
Individualized Dosing Dynamics
via Neural Eigen Decomposition

Anonymous Author(s)
Affiliation
Address
email

Abstract

Dosing models often use differential equations to model biological dynamics. Neu-1

ral differential equations in particular can learn to predict the derivative of a process,2

which permits predictions at irregular points of time. However, this temporal flex-3

ibility often comes with a high sensitivity to noise, whereas medical problems4

often present high noise and limited data. Moreover, medical dosing models must5

generalize reliably over individual patients and changing treatment policies. To6

address these challenges, we introduce the Neural Eigen Stochastic Differential7

Equation algorithm (NESDE). NESDE provides individualized modeling (using8

patient-level parameters); generalization to new treatment policies (using decou-9

pled control); tunable expressiveness according to the noise level (using piecewise10

linearity); and fast, continuous, closed-form prediction (using spectral representa-11

tion). We demonstrate the robustness of NESDE in real medical problems, and use12

the learned dynamics to publish simulated medical gym environments.13

1 Introduction14

Sequential forecasting in irregular points of time is required in many real-world problems, such as15

modeling dosing dynamics of various medicines (pharmacodynamics). Consider a patient whose16

physiological or biochemical state requires continuous monitoring, while blood tests are only available17

with a limited frequency. Pharmacodynamics models often rely on an ordinary differential equation18

models (ODE) for forecasting. Additional expressiveness can be obtained via customized learned19

models, such as neural-ODE, which learns to predict the derivative of the process [Chen et al., 2018,20

Liu et al., 2019]. By predicting the derivative, neural-ODE can make irregular predictions at flexible21

time-steps, unlike regular models that operate in constant time-steps (e.g., Kalman filter, Kalman22

[1960] and recurrent neural networks, Rumelhart et al. [1986]).23

However, real-world forecasting remains a challenge for several reasons. First, the variation between24

patients often requires personalized modeling. Second, neural-ODE methods are often data-hungry:25

they aggregate numerous derivatives provided by a non-linear neural network, which is often sensitive26

to noise. Training over a large dataset may stabilize the predictions, but data is often limited. Third,27

most neural-ODE methods only provide a point-estimate, while uncertainty estimation is often critical28

in medical settings. Fourth, for every single prediction, the neural-ODE runs a numeric ODE solver,29

along with multiple neural network calculations of the derivative. This computational overhead in30

inference may limit latency-sensitive applications.31

A fifth challenge comes from control. In the framework of retrospective forecasting , a control signal32

(drug dosage) is often considered part of the observation [De Brouwer et al., 2019]. However, this33

approach raises difficulties if the control is observed at different times or more frequently than other34

observations. If the control is part of the model output, it may also bias the train loss away from35

Submitted to the DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems
(NeurIPS 2023). Do not distribute.

the true objective. Finally, by treating control and observations together, the patterns learned by the36

model may overfit the control policy used in the data – and generalize poorly to new policies.37

Generalization to out-of-distribution control policies is essential when the predictive model supports38

decision-making, as the control policy may be affected by the model. Such decision-making is39

an important use-case of sequential prediction: model-based reinforcement learning and control40

problems require a reliable model [Moerland et al., 2020, Angermueller et al., 2019], in particular in41

risk-sensitive control [Yu et al., 2021, Greenberg et al., 2022, Greenberg and Mannor, 2021].42

Contribution:43

• We characterize the main challenges in continuous forecasting for medication dosing control.44

• We design the Neural Eigen-SDE algorithm, which addresses the challenges described above.45

• We use NESDE to improve modeling accuracy in two medication dosing processes. Based on46

the learned models, we simulate gym environments for future research of healthcare control.47

2 Neural Eigen-SDE48

Problem setup: We focus on online sequential prediction of a process Y (t) ∈ Rm. To predict Y (t0)49

at a certain t0, we use noisy observations Ŷ (t) (at given times t < t0); a control signal u(t) ∈ Rk50

(∀t < t0); offline data of Y and u; and samples of per-sequence contextual information C ∈ Rdc .51

We assume the observations Y (t) to originate from an unobservable latent process X(t) ∈ Rn:52

dX(t) = FC

(
X(t), u(t)

