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ABSTRACT

Self-supervised representation learning (SSRL) has demonstrated remarkable
empirical success, yet its underlying principles remain insufficiently under-
stood. While recent works attempt to unify SSRL methods by examining their
information-theoretic objectives or summarizing their heuristics for preventing
representation collapse, architectural elements like the predictor network, stop-
gradient operation, and statistical regularizer are often viewed as empirically mo-
tivated additions. In this paper, we adopt a first-principles approach and inves-
tigate whether the learning objective of an SSRL algorithm dictates its possi-
ble optimization strategies and model design choices. In particular, by starting
from a variational mutual information (MI) lower bound, we derive two training
paradigms, namely Self-Distillation MI (SDMI) and Joint MI (JMI), each impos-
ing distinct structural constraints and covering a set of existing SSRL algorithms.
SDMI inherently requires alternating optimization, making stop-gradient opera-
tions theoretically essential. In contrast, JMI admits joint optimization through
symmetric architectures without such components. Under the proposed formula-
tion, predictor networks in SDMI and statistical regularizers in JMI emerge as
tractable surrogates for the MI objective. We show that many existing SSRL
methods are specific instances or approximations of these two paradigms. This
paper provides a theoretical explanation behind the choices of different architec-
tural components of existing SSRL methods, beyond heuristic conveniences.

1 INTRODUCTION

SSRL has achieved significant success by learning useful features from unlabeled data, achieving
competitive performance with supervised approaches across a wide range of tasks (LeCun et al.,
2015; Bengio et al., 2013; Balestriero et al., 2023). Conventionally, SSRL algorithms can be divided
into two categories according to their training objectives, contrastive methods and non-contrastive
methods. Contrastive methods (Oord et al., 2018; Tian et al., 2020; Chen et al., 2020a; He et al.,
2020; Chen et al., 2020b; 2021) train a representation model by aligning the representations of
augmentations of the same input while explicitly pushing apart representations of augmentations of
different inputs. On the other hand, non-contrastive methods (Grill et al., 2020; Chen & He, 2021;
Caron et al., 2021; Zbontar et al., 2021; Bardes et al., 2022; Sui et al., 2024) challenge the necessity
of negative samples and propose alternative mechanisms, such as the use of momentum encoders or
stop-gradient operations to prevent representational collapse.

Many recent studies have attempted to unify these two categories of SSRL methods under common
theoretical frameworks, often through shared information-theoretic principles. Liu et al. (2022)
interpreted various SSRL methods as low-order approximations of a unified maximum entropy prin-
ciple; Zbontar et al. (2021) applied Information Bottleneck theory (Tishby et al., 1999; Tishby &
Zaslavsky, 2015) to explain the Barlow Twins objective, while Tsai et al. (2021) later linked it to a
kernel-based MI measure; Shwartz-Ziv et al. (2023) linked VICReg’s penalties to MI bounds; and
most recently, Jha et al. (2024) proposed a unifying framework that explains collapse avoidance
based on minimizing a global mean while preserving augmentation-level variation. Despite their
insights, prior work offers little clarity on whether training strategies like self-distillation or vari-
ance–covariance control are heuristic additions or principled consequences of the objective itself,
leaving an important theoretical gap in understanding.
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In this work, we bridge the gap by returning to first principles, grounding our analysis of existing
SSRL algorithms through the lens of MI maximization, a shared underlying objective of almost all
self-supervised learning methods. Starting from a variational lower bound on MI, particularly the
Donsker-Varadhan (DV) bound, we show that it naturally leads to two optimization paradigms in
the context of SSRL: Self-Distillation MI (SDMI), which uses EM-style alternating updates with
stop-gradient operations (e.g., SimSiam, BYOL, MoCo), and Joint MI (JMI), which supports joint
optimization via a single gradient step per batch (e.g., SimCLR, Barlow Twins, VICReg). More
specifically, we note that dividing SSRL algorithms based on this new taxonomy is theoretically
more principled than the traditional contrastive vs. non-contrastive distinction. In addition, based
on the SDMI and JMI paradigms, we further generalize these paradigms into canonical algorithmic
forms, and demonstrate that they behave similarly to existing SSRL methods in the corresponding
paradigms and can achieve competitive performance on downstream tasks.

In summary, our contributions are as follows:

1. We formulate a general MI maximization perspective under the DV bound, showing that
existing SSRL methods implicitly follow one of two optimization paradigms, namely Self-
Distillation MI (SDMI) or Joint MI (JMI).

2. We show that design elements like stop-gradients, exponential moving average targets,
predictor networks, and statistical regularizers are not heuristics, but theoretically necessary
under MI-based objectives, providing a formal explanation for common design choices.

3. We show that many well-known SSRL approaches (e.g., SimCLR, BYOL, SimSiam) can be
mapped directly to our two paradigms. This helps unify the field under a shared theoretical
lens and offers guidance for future method design.

2 RELATED WORK AND PRELIMINARIES

We begin by reviewing recent attempts to unify the growing landscape of SSRL methods under
shared theoretical principles. We first summarize key unification efforts based on objective de-
sign and collapse-prevention mechanisms, highlighting their contributions and limitations. We then
present MI as a foundational concept and starting point for our analysis, revisiting its definition and
variational lower bounds, with a focus on the DV bound whose tightness and decomposition are
central to our work.

2.1 UNIFICATION APPROACHES IN SSRL

A growing body of work (Zbontar et al., 2021; Liu et al., 2022; Tsai et al., 2021; Shwartz-Ziv et al.,
2023; Jha et al., 2024; Tan et al., 2024) suggests that an information-theoretic lens can help unify
seemingly disparate SSRL methods. Many existing methods, particularly contrastive approaches,
can be explicitly framed as maximizing MI between representations of different augmented views
(Oord et al., 2018; He et al., 2020; Chen et al., 2020b; 2021; Poole et al., 2019).

Building on this, several works have linked specific SSRL losses to MI estimation. The Information
Bottleneck perspective (Tishby et al., 1999; Tishby & Zaslavsky, 2015) has been applied to Bar-
low Twins (Zbontar et al., 2021), and Tsai et al. (2021) showed that the Barlow Twins objective is
equivalent to maximizing a Hilbert–Schmidt Independence Criterion (Gretton et al., 2005), a ker-
nelized dependence measure related to MI. Bardes et al. (2022) introduced VICReg’s variance and
covariance penalties, and Shwartz-Ziv et al. (2023) later provided an information-theoretic analysis
linking these penalties to MI bounds.

Another prominent unification direction is offered by Liu et al. (2022), who propose a Maximum
Entropy Coding (MEC) framework that treats representation learning as an entropy maximization
problem, showing that many existing SSRL methods can be interpreted as low-order Taylor approx-
imations of a single entropy-based objective. Complementing this view, Jha et al. (2024) analyze
the collapse avoidance mechanisms that ensure stability in SSRL, arguing that, despite architec-
tural and algorithmic differences, most methods implicitly minimize the global average of learned
representations while preserving sample-level variability.

While these approaches provide valuable unifying perspectives on SSRL objectives or collapse-
prevention mechanisms, they do not address whether the commonly used optimization strategies
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and architectural components, such as stop-gradient operations, predictor networks, or statistical
regularizers, are necessary consequences of the learning objective itself or simply heuristic choices.

