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Abstract

Recent studies show LoRA cannot reach the
performance of full fine-tuning (FFT). This
work shows weights and gradients during FT
has a long-tail plus high-rank and LoRA’s dif-
ficulties stem from its core low-rank matrix
factoring assumption. ToRA is a LoRA style
parallel adapter, using Tensor Train decomposi-
tion to efficiently represent the high-rank AW
ToRA consistently outperforms LoRA. For ex-
ample, rank-8 ToRA beats LoRA for all ranks
up to 128. Sometimes by more than 10 points -
80.32 vs. 69.56 for BoolQ and 48.82 vs. 34.20
on MMLU with Llama-3.2-3B. ToRA adapts
all self-attention blocks for all layers using the
same budget as LoRA - no tuning nor compro-
mise is needed. It also pairs well with popular
quantization methods like QLoRA. ToRA is a
strong contender as a drop-in replacement for
LoRA.

1 Introduction

Recent rapid progress in using generative mod-
els has relied on fine-tuning (FT) large pretrained
models. A common pain point is fine-tuning
these LLMs on commodity GPUs or even high-
end GPUs. For example, LLama3-8B with fp16
needs 16Gb to load. FT usually requires at least
4 ~ 12 times more memory to store activations,
momentum etc. Practitioners resort to distilling,
aggressive quantizing, dropping weights, or paging
Alizadeh et al. (2023) which are time consuming
and compromise quality and speed.

PEFT Houlsby et al. (2019) exemplified by Hug-
gingface’s adapters with a locked model, drastically
reducing the required memory for FT. LoRA Hu
et al. (2022) fine-tune with a set of low-rank ma-
trix factors B A and is often the method of choice.
It is most useful in the pure adapter form. The
weights are not merged back into the LLM, thus
avoiding catastrophic forgets and allowing many
adapters to share one large model on the server.

Additionally, adapter FT reduces the bandwidth
needed in distributed setups and supports highly
quantized models. Apple’s Foundation Model and
LoRA-Hub Huang et al. (2024) are good examples
of such a system with a few highly tuned LLMs
and many adapters nurturing an ecosystem. Instead
of merging back, inference latency can be resolved
by architectures like S-LoRA Sheng et al. (2024)
and fLoRA Wen and Chaudhuri (2024).

Our contributions: (1) ToRA uses a tensor decom-
position which is more powerful than the matrix
factorization in LoRA. (2) ToRA seamlessly inte-
grates with QLoRA. (3) ToRA uses a novel Kaim-
ing style initialization critical for a tensor based
adapter. (4) ToRA consistently outperforms LoRA
by as much as 10 points on various datasets. (5)
Our thorough empirical and theoretical analysis of
the heavy-tail/high-rank nature of FT can help to
guide future works on PEFT.

2 Preliminaries

First, the intrinsic dimension of FT is studied, fol-
lowed by evidence of high-rank and heavy-tail gra-
dients encountered in LLMs. Next drawing lessons
from Yang et al. (2018), we study the Softmax Bot-
tleneck in modern LLMs. Further evidence from
FT a compressed or quantized model sharpens the
focus on the high-rankness of gradient updates and
problems encountered that we must address.

2.1 LoRA’s Critical Weakness & Long-Tail

LoRA appeals to Aghajanyan et al. (2021) study
of the intrinsic dimensions of FT. This approach
was first proposed by Li et al. (2018) using a model
with a random projection P and a frozen model

parameterized as 9((]D):

o) = 9P + pe(@ )

where 0@ s initialized to zero. The rank d is grad-
ually increased until the augmented model reaches
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90% of the performance of FFT. "Intrinsic dimen-
sion” is defined as the d needed to capture 90%
of the performance of the FFT 6(P). Aghajanyan
et al. (2021) found the intrinsic dimension d to be
in the hundreds to thousands and concluded 6(?)
is “low-rank”. Putting things in perspective, a d
in the hundreds might be low-rank relative to the
number of weights in #(P), which is in the billions
or greater. Their finding contradicts LoRA’s notion
of low-rank with r = 2,4, 8.

