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Abstract
We present Muse, a text-to-image Transformer
model that achieves state-of-the-art image genera-
tion performance while being significantly more
efficient than diffusion or autoregressive models.
Muse is trained on a masked modeling task in
discrete token space: given the text embedding
extracted from a pre-trained large language model
(LLM), Muse learns to predict randomly masked
image tokens. Compared to pixel-space diffusion
models, such as Imagen and DALL-E 2, Muse is
significantly more efficient due to the use of dis-
crete tokens and requires fewer sampling itera-
tions; compared to autoregressive models such as
Parti, Muse is more efficient due to the use of par-
allel decoding. The use of a pre-trained LLM en-
ables fine-grained language understanding, which
translates to high-fidelity image generation and
the understanding of visual concepts such as ob-
jects, their spatial relationships, pose, cardinality
etc. Our 900M parameter model achieves a new
SOTA on CC3M, with an FID score of 6.06. The
Muse 3B parameter model achieves an FID of
7.88 on zero-shot COCO evaluation, along with a
CLIP score of 0.32. Muse also directly enables a
number of image editing applications without the
need to fine-tune or invert the model: inpainting,
outpainting, and mask-free editing. More results
and videos demonstrating editing are available at
http://muse-icml.github.io

1. Introduction
Generative image models conditioned on text prompts have
taken an enormous leap in quality and flexibility in the
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last few years (Ramesh et al., 2022; Nichol et al., 2021;
Saharia et al., 2022; Yu et al., 2022b; Rombach et al., 2022;
Midjourney, 2022). This was enabled by a combination
of deep learning architecture innovations (Van Den Oord
et al., 2017; Vaswani et al., 2017); novel training paradigms
such as masked modeling for both language (Devlin et al.,
2018; Raffel et al., 2020) and vision tasks (He et al., 2022;
Chang et al., 2022); new families of generative models such
as diffusion (Ho et al., 2020; Rombach et al., 2022; Saharia
et al., 2022) and masking-based generation (Chang et al.,
2022); and finally, the availability of large scale image-text
paired datasets (Schuhmann et al., 2021).

In this work, we present a new model for text-to-image syn-
thesis using a masked image modeling approach (Chang
et al., 2022). Our image decoder architecture is conditioned
on embeddings from a pre-trained and frozen T5-XXL (Raf-
fel et al., 2020) large language model (LLM) encoder. In
agreement with Imagen (Saharia et al., 2022), we find that
conditioning on a pre-trained LLM is crucial for photore-
alistic, high quality image generation. Our models (except
for the VQGAN quantizer) are built on the Transformer
(Vaswani et al., 2017) architecture.

We have trained a sequence of Muse models, ranging in
size from 632M parameters to 3B parameters (for the image
decoder; the T5-XXL model has an additional 4.6B param-
eters). Each model consists of several sub-models (Figure
3): First, we have a pair of VQGAN “tokenizer” models
(Esser et al., 2021b), which can encode an input image to
a sequence of discrete tokens as well as decode a token
sequence back to an image. We use two VQGANs, one
for 256× 256 resolution (“low-res”) and another for either
512× 512 resolution or 1024× 1024 (“high-res”). Second,
we have a base masked image model, which contains the
bulk of our parameters. This model takes a sequence of
partially masked low-res tokens and predicts the marginal
distribution for each masked token, conditioned on the un-
masked tokens and a T5-XXL text embedding. Third, we
have a “superres” transformer model which translates (un-
masked) low-res tokens into high-res tokens, again condi-
tioned on T5-XXL text embeddings, a novel mechanism
for super-resolution. We explain our pipeline in detail in
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Two cats doing research.

Astronauts kicking a 
football in front of 
Eiffel tower.

A fluffy baby sloth with 
a knitted hat trying to 
figure out a laptop, 
close up.

A cake with four coloful 
candles in shape of M, 
U, S, and E.

A storefront with 
'Apollo' written on it, 
in front of Matterhorn 
Zermatt. 

A storefront with 'Muse' 
written on it, in front 
of Matterhorn Zermatt. 

A polar bear wearing a 
red t-shirt with 'deep 
learning' written on 
it.

A sheep in a wine glass. A car made of bread on a 
plaid table.

Figure 1. Muse text-to-image generation of 1024 × 1024 images. The corresponding caption is shown under each generated image,
exhibiting a variety of styles, captions and understanding. Each image was generated in 1.4s on a TPUv4 chip. Please zoom in to view.

Section 2.

Compared to Imagen (Saharia et al., 2022) or Dall-E2
(Ramesh et al., 2022) which are built on cascaded pixel-
space diffusion models, Muse is significantly more efficient
due to the use of a discrete latent space.Compared to Parti
(Yu et al., 2022b), a state-of-the-art autoregressive model,
Muse is more efficient due to the use of parallel decoding.
Based on comparisons on similar hardware (TPU-v4 chips),
we estimate that Muse is more than 10x faster at inference
time than either Imagen-3B or Parti-3B models and 2x faster
than Stable Diffusion v1.4 (Rombach et al., 2022) (see Sec-
tion 3.1). All these comparisons are when images of the
same size: either 256 × 256, 512 × 512 or 1024 × 1024.
Muse is faster than Stable Diffusion (Rombach et al., 2022),
in spite of both models working in the latent space of a
VQGAN. We believe that this is due to the use of a diffusion
model in Stable Diffusion v1.4 which requires a significantly
higher number of forward propoagations through the model
at inference time.

This efficiency of Muse, however, does not come at a loss
of generated image quality or semantic understanding of the
input text prompt. We evaluate our output on multiple cri-
teria, including CLIP score (Radford et al., 2021) and FID
(Heusel et al., 2017). The former is a measure of image-text
correspondence; and the latter a measure of image quality
and diversity. Our 3B parameter model achieves a CLIP
score of 0.32 and an FID score of 7.88 on the COCO (Lin
et al., 2014) zero-shot validation benchmark, which com-

pare favorably with that of other large-scale text-to-image
models (see Table 2). Our 632M(base)+268M(super-res)
parameter model achieves a state of the art FID score of
6.06 when trained and evaluated on the CC3M (Sharma
et al., 2018) dataset, which is significantly lower than all
other reported results in the literature (see Table 1). We
also evaluate our generations on the PartiPrompts (Yu et al.,
2022b) evaluation suite with human raters, who find that
Muse generates images better aligned with its text prompt
2.7x more often than Stable Diffusion v1.4 (Rombach et al.,
2022).