)
, Y (t) = X(t)1:m, Ŷ (t) = Y (t) + νC(t) (1)

where FC is a stochastic operator (which may depend on C); Y is the first m coordinates of X; Ŷ is53

the corresponding observation; and νC(t) is its i.i.d Gaussian noise with zero-mean and covariance54

RC ∈ Rm×m (which may also depend on C). Our goal is to predict Y . If Y is not available, we55

measure our prediction accuracy against Ŷ . The control u(t) is modeled separately from Ŷ .56

Model: The Neural Eigen-SDE algorithm (NESDE, Fig. 1) predicts the signal Y (t) continuously at57

any required time t. It relies on a piecewise linear approximation which reduces Eq. (1) into:58

∀t ∈ Ii : dX(t) = [Ai · (X(t)− α) +B · u(t)] + dW (t) (2)

Figure 1: NESDE algorithm. Hypernet uses the context and
the estimated state to determine the SDE parameters; Eigen-SDE
solver uses them to make predictions for the next time-interval;
the filter updates the state upon arrival of a new observation,
which initiates a new interval. For more frequent updates of the
dynamics, the initial condition becomes the last prediction.

59

where Ii = (ti, ti+1) is a time interval,60

dW is a Brownian noise with covari-61

ance matrix Qi, and Ai ∈ Rn×n, B ∈62

Rn×k, Qi ∈ Rn×n, α ∈ Rn form the63

linear dynamics model corresponding to64

the interval Ii. To solve Eq. (2) within65

every Ii, NESDE has to learn the pa-66

rameters {Ai, Qi}i, α,B.67

The end of Ii−1 typically represents one68

of two events: either an update of the69

dynamics A, or the arrival of a new ob-70

servation. A new observation at time ti71

triggers an update of X(ti) according to72

the conditional distribution X(ti)|Ŷ (ti).73

Then, the prediction continues for Ii ac-74

cording to Eq. (2).75

Eigen-SDE solver (ESDE) – spectral76

representation: Ai is only represented implicitly through the parameters V, λ defining its eigen-77

function Φ(t) (Appendix C). The spectral representation allows solving X(t) analytically for any78

t ∈ Ii at once. This is particularly useful in the sparsely-observable setup. Many SDE solvers apply79

recursive numeric integration [Chen et al., 2018, De Brouwer et al., 2019]. In NESDE, however,80

thanks to the spectral decomposition, the integration only depends on known functions of t, hence the81

2

https://github.com/NESDE/NESDE/tree/main/Simulator_Suite

computation can be paralleled. Furthermore, if the control has analytically-integrable form over Ii,82

Appendix E shows how to solve the integration analytically.83

Updating solver and filter parameters: NESDE provides the parameters V, λ,Q,B, α to the Eigen-84

SDE solver, as well as the noise R to the observation filter. As NESDE assumes a piecewise linear85

model, it separates the time into intervals Ii = (ti, ti+1) (the interval length is a hyperparameter),86

and uses a dedicated model to predict new parameters at the beginning ti of every interval.87

The model receives the current state X(ti) and the context C, then returns the parameters for Ii. We88

use Hypernet [Ha et al., 2016], where one neural network g1(C; Θ) returns the weights of another:89

(V, λ,Q,B, α,R) := g2(X;W) = g2(X; g1(C; Θ)). In our implementation, V, λ,Q are renewed90

every time interval, α and R are predicted once per sequence, and B is a global parameter.91

Training: The parameters of NESDE are the control mapping B and Hypernet’s parameters Θ (which92

determine the rest of the parameters). To optimize them, the training relies on a dataset of sequences93

of control signals {useq(tj)}seq,j , states and observations {(Yseq(tj), Ŷseq(tj))}seq,j . The latent94

space dimension n and the model-update frequency ∆t are determined as hyperparameters. Then, we95

use the standard Adam optimizer [Diederik P. Kingma, 2015] to optimize the parameters with respect96

to the loss NLL(j) = − logP (Y (tj)|µ(tj),Σ(tj)).97

3 Experiments: Medication Dosing98

(a) Heparin (b) Vancomycin

Figure 2: A sample of patients from (a) the UH dosing
dataset, and (b) the VM dosing dataset. The lower plots
correspond to medication dosage (UH in (a) and VM
in (b)). The upper plots correspond to the continuous
prediction of NESDE (aPTT levels in (a) and VM con-
centration in (b)), with 95% confidence intervals. In
both settings, the prediction at every point relies on all
the observations up to that point.