LoRA use a low-rank matrix factoring for AW

h=Wy+ AW, AW ~ BAT )

Wy is locked and B € R%*7 is set to 0. One can
immediately see 6°) = Wy, (Y = BAT and
P = A which is random initialized. This “Noise
& Zero” init is a characteristic of LoRA designed
to match the gradients of FFT when no adapter is
applied.

Recent studies by Xia et al. (2024); Lialin et al.
(2024) show LoRA cannot reach performance of
full FT, especially for tasks like complex reasoning
and continual learning Liu et al. (2024). The limi-
tations of LoRA and how they stem from low-rank
factoring assumptions will be analyzed.

Softmax bottleneck Yang et al. (2018) consider
language model as a finite set of pairs of con-
text and its conditional next-token distribution
L= {(Cl,P*(X | c1)), s (e, PH(X | CN))}’
where N is the number of possible contexts. The
objective of a LM is to learn a distribution Py(x | ¢)
parameterized by 6 to match the true distribution
P*(X|C). The contexts are encoded into vectors
of dimension d, which is multiplied by the token
embeddings (Inan et al., 2017) using dot-prod! to
obtain the logits (hI'w,) to feed the Softmax to
produce a categorical distribution over the next
token -
exp thwm

> exphlw,
h. is the context vector/hidden state, and w, is a
token embedding - i.e. LLM is a rank-d factoring
of A (the full autoregressive matrix of logits). For
example, the hidden dimension d for LLama-3.2-
3B is 4096 and 2048 for 1b. Yang et al. (2018)
shows this d is the critical factor limiting the ex-
pressive power of LLMs and propose a mixture-of-
softmax(MoS) to support much higher rank mod-
eling. Their experiments show MoS reduced per-
plexity up to d = 9981 and beyond.

Py(z | c) = 3

!context, token embedding have the same dimension d
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Figure 1: Chen et al. (2018) Heavy-tail eigenvalues in
embeddings. Eigenvalues at rank 200 and beyond are
still significant (with permission).
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Figure 2: Jaiswal et al. (2024) Singular Values for differ-
ent layers of LLama-7B. Yellow are the attention layers.
Red and purple are the input and output layers (with
permission).

Besides ”Softmax Bottleneck™ Fig. (1) is a
plot of eigenvalues of embedding from Chen et al.
(2018) with the “elbow” occuring around rank-200
and has a heavy-tail. Which suggests one cannot
ignore higher eigenvalues without peril. Sainath
et al. (2013) had to use rank 128 and above to
compress the cross-entropy without compromising
results. All these findings support our thesis that
LLM matrices and gradients exhibit high ranks and
long tails, posing significant challenges for LoORA
but not for TORA

2.2 Low-Rank Subspace and Gradients

Like ToRA, Galore Zhao et al. (2024) and WeLore
Jaiswal et al. (2024) also appeal to heavy-tail of
singular values and found gradients have highly
variable ranks. Fig (2) from WeLore show the
heavy-tail distribution in various weight matrices
and the “elbow” being > 200. Even more pro-
nounced for attn.v_proj which is around 1000.
We will come back to attn.v_proj later. Q-BERT
Shen et al. (2020) found the top eigenvectors of
the Hessian of gradients varies a lot during training.
They all found the ranks to be at least in the few
hundreds consistent with findings of Aghajanyan
et al. (2021).

Gur-Ari et al. (2018) found gradient updates oc-
cur in a subspace matching the number of classes in



Figure 3: Badri and Shaji (2023) heavy-tail distribution
of residual gradient error. A kurtotic distribution is
needed - e.g. H-Laplacian (with permission)

a classifier and is used by LoRA to justify its factor-
ing. However, the number of classes in LLM is very
high, equal to the number of equivalence classes
in the context window for an auto-regressive N-
gram model Kneser (1995). ”Softmax Bottleneck”
dissected LLM itself as a low-rank factoring of
the super high-rank auto-regressive matrix A of
logits and is estimated using softmax to yield a
categorical distribution over semantic equivalence
classes. One must keep this firmly in mind when
designing a PEFT method.