We believe that the high quality of Muse generations come
from two factors. Firstly, the masking approach we use is
fundamentally different from the diffusion denoising strat-
egy (Ho et al., 2020; Song et al., 2020), and recent work has
shown the benefit of similar masking strategies for image
generation compared to diffusion (e.g. see (Li et al., 2022),
Table 7). Secondly, the use of a strong pre-trained LLM,
T5-XXL, compared to SD which uses a much weaker LLM.
Furthermore, we believe that the use of token-based Trans-
formers as a unifying architecture leads to better text-image
alignment, compared to diffusion models where the image
space is a convolution U-Net (Ronneberger et al., 2015).
Thus we believe that the approach in Muse can lead to more
performant text-to-image models.

Muse generates images that reflect different parts of speech
in input captions, including nouns, verbs and adjectives.
Furthermore, we present evidence of multi-object under-
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A funny big inflatable 
yellow duck

On the ring of Saturn

Hot air balloons A futuristic Streamline 
Moderne building

Input Output

London skyline A wildflower bloom at 
Mountain Rainier

A woman wearing a dress A man wearing a blue 
t-shirt with “hello 
world” written on it 

NegPrompt: A man wearing
a t-shirt

A man wearing a christ-
mas sweater.

Figure 2. Examples of zero-shot text-guided 512× 512 image editing using Muse. We show examples of a number of editing applications
using the Muse text-to-image generative model, on real input images, without fine-tuning.

standing, such as compositionality and cardinality, as well
as image style understanding. See Figure 1 for a number
of these examples and our website http://muse-icml.
github.io for more examples. The mask-based training
of Muse lends itself to a number of zero-shot image edit-
ing capabilities. A number of these are shown in Figure
2, including zero-shot, text-guided inpainting, outpainting
and mask-free editing. More details are in Section 3. Our
contributions are:

1. A state-of-the-art model for text-to-image generation
which achieves excellent FID and CLIP scores.

2. Our model is significantly faster than comparable mod-
els due to the use of quantized image tokens and paral-
lel decoding.

3. Our architecture enables out-of-the-box, zero-shot edit-
ing capabilities including inpainting, outpainting, and
mask-free editing.

2. Model
Our model is built on a number of components. Here, we
provide an overview of each of those components in the
order of their training, while relegating many details of
the architecture and parameters to the Appendix. Figure 3
provides an overview of the model architecture.

2.1. Text Encoders

Similar to the findings in (Saharia et al., 2022), we find that
leveraging a pre-trained large language model (LLM) is ben-
eficial to high-quality image generation. The embeddings
extracted from the encoder of an LLM such as T5-XXL
(Raffel et al., 2020) carry rich information about objects
(nouns), actions (verbs), visual properties (adjectives), spa-
tial relationships (prepositions), and other properties such
as cardinality and composition. Our hypothesis is that the
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Figure 3. Muse Framework: We show the training pipeline for our model, with the T5-XXL pre-trained text encoder, base model and
super-resolution model depicted on the three rows. The text encoder generates a text embedding that is used for cross-attention with
image tokens for both base and super-res Transformer layers. The base model uses a VQ Tokenizer that is pre-trained on lower resolution
(256× 256) images and generates a 16× 16 latent space of tokens. This sequence is masked at a variable rate per sample and then the
cross-entropy loss learns to predict the masked image tokens. Once the base model is trained, the reconstructed lower-resolution tokens
and text tokens are passed into the super-res model that then learns to predict masked tokens at a higher resolution (512 or 1024).

Muse model learns to map these rich visual and semantic
concepts in the LLM embeddings to the generated images; it
has been shown in recent work (Merullo et al., 2022) that the
conceptual representations learned by LLM’s are roughly
linearly mappable to those learned by models trained on
vision tasks. We use a frozen T5-XXL encoder to encode
each input caption to a sequence of 4096 dimensional em-
beddings, which are linearly mapped to the hidden size of
our Transformers (base and super-res).

2.2. VQGAN Tokenization

A core component of our model is the use of discrete to-
kens generated by a VQGAN (Esser et al., 2021b). This
model consists of an encoder and an decoder, with a quan-
tization layer that maps an input image into a sequence
of tokens from a learned codebook. We build all our en-
coders from convolutional layers. Our base model decoder
is Transformer based, while super-res model decoders are
convolutional. The encoders have several downsampling
blocks to reduce the spatial dimension of the input, while the
decoders (for super-res models) have corresponding number
of upsampling blocks to map the latents back into original
image size. For the base model, the decoder consists of a
stack of Transformer layers which are finally mapped to
patch space. Given an image of size H ×W , the encoded
token is of size H/f × W/f , with downsampling ratio f . We
train three VQGAN models: two with downsampling ratio
f = 16 and the third with downsampling ratio f = 8. We
obtain tokens for our base model using the f = 16 VQGAN
model on 256×256 pixel images, thus resulting in tokens
with spatial size 16 × 16. We obtain the tokens for our

super-resolution model using the f = 8 VQGAN model on
512 × 512 images and using the second f = 16 VQGAN
model on 1024 × 1024 images; both the super-res tokens
have spatial size 64× 64. As mentioned in previous work
(Esser et al., 2021b), the resulting discrete tokens after en-
coding capture higher-level semantics of the image, while
ignoring low level noise. Furthermore, the discrete nature
of these tokens allows us to use a cross-entropy loss at the
output to predict masked tokens in the next stage.