2.2 MUTUAL INFORMATION AND ITS VARIATIONAL BOUNDS IN SSRL

In SSRL, MI is often defined between representations ZA and ZB of two augmented views XA

and XB of an input X in the form I(ZA;ZB) = DKL [p(zA, zB) ∥ p(zA)p(zB)]. Maximizing
MI with respect to the encoding function ZA = fθ(XA) defines a valid pretext task for learning
representations that can transfer to various downstream applications. However, direct optimization
of MI is intractable since the underlying data distribution P (X) is unknown, motivating the use of
variational bounds in practice. Common variational bounds include InfoNCE (Oord et al., 2018;
Poole et al., 2019), Barber–Agakov (Barber & Agakov, 2003), TUBA (Poole et al., 2019), NWJ
(Nguyen et al., 2010), JSD (Hjelm et al., 2019) and DV (Belghazi et al., 2018). Each of these
alternatives introduces different trade-offs between tightness, stability, and optimization feasibility.

We use the Donsker–Varadhan (DV) bound to guide our analysis in this paper, as it offers: (1) a
direct connection to MI via KL divergence, (2) a natural variational decomposition that facilitates
block-coordinate ascent, and (3) is provably tighter than f -divergence-based alternatives for any
fixed function class (Belghazi et al., 2018).

Donsker-Varadhan bound Over a sufficiently rich class of functions F , the DV bound decom-
poses MI as:

I(ZA;ZB) ≥ IDV(ZA;ZB)= sup
T∈F

{
Ep(zA,zB)[T (zA, zB)]︸ ︷︷ ︸

Joint term

− logEp(zA)p(zB)

[
eT (zA,zB)

]
︸ ︷︷ ︸

Marginal term

}
, (1)

where F ⊆ { f : ZA × ZB → R }, while T ∈ F is a scoring function that assigns high values to
joint pairs (zA, zB) ∼ p(zA, zB) and low values to marginal pairs (zA, zB) ∼ p(zA)p(zB).

3 A UNIFIED VIEW OF SSRL AS MI MAXIMIZATION

In this section, we first revisit the DV lower bound on MI from an optimization perspective. This
gives rise to two natural optimization paradigms in SSRL, namely Self-Distillation MI (SDMI) and
Joint MI (JMI), respectively. Then, we analytically show how a wide range of SSRL methods can
be categorized under these paradigms.

3.1 BLOCK-COORDINATE ASCENT VIA DV BOUND

Let representations ZA and ZB come from two different encoding functions fθ and gξ with a fixed
scoring function T drawn from the function class F . We note the DV bound shown in eq. (1)
provides a useful formulation for optimization since exact maximization of the bound with respect
to the encoder parameters θ for view ZA while holding ξ for ZB fixed, and vice-versa guarantees
a non-decreasing improvement of the objective. As a result, alternating updates over the encoders
for ZA and ZB constitute valid block-coordinate ascent steps. Specifically, we can formalize the
improvement as follows:

Proposition Let the DV-bound objective be given by

L(θ, ξ) = J(θ; ξ)−M(θ; ξ), (2)

where L(θ, ξ) is the DV bound, J(θ; ξ) is the joint term, and M(θ; ξ) is the marginal term from
eq. (1). Assume that: (1) for fixed ξ, J(·; ξ) is concave in θ; (2) the marginal term M(·; ξ) is smooth
and satisfies ∥∇θM(θ; ξ)∥ ≤ ε; and (3) the same conditions hold symmetrically for updates over ξ.
Then alternating gradient steps over θ and ξ yields approximate monotonic improvement in L(θ, ξ):

L(θ(k+1), ξ(k)) ≥ L(θ(k), ξ(k))−O(ε), L(θ(k+1), ξ(k+1)) ≥ L(θ(k+1), ξ(k))−O(ε).

See Section A.1 for our proof. In particular, if ε→ 0 (e.g., slowly changing marginal distributions),
the objective becomes asymptotically non-decreasing over iterations.

When sharing parameters θ = ξ, the maximization objective in eq. (2) can be jointly optimized
via standard gradient ascent with the guarantee of monotonic improvement, provided that the full
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objective L(θ) is concave. In the case of the DV bound (eq. (1)), this holds because the joint term is
concave and the marginal term is convex, making the overall objective concave.

As such, there are two valid optimization paradigms to maximize MI: alternating updates across
encoder branches or joint updates over shared parameters. We name the two paradigms Self-
Distillation MI (SDMI) and Joint MI (JMI), respectively.

3.2 SELF-DISTILLATION MUTUAL INFORMATION (SDMI)

SSRL methods in the SDMI paradigm rely on an EM-style alternating update schedule between
two encoder branches and a mechanism for maximizing MI between augmented views. The alter-
nating updates are enabled through a stop-gradient operator, which breaks the gradient flow from
one branch to the other, making it possible to treat one encoder as fixed while updating the other,
mimicking a block-coordinate ascent on the DV bound. Typically, these methods use an online en-
coder that receives direct gradient updates and a target (or momentum) encoder that is updated via
an exponential moving average (EMA) of the online encoder’s parameters. While some existing
SDMI methods such as SimSiam and BYOL do not explicitly optimize a variational MI bound, we
show that their alternating update structure, enabled by stop-gradients and architectural asymmetry,
can be derived as a principled optimization strategy for DV-bound maximization. This provides a
theoretical justification for previously heuristic design choices.

Block-coordinate interpretation of SDMI To formalize SDMI as an EM-style block-coordinate
ascent procedure, we consider batches of two augmented views X1 = {xi

1}Ni=1 and X2 = {xi
2}Ni=1,

where each xi
1, x

i
2 is sampled from a stochastic augmentation A(x) applied to an input x ∼ P (x)

with batch size N , and two encoders fθ and gξ.

E-Step: At iteration k, we define the MI between the representations produced by the encoders fθ
and gξ as

I(k) = I
(
fθ(k)(X1), gξ(k)(X2)

)
. (3)

We update the fθ encoder by maximizing the objective under a stop-gradient (SG) on the gξ encoder:

θ(k+1) = argmax
θ

I
(
fθ(X1), SG(gξ(k)(X2))

)
(4)

which guarantees I
(
fθ(k+1)(X1); gξ(k)(X2)

)
≥ I
(
fθ(k)(X1); gξ(k)(X2)

)
.

M-Step: Using the updated fθ encoder, we update the gξ encoder with a stop-gradient on fθ,

ξ(k+1) = argmax
ξ

I
(
SG(fθ(k+1)(X1)), gξ(X2)

)
, (5)

ensuring I
(
fθ(k+1)(X1); gξ(k+1)(X2)

)
≥ I
(
fθ(k+1)(X1); gξ(k)(X2)

)
.

Monotonic Improvement: Together, these steps guarantee overall monotonic improvement:

I
(
fθ(k+1)(X1), gξ(k+1)(X2)

)
≥ I
(
fθ(k+1)(X1), gξ(k)(X2)

)
≥ I
(
fθ(k)(X1), gξ(k)(X2)

)
(6)

3.2.1 EXAMPLES OF SDMI METHODS

SimSiam and BYOL Implicit contrastive methods, such as BYOL (Grill et al., 2020) and Sim-
Siam (Chen & He, 2021), fall under the SDMI paradigm. These methods train an online encoder fθ,
together with a lightweight predictor hϕ, to align transformed representations with those of a target
encoder gξ. From the SDMI viewpoint, both methods approximate a two-step EM-style optimization
in a relaxed, implicit form:

1. E-step: In the E-step, both methods update the online encoder to maximize MI by minimizing
the following negative cosine similarity loss

min
θ,ϕ
−Ep(x1,x2)

[
Tcos

(
hϕ(fθ(x1)), gξ(x2)

)]
, (7)

where Tcos denotes a cosine similarity scoring function. This loss can be viewed as an instan-
tiation of the DV bound with cosine similarity, which we refer to as Icos-DV. However, these
methods omit the explicit marginal term present in the full bound (see eq. (14)), relying instead
on their predictor dynamics to discourage collapse.
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2. M-step (Implicit): Immediately after the E-step, SimSiam resets the target encoder with the
new online weights and freezes it for the next E-step:

gnew = SG(fθ). (8)

BYOL, on the other hand, uses an EMA of θ:

ξ ← τξ + (1− τ)θ. (9)

While these methods differ from SDMI’s explicit coordinate ascent step on the gξ encoder, they
preserve the underlying principle of alternating optimization, though in an implicit form.

