(Tdist + Thash + 1) ·NKT

)
= O

(
(Tdist + Thash) · n1+ρ log(n) log(n/δ)

)
.

Here, we use that N ≤ n and K = O(log n).

Lemma A.4. Let C1, . . . , Ck be the clusters produced by Algorithm 3 using Ĉore as the set of core
points. Define Gε/c and Gε as the graphs on Ĉore where edges connect pairs of points at distance
less than ε/c and ε, respectively. Then, with probability at least 1− δ/2,

• any two points in the same connected component of Gε/c are in the same cluster,

• and any two points in different connected components of Gε are in different clusters.

Proof. The proof is analogous to that of Lemma A.2. We only add a point u to a cluster Cℓ if there
is an existing point in Ci at distance ≤ ε from u. Therefore, if two points are in the same cluster Cℓ,
then they must be in the same connected component of Gε, proving the second bullet point.

It remains to prove the first bullet point. Let N := |Ĉore|. Since H is (ε/c, ε, p1, p2)-sensitive, it
follows that for any pair of points u, v ∈ P where dist(u, v) ≤ ε/c,

Pr[hi(u) ̸= hi(v) for all i ∈ [T]] ≤ (1− pK1)T ≤ exp
(
−TpK1

)
=

δ

2N
.

Now, take any spanning forest on Gε/c, and observe that its connected components are identical to
those of Gε/c. By a union bound over all ≤N edges (u, v) in the spanning forest, the probability
that all pairs (u, v) share a hash bucket is at least 1−δ/2. Conditioned on this event, each connected
component of Gε/c will lie within a single cluster Cℓ, proving the first bullet point.

Combining the above lemmas, we obtain the proof of our main theorem.

Theorem 3.1. Let P be an n-point dataset that is LSH-friendly with quality ρ. For any parameters
m ≤ n, ε > 0, c ≥ 1, and δ > 0, there is an algorithm that runs in expected time

O
(
(Tdist + Thash) · n1+ρm1−ρ log(n) log(n/δ)

)
and outputs a c-approximate (ε,m)-DBSCAN clustering of P , with probability at least 1− δ.

Proof of Theorem 3.1. The runtime guarantee follows from Lemmas A.1 and A.3. The approxima-
tion guarantee follows from Lemmas A.2 and A.4.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 PROOF OF THEOREM 3.2

We begin with the following lemma regarding clustering intersections.

Lemma A.5. If a clustering is a refinement of both C and C′, then it is a refinement of C ∩ C′. If
either C or C′ is a refinement of a clustering, then so is C ∩ C′.

Proof. Suppose a clustering A is a refinement of C and C′. Then, any two points in the same cluster
of A must be in the same cluster of C and in the same cluster of C′. Thus, they are in the same
cluster of C ∩ C′. Noise points of C or C′ must be noise points in A, so noise points of C ∩ C′ must
also be noise points in A. So, A is a refinement of C ∩ C′.

Now, suppose instead that C is a refinement of A. Any two points in the same cluster of
C ∩ C′ must be in the same cluster of C and thus also in the same cluster of A. Any noise point of A
must be a noise point of C and thus also a noise point of C ∩ C′.

We are now ready to prove our main theorem on LSH-HDBSCAN.

Theorem 3.2. Let P be an n-point dataset that is LSH-friendly with quality ρ and has aspect ratio
∆. For any parameters m ≤ n, c ≥ 1, and δ, γ > 0, there is an algorithm that runs in expected time

O
(
(Tdist + Thash) · n1+ρm1−ρ log(n) log(n/δ) · log1+γ ∆

)
and outputs a c(1 + γ)-approximate m-HDBSCAN hierarchy on P , with probability at least 1− δ.

Proof. The main loop of Algorithm 4 runs O(log1+γ(∆)) times, so the runtime bound follows
directly from Theorem 3.1 and the fact that the intersection of two clusterings can be computed in
O(n) time. Moreover, the output is a cluster hierarchy since it is given by successive intersections
of clusterings. All that remains to prove is the approximation guarantee.