2.3. Base Model

Our base model is a masked transformer (Vaswani et al.,
2017; Devlin et al., 2018), where inputs are the projected
T5XXL encoder embeddings and VQGAN image tokens.
We leave all the text embeddings unmasked and randomly
mask a varying fraction of image tokens (see Section 2.6)
and replace them with a special [MASK]token (Chang et al.,
2022). We then linearly map image tokens into embed-
dings of the required Transformer input/hidden size along
with learned 2D positional embeddings. Following previous
transformer architecture (Vaswani et al., 2017), we use sev-
eral transformer layers each including self-attention block,
cross-attention block, layer normalization and MLP blocks.
At the output layer, an MLP is used to convert each masked
image embedding to a set of logits (corresponding to the
VQGAN codebook size) and a cross-entropy loss is applied
with the ground truth token label as the target. At training,
the base model is trained to predict all masked tokens at
each step. During inference, mask prediction is performed
in an iterative manner which significantly increases quality
(Section 2.8).
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2.4. Super-Resolution Model

We found that directly predicting 512×512 or 1024×1024
resolution leads the model to focus on low-level details over
large-scale semantics. As a result we found it beneficial to
use a cascade of models: first a base model that generates a
16× 16 latent map (corresponding to a 256× 256 image),
followed by a super-resolution model that upsamples the
base latent map to a 64× 64 latent map (corresponding to
either 512 × 512 or 1024 × 1024 image). The super-res
models are trained after the base model has been trained.
Since our base model outputs tokens corresponding to a
16× 16 latent map, our super-resolution procedure learns to
“translate” the lower-resolution latent tokens to the higher-
resolution latent tokens, which are decoded by the higher-
resolution VQGAN into the final high-resolution image.
This “token translation” model is also trained with text
conditioning and cross-attention in an analogous manner
to the base model, as shown in Figure 6 in the Appendix,
and is a novel contribution of our work. We also show the
comparison of our token-based super-resolution to pixel-
based super-resolution in Figure 7.

2.5. Decoder Finetuning

To further improve our model’s ability to generate fine de-
tails, we increase the capacity of the VQGAN decoder by
the addition of more residual layers and channels while keep-
ing the encoder capacity fixed. We then finetune the new
decoder layers while keeping the VQGAN encoder weights,
codebook and transformers (i.e., base model and super reso-
lution model) frozen. This allows us to improve our visual
quality without re-training any of the other model compo-
nents (because the visual token “language” stays fixed). As
shown in Figure 8 of the Appendix, the finetuned decoder
can reconstruct more sharper details in the store front. We
also give details of the finetuned decoder architecture in the
Appendix.

2.6. Variable Masking Rate

Consistent with (Chang et al., 2022), we train our model
with a variable masking rate based on a cosine schedule.
In contrast with autoregressive approaches, which learn
conditional distributions P (xi|x<i) for some fixed ordering
of tokens, random masking with a variable masking ratio
allows our models to learn P (xi|xΛ) for arbitrary subsets Λ
of tokens. The motivation for variable masking is two-fold:
a powerful regularization mechanism to train the base and
super-res models to a higher quality; and enabling the model
to generalize to different masks at inference time for editing
applications. For the former, a high masking ratio works
well; for the latter we need varying masking ratios so that
small masks and large masks can be handled equally well.
To achieve this, we found that a distribution over a range

of masking ratios, with a relatively high mean of around
64% ratio, worked optimally. This is not only critical for
our parallel sampling scheme, but it also enables a number
of zero-shot, out-of-the-box editing capabilities, as shown
in Figure 2, Section 3.2 and through multiple examples on
the website.

2.7. Classifier Free Guidance

We employ classifier-free guidance (CFG) (Ho & Salimans,
2022) to improve our generation quality and our text-image
alignment. At training time, we remove text conditioning on
10% of samples chosen randomly (thus attention reduces to
image token self-attention). At inference time, we compute
a conditional logit `c and an unconditional logit `u for each
masked token. The final logits `g are formed by moving
away from the `u by an amount t, the guidance scale:

`g = (1 + t)`c − t`u (1)

Intuitively, CFG trades off diversity for fidelity. Different
from previous approaches, we reduce the hit to diversity by
linearly increasing the guidance scale t through the sam-
pling procedure. This allows earlier tokens to be sampled
more freely, with low or no guidance, but increases the in-
fluence of the conditioning prompt for the later tokens. We
also exploit this mechanism to enable negative prompting
(NegPrompt, 2022) by replacing the unconditional logit `u
with a logit conditioned on a “negative prompt”. This en-
courages the resulting image to have features associated
with the positive prompt `c and remove features associated
with the negative prompt `u.

2.8. Iterative Parallel Decoding

The critical component for our model’s inference time ef-
ficiency is the use of parallel decoding to predict multiple
output tokens in a single forward pass. The key assump-
tion underlying the effectiveness of the parallel decoding
is a Markovian property that many tokens are conditionally
independent given other tokens; we use the confidence of
the token distribution as a simple and effective proxy for
independence. Decoding is performed based on a cosine
schedule (Chang et al., 2022) that chooses a certain fixed
fraction of the highest confidence masked tokens that are to
be predicted at that step. These tokens are then set to un-
masked for the remainder of the steps and the set of masked
tokens is appropriately reduced. Using this procedure, we
are able to perform inference of 256 tokens using only 24
decoding steps in our base model and 4096 tokens using 8
decoding steps in our super-resolution model, as compared
to the 256 or 4096 decoding steps required for autoregressive
models (e.g. (Yu et al., 2022b)) and hundreds of steps for
diffusion models (e.g., (Rombach et al., 2022; Saharia et al.,
2022)). We note that recent methods including progressive
distillation (Salimans & Ho, 2022) and better ODE solvers
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Figure 4. Inference samples. We visualize the evolution of masked tokens over the sequence of steps for the base model (left) and the
super-resolution model (right). The super-res model, being conditioned on the low-res tokens, requires significantly fewer sampling steps
for convergence.

(Lu et al., 2022) have greatly reduced the sampling steps of
diffusion models, but they have not been widely validated in
large scale text-to-image generation. We leave the compari-
son to these faster methods in the future work, while noting
that similar distillation approaches are also a possibility for
our model. Figure 4 shows the evolution of samples over
the decoding steps for base and super-resolution models.