As discussed in Section 1, many medical ap-99

plications could potentially benefit from ODE-100

based methods. Specifically, we address med-101

ication dosing problems, where observations102

are often sparse, the dosing is a control sig-103

nal, and uncertainty estimation is crucial. We104

test NESDE on two such domains. As base-105

lines, we choose recent ODE-based methods106

that provide Bayesian uncertainty estimation:107

GRU-ODE-Bayes [De Brouwer et al., 2019]108

and CRU [Schirmer et al., 2022]. Addition-109

ally, we design a dedicated LSTM model that110

supports irregular predictions, as described in111

Appendix I.2. We also add a naive model with112

“no-dynamics" (predicts the last observed value).113

The benchmarks in this section were derived114

from the MIMIC-IV dataset [Johnson et al.,115

2020]. The dataset contains a vast amount of116

side-information (e.g., weight and heart rate). We use some of this information as an additional117

input – for each model according to its structure (context-features for the hyper-network of NESDE,118

covariates for GRU-ODE-Bayes, state variables for CRU, and embedding units for the LSTM). Some119

context features correspond to online measurements which are updated frequently. We constraint120

the process eigenvalues λ to be negative, to reflect the stability of the biophysical processes. Indeed,121

the spectral representation of NESDE provides us with a natural way to incorporate such domain122

knowledge, which often cannot be used otherwise. For all models, in both domains, we use a 60-10-30123

train-validation-test data partition. See more implementation details in Appendix I.124

Unfractionated Heparin Dosing: Unfractionated Heparin (UH) is a widely used anticoagulant. It125

may be given in a continuous infusion to patients with life-threatening clots. The drug’s activity is126

usually monitored using a lab test performed on a blood sample: activated Partial Thromboplastin127

Time (aPTT) test. The clinical objective is to keep the aPTT level in a certain range. The problem128

poses several challenges: different patients respond differently; monitoring and control are required129

in higher frequency than measurements; and deviations of the aPTT from the objective range may be130

fatal. Here we focus on continuous prediction as a key component for aPTT control.131

Following the preprocessing described in Appendix I.1, we derive 5866 trajectories of a continuous132

UH control signal, an irregularly-observed aPTT signal, and 42 context features. It is known that UH133

does not affect the aPTT directly (Delavenne et al. [2017]); thus, we mask the control mapping B134

3

Table 1: Test mean square errors (MSE) and negative log-likelihood (NLL, for models that provide probabilistic
prediction) in the medication-dosing benchmarks.

Model UH Dosing Vancomycin Dosing
MSE NLL MSE NLL

Naive 613.3± 13.48 − 112.2± 16.4 −
LSTM 482.1± 6.52 − 92.89± 11.3 −
GRU-ODE-Bayes 491± 6.88 4.52± 0.008 80.54± 11.8 6.38± 0.12
CRU 450.4± 8.27 4.49± 0.012 76.4± 12.8 3.87± 0.2
NESDE (ours) 411.2± 7.39 4.43± 0.01 70.71± 12.3 3.69± 0.13

to have no direct effect on the aPTT metric, but only on the latent variable. The control (UH) and135

observations (aPTT) are one-dimensional (m = 1), and we set the whole state dimension to n = 4.136

Vancomycin Dosing: Vancomycin (VM) is an antibiotic that has been in use for several decades.137

However, the methodology of dosing VM remains a subject of debate [Rybak et al., 2009], and there138

is a significant degree of variability among patients [Marsot et al., 2012]. The dosage of VM is139

critical; it could become toxic if overdosed [Filippone et al., 2017], and ineffective if underdosed.140

The VM level in the blood can be measured through lab tests, which are often infrequent.141