Our interpretation aligns with the hypothesis of Chen & He (2021) that SimSiam’s stop-gradient
induces EM-like alternating updates between online and frozen branches. While they suggested
that the predictor approximates an expectation over augmentations, Zhang et al. (2022) refuted this,
showing instead that it induces de-centering and de-correlation gradients that stabilize training and
promote feature diversity. Within our SDMI framework, we reinterpret these effects as implicitly
approximating the marginal term of the DV bound. Section D.2.2 provides further analysis and
empirical evidence in support of this interpretation.

MoCo MoCo (He et al., 2020; Chen et al., 2020b; 2021), a contrastive learning method, also fits
naturally within the SDMI paradigm. It performs EM-style alternating updates between an online
encoder and a momentum encoder, while directly optimizing the InfoNCE lower bound on MI. Its
momentum encoder plays a similar functional role and is updated via EMA, like the target encoder in
BYOL. Early versions (MoCo-v1 (He et al., 2020), v2 (Chen et al., 2020b)) already achieve strong
performance without predictor networks, and although MoCo-v3 (Chen et al., 2021) introduces a
predictor, it yields only marginal performance gains (∼ 1%), underscoring that with direct MI
maximization, predictors are auxiliary.

This illustrates how the SDMI framework unifies both traditional contrastive and non-contrastive
methods under a shared lens of MI maximization with alternating encoder updates.

3.3 JOINT MUTUAL INFORMATION (JMI)

Unlike SDMI, JMI methods use a single encoder fθ to produce representations for both augmented
views, enabling joint gradient updates to maximize MI. It is achieved either by directly optimizing
an explicit MI objective or by incorporating surrogate regularization terms that penalize statistical
properties, such as variance, covariance, or feature redundancy, to approximate the marginal log-
partition term in eq. (1). A general JMI objective written as a loss function takes the form

LJMI = −Ep(x1,x2) [T (fθ(x1), fθ(x2))] + λ · R(fθ(x1), fθ(x2)). (10)

Examples of JMI methods include contrastive learning methods such as SimCLR, which directly
optimizes InfoNCE to maximize MI between views. More recent implicit contrastive methods, such
as Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2022), optimize an alignment
term between augmented views and a regularizer that approximates the marginal term from eq. (1).

3.4 FROM DV TO BARLOW TWINS: A SURROGATE DERIVATION

To show how implicit contrastive methods can be seen as using feature-level regularization as in
eq. (10), we demonstrate how the Barlow Twins loss could be derived from eq. (1) using several
straightforward approximations and assumptions, providing a direct connection of the Barlow Twins
loss to mutual information maximization between views. To begin, we replace the DV bound’s
marginal term with its second order Taylor approximation:

LTaylor-DV = −Ep(zA,zB)[T (zA, zB)]︸ ︷︷ ︸
Joint term

+Ep(zA)p(zB)[T (zA, zB)]︸ ︷︷ ︸
Marginal mean term

+Varp(zA)p(zB)[T (zA, zB)]︸ ︷︷ ︸
Marginal variance term

.

(11)
Barlow Twins corresponds to the particular choice of the dot product scoring function,

T (zA, zB) =

d∑
i=1

zAi z
B
i , (12)
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Figure 1: Canonical forms of our proposed paradigms: (a) SDMI alternates updates between two encoders
using stop-gradients, while (b) JMI jointly updates both views with shared gradients.

which is an approximation to the optimal T in eq. (1). Since batch normalization is normally applied,
we also assume E[zAi ] ≈ E[zBi ] ≈ 0, which effectively removes the marginal mean term from
eq. (11), leaving the alignment and variance terms as the primary components. Barlow Twins is
usually expressed with the empirical cross-correlation matrix,

Cij =
1

N

N∑
n=1

zAn,i · zBn,j ,

where alignment is encouraged via the diagonal Cii, and redundancy is penalized via the off-
diagonals Cij , i ̸= j. To simplify the variance term in eq. (11), we expand it using the dot product
in eq. (12), and further assume jointly Gaussian representations with decorrelation within each view,
which then implies (by Isserlis’ theorem (Munthe-Kaas et al., 2025))

Var

[∑
i

zAi z
B
i

]
≈
∑
i̸=j

C2
ij .

Putting together these components yields a moment-based surrogate to the DV objective

LTaylor-DV ≈ −
∑
i

Cii +
∑
i̸=j

C2
ij , (13)

which closely matches the Barlow Twins loss. We provide the full derivation in section A.3.

In summary, SDMI and JMI represent two principled optimization paradigms for maximizing MI.
Our findings reveal that many architectural components in modern SSRL methods, previously in-
troduced as heuristic choices, can instead be interpreted as structured consequences of optimizing
MI. We illustrate the distinction between SDMI and JMI in fig. 1, and give in section C a summary
of representative SSRL methods and their classification under the SDMI/JMI taxonomy, including
whether they employ explicit MI objectives or surrogate regularizers.

4 EXPERIMENTS

This section empirically validates the theoretical structure of SDMI and JMI by instantiating their
canonical forms and analyzing their behavior alongside representative SSRL methods. The purpose
of this study is not to suggest the canonical forms of SDMI and JMI are state-of-the-art SSRL
methods. Instead, we use them as a simplified setting to understand the dynamics of MI training,
representation quality, and to examine how the optimization principles derived from MI manifest
in practice. We compare the canonical forms to more specialized and performant variants from the
literature to shed light on the role of MI maximization in SSRL.

4.1 CANONICAL SDMI AND JMI PROTOTYPES

To empirically validate the theoretical framework developed in section 3, we instantiate minimal,
controlled implementations of the SDMI and JMI paradigms. These canonical forms exclude auxil-
iary components such as momentum updates, predictor networks, or regularizers, and serve to isolate
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the optimization structure derived from the DV bound. As illustrated in fig. 1, SDMI alternates up-
dates between two encoders using stop-gradients, while JMI applies symmetric joint updates to both
augmented views using a shared encoder. Both prototypes optimize the same MI objective defined
below, enabling a direct comparison of their dynamics.

Objective: Cosine-based DV bound While the DV bound is theoretically maximally tight when
F is a sufficiently broad class of functions, in practice, unrestricted neural critics T often lead to
high variance and unstable training behavior (Oord et al., 2018; Poole et al., 2019; Song & Ermon,
2020). To ensure reliable estimation while preserving the validity of DV bound, we restrict the critic
function T to cosine similarity, T (zA, zB) = zA·zB

∥zA∥2∥zB∥2
, providing a stable, bounded, and scale-

invariant surrogate. This choice is further motivated by its widespread use in SSRL objectives (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b; 2021; Grill et al., 2020; Chen & He, 2021), where
it serves as a standard metric for comparing representations across augmented views. By restricting
T to be the cosine similarity, we effectively optimize only over the representations of ZA and ZB :

I(ZA;ZB) ≥ IDV(ZA;ZB) ≥ Icos-DV(ZA;ZB)

= Ep(zA,zB) [Tcos(zA, zB)]− logEp(zA)p(zB)

[
eTcos(zA,zB)

]
. (14)

Although using Icos-DV sacrifices some tightness, it provides a more stable estimator while remain-
ing a lower bound of the MI objective.

