
ToRA: Tensor Adapter for Parameter Efficient Finetuning

Anonymous ACL submission

Abstract001

Recent studies show LoRA cannot reach the002
performance of full fine-tuning (FFT). This003
work shows weights and gradients during FT004
has a long-tail plus high-rank and LoRA’s dif-005
ficulties stem from its core low-rank matrix006
factoring assumption. ToRA is a LoRA style007
parallel adapter, using Tensor Train decomposi-008
tion to efficiently represent the high-rank ∆W .009
ToRA consistently outperforms LoRA. For ex-010
ample, rank-8 ToRA beats LoRA for all ranks011
up to 128. Sometimes by more than 10 points -012
80.32 vs. 69.56 for BoolQ and 48.82 vs. 34.20013
on MMLU with Llama-3.2-3B. ToRA adapts014
all self-attention blocks for all layers using the015
same budget as LoRA - no tuning nor compro-016
mise is needed. It also pairs well with popular017
quantization methods like QLoRA. ToRA is a018
strong contender as a drop-in replacement for019
LoRA.020

1 Introduction021

Recent rapid progress in using generative mod-022

els has relied on fine-tuning (FT) large pretrained023

models. A common pain point is fine-tuning024

these LLMs on commodity GPUs or even high-025

end GPUs. For example, LLama3-8B with fp16026

needs 16Gb to load. FT usually requires at least027

4 ∼ 12 times more memory to store activations,028

momentum etc. Practitioners resort to distilling,029

aggressive quantizing, dropping weights, or paging030

Alizadeh et al. (2023) which are time consuming031

and compromise quality and speed.032

PEFT Houlsby et al. (2019) exemplified by Hug-033

gingface’s adapters with a locked model, drastically034

reducing the required memory for FT. LoRA Hu035

et al. (2022) fine-tune with a set of low-rank ma-036

trix factors BA and is often the method of choice.037

It is most useful in the pure adapter form. The038

weights are not merged back into the LLM, thus039

avoiding catastrophic forgets and allowing many040

adapters to share one large model on the server.041

Additionally, adapter FT reduces the bandwidth 042

needed in distributed setups and supports highly 043

quantized models. Apple’s Foundation Model and 044

LoRA-Hub Huang et al. (2024) are good examples 045

of such a system with a few highly tuned LLMs 046

and many adapters nurturing an ecosystem. Instead 047

of merging back, inference latency can be resolved 048

by architectures like S-LoRA Sheng et al. (2024) 049

and fLoRA Wen and Chaudhuri (2024). 050

Our contributions: (1) ToRA uses a tensor decom- 051

position which is more powerful than the matrix 052

factorization in LoRA. (2) ToRA seamlessly inte- 053

grates with QLoRA. (3) ToRA uses a novel Kaim- 054

ing style initialization critical for a tensor based 055

adapter. (4) ToRA consistently outperforms LoRA 056

by as much as 10 points on various datasets. (5) 057

Our thorough empirical and theoretical analysis of 058

the heavy-tail/high-rank nature of FT can help to 059

guide future works on PEFT. 060

2 Preliminaries 061

First, the intrinsic dimension of FT is studied, fol- 062

lowed by evidence of high-rank and heavy-tail gra- 063

dients encountered in LLMs. Next drawing lessons 064

from Yang et al. (2018), we study the Softmax Bot- 065

tleneck in modern LLMs. Further evidence from 066

FT a compressed or quantized model sharpens the 067

focus on the high-rankness of gradient updates and 068

problems encountered that we must address. 069

2.1 LoRA’s Critical Weakness & Long-Tail 070

LoRA appeals to Aghajanyan et al. (2021) study 071

of the intrinsic dimensions of FT. This approach 072

was first proposed by Li et al. (2018) using a model 073

with a random projection P and a frozen model 074

parameterized as θ(D)
0 : 075

θ(D) = θ
(D)
0 + Pθ(d) (1) 076

where θ(d) is initialized to zero. The rank d is grad- 077

ually increased until the augmented model reaches 078

1

https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft


90% of the performance of FFT. ”Intrinsic dimen-079

sion” is defined as the d needed to capture 90%080

of the performance of the FFT θ(D). Aghajanyan081

et al. (2021) found the intrinsic dimension d to be082

in the hundreds to thousands and concluded θ(d)083

is “low-rank”. Putting things in perspective, a d084

in the hundreds might be low-rank relative to the085

number of weights in θ(D), which is in the billions086

or greater. Their finding contradicts LoRA’s notion087

of low-rank with r = 2, 4, 8.088

LoRA use a low-rank matrix factoring for ∆W :089

h = W0 +∆W, ∆W ≈ BA⊤ (2)090

W0 is locked and B ∈ Rd×r is set to 0. One can091

immediately see θ(D) = W0, θ(d) = BA⊤ and092

P = A which is random initialized. This “Noise093

& Zero” init is a characteristic of LoRA designed094

to match the gradients of FFT when no adapter is095

applied.096

Recent studies by Xia et al. (2024); Lialin et al.097

(2024) show LoRA cannot reach performance of098

full FT, especially for tasks like complex reasoning099

and continual learning Liu et al. (2024). The limi-100

tations of LoRA and how they stem from low-rank101

factoring assumptions will be analyzed.102

Softmax bottleneck Yang et al. (2018) consider103

language model as a finite set of pairs of con-104

text and its conditional next-token distribution105

L = {(c1, P ∗(X | c1)), · · · , (c1, P ∗(X | cN ))},106

where N is the number of possible contexts. The107

objective of a LM is to learn a distribution Pθ(x | c)108

parameterized by θ to match the true distribution109

P ∗(X|C). The contexts are encoded into vectors110

of dimension d, which is multiplied by the token111

embeddings (Inan et al., 2017) using dot-prod1 to112

obtain the logits (hT
c wx) to feed the Softmax to113

produce a categorical distribution over the next114

token -115

Pθ(x | c) = exphT
c wx∑

x′ exphT
c wx

(3)116

hc is the context vector/hidden state, and wx is a117

token embedding - i.e. LLM is a rank-d factoring118

of A (the full autoregressive matrix of logits). For119

example, the hidden dimension d for LLama-3.2-120

3B is 4096 and 2048 for 1b. Yang et al. (2018)121

shows this d is the critical factor limiting the ex-122

pressive power of LLMs and propose a mixture-of-123

softmax(MoS) to support much higher rank mod-124

eling. Their experiments show MoS reduced per-125

plexity up to d = 9981 and beyond.126

1context, token embedding have the same dimension d

Figure 1: Chen et al. (2018) Heavy-tail eigenvalues in
embeddings. Eigenvalues at rank 200 and beyond are
still significant (with permission).