High-rank Gradients even if gradients are low-
rank it does not mean their cumulative effect stays
low-rank. Each update might and indeed can pull in
highly variable directions. Gal.ore uses a projective
gradient descent AW = PF'G,Q; to squeeze high-
rank updates in a small core G;. They use r =
128..512 even with periodic merge backs. WeLore
attempts to improve GalL.ore by classifying layers
into low-rank (LRC) and non-LRC and sidestep the
problem by not adapting the NLRCs. MoRA Jiang
et al. (2024) employs a rank-256 square matrix
with input and output projector to achieve high-
rank updating. ReLoRA Lialin et al. (2024) found
gradient updates are often high rank and propose to
use several LoRA adapters to approximate it. All
four require periodic merge backs into Wy negating
savings in GPU memory and destroying any ability
to share a model. RoSA Nikdan et al. (2024) uses
the L+S decomposition AW = AL 4+ AS from
sparse coding. Adapters are stored in CSR format
with a custom kernel plus capturing and storing full
gradients etc. All of them recognize gradients are
high-rank but their solution to squeeze them into a
low-rank representation is not satisfactory because
their core representation is still a low-rank matrix.

GalLore, WeLore, Fira Chen et al. (2024), MoRA,
ReLoRA, PLoRA Meng et al. (2024b) and RoSA
all understand the difficulties of high-rank gradi-
ents. The later four in the context of LoRA-like

adapter FT. None of them consistently beat LoRA.
Moreover, their solutions leave something to be
desired. Most of them require merge-back into W.
ToRA is an efficient approximation that can handle
such updates.

Slow Convergence of LoRA LoRA+ Hayou et al.
(2024) and PiSSA Meng et al. (2024a) study the
slow convergence of LoRA stemming from its
BA initialization to “Noise & Zero” which led
to small gradients and slow convergence. Instead
PiSSA initializes the adapter matrices A and B
with the top r principal components of Wy, and
put the remaining components into a residual ma-
trix W7es = (WO — anztAzmt> which is locked
during training. W' takes the place of Wy during
FT. Bjnit Ainit contains the low-rank factoring of
WPt instead of zero which solves the slow con-
vergence of LoRA. However, in the experiments
PiSSA does not consistently beat LoRA.

HQQ Badri and Shaji (2023) utilize a hyper-
Laplacian (fig. 3) distribution to compress Llama-
70B to 1 or 2-bits thereby heightens the urgency of
facing long-tail squarely.

LoRA’s main weakness is its low-rank matrix as-
sumption in the face of strong evidence the singular
values of weights and gradients have a heavy-tail
distribution. Since gradients are persistently high
rank, one cannot capture them faithfully if they
are forced into a low-rank subspace. This work
will provide a solution for these problems using a
carefully chosen efficient tensor decomposition.

3 ToRA & Tensor Train Decomposition

The main contribution of ToRA is overcoming
LoRA’s low-rank limitation to approach full-fine
tuning (FFT) performance with a smaller mem-
ory budget while preserving the pure adapter form.
From above, it is evident one needs a tool that can
accumulate gradients with a heavy-tail and highly
variable ranks into an efficient representation with
minimal loss. Among the possible forms of tensor
decomposition, Tensor Train (TT) Oseledets (2011)
is a balanced product factoring into d terms for a
d-dim tensor:

A1, - -5 da) = Gi[(j1)] G2[(42)] - - - Gal(ja)]
1xry r1XT2 rq—1Xx1
4

Each G (TT-core) is a 3D array r,—1 X I, X rp,
except for the first and last. G; and G4 are al-
ways rank-1 modes for interfacing with vectors
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Figure 4: ToRA-Adapter: a nn.linear is initialized with Kaiming, then approximated with tt-svd into tensor-train
form and zero out last core then discarded. The adapter is applied to W (K,Q,V) for all layers using LoRA-16
budget. ToRA naturally supports heavy tailed updates in a parameter efficient way.