Practical approximation To compute the marginal term in eq. (14) efficiently, we approximate
the expectation using off-diagonal cross-pairs from a batch of size N :

logEP (zA)P (zB)

[
eTcos(zA,zB)

]
≈ log

(
1

N(N − 1)

N∑
i,j=1
i̸=j

eTcos(z
(i)
A ,z

(j)
B )

)
.

Hence, our batchwise training objective takes the form:

Lcos-DV = −
[
1

N

N∑
i=1

Tcos(z
(i)
A , z

(i)
B )− log

(
1

N(N − 1)

N∑
i,j=1
i̸=j

eTcos(z
(i)
A ,z

(j)
B )

)]
. (15)

4.2 EXPERIMENTAL SETUP

Datasets We utilize standard datasets used for SSRL tasks including CIFAR10/100 (Krizhevsky
& Hinton, 2009), TinyImageNet, and ImageNet100 (Deng et al., 2009). Additionally, for controlled
experiments and visualization, we generate a toy dataset from a mixture of five isotropic Gaussian
distributions centered at evenly spaced points on the unit circle. Each cluster center is defined
by µk =

(
cos 2πk5 , sin 2πk

5

)
, k = 1, . . . , 5, with samples drawn as x ∼ N (µk, σ

2I), where
σ = 0.05 and I is the 2 × 2 identity matrix. Two augmented views are generated by perturbing
x with independent Gaussian noise: x1 = x + ϵ1, x2 = x + ϵ2, ϵ1, ϵ2 ∼ N (0, τ2I), where
τ = 0.1. We generate N = 2500 samples, with nper cluster = 500 per class.

Implementation details We implement the canonical SDMI prototype (fig. 1(a)) with two inde-
pendently initialized encoders trained via alternating E- and M-step updates, while the JMI prototype
(fig. 1(b)) uses a single shared encoder updated jointly with symmetric gradients, and all baseline
methods use their standard architectures and objectives. Our canonical SDMI and JMI prototypes
use ResNet-18 (He et al., 2016) encoders for CIFAR10/100 and TinyImageNet, and ResNet-50 en-
coders for ImageNet100 (Deng et al., 2009). We use a smaller network for the Gaussian dataset,
described in section E.4.

Mutual information estimation To assess MI dynamics during training, we compute three vari-
ational bounds: the cos-DV bound (Icos-DV) from eq. (14), the InfoNCE bound (IInfoNCE) (Oord
et al., 2018; Poole et al., 2019), and the JSD bound (IJSD) (Hjelm et al., 2019).

For JMI-based methods (JMI prototype, SimCLR, BarlowTwins and VICReg), both augmented
views are passed through the same encoder fθ, and MI is computed between the representations:

I(t) = I
(
f
(t)
θ (x1), f

(t)
θ (x2)

)
.
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Figure 2: Estimated MI over CIFAR10 training for SDMI-based (top row) and JMI-based (bottom row) meth-
ods, using three estimators (cos–DV, InfoNCE and JSD; left to right). Both paradigms exhibit consistent MI
growth: SDMI curves feature early fluctuations before trending upward, while JMI estimates rise more uni-
formly, and to much higher levels.

For SDMI-based methods (SDMI prototype, SimSiam, BYOL, MoCo-v3), MI is measured between
two asymmetric encoder branches. In the SDMI prototype, these are independently updated fθ and
gξ encoders trained via alternating updates:

I(t) = I
(
f
(t)
θ (x1), g

(t)
ξ (x2)

)
.

In BYOL and MoCo-v3, gξ is a momentum encoder updated via EMA. In SimSiam, which lacks a
persistent target encoder, we instead treat the previous epoch’s encoder state as the M-branch:

I
(t)
SimSiam = I

(
f
(t)
θ (x1), f

(t−1)
θ (x2)

)
,with I(0) = −∞ by convention.

4.3 RESULTS

Monotonic MI increase Figure 2 shows estimated MI over training for all methods across both
paradigms on the CIFAR10 dataset. Since the SDMI prototype explicitly optimizes the cos–DV
bound in eq. (14), while MoCo-v3 optimizes InfoNCE, the JSD bound serves as an independent es-
timator not optimized by any method. Compared to the other SDMI methods, the SDMI prototype
(top row) exhibits a near-perfect monotonic increase in MI throughout training. This is expected, as
it explicitly optimizes the cos-DV bound (eq. (14)) using true EM-style alternating updates between
two independently parameterized encoders. In contrast, methods like SimSiam, BYOL, and MoCo
only approximate this behavior through their architectural heuristics, which leads to a noisy MI es-
timate and generally lower final MI levels. Nevertheless, all methods still exhibit an overall upward
MI trend, confirming that they retain the underlying MI-maximization structure. Meanwhile, all
JMI-based methods display smooth and consistently increasing MI curves, reflecting their symmet-
ric joint-update optimization. We provide additional results on the Gaussian data in section D.2,
confirming this trend in ideal conditions.

Cluster center trajectories in embedding space To visualize how well the representation space
separates underlying structure, we use the Gaussian dataset and track the movement of all five cluster
centers during training in fig. 3. We quantify separation via the nearest-neighbor (NN) angle gap, the
mean angular distance to the closest other center. The SDMI prototype achieves the largest separa-
tion, with an average nearest-neighbor (NN) angle gap of≈ 77◦, compared to≈ 54◦ of the strongest
analogous methods. Detailed metrics and comparative analysis are presented in section D.1.

Linear probing To assess the quality of learned representations for downstream tasks, we per-
form linear probing on real-world datasets. We trained encoders, then froze them to train a linear
classifier head using cross-entropy (Tian et al., 2020). As shown in table 1, our prototype methods
are competitive with established SSRL methods across both SDMI and JMI paradigms. No single
method outperforms all others consistently. See section E for implementation details.
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Figure 3: Embedding trajectories of the five Gaussian cluster centers. Opacity increases over training. SDMI
separates centers more distinctly than analogous methods.

Table 1: Linear probing accuracy (%) on four datasets. Mean ± std over 3 runs.

Model CIFAR10 CIFAR100 TinyImageNet ImageNet100
SDMI prototype (fθ) 88.61 ±0.13 57.37 ±0.38 33.30 ±0.58 70.73 ±0.57

SDMI prototype (gξ) 88.59 ±0.35 57.85 ±0.32 32.94 ±0.71 70.83 ±0.16

SimSiam 89.72 ±0.18 60.45 ±0.60 19.19 ±0.69 78.23 ±0.58

BYOL 91.28 ±0.16 63.11 ±0.21 32.77 ±0.10 81.09 ±0.61

MoCo-v3 91.10 ±0.16 58.90 ±0.32 32.18 ±0.55 76.86 ±0.74

JMI Prototype 88.01 ±0.48 57.22 ±0.56 32.23 ±0.52 73.41 ±0.36

SimCLR 87.24 ±0.37 55.32 ±0.46 33.79 ±0.31 75.31 ±0.76

Barlow Twins 85.56 ±0.71 51.91 ±0.49 30.26 ±0.12 78.96 ±0.30

VICReg 85.49 ±1.03 54.00 ±0.34 32.03 ±0.32 78.86 ±0.23

It is worth noting that our canonical SDMI and JMI models are intentionally minimal, showing that
theory-driven models can provide strong baselines without the need for empirically-driven architec-
tural tweaks like predictor heads, EMA, or regularization. Existing SSRL methods build on these
baselines with architectural improvements. Our work focuses on explanation, and not optimization.