Figure 2: Jaiswal et al. (2024) Singular Values for differ-
ent layers of LLama-7B. Yellow are the attention layers.
Red and purple are the input and output layers (with
permission).

Besides ”Softmax Bottleneck” Fig. (1) is a 127

plot of eigenvalues of embedding from Chen et al. 128

(2018) with the “elbow” occuring around rank-200 129

and has a heavy-tail. Which suggests one cannot 130

ignore higher eigenvalues without peril. Sainath 131

et al. (2013) had to use rank 128 and above to 132

compress the cross-entropy without compromising 133

results. All these findings support our thesis that 134

LLM matrices and gradients exhibit high ranks and 135

long tails, posing significant challenges for LoRA 136

but not for ToRA 137

2.2 Low-Rank Subspace and Gradients 138

Like ToRA, GaLore Zhao et al. (2024) and WeLore 139

Jaiswal et al. (2024) also appeal to heavy-tail of 140

singular values and found gradients have highly 141

variable ranks. Fig (2) from WeLore show the 142

heavy-tail distribution in various weight matrices 143

and the “elbow” being > 200. Even more pro- 144

nounced for attn.v_proj which is around 1000. 145

We will come back to attn.v_proj later. Q-BERT 146

Shen et al. (2020) found the top eigenvectors of 147

the Hessian of gradients varies a lot during training. 148

They all found the ranks to be at least in the few 149

hundreds consistent with findings of Aghajanyan 150

et al. (2021). 151

Gur-Ari et al. (2018) found gradient updates oc- 152

cur in a subspace matching the number of classes in 153

2



Figure 3: Badri and Shaji (2023) heavy-tail distribution
of residual gradient error. A kurtotic distribution is
needed - e.g. H-Laplacian (with permission)

a classifier and is used by LoRA to justify its factor-154

ing. However, the number of classes in LLM is very155

high, equal to the number of equivalence classes156

in the context window for an auto-regressive N -157

gram model Kneser (1995). ”Softmax Bottleneck”158

dissected LLM itself as a low-rank factoring of159

the super high-rank auto-regressive matrix A of160

logits and is estimated using softmax to yield a161

categorical distribution over semantic equivalence162

classes. One must keep this firmly in mind when163

designing a PEFT method.164

High-rank Gradients even if gradients are low-165

rank it does not mean their cumulative effect stays166

low-rank. Each update might and indeed can pull in167

highly variable directions. GaLore uses a projective168

gradient descent ∆W = P T
t GtQt to squeeze high-169

rank updates in a small core Gt. They use r =170

128..512 even with periodic merge backs. WeLore171

attempts to improve GaLore by classifying layers172

into low-rank (LRC) and non-LRC and sidestep the173

problem by not adapting the NLRCs. MoRA Jiang174

et al. (2024) employs a rank-256 square matrix175

with input and output projector to achieve high-176

rank updating. ReLoRA Lialin et al. (2024) found177

gradient updates are often high rank and propose to178

use several LoRA adapters to approximate it. All179

four require periodic merge backs into W0 negating180

savings in GPU memory and destroying any ability181

to share a model. RoSA Nikdan et al. (2024) uses182

the L+S decomposition ∆W = ∆L + ∆S from183

sparse coding. Adapters are stored in CSR format184

with a custom kernel plus capturing and storing full185

gradients etc. All of them recognize gradients are186

high-rank but their solution to squeeze them into a187

low-rank representation is not satisfactory because188

their core representation is still a low-rank matrix.189

GaLore, WeLore, Fira Chen et al. (2024), MoRA,190

ReLoRA, PLoRA Meng et al. (2024b) and RoSA191

all understand the difficulties of high-rank gradi-192

ents. The later four in the context of LoRA-like193

adapter FT. None of them consistently beat LoRA. 194

Moreover, their solutions leave something to be 195

desired. Most of them require merge-back into W0. 196

ToRA is an efficient approximation that can handle 197

such updates. 198

Slow Convergence of LoRA LoRA+ Hayou et al. 199

(2024) and PiSSA Meng et al. (2024a) study the 200

slow convergence of LoRA stemming from its 201

BA initialization to “Noise & Zero” which led 202

to small gradients and slow convergence. Instead 203

PiSSA initializes the adapter matrices A and B 204

with the top r principal components of W0, and 205

put the remaining components into a residual ma- 206

trix W res = (W0 − ηBinitAinit) which is locked 207

during training. W res takes the place of W0 during 208

FT. BinitAinit contains the low-rank factoring of 209

W pri instead of zero which solves the slow con- 210

vergence of LoRA. However, in the experiments 211

PiSSA does not consistently beat LoRA. 212

HQQ Badri and Shaji (2023) utilize a hyper- 213

Laplacian (fig. 3) distribution to compress Llama- 214

70B to 1 or 2-bits thereby heightens the urgency of 215

facing long-tail squarely. 216

LoRA’s main weakness is its low-rank matrix as- 217

sumption in the face of strong evidence the singular 218

values of weights and gradients have a heavy-tail 219

distribution. Since gradients are persistently high 220

rank, one cannot capture them faithfully if they 221

are forced into a low-rank subspace. This work 222

will provide a solution for these problems using a 223

carefully chosen efficient tensor decomposition. 224

3 ToRA & Tensor Train Decomposition 225

The main contribution of ToRA is overcoming 226

LoRA’s low-rank limitation to approach full-fine 227

tuning (FFT) performance with a smaller mem- 228

ory budget while preserving the pure adapter form. 229

From above, it is evident one needs a tool that can 230

accumulate gradients with a heavy-tail and highly 231

variable ranks into an efficient representation with 232

minimal loss. Among the possible forms of tensor 233

decomposition, Tensor Train (TT) Oseledets (2011) 234

is a balanced product factoring into d terms for a 235

d-dim tensor: 236

A(j1, . . . , jd) = G1[(j1)]︸ ︷︷ ︸
1×r1

G2[(j2)]︸ ︷︷ ︸
r1×r2

. . .Gd[(jd)]︸ ︷︷ ︸
rd−1×1

(4) 237

Each G (TT-core) is a 3D array rn−1 × In × rn 238

except for the first and last. G1 and Gd are al- 239

ways rank-1 modes for interfacing with vectors 240

3



Figure 4: ToRA-Adapter: a nn.linear is initialized with Kaiming, then approximated with tt-svd into tensor-train
form and zero out last core then discarded. The adapter is applied to W (K,Q,V) for all layers using LoRA-16
budget. ToRA naturally supports heavy tailed updates in a parameter efficient way.