and matrices. TT is a “chain” of smaller fac-
tors connected by tensor-contraction operator
Kossaifi et al. (2017) for adjacent pairs of cores
along a shared dimesion (e.g. r1 for G1[(j1)]
G2[(j2)]). The tensor-contraction computes
a tensor Kronecker-product. It is efficiently imple-
mented in GPU friendly manner as a reshape +
matmat-mul. It is supported in cuBLAS and Ten-
sorFlow etc. The number of terms in eq. 4 (3..5
for ToRA) is controlled by tensorization. TT bring
multi-linear algebra to this problem and has many
attractive numerical properties. TT has linear scal-
ing with respect to dimension using O(dnr?) to
store O(n?) elements. This critical property is not
shared by common tensor forms like Tucker.

TT as Generalized Low-Rank Decomposition
Rewriting eq. 4 as a TT factoring of dense AW,
G1[(j1)] = U, Ga[(ja)] = VT -

N—— N——

1x7rq rg—1x1
d—1 T
AW =U II &,V (5)
j=2

This aligns TT decomposition into a SVD-like form
used in LoRA. For LoRA, eq (5) has one 33; term
and is a diagonal matrix becoming a standard low-
rank matrix factoring. In ToRA, 3; is not limited to
be a diagonal matrix but a set of 3D core-tensors in
a product factoring. This is the source of the greater
representation power of TORA. In both LoRA and
ToRA, U and V is a linear down and up projector
into a lower-rank subspace. In LoRA, this subspace
is the LoRA rank (e.g. 16) while for ToRA it is
much much higher, corresponding to the unfolded
dimension of Gz[(j2)]. One example is gkv_proj
from OpenELM, ToRA use a 5 term decomposi-
tion:

tt-svd(ATV € R1152x1280) —

{G1:(1,4,4,16); G2 : (16,4,4,23);
Gs3:(23,4,4,29); G4 : (29,6,4,15);

Gs : (15,3,5,1)} last dimension of each term is
the same as the 1st dimension of the next term -
those are the connections for tt-contraction.

Previous Works on TT for Deep Networks FacT
Jie and Deng (2023), LoRTA Hounie et al. (2024)
and LoTR Bershatsky et al. (2024) are the closest
to ToRA in applying tensor decomposition to PEFT.
All of them represent all the AW's as a single ten-
sor and use weight sharing across layers. Their
focus is maximum model compression and not FT.
A single tensor with weight sharing might entail
more tuning and difficult analysis as to which lay-
ers can profit from sharing etc. All of them focus
on reducing the memory lower bound of LoRA by
tensor decomposition together with weight shar-
ing while ToRA aims for best-in-class FT perfor-
mance. Moreover, they either use the simplest form
of TT, with one 3D core without tensorization or
use Tucker form which does not have linear scaling.
Its storage grows exponentially and is limited by
curse-of-dimensionality Kolda and Bader (2009).
LoRTA and Hutchinson et al. (2011) both use CPD
form (Kolda and Bader, 2009), which factor a dense
tensor into a sum of rank-1 factors. However,
CPD approximation with a fixed canonical rank
is ill-posed (de Silva and Lim, 2008). Critically,
Tucker and CPD are not endowed with an equiva-
lent TT-svd algorithm which is needed to perform
accurate construction of a tensor approximation
and proper adapter initialization. The importance
of good TT initialization will be comprehensively
studied.

FacT trained for 100 epochs while ToRA use
5. It use much smaller TT ranks (1,4,8,16) than



current best practice. FacT-TT do not possess
ToRA’s novel tt-svd based adatper init which
is shown to be critical for good TT performance.
Both FacT and LoRTA cannot reach LoRA’s per-
formance while ToRA beat LoRA consistently and
by large margins. LoRTA achieved 61.8 on CoLA
despite using a 7B base model. ToRA obtained
68.20, 81.23, 81.60 using OpenELM (270m) and
1B, 3B Llama-3.2.