Discussion Interestingly, while the SDMI prototype achieves the highest MI under all three bounds,
and the most separated clusters of representations, this does not translate directly into higher down-
stream performance. This suggests that maximizing MI, though necessary to prevent representa-
tional collapse, is not by itself sufficient for optimal SSRL performance. MI should thus be viewed
as a foundation rather than the ultimate objective of SSRL. Crucially, our results show that the opti-
mization paradigm, SDMI or JMI, and the strategies and components it uses, determine how the MI
objective is approximated and, in turn, the usefulness of the learned features for downstream tasks.

In summary, ‘how’ MI is optimized matters as much as ‘how much’ MI is achieved. By formalizing
the SDMI and JMI paradigms and identifying their essential components, our taxonomy provides a
roadmap for future research. We recommend that future efforts prioritize designing better strategies
and architectural components tailored to each optimization paradigm, thereby better bridging the
gap between MI maximization and downstream task performance.

5 CONCLUSION

In this work, we revisited SSRL from first principles, grounding our analysis in a variational MI op-
timization lens. By deriving two distinct training paradigms, SDMI and JMI, we showed that many
design choices in SSRL architectures are not merely empirical conveniences but theoretically moti-
vated necessities. By unifying a broad class of existing SSRL methods under the theoretical lens, our
analysis offers an alternative understanding of the mechanisms that drive successful representation
learning and guides the principled design of future SSRL algorithms.

Limitations While our framework offers a principled view of SSRL via MI maximization, our
experiments are limited to image datasets. Extending the analysis to other data modalities such as
text, audio, or multimodal settings would strengthen the generalizability of our theoretical insights
and is a promising direction for future work.

Broader impact By clarifying the principles behind self-supervised learning, this work may sup-
port more robust and interpretable model design. Though theoretical, our findings could influence
the development of trustworthy AI systems in socially impactful domains.
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6 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure that our results are fully reproducible. Section 3 formally
derives the proposed SDMI and JMI paradigms and lists all assumptions, with complete proofs
in section A and training procedures in section B. Section 4.2 describes our experimental setup,
including synthetic data generation and evaluation protocols, while section E provides full imple-
mentation details, compute resources, random seed settings, and hyperparameter configurations for
CIFAR10/100, TinyImageNet, and ImageNet100. Hyperparameter sweeps and selected settings
are reported in table 4–table 7, and additional results and ablations are presented in section D. An
anonymized implementation containing all code for model training, evaluation, and MI estimation
is provided in the supplementary material to facilitate exact replication.
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A FURTHER ANALYSIS

A.1 BLOCK-COORDINATE ASCENT IN MI BOUNDS

We provide the formal proof for the proposition stated in section 3.1, establishing the theoretical
foundation for monotonic MI increase under alternating optimization in the SDMI paradigm.

Proof. Fix ξ(k). Since J(·; ξ(k)) is concave, a gradient ascent step on θ guarantees

J(θ(k+1); ξ(k)) ≥ J(θ(k); ξ(k)). (16)

By smoothness of M and the bound ∥∇θM∥ ≤ ε, we have

∣∣∣M(θ(k+1); ξ(k))−M(θ(k); ξ(k))
∣∣∣ = O(ε), (17)

which yields

L(θ(k+1), ξ(k)) ≥ L(θ(k), ξ(k))−O(ε). (18)

An identical argument applies to the ξ-update. Chaining the two completes the proof.

A.2 ANALYZING OTHER VARIATIONAL BOUNDS

Extending the analysis from section 3.1, we examine other commonly used variational MI bounds
in SSRL, including InfoNCE and JSD bounds mentioned in section 2.2, demonstrating that our
framework generalizes beyond the DV bound.

A.2.1 INFONCE

Recall that the InfoNCE loss between two representations ZA and ZB takes the form:

LInfoNCE = −Ep(zA,zB)

[
log

(
eT (zA,zB)∑
z′
B
eT (zA,z′

B)

)]

= −Ep(zA,zB)

T (zA, zB)− log

∑
z′
B

eT (zA,z′
B)

 , (19)

where T is a similarity function.

This loss can be interpreted as a lower bound on MI between ZA and ZB (Poole et al., 2019), such
that:

IInfoNCE(ZA;ZB) = Ep(zA,zB) [T (zA, zB)]− Ep(zA)

[
logEp(zB)

[
eT (zA,zB)

]]
+ logN, (20)

where N is the number of negative samples.

Both the DV and the InfoNCE bounds follow the general structure: a joint term minus a marginal
term. The only structural difference is that the DV bound aggregates globally before applying the
logarithm:

logEp(zA)p(zB)

[
eT (zA,zB)

]
(global aggregation),
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whereas InfoNCE applies the logarithm per sample:

Ep(zA)

[
logEp(zB)

[
eT (zA,zB)

]]
(local aggregation).

Although this difference affects the aggregation structure, both objectives satisfy the conditions of
the proposition in eq. (2) and support monotonic improvement under alternating optimization.

A.2.2 JSD

Similarly, the JSD bound can be expressed as:

IJSD(ZA;ZB) = Ep(zA,zB)

[
− log

(
1 + e−T (zA,zB)

)]
− Ep(zA)p(zB)

[
log
(
1 + eT (zA,zB)

)]
This form corresponds to a binary classification objective, distinguishing samples from the joint
distribution versus the product of marginals. As with DV and InfoNCE, it has a ”joint term minus
marginal term” structure, but instead of a log-sum-exp aggregation, it applies the softplus nonlinear-
ity independently to each sample.

All three objectives (DV, InfoNCE, JSD) satisfy the conditions of the proposition in eq. (2) and allow
monotonic improvement under alternating optimization.

A.3 MOMENT-BASED SURROGATES FOR THE DV MARGINAL TERM

We present the complete mathematical derivation referenced in section 3.4 showing that the regular-
izers in Barlow Twins correspond to a second-order Taylor expansion (cumulant expansion) of the
DV bound’s marginal term.

DV BOUND

To ground our approximation, we recall the DV bound (eq. (1)):

I(ZA;ZB) ≥ IDV(ZA;ZB) = sup
T∈F

Ep(zA,zB)[T (zA, zB)]︸ ︷︷ ︸
Joint term

− logEp(zA)p(zB)

[
eT (zA,zB)

]
︸ ︷︷ ︸

Marginal term

 ,

where T ∈ F is a critic function, chosen from a sufficiently expressive function class F .

CGF AND TAYLOR EXPANSION

Let T be any bounded critic with

T (x, y) ∈ [a, b] for all x, y,

and define its CGF as

K(s) = logE[esT ], (21)

Because T is bounded, K is infinitely differentiable on [0, 1], its n-th derivative at zero yields the
n-th cumulant:

κn = K(n)(0).

In particular,
K ′(0) = E[T ], K ′′(0) = Var(T ).