and matrices. TT is a “chain” of smaller fac-241

tors connected by tensor-contraction operator242

Kossaifi et al. (2017) for adjacent pairs of cores243

along a shared dimesion (e.g. r1 for G1[(j1)]244

G2[(j2)]). The tensor-contraction computes245

a tensor Kronecker-product. It is efficiently imple-246

mented in GPU friendly manner as a reshape +247

matmat-mul. It is supported in cuBLAS and Ten-248

sorFlow etc. The number of terms in eq. 4 (3..5249

for ToRA) is controlled by tensorization. TT bring250

multi-linear algebra to this problem and has many251

attractive numerical properties. TT has linear scal-252

ing with respect to dimension using O(dnr2) to253

store O(nd) elements. This critical property is not254

shared by common tensor forms like Tucker.255

TT as Generalized Low-Rank Decomposition256

Rewriting eq. 4 as a TT factoring of dense ∆W ,257

G1[(j1)]︸ ︷︷ ︸
1×r1

7→ U, Gd[(jd)]︸ ︷︷ ︸
rd−1×1

7→ V⊤ -258

∆W ≈ U
d−1
Π
j=2

ΣiV
⊤ (5)259

This aligns TT decomposition into a SVD-like form260

used in LoRA. For LoRA, eq (5) has one Σi term261

and is a diagonal matrix becoming a standard low-262

rank matrix factoring. In ToRA, Σi is not limited to263

be a diagonal matrix but a set of 3D core-tensors in264

a product factoring. This is the source of the greater265

representation power of ToRA. In both LoRA and266

ToRA, U and V is a linear down and up projector267

into a lower-rank subspace. In LoRA, this subspace268

is the LoRA rank (e.g. 16) while for ToRA it is269

much much higher, corresponding to the unfolded270

dimension of G2[(j2)]. One example is qkv_proj271

from OpenELM, ToRA use a 5 term decomposi-272

tion:273

tt-svd(∆W ∈ R1152×1280) =274

{G1 : (1, 4, 4, 16);G2 : (16, 4, 4, 23); 275

G3 : (23, 4, 4, 29);G4 : (29, 6, 4, 15); 276

G5 : (15, 3, 5, 1)} last dimension of each term is 277

the same as the 1st dimension of the next term - 278

those are the connections for tt-contraction. 279

Previous Works on TT for Deep Networks FacT 280

Jie and Deng (2023), LoRTA Hounie et al. (2024) 281

and LoTR Bershatsky et al. (2024) are the closest 282

to ToRA in applying tensor decomposition to PEFT. 283

All of them represent all the ∆W s as a single ten- 284

sor and use weight sharing across layers. Their 285

focus is maximum model compression and not FT. 286

A single tensor with weight sharing might entail 287

more tuning and difficult analysis as to which lay- 288

ers can profit from sharing etc. All of them focus 289

on reducing the memory lower bound of LoRA by 290

tensor decomposition together with weight shar- 291

ing while ToRA aims for best-in-class FT perfor- 292

mance. Moreover, they either use the simplest form 293

of TT, with one 3D core without tensorization or 294

use Tucker form which does not have linear scaling. 295

Its storage grows exponentially and is limited by 296

curse-of-dimensionality Kolda and Bader (2009). 297

LoRTA and Hutchinson et al. (2011) both use CPD 298

form (Kolda and Bader, 2009), which factor a dense 299

tensor into a sum of rank-1 factors. However, 300

CPD approximation with a fixed canonical rank 301

is ill-posed (de Silva and Lim, 2008). Critically, 302

Tucker and CPD are not endowed with an equiva- 303

lent TT-svd algorithm which is needed to perform 304

accurate construction of a tensor approximation 305

and proper adapter initialization. The importance 306

of good TT initialization will be comprehensively 307

studied. 308

FacT trained for 100 epochs while ToRA use 309

5. It use much smaller TT ranks (1,4,8,16) than 310

4



current best practice. FacT-TT do not possess311

ToRA’s novel tt-svd based adatper init which312

is shown to be critical for good TT performance.313

Both FacT and LoRTA cannot reach LoRA’s per-314

formance while ToRA beat LoRA consistently and315

by large margins. LoRTA achieved 61.8 on CoLA316

despite using a 7B base model. ToRA obtained317

68.20, 81.23, 81.60 using OpenELM (270m) and318

1B, 3B Llama-3.2.319

Novikov et al. (2015) introduced tensor-train to320

neural networks and compressed the MLP in VGG321

by 200000×. Hrinchuk et al. (2019) use TT to322

compress the high rank softmax in a wide range323

of NLP models. Ma et al. (2019); Ben Noach and324

Goldberg (2020) tensorized the attention blocks.325

CoShNet Ko et al. (2022) uses a TT-linear to326

represent a 1250x500 dense FC-layer factored into327

a TT that is 455× smaller with little lost in perfor-328

mance. Similarly Wang et al. (2022) applied TT to329

compress LLM’s attention and embedding layers.330

Success of Hrinchuk et al. (2019) and Wang et al.331

(2022) are notable given the difficulties outlined332

above when using low-rank matrix factoring for333

softmax and attention. TT’s incredible ability to334

compress and preserve high-rank linear operators335

inspired us to use it in a parallel adapter in the336

manner of LoRA.337

TT is great for naturally high-dimensional data.338

However, the matrices in a LLM are all 2D (em-339

bedding, K,Q,V, FFN, MLP). Keep in mind the340

number of terms in a TT factoring is determined341

by the input dimension d. To more fully exploit342

the strength of TT, ToRA use a tensorization343

process Garipov et al. (2016) to reshape the arrays344

into higher dimension tensors using folding. This345

enables ToRA to exploit higher tt-rank by feeding346

tensorized matrices to tt-svd producing a compact347

yet powerful TT layer. This gives ToRA greater348

expressiveness for the same budget.349

TT-svd (Algorithm 1) is a stable algorithm to con-350

vert any dense tensor into a TT form. It is a se-351

quence of QR factoring. QR factors a matrix into352

an orthonormal (Q) and upper-triangular (R). Each353

step keeps a truncated Q and folds the residual R354

into the next core. It produces a set of orthonormal355

subspaces. If the singular values are truncated at δ,356

the error of approximation will be
√
d− 1δ.357

3.1 ToRA Adapter358

This work set out to apply the power of tensor-train359

to LoRA fine-tuning and arrived at ToRA. ToRA360

Algorithm 1 TT-SVD
1: Initialization: Compute truncation parameter

δ =
ε√
d− 1

∥A∥F .

