
Attacks on Rollups
Adrian Koegl

adrian@quantstamp.com
Quantstamp, Inc.

USA

Zeeshan Meghji
zeeshan@quantstamp.com

Quantstamp, Inc.
USA

Donato Pellegrino
donato@quantstamp.com

Quantstamp, Inc.
USA

Jan Gorzny
jan@quantstamp.com

Quantstamp, Inc.
USA

Martin Derka
martin@quantstamp.com

Quantstamp, Inc.
USA

ABSTRACT
A rollup is a network, implemented via smart contracts on a block-
chain, that aims to scale that slow but general purpose blockchain.
The rollup executes transactions and posts the resulting state root,
along with the transaction data, to a blockchain they are built on.
As a result, the state root of the rollup network is always recorded
on the underlying blockchain. The underlying blockchain is used
to derive the state of the rollup itself, meaning that the rollup state
cannot be changed arbitrarily or would be easily detected (sub-
ject to how its state is updated and recorded on the underlying
blockchain). In turn, the rollup inherits some security from its un-
derlying blockchain — but the rollup network itself is not immune to
direct attacks. Some attacks are like other network-level attacks (e.g.,
denial-of-service attacks) while others are a result of the rollup’s
connection to its underlying blockchain (e.g., re-organization at-
tacks). In this work, we collect a list of known attacks on rollups
and illustrate their impact.

CCS CONCEPTS
• Computer systems organization→ Dependable and fault-
tolerant systems and networks; • Security and privacy →
Network security.

KEYWORDS
Rollup, blockchain, Ethereum, scaling solution, security, layer two

ACM Reference Format:
Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin
Derka. 2023. Attacks on Rollups. In 4th International Workshop on Dis-
tributed Infrastructure for the Common Good (DICG ’23), December 11–15,
2023, Bologna, Italy. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1
145/3631310.3633493

1 INTRODUCTION
Modern blockchains like Ethereum [1] are general purpose dis-
tributed ledgers that have evolved beyond merely sending digital

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DICG ’23, December 11–15, 2023, Bologna, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0458-1/23/12.
https://doi.org/10.1145/3631310.3633493

assets between accounts. They often support so-called smart con-
tract [2], which are programs deployed on the network and execute
their code when interacted with via a transaction. Sometimes, these
are simple programs like digital tokens (e.g., ERC-20 tokens [3]),
and other times they more complicated, like trading applications
or games.

However, these networks are not necessarily performant:
Ethereum can only handle tens of transactions per second [4]. As
a result of this performance bottleneck, some of the applications
built on top of these blockchains aim to scale the blockchain itself
[5]. For example, one can implement protocols like state channels
[6–9], which allow participants to transact off of the blockchain and
settle their balances only when the other party is not cooperating
or when the channel should be closed. However, this particular
approach is not particularly popular because a specific channel is
necessary for every pair of participants, though it forms the basis
of the Bitcoin Lightning network.

Other scaling protocols have also been designed and imple-
mented. Side-chains [10] relax need for a separate setup for every
pair of participants and add support for off-chain smart contract
execution, but are not necessarily tied to the main blockchain; as
a result, the side-chain can effectively do what it wants. So-called
Plasma chains [11–13] were one approach that tried to bring the
benefits of a side-chain while maintaining some dependency on
the underlying blockchain itself. However, these were plagued by
issues related to data availability (e.g., malicious operators could
withhold data necessary to prove a withdrawal is valid).

To overcome these issues, data was required to be posted on-
chain and this ultimately lead to the concept of a rollup (also called a
commit-chain [14] or validating bridge [15]; see also [16]). A rollup
is a smart-contract based protocol where transactions are executed
off-chain to form another blockchain network. In a rollup, batches
of the executed transactions, along with the resulting state root of
network, are posted on the underlying layer one. Rollups separate
execution of state transitions (that is, processing of transactions)
from consensus, and in turn, they can process many more transac-
tions per second than their underlying layer one. Since rollups post
a summary of the rollup state (the root of a Merkle tree [17]) onto
the underlying blockchain, which is actually also used to derive
the state of the rollup network, they inherit some security from
the underlying blockchain. In order to derive a different layer two
chain, it is necessary to change the recorded layer two state on
layer one, a challenging and expensive task. Rollups, and other
scaling solutions built via smart contracts, are called “layer two”

1

https://orcid.org/0000-0001-6183-7646
https://orcid.org/0009-0007-5599-9877
https://orcid.org/0009-0007-4511-0819
https://orcid.org/0000-0003-1435-8508
https://orcid.org/0000-0001-7514-3004
https://doi.org/10.1145/3631310.3633493
https://doi.org/10.1145/3631310.3633493
https://doi.org/10.1145/3631310.3633493

DICG ’23, December 11–15, 2023, Bologna, Italy Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin Derka

(or “L2”) solutions, built on top of a corresponding “layer one” (or
“L1”) blockchain.