By a union bound, with probability 1 − δ, all calls to LSH-DBSCAN return a c-approximate
DBSCAN clustering; we condition on this event for the remainder of the proof.

Let ε > 0 be given, and for each r ∈ (0,∞), let Ar denote the exact (r,m)-DBSCAN clustering of
P . We first consider two trivial cases for ε:

• If ε < εL, then we may set σ(ε) = L: both Aε and CL are equal to the empty clustering

• If ε > ε1, then we may set σ(ε) = 1: both Aε and C1 are equal to the clustering {P} since
m ≤ n

Finally, suppose ε ∈ [εL, ε1]. We define σ(ε) to be the largest index i ∈ [L] for which εi ≤ ε. By
construction, we have

ε/(1 + γ) ≤ εi ≤ ε.

We claim that Ci is a c(1 + γ)-approximate (ε,m)-DBSCAN clustering. To see this, let Bi denote
the output of LSH-DBSCAN(P, εi,m, c, δ/L). For the upper refinement, we have

Ci ⪯ Bi ⪯ Aεi ⪯ Aε.

For the lower refinement, we use the fact that Aεi/c ⪯ Bj for all j ≤ i, which implies

Ci = (B1 ∩ · · · ∩ Bi) ⪰ Aεi/c ⪰ Aε/c(1+γ).

This completes the proof.

A.3 PROOF OF THEOREM 3.3

Here, we prove our near-quadratic time conditional lower bound against DBSCAN by reducing from
the bichromatic closest pair problem.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Definition A.1 (Approximate Bichromatic Closest Pair). Let (X, d) be a metric space and let
A,B ⊂ X be sets of size n. Let dmin(A,B) denote the BCP distance, defined as

dmin(A,B) := min
(a∗,b∗)∈A×B

d(a∗, b∗).

For γ ≥ 0, the (1+ γ)-approximate bichromatic closest pair problem (BCP) asks for a pair (a, b) ∈
A×B satisfying d(a, b) ≤ (1 + γ) · dmin(A,B).

Rubinstein (2018) proved a near-quadratic time lower bound against any algorithm that computes a
(1 + γ)-approximation of the BCP distance.

Lemma A.6 (Theorem 4.1 of Rubinstein (2018)). Assuming SETH, for every α > 0, there exists
γ > 0 such that the following holds. Given two sets A,B ⊂ {0, 1}O(logn), each of size n, computing
a (1 + γ)-approximation to dmin(A,B) under the Euclidean metric requires time Ω(n2−α).

Lemma A.7. Let γ ∈ (0, 1). Suppose there is an algorithm that, for any n-point set in a metric
space (X, d) with aspect ratio ∆, computes a (1 + γ)-approximate (ε, 2)-DBSCAN clustering in
time T (n,∆). Then, there exists an algorithm which computes a (1 + O(γ))-approximation to the
BCP distance in (X, d) in time

O

(
(T (n,∆) + n) · log∆

γ

)
.

Proof. Let A be an algorithm for computing a (1 + γ)-approximate (2, ε)-DBSCAN clustering.
Given size-n subsets A,B ⊂ X , we compute a (1 + γ)-approximation to the BCP distance
dmin(A,B) as follows.

1. Arbitrarily choose a pair (a, b) ∈ A×B and set i = 0.

2. Repeat the following process:

(a) Compute εi := d(a, b)/(1 + γ)i.
(b) Run A to obtain C(i), a (1 + γ)-approximate (εi, 2)-DBSCAN clustering of A ∪B.
(c) If no cluster in C(i) contains both a point in A and a point in B, return εi · (1 + γ).
(d) Otherwise, increment i← i+ 1 and repeat.