2: Temporary tensor: C = A, r0 = 1.
3: for k = 1 to d− 1 do
4: C := reshape(C, [rk−1nk,

numel(C)
rk−1nk

]).

5: Compute δ-truncated SVD: C = USV ⊤+
E, where ∥E∥F ≤ δ, rk = rankδ(C).

6: Core: Gk := reshape(U, [rk−1, nk, rk]).
7: C := SV ⊤.
8: end for
9: Gd = C.

is a LoRA style parallel adapter using TT to effi- 361

ciently represent ∆W in a “no compromise” man- 362

ner. Since TT can represent high rank subspaces 363

with small number of weights, it can be used every- 364

where without searching for which layers to apply 365

and without tuning their sizes. ToRA use LoRA-16 366

size as its parameter budget. Even better results 367

are possible with some tuning of the tt-rank. See 368

ranks ablation in Table (5). 369

Adapting WV : ToRA systematically adapt 370

K,Q, V for all attention blocks using the same 371

tt-config with a tiny percentage of the full 372

model’s weights - e.g. 0.2% corresponding to 373

LoRA−16. ToRA being able to adapt WV and 374

get good results can be easily missed. LoRA’s 375

original experiments tested several combinations 376

of q, k, v, o while WeLore classified attn.v_proj 377

as a Non-Low-Rank and do not attempt to adapt. 378

One clue is the rightmost subfigure in Fig. (2) 379

from WeLore. It shows attn.v_proj has even 380

higher-rank than K,Q which present problems for 381

all works that use the BA⊤ factoring. ToRA do not 382

suffer from this limitation because TT can handle 383

high-rank updates. ToRA also do not need to tune 384

training epochs, batch size, learning rate etc. 1-5 385

epochs is used for all the tests. 386

3.2 Novel Adapter-tt-svd Initialization 387

Most deep networks that use TT all treat each 388

tt-core as a regular matrix and initialize them 389

separately using Xavier/Kaiming or random init 390

including Jie and Deng (2023) and (Hrinchuk et al., 391

2019; Ma et al., 2019; Wang et al., 2022) etc. This 392

might seems like a natural thing to do but this work 393

present evidence that it is a critical error and limited 394

5



their final performance even when TT was applied.395

Bear in mind the Xavier analysis is based on396

fan-in/out for layers in a deep network in order to397

preserve the variance of their gradients. The cores398

in a TT are not operating on the fan-in/out connec-399

tions except for the 1st and last core. Similar to400

CoShNet Ko et al. (2022), a scratch nn.linear is401

initialized with Kaiming. The tt-svd factors that402

into small tt-cores whose combined operations403

will be a Kaiming inited block. This is sufficient404

when TT is used as a linear/fully-connected layer.405

However using TT in an adapter has extra consid-406

erations. This bring us to a novel contribution for407

ToRA.408

Adapter-tt-svd init LoRA’s factors BA⊤ are409

initialized with “Noise and Zero” to match the410

gradients of FFT. ToRA developed a novel TT411

adapter initialization scheme that stay within412

the LoRA’s BA framework by using tt-svd to413

initialize all but the last core which is zeroed414

out. Thus ToRA also produces the same gra-415

dient as the original pretained model and simu-416

lates FFT faithfully. Table (3) shows how crit-417

ical Adapter-tt-svd is to ToRA’s performance.418

For example, Kaiming vs. tt-svd-only vs.419

Adapter-tt-svd is (69.4, 62.07,81.2) for CoLA420

and (58.07, 56,75.06) for BoolQ on Llama-1B.421

Survey conducted by the author2 suggest engi-422

neers use r ∈ [16..64] in modern applications. In423

this range, ToRA with same or smaller memory424

budget as LoRA consistently outperform it across425

all ranks, with and without quantization for all three426

models. Some by more than 10 percentage points427

(Table 1). ToRA also beat PiSSA by a large mar-428

gin and sometimes even Dense. PiSSA relies on429

LoRA’s low-rank factoring to capture the top-r430

principal components of W0. While being faithful431

to the original model it lacks the random initialized432

A needed for an adapter to explore outside of the433

original distribution. Dense under-performing in434

many case can be explained as over-fitting due to435

the datasets for FT are often much smaller than the436

training corpus for LLMs. From Table 1, It is the437

top performer in only 2 cases that used OpenELM438

which has 270m parameters only. Other authors439

have noted the regularization effects of adapter FT440

especially using LoRA. ToRA strengthens the reg-441

ularization of LoRA by representing a high-rank442

subspace in smaller number of weights.443

QLoRA & QToRA: modern FT workflow invari-444

2Thanks to [Redacted] of [Redacted]

Figure 5: Rank ablations 8, 16, 32, 64, 128 on BoolQ,
CoLA using different adapters. ToRA is superior across
the full range of ranks. ToRA-8 beats LoRA for all ranks
even up to 128. BoolQ, rank 128 is missing because of
GPU memory constraints.