Here, the goal is to predict the VM concentration in the blood at any given time, where the dosage142

and other patient measurements are known. Following the preprocessing described in Appendix I.1,143

the dataset derives 3564 trajectories of VM dosages at discrete times, blood concentration of VM144

(m = 1) at irregular times, and similarly to UH dosing, 42 context features. This problem is less145

noisy than the UH dosing problem, as the task is to learn the direct dynamics of the VM concentration,146

and not the effects of the antibiotics. The whole state dimension is set to n = 2, and we also mask147

the control mapping B to have no direct effect on the VM concentration.148

3.1 Results149

Figure 3: aPTT prediction errors in the
UH problem, vs. the time passed since
the last aPTT test.

Fig. 2 displays sample trajectories predicted by NESDE in both150

domains. As summarized in Table 1, NESDE outperforms the151

other baselines in both UH and VM dosing tasks, in terms of152

both square errors (MSE) and likelihood (NLL). For the UH153

dosing problem, Fig. 3 also presents the errors vs. prediction154

horizon (the time passed since the last observation). Evidently,155

NESDE provides the best accuracy in all the horizons. While156

most of the data corresponds to horizons of 5-7 hours (see157

Fig. 12 in the appendix), NESDE provides reliable prediction158

at other horizons as well. By contrast, LSTM and GRU-ODE-159

Bayes have difficulty with short horizons; they only become160

competitive with the naive model after 6 hours. CRU provides161

more robust predictions, but is still outperformed by NESDE.162

Despite the large range of aPTT levels in the data, 50% of all163

the predictions have errors lower than 12.4s – an accuracy level that is considered clinically safe.164

Fig. 3 shows that indeed, up to 3 hours after the last lab test, the average error is smaller than 10s.165

4 Conclusion166

Motivated by medical forecasting and control problems, we characterized a set of challenges in mod-167

eling dosing dynamics: sample efficiency, uncertainty estimation, personalized modeling, continuous168

inference and generalization to different control. To address them, we introduced the novel NESDE169

algorithm, based on a stochastic differential equation with spectral representation. We demonstrated170

the reliability of NESDE in a variety of synthetic (Appendix H) and real data experiments.171

As demonstrated in the experiments, NESDE provides robust, reliable and uncertainty-aware continu-172

ous forecasting. This paves the way to development of decision making in continuous high-noise173

decision processes, including medical treatment, finance and operations management. Future research174

may address medical optimization via both control policies (e.g., to control medication dosing) and175

sampling policies (to control measurements timing, e.g., of blood tests).176

4

References177

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy178

Colwell. Model-based reinforcement learning for biological sequence design. In International179

conference on learning representations, 2019.180

Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne. Machine learning strategies for181

time series forecasting. Lecture Notes in Business Information Processing, 138, 01 2013. doi:182

10.1007/978-3-642-36318-4_3.183

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential184

equations. arXiv preprint arXiv:1806.07366, 2018.185

Huseyin Coskun, Felix Achilles, Robert DiPietro, Nassir Navab, and Federico Tombari. Long186

short-term memory kalman filters:recurrent neural estimators for pose regularization. ICCV, 2017.187

URL https://github.com/Seleucia/lstmkf_ICCV2017.188

Edward De Brouwer, Jaak Simm, Adam Arany, and Yves Moreau. Gru-ode-bayes: Continuous189

modeling of sporadically-observed time series. In H. Wallach, H. Larochelle, A. Beygelzimer,190

F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing191

Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/192

paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf.193

X. Delavenne, E. Ollier, S. Chollet, F. Sandri, J. Lanoiselée, S. Hodin, A. Montmartin, J.-F. Fuzellier,194

P. Mismetti, and L. Gergelé. Pharmacokinetic/pharmacodynamic model for unfractionated heparin195

dosing during cardiopulmonary bypass. BJA: British Journal of Anaesthesia, 118(5):705–712,196