Novikov et al. (2015) introduced tensor-train to
neural networks and compressed the MLP in VGG
by 200000x. Hrinchuk et al. (2019) use TT to
compress the high rank soffmax in a wide range
of NLP models. Ma et al. (2019); Ben Noach and
Goldberg (2020) tensorized the attention blocks.

CoShNet Ko et al. (2022) uses a TT-1linear to
represent a 1250x500 dense FC-layer factored into
a TT that is 455 x smaller with little lost in perfor-
mance. Similarly Wang et al. (2022) applied TT to
compress LLM’s attention and embedding layers.
Success of Hrinchuk et al. (2019) and Wang et al.
(2022) are notable given the difficulties outlined
above when using low-rank matrix factoring for
softmax and attention. TT’s incredible ability to
compress and preserve high-rank linear operators
inspired us to use it in a parallel adapter in the
manner of LoRA.

TT is great for naturally high-dimensional data.
However, the matrices in a LLM are all 2D (em-
bedding, K,Q,V, FFN, MLP). Keep in mind the
number of terms in a TT factoring is determined
by the input dimension d. To more fully exploit
the strength of TT, ToRA use a tensorization
process Garipov et al. (2016) to reshape the arrays
into higher dimension tensors using folding. This
enables ToRA to exploit higher #t-rank by feeding
tensorized matrices to tt-svd producing a compact
yet powerful TT layer. This gives ToRA greater
expressiveness for the same budget.

TT-svd (Algorithm 1) is a stable algorithm to con-
vert any dense tensor into a TT form. It is a se-
quence of QR factoring. QR factors a matrix into
an orthonormal (Q) and upper-triangular (R). Each
step keeps a truncated Q and folds the residual R
into the next core. It produces a set of orthonormal
subspaces. If the singular values are truncated at 9,
the error of approximation will be v/d — 16.

3.1 ToRA Adapter

This work set out to apply the power of tensor-train
to LoRA fine-tuning and arrived at TORA. ToRA

Algorithm 1 TT-SVD

1: Initialization: Compute truncation parameter

€
d—1

6= [A[[p-
Temporary tensor: C = A, rg = 1.
fork=1tod—1do
C := reshape(C, [r_1ny, %ﬂi)])
Compute J-truncated SVD: C = USV T +
E, where ||E||r < 4, 1, = ranks(C).
Core: Gy, := reshape(U, [rg—1, g, 7'k])-
C:=SVT.
end for
Gq=C.

° ® 3R

is a LoRA style parallel adapter using TT to effi-
ciently represent AW in a “no compromise” man-
ner. Since TT can represent high rank subspaces
with small number of weights, it can be used every-
where without searching for which layers to apply
and without tuning their sizes. TORA use LoRA-16
size as its parameter budget. Even better results
are possible with some tuning of the tt-rank. See
ranks ablation in Table (5).

Adapting Wy : ToRA systematically adapt
K,Q,V for all attention blocks using the same
tt-config with a tiny percentage of the full
model’s weights - e.g. 0.2% corresponding to
LoRA—16. ToRA being able to adapt Wy and
get good results can be easily missed. LoRA’s
original experiments tested several combinations
of q, k, v, o while WeLore classified attn.v_proj
as a Non-Low-Rank and do not attempt to adapt.
One clue is the rightmost subfigure in Fig. (2)
from WeLore. It shows attn.v_proj has even
higher-rank than K,Q which present problems for
all works that use the BA" factoring. ToORA do not
suffer from this limitation because TT can handle
high-rank updates. ToRA also do not need to tune
training epochs, batch size, learning rate etc. 1-5
epochs is used for all the tests.