ably use QLoRA on a LLM to bring down the 445

GPU memory required. QLoRA is a quantile-based 446

quantizer that support high quality 4-bit FT and in- 447

ference. QToRA replaced the LoRA adapter in 448

QLoRA with ToRA. in Table (2) contains the su- 449

perb results of QToRA on 2 datasets and 2 models. 450

4 Experiments 451

Table (1) summarized the results for 4 adapters and 452

3 models for 5 data sets. ToRA is compared next to 453

LoRA and PiSSA using the same memory budget 454

as well Dense ∆W using ADAM with lr = 1e− 5, 455

batch size 4, r = 16 and α = 16 for 5 epochs un- 456

less otherwise stated. Dense is an adapter with full 457

rank ∆W . Even though it is not a practical adapter 458

it serves as the baseline for an adapter-based full FT 459

whenever the GPUs allow. All experiments were 460

carried out on 2 servers with 4 RTX 3090 24GB 461

GPUs. 462

ToRA consistently outperforms LoRA and 463

PiSSA with the same budget. In (Table 1) ToRA is 464

compared against LoRA using Llama-3.2-3B e.g. 465

80.32 vs. 69.56 on BoolQ, 48.82 vs. 34.20 on 466

MMLU, 81.60 vs. 75.86 for CoLA and 86.23 vs. 467

74.9 for MNLI. 468

For models, OpenELM 270M Mehta et al. 469

(2024), instruction tuned LLama-3.1-1B, and 470

LLama-3.2-3B (bf16) Dubey et al. (2024) on five 471

diverse NLP datasets. They are chosen to test 472

adapters across task types, difficulty levels and 473

6



Model Method %W BoolQ MMLU CoLA MNLI GSM8k

OpenELM

Dense 10.24% 63.81 28.98 67.82 X X
PiSSA 0.26% 61.98 27.41 67.81 80.40 0.00
LoRA-16 0.26% 62.71 24.28 68.20 79.30 0.00
ToRA 0.20% 62.47 25.06 68.20 80.20 0.00

Llama-3.2-1B

Dense 7.53% 43.03 30.55 80.08 X X
PiSSA 0.19% 73.35 45.43 81.22 86.72 3.54
LoRA-16 0.19% 72.86 49.60 78.93 86.84 5.31
ToRA 0.19% 74.81 47.26 81.23 86.76 18.58

Llama-3.2-3B

Dense 12.06% 24.57 32.38 80.07 X X
PiSSA 0.20% 62.96 27.41 76.25 58.23 37.17
LoRA-16 0.20% 69.56 34.20 75.86 74.90 37.17
ToRA 0.20% 80.32 48.82 81.60 86.23 38.94

Table 1: ToRA vs. Dense ∆W , LoRA-16 and PiSSA for 3 different sized models. On OpenELM, ToRA is slightly
better or matches LoRA. The gap become bigger as the base model is more powerful. For Llama-3.2-3B, ToRA is
more than 10 points better for 3 datasets. The same trend is found in Table 3 for quantized base models. %W is the
percentage of finetuned parameters. Dense uses batch size 1, Llama-3.2-3B is bf16. MMLU except for Dense use
batch of 2 due to GPU memory constraints.

dataset sizes. Models are trained on the training474

set, and accuracy reported on the validation set to475

ensures consistency across different datasets (since476

many do not have a public test-set). ToRA does not477

require validation set based hyperparameter tuning.478

Datasets: (1) BoolQ Clark et al. (2019) Binary479

(yes/no) QA dataset with 9.4k training and 3.2k val-480

idation samples. (2) CoLA Warstadt et al. (2019)481

Linguistic Acceptability dataset from published482

literature, part of GLUE Wang (2018), with 8.5k483

training and 516 validation samples. (3) MMLU484

Hendrycks et al. (2020) MCQ test across diverse485

subjects to assess world knowledge, with 99.8k486

training and 1.5k validation samples. (4) MNLI487

Williams et al. (2017) Multi-Genre NLI dataset488

covering 10 genres, with 393k training and 9.8k489

validation samples. (5) GSM8k Cobbe et al. (2021)490

Grade School Math problem dataset for problem-491

solving evaluation, with 7.4k training and 1.3k test492

set samples.493

4.1 Ablations494

Base Models and Adapter Ablation with 3495

pretrained base models (OpenELM, LLama-3.2496

1B,3B) and 4 adapters (Dense, LoRA, PiSSA,497

ToRA) in Table (1) contain our main results. We498

consistently beat LoRA and PiSSA, sometimes by499

large margins on larger models (1B, 3B), while be-500

ing neck-to-neck on OpenELM. We hypothesize501

the benefit of a good adapter is more pronounced502

for larger model because large model also has a503

large hidden-state. Unlike others that cites pub-504

lished results all results ran on the same platform 505

with the same pipeline and adapted in the same 506

manner. 507

Ranks (8, 16, 32, 64, 128) for 3 adapters using 508

Llama-3.2-3B in Figure (5) on CoLA and BoolQ 509

are compared. LoRA shows limited ability to take 510

advantage of higher ranks, ToRA displays a steady 511

ability to improve. Remarkably, rank-8 ToRA beats 512

LoRA and PiSSA for all ranks 8− 128. 513

Quantization ablation in Table (2). Three adapters 514

are applied to two quantized models (Llama-3.2-1B 515

and 3B) using two popular quantization methods 516

QLoRA (Dettmers et al., 2024) and HQQ (Badri 517

and Shaji, 2023), akin to many production deploy- 518

ments. In 3 out of 4 cases QToRA has the best 519

results, the lone case of HQQ (4b) on CoLA goes 520

to QPiSSA with QToRA a close second. Compare 521

the corresponding rows for Table (1) and (2), one 522

can see ToRA+LLama3.2-3B with QLoRA beats 523

non-quantized for CoLA (85.06 vs. 81.60) and 524

(81.90 vs 80.32) for BoolQ. The opposite is true 525

for LLama3.2-1B. These unexpected results will 526

be covered in a follow-up work. 527

Novel Adapter TT-SVD init: A novel TT ini- 528

tialization scheme “Adapter-tt-svd” is introduced 529

above to initialize ToRA. Table (3) compares the 530

performance of ToRA when initialized with stan- 531

dard Kaiming-Normal vs. tt-svd-only (without 532

zero-last-core) and Adapter-tt-svd. For CoLA 533

they are (69.4, 62.07,81.2) and (58.07, 56,75.06) 534

for BoolQ on Llama-1B. 535

7



Model Quantization Adapter CoLA BoolQ

Llama-3.2-3B QLoRA (4 bit)
QPiSSA 85.05 81.78
QLoRA 83.91 81.54
QToRA 85.06 81.90

Llama-3.2-1B HQQ (4 bit)
QPiSSA 81.23 71.64
QLoRA 78.54 72.37
QToRA 80.84 73.35

Table 2: QLoRA or HQQ is applied to 2 models and 3 adapters. In 3 out of 4 case ToRA has the best performance
and is always better than LoRA

Initialization Model CoLA BoolQ
Kaiming

Llama-1B
69.35 58.07

tt-svd-only 62.07 56
Adapter-tt-svd 81.23 75.06

Table 3: TT init ablation: Kaiming, tt-svd-only and
Adapter-tt-svd initialization for CoLA and BoolQ.