May 2017. ISSN 0007-0912. doi: 10.1093/bja/aex044. URL https://doi.org/10.1093/bja/197

aex044.198

Jimmy Ba Diederik P. Kingma. Adam: A method for stochastic optimization. ICLR, 2015. URL199

https://arxiv.org/abs/1412.6980.200

Morris L. Eaton. Multivariate Statistics: a Vector Space Approach. John Wiley and Sons, 1983.201

Edward J Filippone, Walter K Kraft, and John L Farber. The nephrotoxicity of vancomycin. Clinical202

Pharmacology & Therapeutics, 102(3):459–469, 2017.203

Chang Gao, Junkun Yan, Shenghua Zhou, Bo Chen, and Hongwei Liu. Long short-term memory-204

based recurrent neural networks for nonlinear target tracking. Signal Processing, 164, 05 2019.205

doi: 10.1016/j.sigpro.2019.05.027.206

Ido Greenberg and Shie Mannor. Detecting rewards deterioration in episodic reinforcement learn-207

ing. In Proceedings of the 38th International Conference on Machine Learning, volume 139,208

pages 3842–3853. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/209

greenberg21a.html.210

Ido Greenberg, Netanel Yannay, and Shie Mannor. Noise estimation is not optimal: How to use211

kalman filter the right way. arXiv preprint arXiv:2104.02372, 2021.212

Ido Greenberg, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Efficient risk-averse213

reinforcement learning. Advances in Neural Information Processing Systems, 2022.214

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.215

Luis Herrera, Hector Pomares, I. Rojas, Alberto Guillén, Alberto Prieto, and Olga Valenzuela.216

Recursive prediction for long term time series forecasting using advanced models. Neurocomputing,217

70:2870–2880, 10 2007. doi: 10.1016/j.neucom.2006.04.015.218

Florian Herzog. Stochastic differential equations, 2013. URL https://ethz.ch/content/dam/219

ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/220

Stochastic-Systems/SDE.pdf.221

Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Computation, 1997. URL222

https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory.223

5

https://github.com/Seleucia/lstmkf_ICCV2017
https://proceedings.neurips.cc/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/455cb2657aaa59e32fad80cb0b65b9dc-Paper.pdf
https://doi.org/10.1093/bja/aex044
https://doi.org/10.1093/bja/aex044
https://doi.org/10.1093/bja/aex044
https://arxiv.org/abs/1412.6980
https://proceedings.mlr.press/v139/greenberg21a.html
https://proceedings.mlr.press/v139/greenberg21a.html
https://proceedings.mlr.press/v139/greenberg21a.html
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Stochastic-Systems/SDE.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Stochastic-Systems/SDE.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Stochastic-Systems/SDE.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Stochastic-Systems/SDE.pdf
https://ethz.ch/content/dam/ethz/special-interest/mavt/dynamic-systems-n-control/idsc-dam/Lectures/Stochastic-Systems/SDE.pdf
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory

A Johnson, L Bulgarelli, T Pollard, S Horng, LA Celi, and R Mark. Mimic-iv, 2020.224

R. E. Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal of Basic225

Engineering, 82(1):35–45, 03 1960. ISSN 0021-9223. doi: 10.1115/1.3662552. URL https:226

//doi.org/10.1115/1.3662552.227

John F. Kolen and Stefan C. Kremer. Gradient Flow in Recurrent Nets: The Difficulty of Learning228

LongTerm Dependencies, pages 237–243. Wiley-IEEE Press, 2001. doi: 10.1109/9780470544037.229

ch14.230

Rahul G. Krishnan, Uri Shalit, and David Sontag. Deep kalman filters, 2015.231

Weihua Li, Sirish L. Shah, and Deyun Xiao. Kalman filters in non-uniformly sampled multirate232

systems: For fdi and beyond. Automatica, 44(1):199–208, jan 2008. ISSN 0005-1098. doi:233

10.1016/j.automatica.2007.05.009. URL https://doi.org/10.1016/j.automatica.2007.234