Rollups also support smart contracts. As a result, applications
can be built on them and they can be seen as middleware between
such applications and the underlying layer one. Rollups can add
features to, or remove features from, their virtual machine when
compared to the virtual machine of the underlying layer one itself.
They may also support an entirely different virtual machine, as in
the case of the StarkNet rollup [18].

In addition to these possible differences on rollups, they include
bridging functionality from the layer one to the layer two network
implemented by the rollup. Digital assets are locked in a layer one
smart contract and a message is relayed to the rollup network to
mint a representation of the asset on the layer two. In the last
two years, over $2 Billion USD was stolen from or locked in bridge
contracts through bugs and attacks [19]. As rollups implement more
complicated versions of bridges, it is important to understand what
attack vectors are possible for these systems before they are built.

This work investigates the security consideration of these net-
works. These networks do not have the same attack vectors as
other (layer one) blockchain networks. First, most users do not (and
cannot) run nodes for these networks. They are often centralized,
earning user trust through two popular approaches (defined in de-
tail in Section 2). Optimistic rollups post state roots which can be
challenged if they are incorrect up within a certain time period.
Zero-Knowledge (ZK) rollups provide a mathematical proof that the
update is correct. Second, while some security is inherited from the
underlying layer one, its presence also complicates the layer two
network itself, e.g., by re-organizing itself. Finally, the design of
these systems themselves may introduce new avenues for attacks
that are not relevant to layer one blockchains.

Rollup users expect liveness from the system, that is, as long as
the underlying layer one is operating, the layer two is operating as
well. They also expect that any bridged digital assets are (nearly)
as secure on the rollup network as on the layer one itself. Some
unique features of rollups, like so-called escape hatches, aim to
make those assumptions a reality [20]. However, rollups are fairly
new developments and are not always feature complete. Therefore
it is also important to study the attacks on these systems in the
context of their required features, to ensure that users can check if
such functionality exists and determine the riskiness of the system
for themselves. This work fills a gap in the current literature by
providing a list of attack vectors unique to rollups. We also suggest
areas of future research in order to mitigate some of these attacks
and other risks on rollups.

2 PRELIMINARIES
A rollup can be broken down into several components1: a sequencer,
a state proposer, and an (explicit or implicit) verifier. A sequencer is
responsible for ordering layer two transactions and committing, via
a transaction to layer one, to a batch of transactions to be executed.
This batch is made up of layer two transactions. A state proposer
executes the transactions in a batch (in the order provided by the
sequencer’s commitment) and computes new state roots which are

1Other work like [15, 20] use different terms for these components, but each rollup
has some component that performs these actions.

written to layer one. Verifiers in a rollup ensure that state roots
are (eventually) correct. Rollups come in two major types, which
may change the responsibilities of these components: optimistic
and zero-knowledge.

An optimistic rollup is one in which the state proposer is bonded
and proposes new state roots. The state proposer is bonded in
the sense that they stake some funds on layer one that are lost if
they post an incorrect state root. A verifier in an optimistic rollup
is an actor who submits a so-called fraud proof to challenge an
incorrect state root proposed by the state proposer. In an optimistic
rollup, state roots are considered correct unless a bonded verifier
successfully challenges the state root with a fraud proof within
some period of time (e.g., seven days). Such a verifier may need to
propose an alternative state root than the one provided by the state
proposer. Often, verifiers are part of the state proposer, and the
combined entities are called validators. A verifier who successfully
challenges the state proposer wins the state proposer’s bond; those
that lose the challenge give up their own stake to the state proposer.
Arbitrum is one example of an optimistic rollup [21].

A zero-knowledge (ZK) rollup is one in which the state proposer
generates cryptographic proofs that each new state root is correct.
In a ZK rollup, the state proposer performs state transitions within
a zero-knowledge proof framework (e.g., [22]), which generates
a validity proof : an artifact that proves that a particular function
was executed with particular inputs, which resulted in the new
state. These validity proofs can be verified using layer one smart
contracts (as a result, the verifier actor is implicit in such rollups).
A state proposer for a ZK rollup may have one or more provers
as a sub-component, which generates the validity proofs given
a batch of transactions and a previous state root. Note that the
“zero-knowledge” aspect of these proofs are sometimes helpful for
privacy, but mostly these systems are used because the proofs
are also succinct. This property enables the proofs to be verified
in a fraction of the time required to run the computation in the
first place, enabling verification directly on a layer one blockchain.
zkSync is one example of a ZK rollup [23].