5 Conclusion536

ToRA demonstrates greatly enhanced performance537

adapting attention blocks in a “no compromise”538

manner - i.e. adapting all attention blocks for all539

layers and for all (K,Q,V) matrices (Koohpayegani540

et al., 2023). ToRA performs better with larger541

models. While being competitive at the very low542

end, with or without quantization and use all ranks543

well. Thus ToRA can be applied easily in the field544

because it hardly needs any tuning. This gives545

practitioners a lot of freedom to choose what their546

budget permits. ToRA is a drop-in replacement for547

LoRA.548

ToRA can contribute to adapters for ViT He et al.549

(2023) and diffusion models. Its benefits might550

even be more pronounced due to the inherit higher551

complexity/rank in these problems. This is left for552

future work.553

6 Limitations554

The experiments are limited to models with 3-555

billion parameters or less due to modest hardware556

(RTX3090) at our disposal.557

Hyperparameter tuning the TT recipe could po-558

tentially result in better performance, we did not559

conduct it due to limited hardware budget. Instead560

we focus on using a configuration that matches561

LoRA’s budget.562

This work did not fully exploit the poten-563

tial of ToRA applied to other parts of LLMs -564

e.g. attn.proj_o, ffn, MLP and embedding etc.565

Adapting attention blocks only follow LoRA’s ap-566

proach for ease of comparison. This is the current 567

best practice. However, doubts linger in the com- 568

munity which ToRA helps to resolve. 569

While introducing ToRA to improve Parameter- 570

Efficient Fine-Tuning (PEFT) can enhance model 571

adaptability and efficiency, there are potential risks 572

associated with publishing such methods. One ma- 573

jor concern is the potential for adversarial exploita- 574

tion, where malicious actors could use ToRA to 575

create highly optimized yet harmful models at a 576

lower computational cost. Additionally, making 577

fine-tuning more efficient could lower the barrier 578

for misuse, enabling the rapid adaptation of power- 579

ful models for unethical applications, such as mis- 580

information generation or privacy-invasive surveil- 581

lance. There is also a risk of unintentional bias 582

amplification, as ToRA may introduce complex pa- 583

rameter interactions that are not well understood in 584

terms of fairness and robustness. Addressing these 585

risks requires transparency in research dissemina- 586

tion, rigorous evaluation against adversarial use 587

cases, and responsible AI deployment strategies. 588

References 589

Armen Aghajanyan, Sonal Gupta, and Luke Zettle- 590
moyer. 2021. Intrinsic dimensionality explains the 591
effectiveness of language model fine-tuning. In ACL, 592
pages 7319–7328. 593

Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, 594
Karen Khatamifard, Minsik Cho, Carlo C Del Mundo, 595
Mohammad Rastegari, and Mehrdad Farajtabar. 2023. 596
LLM in a flash: Efficient Large Language Model In- 597
ference with Limited Memory. arXiv:2312.11514, 598
page 12. 599

Hicham Badri and Appu Shaji. 2023. Hqq: Half- 600
quadratic quantization of large machine learning 601
models. 602

Matan Ben Noach and Yoav Goldberg. 2020. Compress- 603

8

https://arxiv.org/abs/2312.11514
https://arxiv.org/abs/2312.11514
https://arxiv.org/abs/2312.11514
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/
https://mobiusml.github.io/hqq_blog/


ing pre-trained language models by matrix decompo-604
sition. In IJCNLP, pages 884–889. ACL.605

Daniel Bershatsky, Daria Cherniuk, Talgat Daulbaev,606
Aleksandr Mikhalev, and Ivan Oseledets. 2024.607
LoTR: Low Tensor Rank Weight Adaptation.608
arXiv:2402.01376, page 15.609

Patrick H Chen, Si Si, Yang Li, Ciprian Chelba, and610
Cho Jui Hsieh. 2018. GroupReduce: Block-wise611
low-rank approximation for neural language model612
shrinking. In NIPS ’18.613

Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xi-614
angyu Yue, Ye Yuan, and Guoren Wang. 2024. Fira:615
Can We Achieve Full-rank Training of LLMs Under616
Low-rank Constraint? Preprint, arXiv:2410.01623.617

Christopher Clark, Kenton Lee, Ming-Wei Chang,618
Tom Kwiatkowski, Michael Collins, and Kristina619
Toutanova. 2019. BoolQ: Exploring the surprising620
difficulty of natural yes/no questions. arXiv preprint621
arXiv:1905.10044.622

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,623
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias624
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro625
Nakano, et al. 2021. Training verifiers to solve math626
word problems. arXiv preprint arXiv:2110.14168.627

Vin de Silva and Lek-Heng Lim. 2008. Tensor rank and628
the ill-posedness of the best low-rank approximation629
problem. Preprint, arXiv:math/0607647.630

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and631
Luke Zettlemoyer. 2024. Qlora: Efficient finetuning632
of quantized llms. NeurIPS, 36.633

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,634
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,635
Akhil Mathur, Alan Schelten, Amy Yang, Angela636
Fan, et al. 2024. The llama 3 herd of models. arXiv637
preprint arXiv:2407.21783.638

Timur Garipov, Dmitry Podoprikhin, Alexander639
Novikov, and Dmitry Vetrov. 2016. Ultimate Ten-640
sorization: Compressing Convolutional and FC lay-641
ers Alike. arXiv:1611.03214, page 6.642

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer.643
2018. Gradient Descent Happens in a Tiny Subspace.644
arXiv:1812.04754, page 19.645

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.646
LoRA+: Efficient Low Rank Adaptation of Large647
Models. Preprint, arXiv:2402.12354.648

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei649
Yang, and Xin Eric Wang. 2023. Parameter-efficient650
model adaptation for vision transformers. Preprint,651
arXiv:2203.16329.652

