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Abstract

Generative, pre-trained transformers (GPTs, a type of "Foundation Model") have
reshaped natural language processing (NLP) through their versatility in diverse
downstream tasks. However, their potential extends far beyond NLP. This paper
provides a software utility to help realize this potential, extending the applicability
of GPTs to continuous-time sequences of complex events with internal depen-
dencies, such as medical record datasets. Despite their potential, the adoption of
foundation models in these domains has been hampered by the lack of suitable
tools for model construction and evaluation. To bridge this gap, we introduce Event
Stream GPT (ESGPT), an open source library designed to streamline the end-to-end
process for building GPTs for continuous-time event sequences. ESGPT allows
users to (1) build flexible, foundation-model scale input datasets by specifying only
a minimal configuration file, (2) leverage a Hugging Face compatible modeling
API for GPTs over this modality that incorporates intra-event causal dependency
structures and autoregressive generation capabilities, and (3) evaluate models via
standardized processes that can assess few and even zero-shot performance of
pre-trained models on user-specified fine-tuning tasks.

1 Introduction

The unprecedented performance of large language models (LLMs) in natural language processing
(NLP) has led to a new paradigm in machine learning. Instead of being dominated by single-
task, supervised learning models, this paradigm is characterized by general-purpose, pre-trained
“foundation models.” These models, exemplified by the “Generative, Pre-trained Transformer”
(GPT) architecture, deliver state-of-the-art performance on diverse downstream tasks in a highly
data-efficient manner [24]. The success of GPT models over natural language data is driven in
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part by the fact that the generative, language modeling forecasting task is “universal” across NLP
downstream tasks—meaning any natural language task can be recast as a language modeling task
through prompting. However, this property is not unique to NLP, and GPT-equivalent architectures
may hold significant promise in other domains as well. In particular, this work explores the application
of these models to the domain of continuous-time sequences of complex, multimodal events (event
streams), specifically Electronic Health Record (EHR) datasets. In particular, this paper presents a
data preprocessing and modeling library that makes it significantly easier to build generative, auto-
regressive transformers over event stream data, then to fine-tune or use those models for zero-shot
prediction over diverse fine-tuning tasks on these data, such as in predicting the risk of a patient of
dying in the hospital or of needing an early readmission to the hospital from structured EHR data.

Two critical barriers inhibit the application of foundation model research to modalities like EHR
data. First, these data modalities do not come in a single, unified format, and compelling datasets are
often private and unshareable. This hampers foundation model research by requiring dataset-specific
preprocessing pipelines and hindering one’s ability to assess the model generalizability. Second,
modeling continuous-time sequences of complex events is more challenging than modeling ordinal
sequences of tokens, as GPTs over these modalities must account for non-ordinal inputs; complex,
multi-modal emission distributions; and intra-event causal relationships.

In this paper, we address these gaps with Event Stream GPT (ESGPT), an open source software
package1, API, and evaluation utility for foundation models over event stream data. ESGPT can
represent diverse datasets across various sources in a unified manner, preprocess very large datasets
extremely quickly through the use of the Polars library [33], and can tune hyperparameters, pre-
train, fine-tune, and perform zero-shot evaluation for foundation models through a Hugging Face
compatible API. In the rest of this work, we will demonstrate the unique value ESGPT offers through
the lens of a real-world working example: building foundation models over the MIMIC-IV electronic
health record dataset [15] (Section 2). We will walk through all aspects of the pipeline one would
follow to pursue this research, revealing in each how ESGPT fills a critical gap in existing tools
across data preprocessing (Section 3), model configuration and running (Section 4), and evaluation
(Section 5). Finally, we will close with related work and concluding thoughts.

2 Working Example Problem Setup

Source Data The MIMIC-IV dataset [15] is a publicly available dataset consisting of EHR data for
all adult patients who were admitted to the emergency department or an intensive care unit (ICU) at
Beth Israel Deaconess Medical Center between 2008 and 2019. This data set contains approximately
300,000 patients and consists of numerous health data modalities, including diagnoses, laboratory
test results, medications, hospital and outpatient mortality, and many other variables, all localized
continuously in time. For our running example, we will define the internal covariates of each event to
include the set of modeling targets in Table 1.