A sequencer orders transactions for the layer two. The source
of these transactions may be a user of the rollup or the layer one
smart contracts of the rollup. As a result, sequencers are respon-
sible for cross-chain communication, and may be considered to be
a blockchain bridge. A bridge is a system or protocol for taking
assets or blockchain state from one blockchain to another. As cryp-
tographic assets cannot be literally moved from one blockchain to
another, the bridge creates representations of assets on a source
blockchcain on a destination blockchain. To avoid arbitrary minting
of assets, bridges have a smart contract on the source blockchain
called the custodian, which locks up the asset to be minted on the
destination chain. Through an off-chain communicator component,
when assets are placed in the custody of the bridge, the correspond-
ing debt issuer on the destination blockchain mints a representation
of the asset in custody. The process is reversible. Advanced bridges
relay instructions to execute functions on either blockchain.

3 ATTACKS & RISKS
In this section, we consider attacks related to rollups. Each attack
is presented in its own section.

2

Attacks on Rollups DICG ’23, December 11–15, 2023, Bologna, Italy

3.1 Censorship Attack
Ideally rollups would be as at least as censorship resistant as their
underlying layer one. A rollup may be more censorship resistant
because underlying layer one nodes might be easily convinced
to censor transactions from a particular address, but not if that
address updates an entire layer two or if the rollup can change
it’s underlying address on layer one when blacklisted. However,
censorship can occur from several different components in a rollup
and some transactions on the layer two could be withheld never be
processed. In some cases, transactions can be ignored by sequencers
or be excluded from the state update by the state proposer.

Misbehaving sequencers can choose to censor transactions sub-
mitted by users; this is called a censorship attack. If there is only one
sequencer (or a small number of them), then this censorship can be
very effective, and vulnerable decentralized sequencer protocol may
also allow for censorship. This is partially why many rollups imple-
ment methods to forcefully include a transaction via the layer one
smart contracts. However, these implementations have varying de-
grees of effectiveness and may not completely mitigate censorship
by the sequencer.

Furthermore, some optimistic rollups have not yet fully imple-
mented fraud proofs. Such rollups allow submitting undisputed
fraudulent transaction batches, and their resulting state roots, to
layer one. These state proposers may exclude transactions from
the state they propose back to layer one in order to censor users.
In such a system, as there is no way to successfully dispute the
fraudulent state, it will be finalized on layer one. However even if
fraud proofs are implemented, there is a risk of fraudulent states
going unchallenged. This can be achieved by colluding state pro-
posers or a lack of incentive to challenge invalid states. To reduce
the trust required in state proposers and prevent censorship, some
rollups implement a forced withdrawal functionality, where one
can always force the rollup to return funds it owns.

In ZK rollups, state proposers can only censor all transactions
committed by the sequencer, or none. This is because a block is
required as input to the verifier when the block’s validity proof is
executed, and as a result, a prover cannot simply ignore a part of the
input (assuming the verifier and prover are correctly implemented).
Moreover, as a block includes a reference to the prior block in the
chain, entire blocks also cannot be skipped. Therefore, censorship
implies that no state update is posted ever again in such a ZK rollup.
In a ZK rollup, as long as one honest state proposer is (eventually)
online, state will progress and censorship is not possible, provided
that the sequencer is not censoring transactions.

This attack can be mitigated entirely or in part by forced inclu-
sion and forced withdrawal functionality, which are implementa-
tions of escape hatches, as the attack itself resembles an offline
operator. The Hermez project previously suggested a mechanism
to mitigate this attack by rotating the sequencer role according to
some staked funds [16].

3.2 Delay Attack
A delay attack involves the delay of layer two state confirmation on
layer one [24]. This includes intentional delays and delays incurred
due to a lack of incentive. Multiple misbehaving components of

rollups could cause a delay in state confirmation. The simplest ver-
sion of this attack would be for a misbehaving centralized validator
to simply not propose a rollup block to layer one. Sequencers could
also perform delay attacks by censoring or excluding transactions
from the layer two blocks for a limited time. This attack can also
be mitigated entirely or in part by escape hatch functionality as it
resembles an offline operator.

The risk, feasibility, and impact of delay attacks is higher in opti-
mistic rollups compared to ZK rollups. This is due to the expanded
capabilities of state proposers in optimistic rollups. In ZK rollups,
state proposers can only impede state progression by refraining
from submitting states for a designated delay period. They are in-
capable of delaying individual transactions, as the absence of a
specific transaction would cause their validity proof to fail. State
proposers on optimistic rollups can instigate transaction delays
in two additional ways: they can omit transactions in their state
update until this invalid state is contested, or they can delay resolv-
ing disputes to instigate fraud proof delays. These two delays form
another attack vector which state proposers in optimistic rollups
can perform, in addition to the attack vector possible on ZK rollups.