3. Results
We train a number of base Transformer models at differ-
ent parameter sizes, ranging from 632M to 3B parameters.
Each of these models is fed in the output embeddings from
a T5-XXL model, which is pre-trained and frozen and con-
sists of 4.6B parameters. Our largest base model of 3B
parameters consists of 48 Transformer layers with cross-
attention from text to image and self-attention among image
tokens. All base models share the same image tokenizer.
We use a CNN model with 19 ResNet blocks and a quan-
tized codebook of size 8192 for the tokenization. Larger
codebook sizes did not result in performance improvements.
The super-resolution model consists of 32 multi-axis Trans-
former layers (Zhao et al., 2021) with cross-attention from
concatenated text and image embedding to high resolution
image and self-attention among high resolution image to-
kens. This model translates a sequence of tokens from one
latent space to another: the first latent space being that of
the base model tokenizer, a latent space of 16× 16 tokens,
to that of a higher resolution tokenizer with 64× 64 tokens.
After token conversion, the decoder for the higher resolution
tokenizer is used to convert to the higher resolution image
space. Further details of configurations are provided in the
Appendix. In Table 3, we also ablated multi-axis Trans-
formers (Zhao et al., 2021) against SWIN (Liu et al., 2021),
finding that the former performed better.

We train on the Imagen dataset, consisting of 860M text-
image pairs (Saharia et al., 2022). Training is performed for
1M steps, with a batch size of 512 on 512-core TPU-v4 chips
(Jouppi et al., 2020). This takes about 1 week of training
time. We use the Adafactor optimizer (Shazeer & Stern,

2018) to save on memory consumption which allowed us
to fit a 3B parameter model without model parallelization.
We also avoid performing exponential moving averaging
(EMA) of model weights during training, again to save on
TPU memory. In order to reap the benefits of EMA, we
checkpoint every 5000 steps, then perform EMA offline on
the checkpointed weights with a decay factor of 0.7. These
averaged weights form the final base model weights.

3.1. Quantitative Performance

In Table 1 and Table 2, we show our performance against
other methods on the CC3M (Sharma et al., 2018) and
COCO (Lin et al., 2014) datasets as measured by Fréchet
Inception Distance (FID) (Heusel et al., 2017), which mea-
sures quality and diversity of samples, as well as CLIP
(Radford et al., 2021) score, which measures image/text
alignment. For the CC3M results, both Muse models were
trained on CC3M. The COCO results are zero-shot, using a
model trained on the same dataset as Imagen (Saharia et al.,
2022).

Our 632M model achieves SOTA results on CC3M, signifi-
cantly improving upon the state of the art in FID score, and
also achieving state of the art CLIP score. Our 3B model
achieves an FID score of 7.88 which is slightly better than
the score of 8.1 achieved by the Parti-3B model which has
a similar number of parameters. Our CLIP score of 0.32 is
higher than the CLIP score of 0.29 achieved by Imagen
(which is achieved when the FID is significantly higher
20). For the FID of 7.27, Imagen achieves a CLIP score of
around 0.27 (see Figure 4 in (Saharia et al., 2022)).

Our sampling algorithm (Section 2.8) has a number of hy-
perparameters, such as guidance scale, sampling tempera-
ture, whether or not to linearly increase guidance during
sampling, etc. We perform evaluation sweeps over these
parameters. We find subsets of sampling parameters that are
Pareto efficient, in the sense that we cannot improve FID
without hurting CLIP. This allows us to study the tradeoff
between diversity and image/text alignment, which we show
in Figure 9 (Appendix).
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Approach Model Type Params FID CLIP
VQGAN (Esser et al., 2021b) Autoregressive 600M 28.86 0.20
ImageBART (Esser et al., 2021a) Diffusion+Autogressive 2.8B 22.61 0.23
LDM-4 (Rombach et al., 2022) Diffusion 645M 17.01 0.24
RQ-Transformer (Lee et al., 2022a) Autoregressive 654M 12.33 0.26
Draft-and-revise (Lee et al., 2022b) Non-autoregressive 654M 9.65 0.26

Muse(base model) Non-autoregressive 632M 6.8 0.25
Muse(base + super-res) Non-autoregressive 632M + 268M 6.06 0.26

Table 1. Quantitative evaluation on CC3M (Sharma et al., 2018); all models are trained and evaluated on CC3M.

Approach Model Type FID-30K Zero-shot FID-30K

AttnGAN (Xu et al., 2017) GAN 35.49 -
DF-GAN (Tao et al., 2020) GAN 21.42 -
XMC-GAN (Zhang et al., 2021) GAN 9.33 -
LAFITE (Zhou et al., 2021) GAN 8.12 -
Make-A-Scene (Gafni et al., 2022) Autoregressive 7.55 -

DALL-E (Ramesh et al., 2021) Autoregressive - 17.89
CogView (Ding et al., 2021) Autoregressive - 27.1
LAFITE (Zhou et al., 2021) GAN - 26.94
VQ-Diffusion (Gu et al., 2022) Diffusion 13.86F 19.75
LDM (Rombach et al., 2022) Diffusion - 12.63
GLIDE (Nichol et al., 2021) Diffusion - 12.24
DALL-E 2 (Ramesh et al., 2022) Diffusion - 10.39
Imagen-3.4B (Saharia et al., 2022) Diffusion - 7.27
Parti-3B (Yu et al., 2022b) Autoregressive - 8.10
Parti-20B (Yu et al., 2022b) Autoregressive 3.22F 7.23

Muse-3B-512 Non-Autoregressive - 7.88
Muse-3B-1024 Non-Autoregressive - 7.39

Table 2. Quantitative evaluation of FID and CLIP score (where available) on MS-COCO (Lin et al., 2014) for 256× 256 image resolution
(after resizing the full-res image to this size, following Imagen (Saharia et al., 2022)). Muse achieves a CLIP score of 0.32 for 512× 512
and 0.324 for 1024× 1024, higher than the score of 0.27 reported in Imagen. Other papers in the table above did not report a CLIP score.
F indicates that the model is finetuned on the MS-COCO training set.