Modeling Task Our sample modeling challenge is to build a GPT model on the complex event
stream data contained in MIMIC-IV. This can also be seen as a multivariate marked temporal point
process. In particular, given a sequence of complex events x1, . . . ,xN (where each event xi is
a collection of occurrences of the selected covariates in Table 1) that occur at continuous times
t1, . . . , tN , we wish to model the following probability distribution:

p(ti,xi| (t1,x1), . . . , (ti−1,xi−1)︸ ︷︷ ︸
hi−1

)

We will realize this through a transformer neural network architecture parametrized by θ, such that
fθ(ti,xi,hi−1) = p(ti,xi|hi−1). Note that, unlike other GPT modeling settings, it may be the case
that internal covariates of each event xi have internal causal dependencies. For example, if x(j)

i is
used to denote the jth internal covariate of event i, then p(xi|hi−1, ti) ̸=

∏
j p(x

(j)
i |hi−1, ti). Any

full generative model will therefore need to account for these internal causal dependencies.

1https://eventstreamml.readthedocs.io/en/dev/index.html
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Admission/Discharge Demographics Measurements/Actions

Admission Type Language Laboratory Tests∗
Admission Location Race Procedures
ICU Care-unit Marital Status Medications
Discharge Destination Insurance Type Infusions∗

Age Diagnoses
Time-of-day Patient Weight
Gender

Table 1: The modalities of data we include in our MIMIC-IV working example. Our generative
model consists of continuous timeseries of partial observations of any of these events, and we task the
model with predicting which of the times of these events, which modalities will be observed in those
events, and what values they will take on. Included modalities are not observed uniformly across all
events, in a non-random manner. ∗ Includes continuous regression components.

3 Data Extraction and Pre-processing

3.1 The Problem

To build a dataset suitable for performing our task outlined in Section 2, we do the following:

1. Extract a filtered cohort of raw data from its source (here, the MIMIC-IV postgresql
database).

2. Pre-process the data: learn outlier detection and normalization parameters for numerical
variables, filter out infrequently measured variables or outliers, normalize data, etc.

3. Join independent input data sets together in a format optimized for deep learning.
4. Build a PyTorch dataset, dataloader, and embedding layer for this deep-learning-friendly

structure so that we can use these data efficiently in downstream pipelines.

3.2 Current State-of-the-art

If we wish to use current solutions for data extraction, we must find an existing tool that is either fully
specialized to our dataset, MIMIC-IV, and use case (of which no such example exists), or is a general
purpose data extraction, preprocessing, and/or modeling pipeline that will ease our workflow. For
such a general-purpose tool to be useful, it must meet several critical criteria:

1. It must solve at least a majority of the challenges identified in Section 3.1.
2. It must be flexible enough to handle not only the MIMIC-IV data, but also various other

input datasets, schemas, and covariate choices.
3. It must be designed with efficiency in mind – both in data pre-processing and in the output

deep-learning representations it produces, so that we can pre-train large models effectively.
4. It must be actively maintained, well documented, and tested.

Unfortunately, as shown in Table 2, existing pipelines for extracting EHR data for machine learning
do not meet these criteria fully. Only one pipeline meets even a meaningful subset of these critical
requirements, TemporAI [28], as it has strong development practices, exposes a flexible input format,
and meets our critical pre-processing feature goals. However, TemporAI does not support native
extraction from underlying source files, and suffers in its efficiency, both in the core data preprocessing
pipeline and in its output deep learning representation, raising concerns about its viability on larger
datasets.