Optimistic rollups with a permissionless validator role may intro-
duce additional risk for delays. Malicious validators may sacrifice
their stake deliberately by losing challenges in order to delay the
proposal and confirmation of correct layer two batches. The pos-
sibility of this attack is what currently prevents Arbitrum from
making the validator role permissionless [25].

In ZK rollups, delays can occur when offline or malicious state
proposers do not submit states anymore. Delayed transactions, as
opposed to censored ones, will eventually change the state; state
proposers can only delay all transactions or none of them since
they can only use all of the transactions in a block or none of them.
As long as there is one honest and online state proposer, the state
is guaranteed to progress eventually.

In both kinds of rollups, the impact and risk of delay attacks
depends again on the existence of escape hatch functionality so
that a user can circumvent state proposers and incentives to make
sure that deliberately doing the wrong thing is expensive.

3.3 Denial of Service Attack
A Denial of Service (DoS) attack involves attackers trying to pre-
vent any action from being taken on the protocol. DoS attacks are
particularly concerning as many rollups are still highly centralized
and provide a single point of failure. If a single centralized actor in
a rollup (i.e., sequencer, proposer, validator, or prover) no longer
functions, the rollup itself could cease to function entirely. DoS
concerns could be caused in many ways on rollups and we explore
some example causes below.

• Malicious Pausing. Many rollups have some type of pause
feature on their primary contracts to pause all functionality
(i.e., revert on all meaningful transactions). A malicious ac-
tivation of the paused state would prevent the rollup from
being used. Such an approach may be feasible as access con-
trols on smart contracts are not always easy to get right due
to a lack of specifications [26].

3

DICG ’23, December 11–15, 2023, Bologna, Italy Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin Derka

• Consensus Concerns. For rollups with decentralized se-
quencers (that is, a possibly permissionless protocol that any-
one can follow to become a sequencer), there are concerns
with consensus protocol limits. Some possible consensus
protocols have scalability limits, after which the network
will either be unusable or face unexpected consequences (see
e.g., [27] for a case study, and [28] for a survey).

• (ZK rollups only) Expensive Proof Flooding. For ZK
rollups, some operations may be more slow to prove than
others; for example, executing a hash function like SHA-256
which is not easily executed inside a proof system operating
over a finite field [29]. ZK rollups which aim to be EVM
equivalent are required to implement this functionality, and
if it is slow to prove by the system but cheap to call on the
rollup, there may be opportunities for malicious users. In
particular, flooding the network with such operations may
degrade the quality of service by delaying block proofs. Note
that some ZK rollups may avoid this problem by replacing
the the hash function or other expensive operations with
more efficient versions of them.

• (Optimistic rollups only) Fraud Proof Denial. For op-
timistic rollups, preventing a validator from submitting a
fraud proof would result in the incorrect outcome of the
challenge game. If this can be achieved by flooding the un-
derlying layer one with transactions with high gas fees such
that the fraud proof is never included in a block until the
timeout expires, the rollup will suffer from an incorrect-but-
final outcome on the proof. In turn, the system state may not
be one that could be achieved by honest actors; this is why
optimistic rollups have a seven day challenge period [30].

3.4 Forged Transaction Attack
A forged transaction attack involves a state proposer including
a fake transaction into the rollup batch. A fake transaction is a
transaction that lacks a valid signature or represents a layer one
event, such as a deposit, that did not take place. In an ideal rollup,
this is not possible because honest users (or the verification smart
contracts) can check that a layer two block containing a deposit has
a layer one event recorded on a smart contract corresponding to
that deposit. However, optimistic rollups which do not have a fraud
system active or implement a poor incentive system to challenge
illegitimate state updates could be susceptible to this kind of attack.
Currently, such rollups place a high degree of trust in the proposer,
which is controlled by a known entity. If such a proposer were
compromised or malicious, the effects would be devastating and
may lead to the loss of user funds, as an attacker could forge deposit
transactions to themselves with arbitrary value. In turn, they can
withdraw these funds and empty the bridge contracts of the funds.

3.5 Reorganization attack
Sequencers and validators must be able to account for a reorganiza-
tion (or reorg) on layer one. A reorganization is when one chain is
considered canonical for a period of time, but is later replaced by
a different one. Problems may occur if the sequencer submits an
incorrect batch or if an assumption is made about a block. A layer
one reorg may change the state of the layer two network, as the

state roots are posted on the underlying layer one. Ideally, users
will not have to resubmit transactions to the sequencer when the
reorg on layer one occurs.