Architecture Loss at 1M FID CLIP
Swin (Liu et al., 2021) 5.59 8.64 0.29

Multi-axis (Zhao et al., 2021) 5.52 8.17 0.32

Table 3. Architecture ablation study of super-resolution model. In
Muse’s super-resolution model, the attention on 4096 tokens can be
computationally expensive. To address this issue, we experimented
with two architectures, the Swin transformer (Liu et al., 2021) and
Multi-axis transformer (Zhao et al., 2021), to incorporate local-
global attention. To compare their performance, we conducted
an ablation study using the same transformer hyperparameters
(32 layers, 1024 hidden dimension and 4096 MLP dimension).
Both networks were trained stably, but we observed that the multi-
axis transformer architecture showed better convergence and also
achieved better results in terms of FID and CLIP scores.

Human evaluation: Similar to previous works (Yu et al.,
2022b; Saharia et al., 2022), we perform side-by-side evalu-
ations: human raters are presented with a text prompt and

Figure 5. Percentage of prompts for which a human rater consensus
chose a model alignment preference. Contributions from specific
numbers of rater consensuses are shown in different colors.

two images, each generated by a different text-to-image
model. They are asked to assess prompt-image alignment
via the question, “Which image matches with the caption
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# Steps of Base Model # Steps of Super-Resolution Model
4 8 16 24* 32 64 128 256 4 8* 16 32

FID-15k 8.67 8.17 8.09 8.03 8.12 8.18 8.32 8.58 8.29 8.03 8.01 8.15
CLIP 0.28 0.32 0.32 0.32 0.32 0.31 0.31 0.30 0.30 0.32 0.33 0.33

Table 4. Ablations of inference steps. We investigate the effect of varying the number of inference steps on the performance of base
and super-resolution models while keeping the number of inference steps for one of the models fixed. The asterisk (*) represents the
default number of inference steps for either base or super-resolution models during the ablation study. The guidance scale and sampling
temperatures are sweeped and set for the best FID scores.

Approach Resolution Time
Imagen 256× 256 9.1s
Parti-3B 256× 256 6.4s
Muse-3B 256× 256 0.5s

LDM (250 steps) 512× 512 8.2s
LDM (50 steps) 512× 512 1.7s

Muse-3B 512× 512 1.3s
Imagen 1024× 1024 13.3s

Muse-3B 1024× 1024 1.4s
Table 5. Per-batch inference time for several models measured
on TPUv4. For Stable Diffusion/LDM, 250 steps were used to
measure the FID in Table 2 but 50 steps are often used in practice.

better?” Each image pair is anonymized and randomly or-
dered (left vs right). Raters have the option of choosing
either image or that they are indifferent1. Each (prompt,
image pair) triplet is assessed by five independent raters;
raters were completely anonymous to the Muse team. We
used PartiPrompts (Yu et al., 2022b), a collection of 1650
text prompts curated to measure model capabilities across
a variety of categories. We compared Muse (3B parame-
ters, 512× 512) to that of Stable Diffusion v1.4 (Rombach
et al., 2022) (SD), the text-to-image model most compara-
ble to Muse in terms of inference speed and resolution. For
each prompt, 16 image instances were generated, and the
one with the highest CLIP score (Radford et al., 2021) was
used. SD images were generated via the CompVis notebook
(CompVis, 2022). We required at least a 3 rater consen-
sus for results to be counted in favor of a particular model.
From this analysis, we found that Muse was chosen as better
aligned than Stable Diffusion for 70.6% of the prompts, SD
was chosen as better aligned than Muse for 25.4%, and no
rater consensus was chosen for 4%. These results are consis-
tent with Muse having significantly better caption matching
capability (∼ 2.7x). Figure 5 shows a breakdown of the
rater results for rater consensuses of 3, 4, and all 5 possible
votes. Prompts for which all 5 raters said Muse had better
alignment than Stable Diffusion are the larger contributor.

Inference speed: In Table 5, we compare the inference
time of Muse to several other popular models. We bench-
marked Parti-3B, Imagen, Stable Diffusion/LDM, and Muse-
3B on TPUv4 accelerators. For Stable Diffusion/LDM, we

1Choosing indifference makes sense when neither image is
aligned with the text prompt and helps reduce statistical noise in
the results.

report inferences times for 50 and 250 diffusion steps. 50
steps is typically used in practice, while 250 steps were
used to achieve the FID in Table 2. Muse is significantly
faster than competing diffusion or autoregressive models,
despite having comparable parameter counts. Compared to
Stable Diffusion/LDM, we have similar runtimes but with a
significantly larger model (nearly 3x the parameter count)
and much higher quality metrics. The speed advantage of
Muse over Imagen is due to the use of discrete tokens and
requiring fewer sampling iterations. The speed advantage of
Muse over Parti is due to the use of parallel decoding. The
speed advantage of Muse over Stable Diffusion is primarily
attributable to requiring fewer sampling iterations. Addi-
tional examples and evaluations are provided in Appendix B
and on our webpage.

3.2. Image Editing

By exploiting the property that our model can be condi-
tioned on arbitrary subsets of image tokens, we can use
the model out-of-the-box for a variety of image editing ap-
plications with no additional training or model fine-tuning.
We provide additional examples in Appendix B, and we
provide animations and videos of the editing process on our
webpage.

Text-guided Inpainting / outpainting: Our sampling pro-
cedure (Section 2.8) gives us text-guided inpainting and
outpainting for free: we convert an input image into a set
of tokens, mask tokens corresponding to a local region, and
then sample the masked tokens conditioned on unmasked
tokens and a text prompt. We integrate superresolution
through a multi-scale approach: Given an image of size
512×512 or 1024×1024, we first decimate it to 256×256
and convert both images to high- and low-res tokens. Then,
we mask out the appropriate regions for each set of tokens.
Next, we inpaint the low-res tokens using the parallel sam-
pling algorithm. Finally, we condition on these low-res
tokens to inpaint the high-res tokens using the same sam-
pling algorithm. We show examples of this in Figure 2 and
Figure 11 (Appendix).