3.3 Contributions of Event Stream GPT

ESGPT solves all these challenges in data extraction and pre-processing. Figure 1 shows the entire
pipeline in visual form. From a flexible, concise, and user-friendly configuration file, ESGPT can
extract raw data from a source, preprocess categorical and numerical data elements, and produce
efficient PyTorch datasets for downstream analysis. In the following, we detail three key advantages of
the ESGPT system. Full technical details of the pipeline are given in the Supplementary Information
(SI).
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(c)

(d)

(e)

(b)

Fit outlier detector 
models, normalizers, 
and vocabularies

Remove outliers 
& infrequent 
measurements

Make PyTorch 
datasets with 
sparse batches

Aggregate by 
subject and time

Split into train, 
validation, and 
test sets

Compress data into 
minimal memory

{
start_time_min: FloatTensor (B,)   | None
static_indices: LongTensor (B, D) | None
static_measurement_indices: LongTensor (B, D) | None
event_mask: BoolTensor (B, L)
time: FloatTensor (B, L)
dynamic_indices: LongTensor (B, L, M)
dynamic_measurement_indices: LongTensor (B, L, M)
dynamic_values: FloatTensor (B, L, M)
dynamic_values_mask: BoolTensor (B, L, M)
stream_labels: {

‘task_1’: ... Tensor(B,)
} | None

}

EventStream.data.PytorchBatch
● B: Batch size
● D: Max static 

meas./subj
● L: Max events/subj
● M: Max dynamic 

meas./event/subj
● de: Embedding 

Dimension
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EmbeddingBag Layer

L

M

L
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B times, split to 
measurement 
groups based on 
event structure

(a)

𝚫𝑡𝑖

𝒙𝑖

𝒉𝑖-1

𝒆1

𝑺1

𝒎1

𝒎2

𝒆2

defaults:
  - dataset_base
  - _self_
inputs:
  patients:
    query: ... # omitted for brevity
    must_have: ["gender", "year_of_birth"]
  admissions:
    query: ... # omitted for brevity
    start_ts_col: "admittime"
    end_ts_col: ["dischtime", "deathtime"]
    start_columns: ["admission_type", "admission_location", 
"language", "race", "marital_status", "insurance"]
    end_columns: ["discharge_location"]
    event_type: ["VISIT", "ADMISSION", "DISCHARGE"]
  icu_stays:
    query: "SELECT * FROM mimiciv_icu.icustays"
    start_ts_col: "intime"
    end_ts_col: "outtime"
    start_columns: {"first_careunit": "careunit"}
    end_columns: {"last_careunit": "careunit"}
  diagnoses:
    query: ... # omitted for brevity
    ts_col: "dischtime"
  labs:
    query: ... # omitted for brevity
    ts_col: "charttime"
  infusions:
    query: ... # omitted for brevity
    start_ts_col: "starttime"
    end_ts_col: "endtime"
  procedures:
    query: ... # omitted for brevity
    start_ts_col: "starttime"
    end_ts_col: "endtime"
  medications:
    query: ... # omitted for brevity
    ts_col: "charttime"
measurements:
  static:
    single_label_classification:
      patients: ["gender"]
  functional_time_dependent:
    age:
      functor: AgeFunctor
      necessary_static_measurements: {"year_of_birth": 
"timestamp"}
      kwargs: {"dob_col": "year_of_birth"}

measurements_dfsubjects_df events_df

𝒆1
𝒆2

𝒎1
𝒎2

𝑺1

config.yml

Figure 1: ESGPT’s end-to-end data pipeline, which spans raw data extraction from source all
the way to production of a PyTorch dataset and pre-built embedder suitable for use in any deep
learning pipeline. (a) An example of our data modality; for a single subject S1, the data consist
of a series of events at continuous timestamps e1, e2, . . . (such as medical visits), with each event
being composed of interrelated internal covariate measurements m1,m2, . . . (such as laboratory test
results, medication prescriptions, infusions, etc.). (b) These data elements can be distributed among
many input data sources in raw form. From a simple YAML configuration file, ESGPT can extract
these data elements from the source and compile them into an internal data model consisting of three
key dataframes: subjects_df for static data, events_df containing event timestamps and types
per subject, and dynamic_measurements_df, storing all observed measurements. (c) ESGPT
preprocesses these data frames across several critical axes, doing so efficiently through the use of the
Polars library [33]. (d) ESGPT produces a PyTorch data set that produces batches whose size scales
with the number of data elements observed per event, not with the size of the input vocabulary. (e)
ESGPT provides a default embedding layer capable of embedding these sparse batches efficiently.
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Input Pre-processing PyTorch Dev