A reorg may also result in the partial rollback of an optimistic
rollup’s challenge completion as well. In this case, the validator
must be aware of the reorg to ensure that the challenge is completed
and an insecure layer two state is not finalized on layer one; they
may need to resubmit their relevant transactions.

In either case, the reorg may be malicious, and result in a reorga-
nization attack if it is triggered by a malicious actor. For example,
if an actor can control the consensus mechanism of the underlying
layer one, or if a malicious actor can quickly respond to the short
term reorgs common on most layer ones because of a poor rollup
design. This scenario may be expensive on Ethereum but more
achievable on other layer one blockchains. However, short-term
reorganizations should be expected and may be malicious (see e.g.,
[31]); rollups should be able to cope with such reorganizations.

3.6 Soft Finality Attack
Sequencers provide soft finality in rollups by returning receipts to
users which indicate the transaction order. This is in contrast to
hard finality when a transaction is included on the layer two (and
layer one), and a layer two state root containing that update cannot
be removed from the record on layer one, either by a challenge
or a (reasonably feasible) layer one reorganization. Soft finality
allows users who trust the chain to make decisions related to a
transaction’s inclusion without waiting for hard finality.

Soft finality can be invalidated by centralized sequencers in a
rollup; this is a soft finality attack. For example, the sequencer may
order the transaction batch differently than what was indicated in
the receipt or it may also exclude the transaction despite returning
a receipt. Users may suffer losses or inconveniences due to assump-
tions made about the ordering of the transaction based on a fake
receipt in either of the previous scenarios In some sense, this is
their own fault — the transaction was not guaranteed to be included
after all — but soft finality provides an enhanced user experience
for Rollups. Moreover, violating it may be an attack in the sense
that the sequencer can explicitly profit from the omission or cause
particular parties to be negatively impacted.

3.7 Sybil Attack
Most rollups do not currently have permissionless sequencers and
validators (that is, these roles are fulfilled by whitelisted actors
with special permissions to fill them). To make these components
permissionless, some form of consensus algorithm must be intro-
duced to ensure that a set of actors with the same role agrees on the
outcome. Attackers may perform a Sybil attack to control sufficient
nodes: an actor may masquerade as several entities in order exploit
the consensus mechanism [32].

It is essential that the barrier is low for participating as a se-
quencer or validator in order to sufficiently decentralize the rollup.
Otherwise, the few that are capable of participating may collude
or create multiple identities to execute a Sybil attack. However,
a low barrier for participation may encourage Sybil attacks, so it
is important that there are protocol-level measures to safeguard
against them, too.

4

Attacks on Rollups DICG ’23, December 11–15, 2023, Bologna, Italy

3.8 Client Vulnerability Risk
The robustness of the Ethereum blockchain is in part due to the
diversity of clients implementing its design. Even if one client soft-
ware has a bug, the nodes running another client may compensate
for this. Rollup nodes run their own client, which is distinct from
Ethereum clients (though it may be based on one of them). Bugs in
the implementation of this client can lead to a loss of funds in the
worst case (see e.g., [33]) and disruption of the rollup functionality
in other cases.

Client diversity should extend to L2s for both sequencers and
validators. This is because a bug in the implementation of the fault
or validity proof system affects safety of the rollup [34]. For example,
if a bug-ridden state proposer attempts to post a state root in an
optimistic rollup that is actually incorrect due to a bug, a validator
with a client that does not contain that bug will correctly challenge
the state root (and ideally win). Naturally, each client should also be
thoroughly tested and reviewed to minimize the presence of bugs.

3.9 Accountability Attack
In [35], accountability of a rollup is summarized as follows

Accountability requires that whenever the rollup
clients obtain commitments to conflicting rollup
states, the staked nodes of the [layer one] responsible
for this safety breach must be identified and slashed.
However, since the clients do not download the [layer
one] data that is not relevant to the rollup, they can
be tricked into accepting rollup transactions within
unavailable [layer one] blocks.

An accountability attack is one that occurs after another safety vio-
lating attack occurs; essentially, one in which the rollup operators
used unavailable layer one blocks to derive their state. In [35] it
is also shown that rollups using Ethereum as the layer one may
be susceptible to such an attack. This attack results in a situation
where “no adversarial [layer one] node can be provably accused”
and does not necessarily cause direct loss of funds itself on the
layer two, though it may result in a layer two reorganization.

4 ROLLUP SECURITY IMPROVEMENTS
We stress the following areas for future development and work on
rollups in order to improve their security.

Always-On, Scalable Escape Hatches. Rollups should have effi-
cient, always-on escape hatches [20]. They should not be pausible,
they should be scalable, and they should be usable.