Zero-shot, Mask-free editing: We can Muse to perform
zero-shot, mask-free editing of arbitrary input images. This
method works directly on the (tokenized) image and does
not require “inverting” the generative process, in contrast
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with recent zero-shot image editing techniques leveraging
generative models (Gal et al., 2022b; Patashnik et al., 2021;
Kim et al., 2022; Mokady et al., 2022). We first convert
a real input image into visual tokens. Next, we iteratively
mask and resample a random subset of tokens, conditioned
on text prompts. This is analogous to a Gibbs sampling
procedure, and has the effect of moving the tokenized image
into the typical set of the conditional distribution of images
given a text prompt. We perform the editing using the low-
resolution base model, then perform super-res on the final
output (also conditioned on the editing prompt). In the
examples (Figure 2, Figure 12, Figure 13) we resample 8%
of the tokens per iteration for 100 iterations, with a guidance
scale of 4. We also perform top-k (k = 3) sampling on the
token logits, which stabilizes the sampling process.

4. Related Work
Image Generation Models: VAEs (Van Den Oord et al.,
2017) and GANs have shown excellent image generation
performance with many variants proposed for both convolu-
tional and Transformer architectures e.g. (Goodfellow et al.,
2020; Esser et al., 2021b; Karras et al., 2019; Brock et al.,
2018; Donahue & Simonyan, 2019). Until recently, GANs
were considered state of the art. Diffusion models, based on
progressive denoising principles, are now able to synthesize
images and video at higher fidelity (Ho et al., 2020; Kingma
et al., 2021; Ho et al., 2022). Hybrid approaches combining
principles from multiple approaches have also shown excel-
lent performance (Chang et al., 2022; Lezama et al., 2022),
hinting at complementarities that can be exploited.

Image Tokenizers: Image tokenizers are useful for multi-
ple generative models due to the ability to move the bulk of
the computation from input (pixel) space to latents (Rom-
bach et al., 2022), or to enable more effective loss functions
such as classification instead of regression (Chang et al.,
2022; Lezama et al., 2022; Li et al., 2022). Varied tok-
enization approaches such as Discrete VAE’s (Rolfe, 2016),
VQVAE (Van Den Oord et al., 2017) and VQGAN (Esser
et al., 2021b) have been developed, with the latter being the
highest-performing as it combines perceptual and adversar-
ial losses. ViT-VQGAN (Yu et al., 2021) extends VQGAN
to the Transformer architecture and introduces techniques
like factorized codes and l2 normalized codes to improve
codebook usage. We adopt these techniques to learn our
tokenizer. We also found that CNN achitectures performed
better for our model, while noting that better performing
tokenization models do not always translate to a better per-
forming text-to-image model.

Large Language Models: Our work leverages T5XXL, a
pre-trained large language model (LLM) trained on multiple
text-to-text tasks (Raffel et al., 2020). LLMs (including
T5XXL, BERT (Devlin et al., 2018), and GPT (Brown et al.,

2020; Radford et al., 2019)) have been shown to learn pow-
erful embeddings, enabling few-shot transfer learning. We
leverage this capacity in our model. All modern LLMs are
trained on token prediction tasks (such as autoregressive
prediction or masked token prediction). The insights regard-
ing the power of token prediction are leveraged in our work:
we apply Transformers to predict randomly masked visual
tokens.

Text-Image Models: Leveraging paired text-image data is
an effective learning paradigm for representation learning
and generative models. CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) train models to align pairs of text
and image embeddings, showing excellent transfer and few-
shot capabilities. Imagen (Saharia et al., 2022) and Parti
(Yu et al., 2022b) use similar large scale text-image datasets
(Schuhmann et al., 2021; 2022) to learn how to predict im-
ages from text inputs, achieving excellent results on FID and
human evaluations. A key trick is the use of classifier-free
guidance (Ho & Salimans, 2022; Dhariwal & Nichol, 2021)
that trades off diversity and quality. Most relevant to our
method is VQ-diffusion (Gu et al., 2022; Tang et al., 2022),
which generalizes our noise process (viewing masking as a
discrete diffusion process (Austin et al., 2021)) to one where
tokens can be either masked or randomly corrupted.

Image Editing with Generative Models: GANs have been
extensively studied for image editing and manipulation ca-
pabilities (see (Xia et al., 2022) for a survey). A number
of techniques have been developed on diffusion models to
enable editing, personalization and inversion to token space
(Gal et al., 2022a; Meng et al., 2021; Ruiz et al., 2022;
Kawar et al., 2022; Brooks et al., 2022; Hertz et al., 2022;
Mokady et al., 2022). Dreambooth (Ruiz et al., 2022) and
Imagic (Kawar et al., 2022) involve fine-tuning of the gener-
ative models. ImagenEditor (Wang et al., 2022) frames the
editing task as text-guided image inpainting, and involves
user specified masks.

5. Discussion and Social Impact
The Muse model confirms the findings of (Saharia et al.,
2022) that frozen large pretrained language models serve
as powerful text encoders for text-to-image generation. We
also tried in our initial experiments to learn a language
model from scratch on the training data, but found that per-
formance was significantly worse than using a pre-trained
LLM, especially on long prompts and rare words. We also
show that non-diffusion, non-autoregressive models based
on the Transformer architecture can perform at par with
diffusion models while being significantly more efficient at
inference time. We achieve SOTA CLIP scores, showing
an excellent alignment beteween image and text. We also
show the flexibility of our approach with a number of image
editing applications. We have provided a detailed set of
social impact considerations in the Appendix (Section C).
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A. Additional Model Details
A.1. Base Model Configurations

Our base model configuration for our largest model of size 3B parameters is given in Table 6.

Configuration Value
Number of Transformer layers 48
Transformer Hidden Dimension 2048
Transformer MLP Dimension 8192
Optimizer AdaFactor (Shazeer & Stern, 2018)
Base learning rate 1e-4
Weight decay 0.045
Optimizer momentum β1=0.9, β2=0.96
Batch size 512
Learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
Warmup steps 5000
Training steps 1.5M

Table 6. Configuration and training hyperparameters for base model.