MIMIC-Extract [34] ✓ ✓ ✓ ✓
Fiddle [32] ✓ ✓ ✓ ✓
MT-MIMIC [11] ✓ ✓
Clairvoyance [13] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
OMOP-Learn [16] ✓ ✓ ✓ ✓
TemporAI [28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
ESGPT (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2: A collection of existing data pre-processing and/or modeling pipelines for temporal EHR
data, categorized on whether or not they enable various features. ⋆ Active maintenance is defined by
the existence of a commit between May 2022 and May 2023. † Tested is defined by the presence of
a reasonably comprehensive and automated test suite. ‡ Efficient data preprocessing is defined by
whether or not the library relies on Pandas [35, 25] for its dataframe manipulation, as opposed to more
modern, faster systems such as Polars [33] or DuckDB [22]. ∗ Efficient deep-learning representation
is defined by the extent to which sparsity is leveraged in their deep-learning representation files;
efficient outputs should only scale in size with the observations actually present in any given batch of
data, not with the number of total features in the space, total possible sequence elements, etc.

Event Stream GPT is easy to use and flexible To extract a machine learning ready data set from
any temporal structured data set with ESGPT, a user only needs to specify a modest configuration
file detailing the input data sources, the desired modalities to extract, and preprocessing pipeline
parameters. This configuration file instructs the pipeline how to extract the initial data from its
raw source, preprocess the extracted measurements, aggregate the data temporally, and produce
deep-learning efficient representation outputs suitable for downstream modeling. A full configuration
file for our working example over MIMIC-IV can be found in the SI.

Event Stream GPT can efficiently pre-process large datasets Through the use of the Polars
library [33] and careful design choices, ESGPT is able to provide an extremely efficient and fast
pre-processing pipeline. For our working example, our entire extraction and preprocessing pipeline
over the MIMIC-IV dataset (resulting in a cohort of approximately 12 thousand patients) takes
only approximately 30 minutes. We further assess the performance of this pipeline on two other
datasets on different compute environments, with cohort sizes of 116 thousand and 145 thousand
patients, and find runtimes of 25 minutes and 62 minutes, respectively, further demonstrating the
strong performance of this pipeline. Output dataset sizes are also universally small, with no dataset
exceeding 4GB of final space on disk, with only standard compression. Unfortunately, there are no
direct competitors that replicate all the steps of ESGPT in a consistent manner against which we can
compare these results. However, to contextualize them, in order to run omop-learn on MIMIC-IV, one
would first need to convert MIMIC-IV to the OMOP format, a process that is supported by existing
ETLs. Running only these existing ETLs requires a runtime of over 37 minutes,2, meaning that
the entire ESGPT data preprocessing pipeline, which runs from scratch on MIMIC-IV and includes

2https://github.com/OHDSI/MIMIC/blob/df97a75cd974c491e595c8b007a79f7326066cb1/
z_more/run_times.txt#L4

5

https://github.com/OHDSI/MIMIC/blob/df97a75cd974c491e595c8b007a79f7326066cb1/z_more/run_times.txt#L4
https://github.com/OHDSI/MIMIC/blob/df97a75cd974c491e595c8b007a79f7326066cb1/z_more/run_times.txt#L4


Pipeline Disk (GB) RAM (GB) Load Time (sec) Time/Batch (sec) GPU Memory (MB)

TemporAI 3.0 413.5 229.5 0.6 ± 0.0 877.2 ± 95.5
omop-learn 4.2 17.2 133.9 0.4 ± 0.0 40.1 ± 19.7
ESGPT (ours) 0.6 7.6 42.5 0.4 ± 0.0 67.2 ± 35.0

Table 3: Performance comparisons of the output deep-learning datasets between TemporAI [28],
omop-learn [16], and ESGPT (our pipeline) over the MIMIC-IV example. We can see that ESGPT is
dramatically cheaper than both other pipeline in terms of full dataset storage cost, and is cheaper or
competitive with both other pipelines on batch iteration time, and is slightly more expensive than
omop-learn in terms of batch memory but dramatically cheaper than TemporAI.

extraction, preprocessing, and final representation, all happens faster than just the initial extraction
and data conversion stage required for omop-learn. Full details are provided in the SI.