Escape hatches should be feasible and accessible when necessary.
Some rollups such as dYdX have no mechanism to allow opera-
tors to disable the escape hatch. However, general purpose chains
have mechanisms which can prevent users from accessing the es-
cape hatch. For example, it is possible for the designated multi-sig
to pause Arbitrum’s DelayedInbox contract (a part of the escape
hatch functionality) or restrict its usage to users on a whitelist. This
would remove users’ ability to access the escape hatch and greatly
increase censorship risk.

Many existing escape hatches involve users submitting trans-
actions directly on layer one, except those which allow new state
proposers. These transactions may only be able to transfer one dig-
ital asset off of the chain at a time, though a user may have many.

User should have to execute as few of them as possible to exit the
rollup in order to provide an good user experience and to avoid
paying high layer one transaction fees. Moreover, an asset may be
in a layer two Decentralized Finance (DeFi) protocol [36] which
must be forcefully withdrawn first, adding an additional layer one
transaction to the process. If each of these operations requires a dif-
ferent layer one transaction, the cost of exiting may be prohibitive.
One possible improvement is to allow a forced transaction to take
multiple actions on the layer two prior to the withdrawal action,
reducing the number of layer one transactions necessary.

Finally, we note that there are currently no dedicated front-
end interfaces for users to access escape hatches. Users must in-
teract with smart contracts directly in order to use the escape
hatches. Even somewhat technical users may be confused as to
what parameters to use in the escape hatch functions. For ex-
ample, the sendUnsignedTransaction() function in Arbitrum’s
DelayedInbox requires the parameters: gasLimit, maxFeePerGas,
nonce, to, value, and data. Many users would not know how to
use this function in order to perform even a simple withdrawal
a token from layer one to layer two. As a result of the expertise
required to use these escape hatches, they remain inaccessible.

Parallel or “All-vs-All” Challenges in Optimistic Rollups. In op-
timistic rollups, the transition from centralized to decentralized
state proposers is ongoing but constrained by the vulnerability to
delay attacks due to extended dispute periods (see Section 3.3). As
rollups systems make strides towards decentralization, they need
to implement robust measures to prevent these attacks.

The introduction of “all-vs-all” challenges presents an innova-
tive solution to this problem. This mechanism, as currently under
development in Arbitrum [25], restricts the maximum delay a po-
tential attacker can cause to a disputed block, irrespective of the
stakes they are willing to sacrifice. In the context of fraud proofs,
“all-vs-all” challenges empower even a single honest staker to ef-
ficiently neutralize a multitude of attackers who may deliberately
loose while defending honest states or post malicious branching
assertions. This provides a significant fortification against delay
attacks (Section 3.2), thereby enabling a more secure path towards
the decentralization of state proposers on optimistic rollups.

Clear Documentation of Access Control Scope. The current land-
scape of rollup solutions underscores a significant need for more
comprehensive documentation of access control scoping, which
includes areas such as operator assignment and system upgrades.
The control of operator roles is a critical aspect that is usually not
well conveyed to the users. This includes questions around whether
escape hatches can be deactivated, contracts can be upgraded, and
how this role changes hands, who has the authority to perform
each action, and under what circumstances an action can be taken.
For example, if rollup operators can control the escape hatches,
e.g., by deactivating them, this needs to be communicated to the
users as they should make the deliberate decision to trust the rollup
operator, and users should determine if the operator is trustworthy
and the risk is sufficiently low.

5 CONCLUSION
We have reviewed attacks on rollups, considering their impact on
both optimistic and ZK rollups. After we defined each attack, we

5

https://dydx.exchange/
https://arbitrum.io/

DICG ’23, December 11–15, 2023, Bologna, Italy Adrian Koegl, Zeeshan Meghji, Donato Pellegrino, Jan Gorzny, and Martin Derka

illustrated potential impacts of it. Future work should consider
comprehensive solutions to mitigate these attacks and consider
rollup variations, like so-called enshrined rollups which are more
tightly coupled to their underlying layer one or sovereign rollups
which post data elsewhere. As rollups continue to be an increas-
ingly popular form of middleware on general purpose blockchains,
these attacks need to be well understood in order to prevent their
exeuction in real-world settings.

ACKNOWLEDGMENTS
This work was funded in part by the Ethereum Foundation through
Ecosystem Support Program grant FY23-0898. The authors would
like to thank the anonymous reviewers and the security researchers
at Quantstamp for their helpful comments.