A.2. Super-Resolution Model Architecture

The super-resolution model architecture and the benefit of this architecture are show in Figure 6.
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A high contrast portrait photo 
of a fluffy hamster wearing an
orange beanie and sunglasses 
holding a sign that says 
"Let's PAINT!"

Text
A bear riding a bicycle, 
with a bird perched on 
the handlebars.

Figure 6. Super-resolution Model. On the left is shown the architecture of the super-resolution model. Low-resolution tokens are
passed into a series of self-attention Transformer layers; and the resulting output embeddings are concatenated with text embeddings
extracted from the conditioning text prompt. Following this, cross-attention is applied from these concatenated embeddings to the masked
high-resolution tokens; the loss learns to predict these masked tokens conditioned on the low-resolution and text tokens. On the right are
shown two examples of the improvement brought about by the super-resolution model.

Figure 7. Two images generated with the given text prompt (left) and a comparison of our token-based super-res (middle) to a pixel-based
super-res (we used Imagen’s (Saharia et al., 2022) super-res module, right). Our token-based super-res captures fine details of the musical
notes, the eyes of the cartoon rabbit etc. These details cannot be recovered with a purely pixel-based super-resolution mechanism.
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A.3. VQGAN Configurations

Configuration Value
Perceptual loss weight 0.05
Adversarial loss weight 0.1
Codebook size 8192
Optimizer Adam (Kingma & Ba, 2015)
Discriminator learning rate 1e-4
Generator learning rate 1e-4
Weight decay 1e-4
Optimizer momentum β1=0.9, β2=0.99
Batch size 256
Learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
Warmup steps (Goyal et al., 2017) 10000
Training steps 1M

Table 7. Configuration and training hyperparameters for VQGAN.

Encoder Decoder Reconstruction Generation
FID (step 1M) FID (step 100k)

CNN CNN 3.5 19.3
CNN ViT 3.8 17.9
ViT CNN 3.9 35.8
ViT ViT 3.3 22.3

Table 8. Ablation of VQGAN architectures.

VQGAN Architecture: Our VQGAN architecture and training is similar to the previous work (Esser et al., 2021b). It
consists of several residual blocks, downsample(encoder) and upsample (decoder) blocks. The main difference is that we
remove the non-local block to make the encoder and decoder fully convolutional to support different image sizes. In the
base VQGAN model, we apply 2 residual blocks in each resolution and the base channel dimension is 128. Following
ViT-VQGAN(Yu et al., 2022a), we also experimented with three variants of architectures by replacing ViT with the fully
convolutional encoder, decoder, or both. We conduct ablations on the VQGAN architectures and Table 8 shows a comparison
of different VQGAN architectures. We observe that while the VQGAN with VIT encoder and VIT decoder achieves the best
reconstruction FID, the VQGAN with CNN encoder and VIT decoder provides better tokens – the base model trained with
those tokens achieves a better generation FID score. We suspect this is probably because the choice of VQGAN architecture
also influences the receptive field each token represents, and as a result, changes the difficulty of the mask modeling task.
For the base VQGAN, we use CNN encoder and ViT decoder. For the finetuned decoder, we apply 4 residual blocks in each
resolution and we also make the base channel dimension to be 256.

Input Image VQGAN Reconstruction Finetuned Decoder

Figure 8. Visual example of the improvement from the fine-tuned decoder (Section 2.5). Please zoom in by at least 200% to see the
difference between the VQGAN reconstruction and the reconstruction with a finetuned decoder. We can see especially that fine details
such as the house number (bottom left), the storefront sign (middle) and the bars on the windows (right) are better preserved in the
finetuned decoder.
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Figure 9. CLIP vs. FID tradeoff curve. We perform sweeps of sampling parameters for a fixed model, then plot the Pareto front.

A.4. Super Resolution Configurations

In Table 9, we show the configuration for our super-resolution Transformer architecture that transforms tokens to output
higher resolutions. The same super-res architecture is used for either 512 × 512 or 1024 × 1024 resolution (although
different VQGAN’s are trained for each resolution).

Configuration Value
LowRes Encoder Transformer Layers 16
Number of Transformer layers 32
Transformer Hidden Dimension 1024
Transformer MLP Dimension 4096
Optimizer AdaFactor (Shazeer & Stern, 2018)
Base learning rate 1e-4
Weight decay 0.045
Optimizer momentum β1=0.9, β2=0.96
Batch size 512
Learning rate schedule cosine decay (Loshchilov & Hutter, 2017)
Warmup steps 5000
Training steps 1M

Table 9. Configuration and training hyperparameters for the Super-Resolution Model.

A.5. Human Evaluation

In addition to measuring alignment (see Section 3.1), other works (Yu et al., 2022b; Saharia et al., 2022) have also measured
image realism, often via a rater question similar to, “Which image is more realistic?”. However, we note that care must
be taken with examination of such results. Though it is not the intent of the question, a model that is completely mode
collapsed so that it generates the same sufficiently realistic image regardless of prompt will virtually always do better on this
question than a model that does take the prompt into account during image generation. We propose this type of question is
only applicable between models of similar alignment. Since Muse is significantly better aligned than Stable Diffusion, we
did not assess realism via human raters. We consider this topic an area of open research.
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B. Qualitative Performance and Comparisons to Other Models
Figure 10 qualitatively demonstrates the capabilities of Muse for text prompts with different properties. The top left of
Figure 10 shows examples that demonstrate a basic understanding of cardinality. For objects with non-unity cardinality,
instead of generating the same object pixels multiple times, Muse instead adds contextual variations to make the overall
image more realistic, e.g., elephant size and orientation, wine bottle wrapper color, and tennis ball rotation. The top right
of Fig, 10 demonstrates understanding of multi-object composition and relativeness. Instead of placing objects at random
locations, Muse generates images that preserve prepositional object relations in the text, e.g., on vs under, left vs right, etc.
The middle left of Figure 10 demonstrates its ability to generate images spanning many styles, both specific to a renowned
artist (e.g., Rembrandt) as well as general to a style as a whole (e.g., pop art and Chinese ink and wash). The middle right of
Figure 10 demonstrates the ability of Muse to render words and phrases. Text generation is fundamentally different than
generating most other objects. Instead of the model learning a mapping between an object name and its characteristics (e.g.,
that “elephant” maps to “large”, “gray”, and “peanut eating”), the virtual continuum of possible words and phrases demands
that the model learn differently. It must instead learn a hierarchical understanding between phrases, words, and letters. The
bottom left of Figure 10 demonstrates that Muse uses the entirety of a text prompt when rendering instead of focusing
exclusively on only a few salient words. Finally, Figure 14 shows comparisons between Muse, Dall-E 2 (Ramesh et al.,
2022), and Imagen (Saharia et al., 2022) for some select prompts, showing that Muse is at par with Imagen and qualitatively
better than Dall-E2 for many prompts.