Event Stream GPT provides a memory-efficient deep learning representation Beyond efficient
preprocessing of data, ESGPT also provides an efficient deep learning representation of the data
suitable for PyTorch modeling. In particular, ESGPT provides a data representation format that is
simultaneously easy to use, through provided PyTorch dataset, batch, and embedding layer objects;
efficient to load and work with from disk, in terms of both time and memory; and permits rapid
and memory efficient construction of PyTorch batches for use in deep learning models on the GPU.
To demonstrate the impact of these properties, we compare ESGPT to TemporAI and omop-learn
(two of the most comparable existing pipelines from Table 2) on metrics quantifying the time and
memory costs of working with deep-learning datasets through each of the three pipelines in Table 3
for our working MIMIC-IV example. We can see from these comparisons that ESGPT is dramatically
more efficient in terms of time, storage, and memory cost to work with these data than either other
pipeline, and is competitive with omop-learn and dramatically better than TemporAI in terms of
dataset iteration time and GPU memory cost. Notably, we must recognize that as neither TemporAI
nor omop-learn are directly comparable to ESGPT, these comparisons are approximate, may not
reflect the ideal use-cases of the respective pipelines, and required us to craft new code to approximate
the common way in which users would construct a PyTorch dataset when using TemporAI or omop-
learn; nevertheless, this demonstrates that for its intended use-case, ESGPT provides significant
advancements over existing options in terms of computational performance when working with large
scale datasets. We comment further on these comparisons in the Supplementary Information, in
particular providing more details on the assumptions and approximations required.

4 Building GPTs

4.1 The Problem

To produce the generative model outlined in Section 2, we must satisfy several desiderata: (1) We
need to be able to model historical dependencies (p(ti,xi|hi−1)), temporal dependencies (p(xi|ti)),
and intraevent dependencies (p(x(j+1)

i |x(1)
i , . . . ,x

(j−1)
i )). In contrast, traditional (sequential) GPTs

only need to model historical dependencies. (2) We need to enable deep, sequential processing of
event sequences that can take into account event timestamps to build high-capacity representations.
(3) We need to produce continuous, categorical, and temporal output emission distributions. In
contrast, traditional GPTs only need to output categorical emission distributions. (4) Our model must
be able to construct time-derived features (e.g., age) on the fly during generation.

4.2 Current State-of-the-art

There are three categories of existing tools that could help us build models: General-purpose deep
learning modeling frameworks with built-in model architectures (e.g., TemporAI [28]); other GPT
architectures for different problem settings, such as natural language or regularly sampled timeseries;
or existing models for autoregressive or generative modeling of EHR or related modalities.

Unfortunately, across all three options, there are no existing tools that satisfy the criteria outlined
in Section 4.1. Among existing general-purpose frameworks, such as TemporAI [28] or OMOP
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Doctor AI [3] ✓ ✓ ✓
CDT [18] ✓ ✓
MetaCare++ [31] ✓ ✓ ✓
CLMBR [30] ✓ ✓
MedTPP [6] ✓ ✓ ✓
MedGPT [17] ✓ ✓ ✓

ESGPT ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 4: A summary of existing foundation models over EHR data, broken down by what modalities
of data they model and how they report evaluation results.

Learn [16], they lack any suitable built-in model architectures for this task. Existing GPT architec-
tures, on the other hand, can be very helpful, especially for providing sources to adapt transformer
architectures for core multilayer network structures, but lack key features specific to this modality,
such as accounting for unknown output event times and complex interevent dependencies. Finally,
among existing, published generative models for EHR or other similar modalities, all existing
architectures have major limitations, as outlined in Table 4.

4.3 Contributions of Event Stream GPT

The ESGPT library includes a pre-built model architecture that models time-to-event components, con-
tinuous and categorical output measurements, handles intra-event dependencies in a user-configurable
way, and provides a HuggingFace-compatible API for generating new events with a pre-trained model.
We detail these capabilities below, and a full technical reference is in the SI.