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,653
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.654
2020. Measuring massive multitask language under-655
standing. arXiv preprint arXiv:2009.03300.656

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 657
Bruna Morrone, Quentin de Laroussilhe, Andrea 658
Gesmundo, Mona Attariyan, and Sylvain Gelly. 659
2019. Parameter-Efficient Transfer Learning for 660
NLP. arXiv:1902.00751, page 12. 661

Ignacio Hounie, Charilaos Kanatsoulis, Arnuv Tan- 662
don, and Alejandro Ribeiro. 2024. LoRTA: Low 663
Rank Tensor Adaptation of Large Language Models. 664
arXiv:2410.04060, pages 1–17. 665

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mir- 666
vakhabova, Elena Orlova, and Ivan Oseledets. 2019. 667
Tensorized Embedding Layers for Efficient Model 668
Compression. arXiv:1901.10787, page 13. 669

Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen- 670
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 671
Chen. 2022. LoRA: Low-Rank Adaption of Large 672
Language Models. In ICLR, page 26. 673

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, 674
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xi- 675
anglong Liu, and Michele Magno. 2024. An empiri- 676
cal study of llama3 quantization: From llms to mllms. 677
Preprint, arXiv:2404.14047. 678

Brian Hutchinson, Mari Ostendorf, and Maryam Fazel. 679
2011. Low rank language models for small training 680
sets. IEEE Signal Processing Letters, 18(9):489– 681
492. 682

Hakan Inan, Khashayar Khosravi, and Richard Socher. 683
2017. Tying word vectors and word classifiers: A 684
loss framework for language modeling. In ICLR ’17. 685

Ajay Jaiswal, Lu Yin, Zhenyu Zhang, Shiwei Liu, Jiawei 686
Zhao, Yuandong Tian, and Zhangyang Wang. 2024. 687
From GaLore to WeLore: How Low-Rank Weights 688
Non-uniformly Emerge from Low-Rank Gradients. 689
Preprint, arXiv:2407.11239. 690

Ting Jiang, Shaohan Huang, Shengyue Luo, Zi- 691
han Zhang, Haizhen Huang, Furu Wei, Weiwei 692
Deng, Feng Sun, Qi Zhang, Deqing Wang, and 693
Fuzhen Zhuang. 2024. MoRA: High-Rank Updat- 694
ing for Parameter-Efficient Fine-Tuning. Preprint, 695
arXiv:2405.12130. 696

Shibo Jie and Zhi Hong Deng. 2023. FacT: Factor- 697
Tuning for Lightweight Adaptation on Vision Trans- 698
former. AAAI ’23, 37:1060–1068. 699

Reinhard Kneser. 1995. Improved Backing-Off for M- 700
GRAM Language Modeling. In ICASSP ’95, pages 701
181–184. 702

Manny Ko, Ujjawal K Panchal, Héctor Andrade-Loarca, 703
and Andres Mendez-Vazquez. 2022. CoShNet: A 704
Hybrid Complex Valued Neural Network using Shear- 705
lets. arXiv:2208.06882, page 16. 706

Tamara G Kolda and BW Bader. 2009. Tensor decompo- 707
sitions and applications. SIAM review ’09, 51(3):455– 708
500. 709

9

https://arxiv.org/abs/1806.06950
https://arxiv.org/abs/1806.06950
https://arxiv.org/abs/1806.06950
https://arxiv.org/abs/1806.06950
https://arxiv.org/abs/1806.06950
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/2410.01623
https://arxiv.org/abs/math/0607647
https://arxiv.org/abs/math/0607647
https://arxiv.org/abs/math/0607647
https://arxiv.org/abs/math/0607647
https://arxiv.org/abs/math/0607647
https://arxiv.org/abs/1611.03214
https://arxiv.org/abs/1611.03214
https://arxiv.org/abs/1611.03214
https://arxiv.org/abs/1611.03214
https://arxiv.org/abs/1611.03214
https://arxiv.org/abs/1812.04754
https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/2402.12354
https://arxiv.org/abs/2203.16329
https://arxiv.org/abs/2203.16329
https://arxiv.org/abs/2203.16329
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1902.00751
https://arxiv.org/abs/1901.10787
https://arxiv.org/abs/1901.10787
https://arxiv.org/abs/1901.10787
https://arxiv.org/abs/2404.14047
https://arxiv.org/abs/2404.14047
https://arxiv.org/abs/2404.14047
https://arxiv.org/abs/1611.01462
https://arxiv.org/abs/1611.01462
https://arxiv.org/abs/1611.01462
https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/2407.11239
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://arxiv.org/abs/2405.12130
https://doi.org/10.1609/aaai.v37i1.25187
https://doi.org/10.1609/aaai.v37i1.25187
https://doi.org/10.1609/aaai.v37i1.25187
https://doi.org/10.1609/aaai.v37i1.25187
https://doi.org/10.1609/aaai.v37i1.25187


Soroush Abbasi Koohpayegani, KL Navaneet, Parsa710
Nooralinejad, Soheil Kolouri, and Hamed Pirsiavash.711
2023. NOLA: Networks as Linear Combination of712
Low Rank Random Basis. In ICLR ’23, page 17.713

Jean Kossaifi, Aran Khanna, Zachary C. Lipton, Tom-714
maso Furlanello, and Anima Anandkumar. 2017.715
Tensor Contraction Layers for Parsimonious Deep716
Nets. In CVPR ’17, pages 1940–1946. IEEE Com-717
puter Society.718

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason719
Yosinski. 2018. Measuring the Intrinsic Dimension720
of Objective Landscapes. In ICLR ‘18, page 23.721

Vladislav Lialin, Sherin Muckatira, Namrata Shiva-722
gunde, and Anna Rumshisky. 2024. ReLoRA: High-723
Rank Training Through Low-Rank Updates. In ICLR724

’24, page 16.725

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris726
Cheng, Nathaniel Pinckney, Rongjian Liang, Jonah727
Alben, Himyanshu Anand, Sanmitra Banerjee, Is-728
met Bayraktaroglu, Bonita Bhaskaran, Bryan Catan-729
zaro, Arjun Chaudhuri, Sharon Clay, Bill Dally,730
Laura Dang, Parikshit Deshpande, Siddhanth Dhodhi,731
Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain,732
Ankit Jindal, Brucek Khailany, George Kokai, Kishor733
Kunal, Xiaowei Li, Charley Lind, Hao Liu, Stuart734
Oberman, Sujeet Omar, Ghasem Pasandi, Sreedhar735
Pratty, Jonathan Raiman, Ambar Sarkar, Zhengjiang736
Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Walker737
Turner, Kaizhe Xu, and Haoxing Ren. 2024. Chip-738
NeMo: Domain-Adapted LLMs for Chip Design.739
arXiv:2311.00176, page 23.740