3.2 Novel Adapter-tt-svd Initialization

Most deep networks that use TT all treat each
tt-core as a regular matrix and initialize them
separately using Xavier/Kaiming or random init
including Jie and Deng (2023) and (Hrinchuk et al.,
2019; Ma et al., 2019; Wang et al., 2022) etc. This
might seems like a natural thing to do but this work
present evidence that it is a critical error and limited



their final performance even when TT was applied.

Bear in mind the Xavier analysis is based on
fan-in/out for layers in a deep network in order to
preserve the variance of their gradients. The cores
in a TT are not operating on the fan-in/out connec-
tions except for the 1st and last core. Similar to
CoShNet Ko et al. (2022), a scratch nn. linear is
initialized with Kaiming. The tt-svd factors that
into small tt-cores whose combined operations
will be a Kaiming inited block. This is sufficient
when TT is used as a linear/fully-connected layer.
However using TT in an adapter has extra consid-
erations. This bring us to a novel contribution for
ToRA.

Adapter-tt-svd init LoRA’s factors BA' are
initialized with “Noise and Zero” to match the
gradients of FFT. ToRA developed a novel TT
adapter initialization scheme that stay within
the LoRA’s BA framework by using tt-svd to
initialize all but the last core which is zeroed
out. Thus ToRA also produces the same gra-
dient as the original pretained model and simu-
lates FFT faithfully. Table (3) shows how crit-
ical Adapter-tt-svd is to ToRA’s performance.
For example, Kaiming vs. tt-svd-only vs.
Adapter-tt-svd is (69.4,62.07,81.2) for CoLA
and (58.07, 56, 75.06) for BoolQ on Llama-1B.

Survey conducted by the author? suggest engi-
neers use r € [16..64] in modern applications. In
this range, TORA with same or smaller memory
budget as LoRA consistently outperform it across
all ranks, with and without quantization for all three
models. Some by more than 10 percentage points
(Table 1). ToRA also beat PiSSA by a large mar-
gin and sometimes even Dense. PiSSA relies on
LoRA’s low-rank factoring to capture the top-r
principal components of . While being faithful
to the original model it lacks the random initialized
A needed for an adapter to explore outside of the
original distribution. Dense under-performing in
many case can be explained as over-fitting due to
the datasets for FT are often much smaller than the
training corpus for LLMs. From Table 1, It is the
top performer in only 2 cases that used OpenELM
which has 270m parameters only. Other authors
have noted the regularization effects of adapter FT
especially using LoRA. ToRA strengthens the reg-
ularization of LoORA by representing a high-rank
subspace in smaller number of weights.

QLoRA & QToRA: modern FT workflow invari-

>Thanks to [Redacted] of [Redacted]
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Figure 5: Rank ablations 8, 16, 32, 64, 128 on BoolQ,
CoLA using different adapters. ToRA is superior across
the full range of ranks. ToRA-8 beats LoRA for all ranks
even up to 128. BoolQ, rank 128 is missing because of
GPU memory constraints.

ably use QLoRA on a LLM to bring down the
GPU memory required. QLoRA is a quantile-based
quantizer that support high quality 4-bit FT and in-
ference. QToRA replaced the LoRA adapter in
QLoRA with ToRA. in Table (2) contains the su-
perb results of QToRA on 2 datasets and 2 models.

4 Experiments

Table (1) summarized the results for 4 adapters and
3 models for 5 data sets. ToRA is compared next to
LoRA and PiSSA using the same memory budget
as well Dense AW using ADAM with Ir = 1le — 5,
batch size 4, » = 16 and o« = 16 for 5 epochs un-
less otherwise stated. Dense is an adapter with full
rank AW. Even though it is not a practical adapter
it serves as the baseline for an adapter-based full FT
whenever the GPUs allow. All experiments were
carried out on 2 servers with 4 RTX 3090 24GB
GPUs.