Event Stream GPT provides a HuggingFace API compatible interface for building models
capable of outputting complex, temporal distributions To use one of the pre-defined model
architectures in ESGPT, users simply build a specialized configuration object, which is a sub-class
of the standard, Hugging Face PretrainedConfig3. Once the config is defined, a model can be
instantiated in the same way as any other Hugging Face pre-trained model, either from scratch or
from a pre-trained source. In addition to the standard Hugging Face attributes, the ESGPT config
also contains several custom attributes specific to our setting, including attributes describing the
breakdown of the various measurements and their respective vocabulary sizes, the implied dependency
relationships between intra-event covariates, and data embedding configuration parameters.

All pre-built ESGPT models for generative modeling output a unified model output object. This
object maps event generation covariate target names to PyTorch distributions, from which we can
easily compute losses or sample new events. The unified ESGPT dataset class and this output object
defines the API expected by ESGPT models in further utilities like generative capabilities.

Event Stream GPT provides a modeling interface for encoding complex, custom intra-
event dependencies ESGPT comes with two pre-defined model architectures. One (the
ConditionallyIndependent model) that matches much of the existing published literature and
only supports defining generative models where all intra-event covariates are conditionally inde-
pendent from one another given the patient’s history and one (the NestedAttention model) that
supports user-defined dependency relationships between various internal features of xi. Users specify
these relationships through the configuration file. For example, one of the models pre-trained in our
MIMIC-IV working example relies on the intra-event dependency chain shown in Figure 2. This
specification takes the form of a list of lists, and tells the model that it should make the assumption

3https://huggingface.co/docs/transformers/main_classes/configuration
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structured_event_processing_mode: nested_attention
measurements_per_dep_graph_level:

- ["age", "time_of_day"] # Must start with FUNCTIONAL_TIME_DEPENDENT measurements.
- [

"event_type", "patientweight", "admission_type", "admission_location",
"race", "language", "marital_status", "insurance", "careunit",
["lab_itemid", "categorical_only"], ["infusion_itemid", "categorical_only"]

]
- [["lab_itemid", "numerical_only"], ["infusion_itemid", "numerical_only"]]
- ["procedure_itemid", "medication", "icd_code", "discharge_location"]

Figure 2: A sample dependency graph for our MIMIC-IV working example. All measurements
within any inner list depend only on those measurements in prior lists.

that the internal covariates in a given inner list of xi are conditionally independent of one another
given both (1) the historical representation of all tℓ,xℓ, ℓ < i and (2) the internal covariates in all
prior lists in the specified dependency graph. Concretely, this means that the model configuration
snippet shown in Figure 2 defines a generative model such that the predicted type of an event will
depend only on the historical representation and the true time of that event, but the predicted values
observed for the laboratory tests ordered for this patient will depend on both the time of the event,
but also the event type, patient dynamic demographics, and the categorical laboratory test item IDs
that are actually ordered for that patient.

We describe the architecture used to model this in full detail in the SI; however, what is more essential
for the utility of the ESGPT software library is that this API for specifying internal dependencies, and
the associated non-architectural changes required to support it (e.g., enabling generation to respect
the multi-stage process implied by the intra-event dependency graph) can be used across a variety of
internal transformer architectures. Thus, this provided model class can serve as a basis for further
model development that relies on internal event dependencies in future research without invalidating
the benefits of the other tools in ESGPT. While the NestedAttention model builds on pre-existing
works, to the best of our knowledge this precise architecture is novel.

Event Stream GPT provides generation capabilities for unsupervised, zero-shot evaluation A
critical use-case for foundation models is the ability to generate new, unseen predictions for the future
of an input. To the best of our knowledge, ESGPT is the first pipeline to bring that capability in a
systemized fashion to foundation models over event stream data like EHR systems. To do so, we
introduce several key modifications from the traditional Hugging Face generation API, including
the ability to support complex emission distributions during generation, dynamic computation of
time-dependent input features for newly generated time-points, and generating events in sequence
while respecting the causal path. Full details can be found in the SI.

5 Evaluating Foundation Models

5.1 The Problem

Even after building a foundation model on this non-standard domain, one still has to evaluate that
model, both as a concrete representation learning system and in its possible viability as an early stage
foundation model. In domains of complex, timeseries of events, like medical record datasets, there are
a number of unique challenges that must be addressed in evaluation. We foresee the following metrics
to be critical points to assess in early stage foundation models in such domains: (1) Performance
as a raw generative model, (2) Viability as a foundation model, (3) Practical utility vs. current ML
systems, (4) Performance disparities across subject sub-populations, and (5) Privacy risks.