By Taylor’s theorem about s = 0, for s ∈ [0, 1],

K(s) = sK ′(0) + 1
2s

2 K ′′(0) +R2(s), (22)

where R2(s) =
1
6s

3K(3)(ξ) for some ξ ∈ (0, s).
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Since T ∈ [a, b], all derivatives of K(s) are bounded on [0, 1]. In particular, evaluating eq. (22) at
s = 1 yields: ∣∣R2(1)

∣∣ ≤ 1

6
max
s∈[0,1]

∣∣K(3)(s)
∣∣ = O(1).

This constant can therefore be absorbed into a hyperparameter. Hence, the second-order approxima-
tion holds in full generality:

logE[eT ] = K(1) ≈ E[T ] + 1
2Var(T ). (23)

SURROGATE LOSS VIA MEAN-VARIANCE

Substituting eq. (23) into the DV bound (eq. (1)) gives the surrogate MI lower bound

IDV(ZA;ZB) ≥ ITaylor-DV(ZA;ZB)

= Ep(zA,zB)[T (zA, zB)]−
{
Ep(zA)p(zB)[T (zA, zB)] +

1
2 Varp(zA)p(zB)

[
T (zA, zB)

]}
.

(24)

Thus one may construct a tractable loss as shown in eq. (11)

LTaylor-DV = −Ep(zA,zB)[T (zA, zB)]︸ ︷︷ ︸
Joint term

+Ep(zA)p(zB)[T (zA, zB)]︸ ︷︷ ︸
Marginal mean term

+Varp(zA)p(zB)[T (zA, zB)]︸ ︷︷ ︸
Marginal variance term

1.

BARLOW TWINS AS A MEAN–VARIANCE SURROGATE

We start with eq. (12):

Xi = zAi zBi , Tcos(z
A, zB) =

d∑
i=1

Xi = zA · zB

By the variance-of-a-sum identity,

Var
[
T (zA, zB)

]
= Var

( d∑
i=1

Xi

)
=

d∑
i,j=1

Cov(Xi, Xj) =

d∑
i,j=1

Cov(zAi z
B
i , zAj z

B
j ). (25)

Barlow Twins reduces the surrogate in eq. (11) to an alignment term and a tractable approximation
of the marginal variance by applying batch normalization, ensuring

Ep(zA)[z
A
i ] = Ep(zB)[z

B
i ] ≈ 0 ⇒ Ep(zA)p(zB)[T (zA, zB)] ≈ 0.

We write zAi and zBi to denote the i-th coordinate of views A and B, respectively.

The regularization terms in Barlow Twins are constructed using batch-level statistics, specifically,
the cross-correlation matrix between features across the two views:

Cij =
1

N

N∑
n=1

zAn,i · zBn,j ,

where zAn,i and zBn,j denote the i-th and j-th features of the n-th sample from each view in a batch
of size N . The diagonal elements Cii appear in the alignment term of the loss, encouraging each
feature to match across views, while the off-diagonal elements Cij for i ̸= j are penalized to reduce
redundancy.

To connect this to the variance term in eq. (11), we analyze the variance of eq. (12) under indepen-
dent sampling:

1The 1
2

coefficient is omitted for simplicity, as it can be absorbed into a tuning hyperparameter.
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Varp(x)p(y)

[
d∑

i=1

zAi z
B
i

]
=
∑
i,j

Cov(zAi z
B
i , zAj z

B
j ). (26)

This covariance approximates a fourth-order moment:

Cov(Xi, Xj) = E[zAi zBi zAj z
B
j ]− E[zAi zBi ] · E[zAj zBj ]. (27)

Assuming that the representations are approximately jointly Gaussian and decorrelated within each
view (i.e., E[zAi zAj ] ≈ 0, E[zBi zBj ] ≈ 0 for i ̸= j), we can apply Isserlis’ theorem (Munthe-Kaas
et al., 2025) to approximate the fourth-order covariance terms:

Cov(zAi z
B
i , zAj z

B
j ) ≈ E[zAi zBj ] · E[zAj zBi ] = CijCji ≈ C2

ij , for i ̸= j. (28)

The variance thus approximates the sum of off-diagonal squared correlations:

Var

[∑
i

zAi z
B
i

]
≈
∑
i̸=j

C2
ij .

Putting everything together, the Taylor–DV surrogate yields eq. (13):

LTaylor-DV ≈ −
d∑

i=1

Cii +
∑
i̸=j

C2
ij ,

which matches the structure of the empirical Barlow Twins loss: an alignment term encouraging
the diagonal of the cross-correlation matrix to approach 1, and a decorrelation term penalizing off-
diagonal elements.

A.4 INPUT INFORMATIVENESS

While the SDMI and JMI frameworks increase I(zE ; zM ), their effectiveness depends on how this
relates to the input x. We formalize this intuition with the following conjecture.

Conjecture. Under the assumption of deterministic encoders, the MI between two distinct aug-
mented views z(1) and z(2) is upper bounded by:

I(z(1); z(2)) ≤ min(I(x; z(1)); I(x; z(2))) (29)

Proof. Recall that MI between two random variables A and B is defined as:

I(A;B) = H(A)−H(A | B) = H(B)−H(B | A).

Since z(1) = f(x1) and z(2) = f(x2) (or z(2) = g(x2) for SDMI) are deterministic functions of x,
we have

H(z(1) | x) = 0, H(z(2) | x) = 0.

Thus,
I(x; z(1)) = H(z(1)), I(x; z(2)) = H(z(2)).

By definition,
I(z(1); z(2)) = H(z(1))−H(z(1) | z(2)) ≤ H(z(1)),

where the inequality follows from the non-negativity of conditional entropy, H(z(1) | z(2)) ≥ 0.
Therefore,

I(z(1); z(2)) ≤ I(x; z(1)).

By symmetry, we also have I(z(1); z(2)) ≤ I(x; z(2)). Combining these gives

I(zE ; z
(2)) ≤ min

{
I(x; z(1)), I(x; z(2))

}
.
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B ALGORITHMS

Detailed algorithmic descriptions for the canonical SDMI and JMI prototypes introduced in sec-
tion 4.1 and illustrated in fig. 1 are provided below. Following common SSRL practice (Chen et al.,
2020a; 2021; Grill et al., 2020; Chen & He, 2021), we adopt a symmetric loss by computing the
objective over both view orderings.

B.1 SDMI CANONICAL FORM TRAINING PROCEDURE

Algorithm 1: EM-style Training Procedure of the SDMI Prototype
Input: Unlabeled dataset D, encoders fθ, gξ, temperature τ , number of epochs T
Output: Trained encoder parameters θ, ξ

1 for t = 1 to T do
// E-Step: Update fθ, freeze gξ foreach minibatch (X1, X2) ∼ D do

2 Z
(1)
E ← fθ(X1), Z

(2)
E ← fθ(X2)

3 Z
(1)
M ← gξ(X1), Z

(2)
M ← gξ(X2)

4 Ẑ
(1)
M ← SG(Z

(1)
M ), Ẑ

(2)
M ← SG(Z

(2)
M )

5 LE ← 1
2

[
DV(Z

(1)
E , Ẑ

(2)
M ; τ) + DV(Z

(2)
E , Ẑ

(1)
M ; τ)

]
6 Update θ via gradient descent on LE

7 end
// M-Step: Update gξ, freeze fθ foreach minibatch (X1, X2) ∼ D do

8 Z
(1)
E ← fθ(X1), Z

(2)
E ← fθ(X2)

9 Z
(1)
M ← gξ(X1), Z

(2)
M ← gξ(X2)

10 Ẑ
(1)
E ← SG(Z

(1)
E ), Ẑ

(2)
E ← SG(Z

(2)
E )