ToRA consistently outperforms LoRA and
PiSSA with the same budget. In (Table 1) ToRA is
compared against LoRA using Llama-3.2-3B e.g.
80.32 vs. 69.56 on BoolQ, 48.82 vs. 34.20 on
MMLU, 81.60 vs. 75.86 for CoLA and 86.23 vs.
74.9 for MNLL

For models, OpenELM 270M Mehta et al.
(2024), instruction tuned LLama-3.1-1B, and
LLama-3.2-3B (bf16) Dubey et al. (2024) on five
diverse NLP datasets. They are chosen to test
adapters across task types, difficulty levels and



Model Method %W BoolQ MMLU CoLA MNLI GSMS8k
Dense 10.24%  63.81 2898 67.82 X X
OpenELM PiSSA 0.26% 61.98 2741 67.81  80.40 0.00
LoRA-16  0.26% 62.71 24.28 68.20 79.30 0.00
ToRA 0.20%  62.47 25.06  68.20 80.20 0.00
Dense 7.53% 43.03 30.55 80.08 X X
Llama-3.2-1B PiSSA 0.19% 73.35 45.43 81.22  86.72 3.54
LoRA-16  0.19% 72.86 49.60 7893 86.84 5.31
ToRA 0.19% 74.81 4726 8123 86.76 18.58
Dense 12.06% 24.57 32.38 80.07 X X
Llama-3.2-3B PiSSA 0.20% 62.96 27.41 76.25  58.23 37.17
LoRA-16  0.20% 69.56 3420  75.86 74.90 37.17
ToRA 0.20% 80.32 48.82  81.60 86.23 38.94

Table 1: ToRA vs. Dense AW, LoRA-16 and PiSSA for 3 different sized models. On OpenELM, ToRA is slightly
better or matches LoRA. The gap become bigger as the base model is more powerful. For Llama-3.2-3B, ToRA is
more than 10 points better for 3 datasets. The same trend is found in Table 3 for quantized base models. %W is the
percentage of finetuned parameters. Dense uses batch size 1, Llama-3.2-3B is bf16. MMLU except for Dense use

batch of 2 due to GPU memory constraints.

dataset sizes. Models are trained on the training
set, and accuracy reported on the validation set to
ensures consistency across different datasets (since
many do not have a public test-set). TORA does not
require validation set based hyperparameter tuning.

Datasets: (1) BoolQ Clark et al. (2019) Binary
(yes/no) QA dataset with 9.4k training and 3.2k val-
idation samples. (2) CoLA Warstadt et al. (2019)
Linguistic Acceptability dataset from published
literature, part of GLUE Wang (2018), with 8.5k
training and 516 validation samples. (3) MMLU
Hendrycks et al. (2020) MCQ test across diverse
subjects to assess world knowledge, with 99.8k
training and 1.5k validation samples. (4) MNLI
Williams et al. (2017) Multi-Genre NLI dataset
covering 10 genres, with 393k training and 9.8k
validation samples. (5) GSM8k Cobbe et al. (2021)
Grade School Math problem dataset for problem-
solving evaluation, with 7.4k training and 1.3k test
set samples.

4.1 Ablations

Base Models and Adapter Ablation with 3
pretrained base models (OpenELM, LLama-3.2
1B,3B) and 4 adapters (Dense, LoRA, PiSSA,
ToRA) in Table (1) contain our main results. We
consistently beat LoRA and PiSSA, sometimes by
large margins on larger models (1B, 3B), while be-
ing neck-to-neck on OpenELM. We hypothesize
the benefit of a good adapter is more pronounced
for larger model because large model also has a
large hidden-state. Unlike others that cites pub-

lished results all results ran on the same platform
with the same pipeline and adapted in the same
manner.

Ranks (8,16, 32,64,128) for 3 adapters using
Llama-3.2-3B in Figure (5) on CoLA and BoolQ
are compared. LoRA shows limited ability to take
advantage of higher ranks, ToRA displays a steady
ability to improve. Remarkably, rank-8 ToRA beats
LoRA and PiSSA for all ranks 8 — 128.