However, as demonstrated in the bottom right of Figure 10, Muse is limited in its ability to generate images well aligned with
certain types of prompts. For prompts which indicate that long, multi-word phrases should be directly rendered, Muse has
a tendency to render those phrases incorrectly, often resulting in (unwanted) duplicated rendered words or rendering of
only a portion of the phrase. Additionally, prompts indicating high object cardinality tend to result in generated images
which do not correctly reflect that desired cardinality (e.g., rendering only 7 wine bottles when the prompt specified 10). In
general, the ability of Muse to render the correct cardinalities of objects decreases as the cardinality increases. Another
difficult prompt type for Muse is ones with multiple cardinalities (e.g., “four cats and a team of three dogs”). For such cases,
Muse has a tendency to get at least one cardinality incorrect in its rendering.
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Cardinality Composition

Three elephants standing on
top of each other.

Four wine bottles. A tiny football in front of
three yellow tennis balls.

Three small yellow boxes on
a large blue box.

A large present with a red rib-
bon to the left of a Christmas
tree.

Two baseballs to the left of
three tennis balls.

Style Text Rendering

Portrait of a well-dressed rac-
coon, oil painting in the style
of Rembrandt.

A portrait of a man wearing
sunglasses and a business suit,
painting in pop art style.

Portrait of a tiger wearing
a train conductor’s hat and
holding a skateboard that has
a yin-yang symbol on it. Chi-
nese ink and wash painting.

A t-shirt with Carpe Diem
written on it.

High-contrast image of the
word “WOMBAT” written
with thick colored graffiti let-
ters on a white wall with dra-
matic splashes of paint.

The saying “BE EXCEL-
LENT TO EACH OTHER”
written in a stained glass win-
dow.

Usage of Entire Prompt Failure Text Classes

An art gallery displaying
Monet paintings. The art
gallery is flooded. Robots are
going around the art gallery
using paddle boards.

A photograph of the inside
of a subway train. There
are raccoons sitting on the
seats. One of them is read-
ing a newspaper. The window
shows the city in the back-
ground.

Two cups of coffee, one with
latte art of yin yang symbol.
The other has latter art of a
heart.

A cartoon of a dog saying “I
see what you did there”.

Ten wine bottles. A basketball game between a
team of four cats and a team
of three dogs.

Figure 10. Examples demonstrating text-to-image capabilities of Muse for various text properties. Top left: cardinality; top right:
composition; middle left: style; middle right: text rendering; and bottom left: usage of the entire prompt. For all examples, 16 instances
per prompt were generated, and the one with the highest CLIP score (Radford et al., 2021) was chosen. Bottom right: examples of
generated image failure in Muse for various text properties such as direct rendering of long phrases, high cardinalities, and multiple
cardinalities.
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Original Masked San Francisco in
the background

New York City in
the background

Paris in the back-
ground

Original Masked A cabin in the
woods

An old, beat up
pickup truck.

A horse tied to a
post.

Figure 11. Examples of text-guided inpainting. The mask is shown in the second column of each row. This behavior arises directly from
the model with no fine-tuning.
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A bottle of Pinot
Grigio next to a
glass of white wine
and a cork.

A croissant next to
a latte with a flower
latte art.

A basket of or-
anges.

A brown rabbit. Bond Street.

Figure 12. Examples of zero-shot mask-free image editing, post superres. We see that the pose and overall structure of the image is
maintained while changing some specific aspects of the object based on the text prompt.

Input Iteration 25 Iteration 50 Iteration 75 Iteration 100

Figure 13. Intermediate iterations producing one of the edits in Figure 12 (pre-superres)
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Figure 14. Comparing the same prompts across DALL-E2 (Ramesh et al., 2022) (left), Imagen (Saharia et al., 2022) (middle) and
Muse (right).
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C. Social Impact
We recognize that generative models have a number of applications with varied potential for impact on human society.
Generative models (Saharia et al., 2022; Yu et al., 2022b; Rombach et al., 2022; Midjourney, 2022) hold significant
potential to augment human creativity (Hughes et al., 2021). However, it is well known that they can also be leveraged for
misinformation, harassment and various types of social and cultural biases (Franks & Waldman, 2018; Whittaker et al.,
2020; Srinivasan & Uchino, 2021; Steed & Caliskan, 2021). Due to these important considerations, we opt to not release
code or a public demo at this point in time.

Dataset biases are another important ethical consideration due to the requirement of large datasets that are mostly automati-
cally curated. Such datasets have various potentially problematic issues such as consent and subject awareness (Paullada
et al., 2021; Dulhanty, 2020; Scheuerman et al., 2021). Many of the commonly used datasets tend to reflect negative
social stereotypes and viewpoints (Prabhu & Birhane, 2020). Thus, it is quite feasible that training on such datasets simply
amplifies these biases and significant additional research is required on how to mitigate such biases, and generate datasets
that are free of them: this is a very important topic (Buolamwini & Gebru, 2018; Hendricks et al., 2018) that is out of the
scope of this paper.

Given the above considerations, we do not recommend the use of text-to-image generation models without attention to
the various use cases and an understanding of the potential for harm. We especially caution against using such models for
generation of people, humans and faces.
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