11 LM ← 1
2

[
DV(Z

(1)
M , Ẑ

(2)
E ; τ) + DV(Z

(2)
M , Ẑ

(1)
E ; τ)

]
12 Update ξ via gradient descent on LM

13 end
14 end

B.2 JMI CANONICAL FORM TRAINING PROCEDURE

Algorithm 2: Joint Training Procedure of the JMI Prototype
Input: Unlabeled dataset D, encoder fθ, temperature τ , number of epochs T
Output: Trained encoder parameters θ

1 for t = 1 to T do
2 foreach minibatch (X1, X2) ∼ D do
3 Z(1) ← fθ(X1), Z(2) ← fθ(X2)

4 L ← 1
2

[
DV(Z(1), Z(2); τ) + DV(Z(2), Z(1); τ)

]
5 Update θ via gradient descent on L
6 end
7 end

C METHOD CLASSIFICATION UNDER SDMI/ JMI TAXONOMY

In this section, we present a comprehensive classification of representative SSRL methods under the
SDMI/JMI framework as introduced in section 3.
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Table 2: Representative SSRL methods and their classification under the SDMI/ JMI taxonomy,
with objective types.

Method EM/Joint
Objective Type

(Explicit MI bound vs. MI Surrogate) Paradigm
BYOL

(Grill et al., 2020) EM MI Surrogate SDMI
SimSiam

(Chen et al., 2020a) EM MI Surrogate SDMI
MoCo-v1/v2/v3

(He et al., 2020; Chen et al., 2020b; 2021) EM Explicit MI SDMI
DINO

(Caron et al., 2021) EM MI Surrogate SDMI

SimCLR
(Chen et al., 2020a) Joint Explicit MI JMI

Barlow Twins
(Zbontar et al., 2021) Joint MI Surrogate JMI

VICReg
(Bardes et al., 2022) Joint MI Surrogate JMI

W-MSE
(Ermolov et al., 2021) Joint MI Surrogate JMI

SwAV
(Caron et al., 2020) Joint MI Surrogate JMI

BGRL
(Thakoor et al., 2022) Joint MI Surrogate JMI

D ADDITIONAL EXPERIMENTAL RESULTS

Supplementary experimental results and analyses support the findings presented in section 4, includ-
ing controlled experiments on synthetic data and additional ablation studies.

D.1 CONTROLLED EXPERIMENT

D.1.1 SDMI DETERMINISTIC FULL-BATCH UPDATES

Nearest-neighbor angle statistics To complement fig. 3, we report rotation-invariant NN angle
statistics for the final cluster embeddings in table 3. In our setup, on a 3D unit sphere, the ideal
separation for five clusters corresponds to a NN gap of ≈ 90◦ (Thomson optimum).

Table 3: NN angle gaps at convergence

Model Mean NN Gap (◦) Min NN Gap (◦) Max NN Gap (◦) SD (◦)
SDMI prototype (Encoder fθ) 74.47 72.78 77.60 1.76
SDMI prototype (Encoder gξ) 73.77 72.16 75.06 1.32
SimSiam 40.62 28.04 71.86 16.19
MoCo 49.64 47.90 54.07 2.29
BYOL 37.35 31.26 45.34 5.42

Cluster dynamics In fig. 4, we plot the embeddings of each centroid under both fθ and gξ en-
coders at various training iterations (epochs-1, 5, 20, 70, 100). As training progresses, the two views
of each cluster increasingly align with one another, while the embeddings across different clusters
become progressively more separated, indicating that the independently updated encoders learn both
consistent and discriminative representations.
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Figure 4: Cluster centers on the unit sphere showing how SDMI prototype encoders progressively
separate them

Figure 5: Estimated MI over training using cos–DV, InfoNCE, and JSD bounds for both SDMI
methods (top) and JMI methods (bottom). All three estimators show approximately monotonic
growth for all methods under both paradigms.

D.2 SYNTHETIC DATA

To better understand the dynamics of MI maximization without confounding factors from complex
image data, we repeat our MI-tracking experiment from section 4 on the same controlled synthetic
dataset from section 4.2 using toy models (see section E.4). In this setting, we can isolate the effect
of optimization since the ground-truth data distribution is simple and noise is well-characterized.
To track MI during training, we compute the same three variational bounds: the cos-DV bound
(Icos-DV) from eq. (14), the InfoNCE bound (IInfoNCE) (Oord et al., 2018; Poole et al., 2019), and
the JSD bound (IJSD) (Hjelm et al., 2019) using a deterministic setting (i.e., single batch update).
At each epoch, we compute all three MI estimates on frozen encoder outputs from a validation set
consisting of 2,500 data points. As shown in fig. 5, all three bounds across all methods show similar,
near-monotonic MI increase during training.

D.2.1 SDMI STOCHASTIC MINI-BATCH UPDATES

To examine whether SDMI prototype continues to maximize MI under stochastic optimization, we
reran the toy Gaussian mixture experiment using a training batch size of 500 and standard SGD
(learning rate 0.5, cosine annealing schedule, 100 epochs). Figure 6 shows the estimated Icos-DV,
IInfoNCE, and IJSD curves for SDMI and the three baseline methods. All approaches continue to
show approximately monotonic MI growth despite the use of mini-batches.
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Figure 6: Estimated MI under mini-batch SGD. All methods continue to show monotonic MI growth
across three estimators (Icos-DV, IInfoNCE, IJSD).

Figure 7: (a) Linear probing accuracy of SDMI prototype under ablations on CIFAR10. Re-
moving the marginal term from the DV bound leads to representational collapse in both the fθ and
gξ encoders, denoted as SDMI-NoDV (fθ) and SDMI-NoDV (gξ), respectively, despite the use of
alternating (EM-style) optimization, confirming the necessity of the marginal regularization term.
Remarkably, adding trainable predictors during the E-step and M-step, SDMI-NoDV-Pred (fθ) and
SDMI-NoDV-Pred (gξ), while still omitting the marginal term, entirely prevents collapse and re-
covers strong performance. Dashed lines represent baseline accuracy of the pure SDMI prototype
with all components intact. (b) SimSiam variants under different loss functions and predictor
configurations on CIFAR10. Removing the predictor leads to collapse, confirming that SimSiam’s
cosine loss alone lacks marginal regularization. Replacing the loss with the explicit cos-DV objec-
tive (SimSiam-SDMI) restores performance without requiring a predictor.

D.2.2 PREDICTORS AS DV BOUND MARGINAL SURROGATES

SDMI prototype Predictor networks and stop-gradients are widely recognized as essential com-
ponents in SDMI-based SSRL methods (Chen & He, 2021; Balestriero et al., 2023; Jha et al., 2024;
Zhang et al., 2022; Tian et al., 2021; Srinath Halvagal et al., 2023; Shi et al., 2020; Wang et al., 2021).
In section 3.2, we showed that stop-gradient enables the EM-style alternating optimization. Zhang
et al. (2022) prove that the predictor prevents collapse by decomposing its gradient into center and
residual components, showing it induces de-centering and dimensional de-correlation—mechanisms
equivalent to those from negative samples in contrastive learning. We complement this understand-
ing with a controlled ablation study on CIFAR10 using linear probing (fig. 7(a)), systematically
adding and removing components from the SDMI prototype. Removing the marginal term from
eq. (1) results in representational collapse, despite EM-style updates, confirming the necessity of a
complete MI objective. More generally, in the absence of the marginal regularization term, encoders
converge to trivial solutions.