5.2 Current State-of-the-art

Existing models in this space have significant gaps in their evaluation strategies to date. Table 4, in
addition to summarizing model modalities, also summarizes evaluation methods used. While some
techniques like few-shot fine-tuning analyses are well represented, others are under-explored. In
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particular, at present there are no existing strategies to reliably assess general, zero-shot performance
of GPTs over event stream datasets, a gap which we fill here.

5.3 Contributions of Event Stream GPT

ESGPT focuses on providing usable, powerful tools to enable rapid evaluation of GPTs over event
stream datasets, focused currently on the assessment of a model’s generative performance and in
its viability as a foundation model in few and zero-shot evaluation tasks. While further efforts on
the other evaluation criteria would be highly impactful, given the dearth of existing utilities just on
assessing these basic performance metrics, we leave the rest to future work. In addition to these
evaluation utilities, we also provide pre-built scripts for running distributed Bayesian hyperparameter
optimization sweeps over foundation models through Weights and Biases (WandB) [2].

Event Stream GPT assesses generative model performance & hyperparameter tuning To make
assessing generative performance easier, ESGPT comes pre-equipped with a PyTorch Lightning [7]
module for running pre-training models which tracks a variety of metrics to assess generative model
performance, including traditional classification and regression metrics over all component internal
event covariates. These are logged by default to WandB, permitting easy exploration of output
model performance. These metrics are further tracked and can be assessed visually in WandB reports
during hyperparameter tuning as well, which is run via a WandB sweep with a provided default
hyperparameter search space. A template report for assessing the output of these sweeps is also
provided alongside the code for our working example over MIMIC-IV (accessible in the SI), allowing
users to easily design their own dashboards to monitor their model tuning runs.

Event Stream GPT assesses foundation model viability via few and zero-shot performance
While many systems already explore few-shot performance (and ESGPT comes pre-equipped with
lightning modules and utilities for performing similar assessments), assessing zero-shot performance
across general models has not been previously studied. Enabling zero-shot evaluation for foundation
models trained on event stream data requires three things: First, a labeled dataset corresponding
to a well-defined task which can be used to evaluate zero-shot produced labels; second, a method
to perform unsupervised forecasting of a patient’s record given an input window, which ESGPT
provides; third, a function to translate generated samples into empirical predictions.

The ESGPT system then provides a PyTorch Lightning utility to take as input a dataset, task, pre-
trained model, and labeling function, and perform zero-shot evaluation over a specified data cohort.
This system reports performance metrics based on the output of this labeling function over the
empirical predictions generated for each patient’s input. This provides any model trained using the
ESGPT API the ability to assess zero-shot performance in a meaningful way, out of the box. For
examples of these evaluation utilities on MIMIC-IV, see the SI.

5.4 Example ESGPT Models over MIMIC-IV

To demonstrate the evaluation capabilities of ESGPT, in this section we provide examples of evaluating
pre-trained models or training supervised models from scratch on two canonical fine-tuning tasks
over MIMIC-IV: In hospital mortality prediction and 30-day readmission prediction (though all of
these capabilities are fully extensible to any binary classification task over an ESGPT dataset). Full
details of these experiments and results can be found in the online documentation for the MIMIC-IV
tutorial4, but here we highlight three capabilities of ESGPT: (1) producing baseline performance
numbers for fine-tuning tasks over ESGPT systems, (2) performing traditional fine-tuning, and (3)
performing zero-shot evaluation of a pre-trained model.

In particular, with regard to baselines, Event Stream GPT provides utilities to hyperparameter tune
baselines across both the same neural network architectures as are used during generative pre-training
and scikit-learn [26] classifiers. On our proof-of-concept MIMIC-IV cohort for the in-hospital
mortality prediction task, for example, hyperparameter tuned random forest classification pipelines
can obtain a held-out AUROC of approximately 0.67, and for the readmission risk prediction task, it
obtains a performance of approximately 0.65. On the other hand, training neural network architectures
from scratch yields AUROCs of 0.79 and 0.57 for the two tasks, respectively.