Let η denote the output of the above algorithm. We will first show that η satisfies the desired
approximation guarantee. Observe that if εi ≥ dmin(A,B) · (1 + γ), then there is a pair (a∗, b∗) ∈
A×B at distance d(a∗, b∗) ≤ εi/(1+γ). Therefore, any approximate (2, εi)-DBSCAN clustering of
A∪B must place a∗ and b∗ in the same cluster. From this we conclude that η < dmin(A,B)·(1+γ)2.

Next, observe that if εi < dmin, then in any (1+γ)-approximate (2, εi)-DBSCAN clustering of A∪B,
no clusters contain both a point in A and a point in B. From this we conclude that η ≥ dmin(A,B).
Combining the two observations, we have

η/dmin(A,B) ∈ [1, (1 + γ)2].

Therefore, η is a (1 + γ)2 = (1 +O(γ))-approximation of dmin(A,B).

To bound the runtime of this algorithm, observe that each iteration of Step 2 takes T (n,∆) time to
produce the clustering C(i) and O(n) time to determine whether any cluster in C(i) contains a pair
in A×B. The number of iterations of step 2 is at most log1+γ ∆ = O

(
log∆
γ

)
.

Theorem 3.3. Assuming SETH, for any α > 0, there exists γ > 0 such that computing a (1 + γ)-
approximate DBSCAN clustering requires time Ω(n2−α), even in the Euclidean space RO(logn). In
particular, computing the exact DBSCAN clustering requires time n2−o(1).

Proof. Let α > 0. Combining Lemmas A.6 and A.7, there is a constant γ > 0 such that the
following holds: under SETH, any algorithm for solving (1 + γ)-approximate DBSCAN on inputs

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

in {0, 1}O(logn) requires time

Ω

(
n2−α

γ log∆

)
= Ω(n2−α−o(1)),

since log∆ = O(log log n). The theorem follows by a parameter change in γ.

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 RUNTIME COMPARISON RESULTS

For completeness, we include raw runtime speedup results for our experiment in Section 4.

Table 3: Runtime speedup and cluster misalignment of LSH-DBSCAN for different ap-
proximation factors c. The first row contains runtimes of DBSCAN in seconds. All other
cells show time speedup / misalignment relative to the exact clustering.

c
MNIST Fashion-MNIST ALOI GloVe

N = 60000, d = 784 N = 60000, d = 784 N = 24000, d = 27648 N = 60000, d = 100

exact 22402.55s 13839.67s 9092.66s 11467.41s
2.0 15.83 / ≤0.001 5.45 / 0.008 0.34 / ≤0.001 1.04 / 0.007
3.0 26.88 / 0.002 31.00 / 0.079 1.63 / 0.006 10.35 / 0.044
4.0 38.27 / 0.002 69.42 / 0.114 3.25 / 0.016 33.46 / 0.061
5.0 66.03 / 0.007 83.45 / 0.114 5.94 / 0.015 39.48 / 0.063
6.0 22.31 / 0.003 139.55 / 0.128 8.71 / 0.034 51.82 / 0.055
7.0 33.82 / 0.005 45.20 / 0.115 6.19 / 0.53 76.35 / 0.069
8.0 47.36 / 0.009 158.64 / 0.123 7.66 / 0.031 49.84 / 0.082
9.0 64.02 / 0.013 204.14 / 0.132 9.75 / 0.041 50.80 / 0.059

B.2 FORMAL NOTION OF MISALIGNMENT

Here, we formalize our notion of misalignment between clusterings, which captures the fraction of
misclassified points.

Definition B.1. Let C = {C1, . . . , Ck} be a clustering of a set S. For p ∈ S, define C(p) = i where
p ∈ Ci, and C(p) = 0 if no such i exists.

Definition B.2 (Misalignment). Given two clusterings C = {C1, . . . , Ck} and C′ = {C ′
1, . . . , C

′
k′}

of a set S, the misalignment of C′ and C is

min
π

∣∣{p ∈ S : C(p) ̸= π(C′(p))}
∣∣

where the minimum is over all permutations π : [max(k, k′)]→ [max(k, k′)].