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan,741
Yuexian Hou, Dawei Song, and Ming Zhou. 2019.742
A tensorized transformer for language modeling.743
Preprint, arXiv:1906.09777.744

Sachin Mehta, Mohammad Hossein Sekhavat, Qingqing745
Cao, Maxwell Horton, Yanzi Jin, Chenfan Sun, Iman746
Mirzadeh, Mahyar Najibi, Dmitry Belenko, Peter Zat-747
loukal, et al. 2024. Openelm: An efficient language748
model family with open-source training and inference749
framework. arXiv e-prints, pages arXiv–2404.750

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024a.751
Pissa: Principal singular values and singular vec-752
tors adaptation of large language models. Preprint,753
arXiv:2404.02948.754

Xiangdi Meng, Damai Dai, Weiyao Luo, Zhe Yang,755
Shaoxiang Wu, Xiaochen Wang, Peiyi Wang,756
Qingxiu Dong, Liang Chen, and Zhifang Sui. 2024b.757
PeriodicLoRA: Breaking the Low-Rank Bottleneck758
in LoRA Optimization. arXiv:2402.16141, page 11.759

Mahdi Nikdan, Soroush Tabesh, Elvir Crnčević, and760
Dan Alistarh. 2024. Rosa: accurate parameter-761
efficient fine-tuning via robust adaptation. In ICML,762
ICML’24. JMLR.org.763

Alexander Novikov, Dmitry Podoprikhin, Anton Os-764
okin, and Dmitry Vetrov. 2015. Tensorizing Neural765
Networks. In NIPS ’15, pages 1–9.766

I. V. Oseledets. 2011. Tensor-train decomposition. In 767
SIAM J. on Scientific Computing, volume 33, pages 768
2295–2317. 769

Tara N. Sainath, Brian Kingbury, Vikas Sindhwani, Ebru 770
Arisoy, and Bhuvana Ramabhadran. 2013. Low- 771
Rank Matrix Factorization for Deep Neural Network 772
Training with High-Dimensional Output Targets. In 773
ICASSP’ 13, pages 6655–6659. 774

Sheng Shen, Dong Zhen, Jiayu Ye, Linjian Ma, Zhewei 775
Yao, Asghar Gholami, Michael Mahoney, and Kurt 776
Keutzer. 2020. Q-bert: Hessian based ultra low pre- 777
cision quantization of bert. AAAI, 34:8815–8821. 778

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman 779
Hooper, Nicholas Lee, Shuo Yang, Christopher 780
Chou, Banghua Zhu, Lianmin Zheng, Kurt Keutzer, 781
Joseph E. Gonzalez, and Ion Stoica. 2024. S-LoRA: 782
Serving Thousands of Concurrent LoRA Adapters. 783
Preprint, arXiv:2311.03285. 784

Alex Wang. 2018. Glue: A multi-task benchmark and 785
analysis platform for natural language understanding. 786
arXiv preprint arXiv:1804.07461. 787

Benyou Wang, Yuxin Ren, Lifeng Shang, Xin Jiang, 788
and Qun Liu. 2022. Exploring extreme parameter 789
compression for pre-trained language models. In 790
ICLR ’22. 791

Alex Warstadt, Amanpreet Singh, and Samuel R Bow- 792
man. 2019. Cola: The corpus of linguistic acceptabil- 793
ity (with added annotations). 794

Yeming Wen and Swarat Chaudhuri. 2024. Batched 795
low-rank adaptation of foundation models. In ICLR. 796

Adina Williams, Nikita Nangia, and Samuel R Bow- 797
man. 2017. A broad-coverage challenge corpus for 798
sentence understanding through inference. arXiv 799
preprint arXiv:1704.05426. 800

Wenhan Xia, Chengwei Qin, and Elad Hazan. 2024. 801
Chain of LoRA: Efficient Fine-tuning of Lan- 802
guage Models via Residual Learning. Preprint, 803
arXiv:2401.04151. 804

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and 805
William W Cohen. 2018. Breaking the Softmax 806
Bottleneck: A High-Rank RNN Language Model. 807
arXiv:1711.03953, page 18. 808

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang 809
Wang, Anima Anandkumar, and Yuandong Tian. 810
2024. GaLore: Memory-Efficient LLM Training by 811
Gradient Low-Rank Projection. ICML ’24, page 23. 812

10

https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/1706.00439
https://arxiv.org/abs/1706.00439
https://arxiv.org/abs/1706.00439
https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/1804.08838
https://arxiv.org/abs/2311.00176
https://arxiv.org/abs/2311.00176
https://arxiv.org/abs/2311.00176
https://arxiv.org/abs/1906.09777
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2404.02948
https://arxiv.org/abs/2402.16141
https://arxiv.org/abs/2402.16141
https://arxiv.org/abs/2402.16141
https://arxiv.org/abs/1509.06569
https://arxiv.org/abs/1509.06569
https://arxiv.org/abs/1509.06569
https://doi.org/10.1137/090752286
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v34i05.6409
https://doi.org/10.1609/aaai.v34i05.6409
https://arxiv.org/abs/2311.03285
https://arxiv.org/abs/2311.03285
https://arxiv.org/abs/2311.03285
https://openreview.net/forum?id=w4abltTZ2f
https://openreview.net/forum?id=w4abltTZ2f
https://openreview.net/forum?id=w4abltTZ2f
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/2401.04151
https://arxiv.org/abs/1711.03953
https://arxiv.org/abs/1711.03953
https://arxiv.org/abs/1711.03953
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507
https://arxiv.org/abs/2403.03507

	Introduction
	Preliminaries
	LoRA's Critical Weakness & Long-Tail
	Low-Rank Subspace and Gradients

	ToRA & Tensor Train Decomposition
	ToRA Adapter
	Novel Adapter-tt-svd Initialization

	Experiments
	Ablations

	Conclusion
	Limitations