Quantization ablation in Table (2). Three adapters
are applied to two quantized models (Llama-3.2-1B
and 3B) using two popular quantization methods
QLoRA (Dettmers et al., 2024) and HQQ (Badri
and Shaji, 2023), akin to many production deploy-
ments. In 3 out of 4 cases QToRA has the best
results, the lone case of HQQ (4b) on CoL A goes
to QPiSSA with QToRA a close second. Compare
the corresponding rows for Table (1) and (2), one
can see TORA+LLama3.2-3B with QLoRA beats
non-quantized for CoLA (85.06 vs. 81.60) and
(81.90 vs 80.32) for BoolQ. The opposite is true
for LLama3.2-1B. These unexpected results will
be covered in a follow-up work.

Novel Adapter TT-SVD init: A novel TT ini-
tialization scheme “Adapter-tt-svd” is introduced
above to initialize ToORA. Table (3) compares the
performance of TORA when initialized with stan-
dard Kaiming-Normal vs. tt-svd-only (without
zero-last-core) and Adapter-tt-svd. For CoLA
they are (69.4,62.07,81.2) and (58.07, 56, 75.06)
for BoolQ on Llama-1B.



Model Quantization Adapter CoLA BoolQ
QPiSSA 85.05 81.78

Llama-3.2-3B  QLoRA (4 bit) QLoRA 8391 81.54
QToRA  85.06 81.90
QPiSSA 81.23 71.64

Llama-3.2-1B  HQQ (4 bit) QLoRA 7854  72.37
QToRA  80.84 73.35

Table 2: QLoRA or HQQ is applied to 2 models and 3 adapters. In 3 out of 4 case ToRA has the best performance

and is always better than LoORA

Initialization Model CoLA BoolQ
Kaiming 69.35 58.07
tt-svd-only Llama-1B 62.07 56
Adapter-tt-svd 81.23 75.06

Table 3: TT init ablation: Kaiming, tt-svd-only and
Adapter-tt-svd initialization for CoLA and BoolQ.

5 Conclusion

ToRA demonstrates greatly enhanced performance
adapting attention blocks in a “no compromise”
manner - i.e. adapting all attention blocks for all
layers and for all (K,Q,V) matrices (Koohpayegani
et al., 2023). ToRA performs better with larger
models. While being competitive at the very low
end, with or without quantization and use all ranks
well. Thus ToRA can be applied easily in the field
because it hardly needs any tuning. This gives
practitioners a lot of freedom to choose what their
budget permits. ToRA is a drop-in replacement for
LoRA.

ToRA can contribute to adapters for ViT He et al.
(2023) and diffusion models. Its benefits might
even be more pronounced due to the inherit higher
complexity/rank in these problems. This is left for
future work.

6 Limitations

The experiments are limited to models with 3-
billion parameters or less due to modest hardware
(RTX3090) at our disposal.

Hyperparameter tuning the TT recipe could po-
tentially result in better performance, we did not
conduct it due to limited hardware budget. Instead
we focus on using a configuration that matches
LoRA’s budget.

This work did not fully exploit the poten-
tial of ToRA applied to other parts of LLMs -
e.g. attn.proj_o, ffn, MLP and embedding etc.
Adapting attention blocks only follow LoRA’s ap-

proach for ease of comparison. This is the current
best practice. However, doubts linger in the com-
munity which ToRA helps to resolve.

While introducing ToRA to improve Parameter-
Efficient Fine-Tuning (PEFT) can enhance model
adaptability and efficiency, there are potential risks
associated with publishing such methods. One ma-
jor concern is the potential for adversarial exploita-
tion, where malicious actors could use ToRA to
create highly optimized yet harmful models at a
lower computational cost. Additionally, making
fine-tuning more efficient could lower the barrier
for misuse, enabling the rapid adaptation of power-
ful models for unethical applications, such as mis-
information generation or privacy-invasive surveil-
lance. There is also a risk of unintentional bias
amplification, as TORA may introduce complex pa-
rameter interactions that are not well understood in
terms of fairness and robustness. Addressing these
risks requires transparency in research dissemina-
tion, rigorous evaluation against adversarial use
cases, and responsible Al deployment strategies.
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