REFERENCES
[1] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger,

2014. Ethereum Project Yellow Paper, https://ethereum.github.io/yellowpaper/p
aper.pdf.

[2] Nick Szabo. Smart contracts: Building blocks for digital markets. 1996.
[3] Fabian Vogelsteller and Vitalik Buterin. ERC-20 token standard, 2015. https:

//github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md.
[4] Santeri Paavolainen and Christopher Carr. Security properties of light clients on

the ethereum blockchain. IEEE Access, 8:124339–124358, 2020.
[5] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and

Arthur Gervais. SoK: Layer-two blockchain protocols. In Joseph Bonneau
and Nadia Heninger, editors, Financial Cryptography and Data Security - 24th
International Conference, FC 2020, Kota Kinabalu, Malaysia, February 10-14, 2020
Revised Selected Papers, volume 12059 of Lecture Notes in Computer Science, pages
201–226. Springer, 2020.

[6] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. Blitz:
Secure multi-hop payments without two-phase commits. In Michael Bailey and
Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, pages 4043–4060. USENIX Association, 2021.

[7] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Srivat-
san Ravi. Concurrency and privacy with payment-channel networks. In Bhavani
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 455–471. ACM,
2017.

[8] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and inter-
operability. In 26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019. The Internet Society,
2019.

[9] Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2l: Anonymous atomic
locks for scalability in payment channel hubs. In 42nd IEEE Symposium on Security
and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 1834–1851.
IEEE, 2021.

[10] Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In Andrea
Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rønne, and Massimiliano
Sala, editors, Financial Cryptography and Data Security - FC 2019 International
Workshops, VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18-22, 2019,
Revised Selected Papers, volume 11599 of Lecture Notes in Computer Science, pages
21–34. Springer, 2019.

[11] Joseph Poon and Vitalik Buterin. Plasma: Scalable autonomous smart contracts,
2017. https://www.plasma.io/plasma.pdf.

[12] Vitalik Buterin. Sidechains vs Plasma vs sharding, 2017. https://vitalik.ca/gener
al/2019/06/12/plasma_vs_sharding.html.

[13] Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud
and data availability proofs: Detecting invalid blocks in light clients. In Nikita
Borisov and Claudia Diaz, editors, Financial Cryptography and Data Security -
25th International Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised
Selected Papers, Part II, volume 12675 of Lecture Notes in Computer Science, pages
279–298. Springer, 2021.

[14] Rami Khalil, Alexei Zamyatin, Guillaume Felley, Pedro Moreno-Sanchez, and
Arthur Gervais. Commit-chains: Secure, scalable off-chain payments. Cryptology
ePrint Archive, Paper 2018/642, 2018. https://eprint.iacr.org/2018/642.

[15] Patrick McCorry, Chris Buckland, Bennet Yee, and Dawn Song. SoK: Validating
bridges as a scaling solution for blockchains. Cryptology ePrint Archive, Paper
2021/1589, 2021. https://eprint.iacr.org/2021/1589.

[16] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid. Blockchain
scaling using rollups: A comprehensive survey. IEEE Access, 10:93039–93054,
2022.

[17] Barbara Carminati. Merkle trees. In Ling Liu and M. Tamer Özsu, editors,
Encyclopedia of Database Systems, Second Edition. Springer, 2018.

[18] Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a Turing-complete
STARK-friendly CPU architecture. 2021. https://eprint.iacr.org/2021/1063.

[19] Sung-Shine Lee, Alexandr Murashkin, Martin Derka, and Jan Gorzny. Sok: Not
quite water under the bridge: Review of cross-chain bridge hacks. In IEEE
International Conference on Blockchain and Cryptocurrency, ICBC 2023, Dubai,
United Arab Emirates, May 1-5, 2023, pages 1–14. IEEE, 2023.

[20] Jan Gorzny, Po-An Lin, and Martin Derka. Ideal properties of rollup escape
hatches. In Kaiwen Zhang, Abdelouahed Gherbi, and Paolo Bellavista, editors,
Proceedings of the 3rd International Workshop on Distributed Infrastructure for the
Common Good, DICG 2022, Quebec, Quebec City, Canada, 7 November 2022, pages
7–12. ACM, 2022.

[21] Harry A. Kalodner, Steven Goldfeder, Xiaoqi Chen, S. Matthew Weinberg, and
Edward W. Felten. Arbitrum: Scalable, private smart contracts. In William Enck
and Adrienne Porter Felt, editors, 27th USENIX Security Symposium, USENIX
Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages 1353–1370. USENIX
Association, 2018.

[22] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 305–326. Springer, 2016.

[23] Alex Gluchowski. Introducing zkSync: the missing link to mass adoption of
ethereum, 2021.

[24] Solutions to delay attacks on rollups, December 2022. https://medium.com/offc
hainlabs/solutions-to-delay-attacks-on-rollups-434f9d05a07a.