Remarkably, adding a trainable predictor to the fθ encoder during the E-step and to the gξ encoder
during the M-step, while still omitting the marginal term, entirely prevents collapse. This behavior
suggests that predictors function as implicit surrogates for the log-partition (marginal) term, validat-
ing our analysis in section 3.2.1 that predictors recover the missing normalization component in MI
maximization objective.
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SimSiam Using SimSiam as an example, we now examine what happens when a non-contrastive
method within the SDMI paradigm is given an explicit MI objective. First, we remove the predictor
from SimSiam while retaining its alternating update scheme. This variant collapses since minimiz-
ing cosine similarity is equivalent to optimizing only the joint term of the DV bound eq. (1), with no
marginal correction to prevent trivial solutions. Next, we replace SimSiam’s heuristic loss with the
cos-DV bound-based loss from eq. (15), while still using a single-encoder alternating schedule but
without the predictor. We call this variant SimSiam-SDMI. Remarkably, SimSiam-SDMI not only
avoids collapse, but also recovers nearly the original linear probe accuracy (baseline: 89.68±0.35%,
SimSiam-SDMI: 88.43± 0.78%).

These trends are summarized in fig. 7(b), which shows the performance of all three variants and
their associated training behaviors.

E IMPLEMENTATION DETAILS

E.1 COMPUTE RESOURCES

All experiments were conducted on two servers equipped with an NVIDIA RTX 5090 GPU and an
NVIDIA RTX 4080 GPU, respectively. The complete set of experiments, including hyperparameter
sweeps and additional experiments not included in the paper, took approximately 6 weeks of wall-
clock time. For the SDMI prototype, GPU memory (VRAM) usage was around 15 GB, while all
other methods required approximately 7 GB.

E.2 REAL DATA BENCHMARK

Hyperparameter sweep-1 We conduct a grid search for each model using a ResNet-18 encoder
backbone on the CIFAR10/100 datasets. The hyperparameters explored in the initial sweep are
summarized in table 4. Models requiring a predictor network (e.g., SimSiam, BYOL, and MoCo-
v3) use a fixed 2-layer predictor. For methods that incorporate a temperature parameter (e.g., SDMI,
MoCo-v3, JMI and SimCLR), an additional dimension is included in the search space. Momentum-
based models such as BYOL and MoCo-v3 use a fixed momentum coefficient of 0.996 for the target
encoder. The total number of configurations evaluated per model is shown in table 5.

Hyperparameter sweep-2 Based on the results from sweep-1, we perform a secondary evaluation
for each model on each dataset using a projection layer size of 3. The top-performing configuration
(shown in table 6 for each model is then selected and used to train that model for 1000 epochs.

Table 4: Sweep-1: Hyperparameter settings and search space used in our grid search

Parameter Values Applies to Fixed/Varied
Encoder Backbone ResNet-18 All models/datasets Fixed
Batch Size 512 All models/datasets Fixed
Projection Layers 2 All models/datasets Fixed
Prediction Layers 2 All models/datasets Fixed
Prediction Dimension 256 All models/datasets Fixed
Epochs 300 All models/datasets Fixed
Feature Dimension 2048 All models/datasets Fixed
Momentum Coefficient 0.996 BYOL, MoCo-v3 Fixed
Seed 7349 All models/datasets Fixed
Learning Rate {0.01, 0.03, 0.05} All models (Cosine decay) Varied
Weight Decay {0.0001, 0.0005} All models Varied
Temperature {0.05, 0.07, 0.1} SDMI, JMI, MoCo-v3, SimCLR Varied
Projection Dimension {128, 256} All models Varied
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Table 5: Grid search configuration counts per model for sweep-1. Configurations are counted per
dataset unless otherwise noted.

Model Dataset(s) Temperature Used Total Configurations
SDMI CIFAR10, CIFAR100 Yes 3× 2× 3× 2 = 36
SimSiam CIFAR10, CIFAR100 No 3× 2× 2 = 12
BYOL CIFAR10, CIFAR100 No 3× 2× 2 = 12
MoCo-v3 CIFAR10, CIFAR100 Yes 3× 2× 3× 2 = 36
JMI CIFAR10, CIFAR100 Yes 3× 2× 3× 2 = 36
SimCLR CIFAR10, CIFAR100 Yes 3× 2× 3× 2 = 36
Barlow Twins CIFAR10, CIFAR100 No 3× 2× 2 = 12
VICReg CIFAR10, CIFAR100 No 3× 2× 2 = 12

Table 6: Optimal hyperparameters selected from sweep-2 for each model and dataset. LR = learning
rate, WD = weight decay, Temp. = temperature. All models use a ResNet-18 encoder. For VICReg,
we fix the similarity, variance, and covariance loss coefficients to 25.0, 25.0, and 1.0, respectively,
and set a small numerical stability term ϵ = 10−4. These values remain constant across all runs.

Model Dataset LR WD Temp. Proj. Dim Proj. Layers Predictor
SDMI CIFAR10 0.05 0.0005 0.1 256 3 No
SDMI CIFAR100 0.03 0.0005 0.1 256 2 No
SimSiam CIFAR10 0.05 0.0005 – 256 3 Yes
SimSiam CIFAR100 0.05 0.0005 – 256 3 Yes
BYOL CIFAR10 0.05 0.0005 – 256 3 Yes
BYOL CIFAR100 0.05 0.0005 – 256 2 Yes
MoCo-v3 CIFAR10 0.05 0.0005 0.1 256 2 Yes
MoCo-v3 CIFAR100 0.05 0.0001 0.1 256 2 Yes
JMI CIFAR10 0.05 0.0005 0.1 128 2 No
JMI CIFAR100 0.03 0.0005 0.1 256 2 No
SimCLR CIFAR10 0.05 0.0005 0.1 128 2 No
SimCLR CIFAR100 0.03 0.0001 0.1 128 2 No
Barlow Twins CIFAR10 0.05 0.0005 – 256 2 No
Barlow Twins CIFAR100 0.05 0.0005 – 256 2 No
VICReg CIFAR10 0.05 0.0005 – 256 3 No
VICReg CIFAR100 0.03 0.0005 – 256 3 No

E.3 IMAGENET100 AND TINYIMAGENET TRAINING CONFIGURATION

For both the ImageNet100 and TinyImageNet datasets, we adopt a uniform configuration across all
models, with only a few dataset-specific adjustments. The settings are summarized in table 7.

Table 7: Hyperparameter settings used for all models trained on ImageNet100 and TinyImageNet.

Parameter ImageNet100 TinyImageNet
Encoder Backbone ResNet-50 ResNet-18
Epochs 800 1000
Warmup Epochs 10 5
Batch Size 256 512
Initial Learning Rate 0.05 0.05
Learning Rate Schedule Cosine decay Cosine decay
Weight Decay 0.0001 0.0005
Projection Layers 3 3
Projection Dimension 256 256
Feature Dimension 512 512
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Note: For the SDMI model on ImageNet100, the batch size was reduced to 64 (instead of 256) due
to the increased memory requirements from the two-encoder setup.

E.4 TOY MODELS

We implement the toy canonical SDMI and JMI prototypes in section 4.2, along with all benchmarks,
each with a dedicated two-layer MLP encoder mapping R2 → R3. The encoder consists of a linear
layer (2 → 64) with bias, batch normalization, and ReLU activation, followed by a second linear
layer (64→ 3) with batch normalization. The output is normalized to unit ℓ2-norm.
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