4eventstreamml.readthedocs.io/en/dev/MIMIC_IV_tutorial/index.html
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When fine-tuning a model from a pre-trained model, we support limited hyperparameter tuning over
just non-fixed parameters (e.g., learning rate, batch size, etc.). Doing this for the in-hospital mortality
and readmission risk prediction tasks achieves AUROCs of approximately 0.8 and 0.62, respectively,
in both cases yielding a lift over from-scratch training due to the generative pre-training at the 12k
patient dataset scale. We can also assess performance via zero-shot performance. While our proof
of concept models do not show better than chance AUROC on these measures, it is nonetheless a
significant strength of ESGPT that these analyses can now be performed in a systematic manner.

6 Further Discussion

Limitations While ESGPT provides significant benefits, it also has a number of limitations. Firstly,
it lacks some more advanced pre-processing capabilities that other systems support, such as unit
conversion, ontological aggregation, or support for a wide variety of optional pre-processing algo-
rithms. Secondly, defining downstream tasks is currently only possible through manual creation /
user-defined code, as opposed to via a configuration language. Next, while the utilities ESGPT offers
do significantly enhance evaluation, even more is needed on that front, including dedicated metrics
for fairness and privacy sensitivity, methods to assess embedding space structure, and methods to
detect emergence of foundation model capabilities more cost efficiently. As a mitigation for these
issues, we recommend that current users of these pipelines rigorously assess model performance
for any downstream tasks across relevant patient subgroups to ensure bias or fairness implications
are appropriately measured. Further research on this point, extending upon efforts such as those
explored in [5, 37] is needed. Privacy mitigation strategies also need significantly more exploration
before models can be safely released. While prior work on NLP models have found some risks
due to memorization, the literature is far from clear on the risks or ways to address them for these
kinds of models [12, 19]. Relatedly, any downstream users of ESGPT who wish to release datasets
pre-processed with ESGPT should also ensure they take all appropriate precautions to ensure ethical,
safe dataset release, and include sufficient documentation of the dataset’s provenance, composition,
and viable use-cases or pit-falls to ensure effective, impactful downstream use [9]. Thirdly, ESGPT
currently only supports categorical or continuous valued event stream data modalities; however, this
pipeline could also be extended to support additional modalities such as wearable and signals data,
with similar abilities as those described in [21, 8]. Finally, ESGPT provides primary value as a
data pre-processing pipeline and set of modeling APIs, not as a static set of model architectures or
pre-trained weights. As such, we leave detailed comparisons of different model architectures that can
be built using the APIs provided by ESGPT across a variety of benchmark tasks to future work.

Related Work As listed in Tables 2 & 4, there are a number of existing processing pipelines and
models of relevance here. Beyond those already discussed, there are also a number of models that
leverage nongenerative losses that warrant highlighting, such as contrastive methods like [1, 20, 23].
These provide a valuable alternative to generative foundation models in various domains. Additionally,
other pipelines also exist in this and adjacent spaces, such as time series specific pipelines and tabular
data embedding methodologies [14, 10, 4]. GPTs have also been used very successfully in other
domains outside of event stream data. These include both examples of foundation models outside of
either NLP or event stream data, such as on protein sequences [27] or point clouds [36], but also other
examples of temporal point processes outside of the typical “foundation model” framework [29, 38].

7 Conclusion

In this paper, we introduced Event Stream GPT (ESGPT), a new, open source software library that fills
a critical gap in the foundation model literature: namely, technological support for building generative,
pre-trained transformers (GPTs) over “event stream data”—datasets consisting of continuous time
sequences of complex events with multiple modalities and internal dependencies. We showed that
Event Stream GPT can reliably address all aspects of the research pipeline for this end, from data
pre-processing at scale, model construction in a manner accounting for the unique properties of event
stream data, and evaluation across all aspects of the foundation model pipeline. We believe that
ESGPT will significantly accelerate, standardize, and improve the space of research into these models
and will help identify the best architectures and settings where the strengths of GPTs as seen in other
domains can be replicated in new domains.
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