[25] Ed Felton. Solutions to delay attacks on rollups. https://research.arbitrum.io/t/s
olutions-to-delay-attacks-on-rollups/692#evaluation-6.

[26] Ye Liu, Yi Li, Shang-Wei Lin, and Cyrille Artho. Finding permission bugs in smart
contracts with role mining. In Sukyoung Ryu and Yannis Smaragdakis, editors,
ISSTA ’22: 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, pages 716–727. ACM, 2022.

[27] Yahya Shahsavari, Kaiwen Zhang, and Chamseddine Talhi. Performance model-
ing and analysis of hotstuff for blockchain consensus. In Mohammad A. Alsmirat,
Moayad Aloqaily, Yaser Jararweh, and Izzat Alsmadi, editors, Fourth International
Conference on Blockchain Computing and Applications, BCCA 2022, San Antonio,
TX, USA, September 5-7, 2022, pages 135–142. IEEE, 2022.

[28] Md. Sadek Ferdous, Mohammad Jabed Morshed Chowdhury, Mohammad Ashra-
ful Hoque, and Alan Colman. Blockchain consensuses algorithms: A survey.
CoRR, abs/2001.07091, 2020.

[29] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In Michael Bailey and Rachel Greenstadt, editors, 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021, pages 519–535. USENIX
Association, 2021.

[30] Kelvin Fichter. Why is the optimistic rollup challenge period 7 days? https:
//kelvinfichter.com/pages/thoughts/challenge-periods/.

[31] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. Three attacks on proof-of-stake ethereum. In
Ittay Eyal and Juan A. Garay, editors, Financial Cryptography and Data Security -
26th International Conference, FC 2022, Grenada, May 2-6, 2022, Revised Selected Pa-
pers, volume 13411 of Lecture Notes in Computer Science, pages 560–576. Springer,
2022.

[32] Michal Kedziora, Patryk Kozlowski, and Piotr P. Józwiak. Security of blockchain
distributed ledger consensus mechanism in context of the sybil attack. In Hamido
Fujita, Philippe Fournier-Viger, Moonis Ali, and Jun Sasaki, editors, Trends in
Artificial Intelligence Theory and Applications. Artificial Intelligence Practices -
33rd International Conference on Industrial, Engineering and Other Applications
of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-
25, 2020, Proceedings, volume 12144 of Lecture Notes in Computer Science, pages
407–418. Springer, 2020.

[33] Jay Freeman. Attacking an Ethereum L2 with unbridled optimism, 2022. https:
//www.saurik.com/optimism.html.

[34] Luca Donno. Optimistic and validity rollups: Analysis and comparison between
optimism and starknet. In Paolo Mori, Ivan Visconti, and Stefano Bistarelli,
editors, Proceedings of the Fifth Distributed Ledger Technology Workshop (DLT
2023), Bologna, Italy, May 25-26, 2023, volume 3460 of CEURWorkshop Proceedings.
CEUR-WS.org, 2023.

[35] Ertem Nusret Tas, John Adler, Mustafa Al-Bassam, Ismail Khoffi, David Tse, and
Nima Vaziri. Accountable safety for rollups. CoRR, abs/2210.15017, 2022.

[36] Johannes Rude Jensen, Victor von Wachter, and Omri Ross. An introduction to
decentralized finance (defi). Complex Syst. Informatics Model. Q., 26:46–54, 2021.

6

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://www.plasma.io/plasma.pdf
https://vitalik.ca/general/2019/06/12/plasma_vs_sharding.html
https://vitalik.ca/general/2019/06/12/plasma_vs_sharding.html
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2021/1589
https://eprint.iacr.org/2021/1063
https://medium.com/offchainlabs/solutions-to-delay-attacks-on-rollups-434f9d05a07a
https://medium.com/offchainlabs/solutions-to-delay-attacks-on-rollups-434f9d05a07a
https://research.arbitrum.io/t/solutions-to-delay-attacks-on-rollups/692#evaluation-6
https://research.arbitrum.io/t/solutions-to-delay-attacks-on-rollups/692#evaluation-6
https://kelvinfichter.com/pages/thoughts/challenge-periods/
https://kelvinfichter.com/pages/thoughts/challenge-periods/
https://www.saurik.com/optimism.html
https://www.saurik.com/optimism.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 Attacks & Risks
	3.1 Censorship Attack
	3.2 Delay Attack
	3.3 Denial of Service Attack
	3.4 Forged Transaction Attack
	3.5 Reorganization attack
	3.6 Soft Finality Attack
	3.7 Sybil Attack
	3.8 Client Vulnerability Risk
	3.9 Accountability Attack

	4 Rollup security Improvements
	5 Conclusion
	Acknowledgments
	References