B.3 FAILURE OF DIMENSION REDUCTION

While our paper focused on subquadratic-time algorithms for approximating DBSCAN in high di-
mensions, significantly faster algorithms are known for low-dimensional settings, even for exact
DBSCAN (Gan & Tao, 2017; Wang et al., 2020). Therefore, it is common in practice to first apply
dimension reduction (e.g., PCA, UMAP) and then run a fast low-dimensional DBSCAN. However,
dimensionality reduction is known to distort neighborhood structures (Snoeck et al., 2025), suggest-
ing that such methods may not always yield accurate clusterings.

We illustrate this failure of dimension reduction with a simple dataset where PCA performs poorly.
The dataset (Figure 2) consists of n = 1000 images, each a 100 × 100 white grid containing a
randomly shifted square. Half of the images contain a black 50 × 50 square, and the other half
contain a gray 60× 60 square. Because of their difference in size and brightness, running DBSCAN

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

in the original ambient space (d = 10000) easily separates the two clusters. By contrast, a two-
dimensional PCA substantially mixes these two classes (Figure 3). In fact, we show that even a
12-dimensional PCA distorts the points enough to prevent DBSCAN from recovering the original
clustering.

(a) Black 50× 50 square (b) Gray 60× 60 square

Figure 2: Synthetic squares dataset. Consists of 1000 randomly shifted squares, 500 black and
500 gray.

Figure 3: Two-dimensional PCA projection of the synthetic squares dataset. The two classes (black
50× 50 vs. gray 60× 60 squares) mix heavily, showing that PCA fails to separate them.

Table 4: Exact DBSCAN misalignment (m = 3) on the synthetic squares dataset. Mis-
alignment is measured relative to the ground truth clustering.

Dataset ε Range Max Cluster Size Misalignment

Squares (original, m = 3) [3300, 5500] 500 0

Squares (12D PCA, m = 3) [600, 607] – ≥ 0.486
≤ 600 277 ≥ 0.446
≥ 607 754 ≥ 0.254

Table 4 summarizes the misalignment of exact DBSCAN (with m = 3) on both the original dataset
and its 12-dimensional PCA projection. The misalignment bounds were computed as follows:

• Original dataset. For ε ∈ {3300, 5500}, running (ε,m)-DBSCAN recovers the true clus-
tering exactly, which implies that the misalignment is 0 for all ε ∈ {3300, 5500}.

• 12D PCA projection. For ε = 600 and ε = 607, running (ε,m)-DBSCAN produces
clusterings with maximum cluster sizes 277 and 754, respectively. This implies that for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

all ε ≤ 600 and ε ≥ 607, the maximum cluster size is either ≤ 277 or ≥ 754. Since the
ground truth clustering consists of two clusters of size 500, we have

misalignment ≥ max

{
2 ·
(
0.5− max cluster size

n

)
,

max cluster size
n

− 0.5

}
,

which gives the indicated bounds. For ε ∈ [600, 607], we iterated over all pairwise dis-
tances in this range and observed that the minimum misalignment is 0.486.

One popular alternative to PCA is UMAP (McInnes et al., 2018), a dimension reduction technique
that focuses on preserving local distances. However, few theoretical guarantees are known for
UMAP. Moreover, its time complexity is bottlenecked by an approximate nearest neighbor compu-
tation at every dataset point, and thus it inherits the same theoretical limitations as LSH-DBSCAN.

19

	Introduction
	Preliminaries
	Preliminaries on DBSCAN
	Preliminaries on HDBSCAN
	Preliminaries on Locality-Sensitive Hashing

	Fast Algorithms for DBSCAN and HDBSCAN
	The LSH-DBSCAN Algorithm
	The LSH-HDBSCAN Algorithm
	A Quadratic Lower Bound

	Experimental Evaluation
	Reproducibility Statement
	Omitted Proofs in Section 3
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	Additional Experimental Details
	Runtime Comparison Results
	Formal Notion of Misalignment
	Failure of Dimension Reduction