05.009.235

Xuanqing Liu, Si Si, Qin Cao, Sanjiv Kumar, and Cho-Jui Hsieh. Neural sde: Stabilizing neural ode236

networks with stochastic noise. arXiv preprint arXiv:1906.02355, 2019.237

James Lu, Kaiwen Deng, Xinyuan Zhang, Gengbo Liu, and Yuanfang Guan. Neural-ode for238

pharmacokinetics modeling and its advantage to alternative machine learning models in predicting239

new dosing regimens. Iscience, 24(7):102804, 2021.240

Amélie Marsot, Audrey Boulamery, Bernard Bruguerolle, and Nicolas Simon. Vancomycin. Clinical241

pharmacokinetics, 51(1):1–13, 2012.242

Thomas M. Moerland, Joost Broekens, and Catholijn M. Jonker. Model-based reinforcement learning:243

A survey. CoRR, abs/2006.16712, 2020. URL https://arxiv.org/abs/2006.16712.244

P. A. P. Moran and Peter Whittle. Hypothesis testing in time series analysis, 1951.245

Shamim Nemati, Mohammad M Ghassemi, and Gari D Clifford. Optimal medication dosing from246

suboptimal clinical examples: A deep reinforcement learning approach. In 2016 38th Annual247

International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages248

2978–2981. IEEE, 2016.249

Dominic A. Neu, Johannes Lahann, and Peter Fettke. A systematic literature review on state-250

of-the-art deep learning methods for process prediction. CoRR, abs/2101.09320, 2021. URL251

https://arxiv.org/abs/2101.09320.252

Se Yong Park and Anant Sahai. Intermittent kalman filtering: Eigenvalue cycles and nonuniform253

sampling. In Proceedings of the 2011 American Control Conference, pages 3692–3697, 2011. doi:254

10.1109/ACC.2011.5991285.255

Guy Revach, Nir Shlezinger, Xiaoyong Ni, Adria Lopez Escoriza, Ruud J. G. van Sloun, and Yonina C.256

Eldar. Kalmannet: Neural network aided kalman filtering for partially known dynamics, 2021.257

Yulia Rubanova, Ricky T. Q. Chen, and David K Duvenaud. Latent ordinary differential equations258

for irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,259

E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32.260

Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/261

42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.262

David E. Rumelhart et al. Learning representations by back-propagating errors. Nature, 1986. URL263

https://www.nature.com/articles/323533a0.264

Michael Rybak, Ben Lomaestro, John C. Rotschafer, Jr. Moellering, Robert, William Craig, Marianne265

Billeter, Joseph R. Dalovisio, and Donald P. Levine. Therapeutic monitoring of vancomycin266

in adult patients: A consensus review of the American Society of Health-System Pharmacists,267

the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists.268

American Journal of Health-System Pharmacy, 66(1):82–98, 01 2009. ISSN 1079-2082. doi:269

10.2146/ajhp080434.270

6

https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1016/j.automatica.2007.05.009
https://doi.org/10.1016/j.automatica.2007.05.009
https://doi.org/10.1016/j.automatica.2007.05.009
https://arxiv.org/abs/2006.16712
https://arxiv.org/abs/2101.09320
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://www.nature.com/articles/323533a0

Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time271

series with continuous recurrent units. In International Conference on Machine Learning, pages272

19388–19405. PMLR, 2022.273

B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, and S.S. Sastry. Kalman filtering274

with intermittent observations. IEEE Transactions on Automatic Control, 49(9):1453–1464, 2004.275

doi: 10.1109/TAC.2004.834121.276

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz277

Kaiser, and Illia Polosukhin. Attention is all you need, 2017.278

Yi-Jen Wang and Chin-Teng Lin. Runge-kutta neural network for identification of dynamical systems279

in high accuracy. IEEE Transactions on Neural Networks, 9(2):294–307, 1998.280

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A281

survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.282

7

283

Appendices284

Table of Contents
285
286

A NESDE Algorithm 9287

B Related Work 9288

C Preliminaries: Linear SDE 10289

D Observation Filtering: The Conditional Distribution and the Relation to Kalman290

Filtering 10291

E Integrator Implementation 11292

F The Dynamics Spectrum and Complex Eigenfunction Implementation 12293

G Solver Analysis 12294

H Extended Experiments 13295

H.1 Synthetic Data Experiments . 13296

H.2 Ablation Study for Patient Individualization . 14297

H.3 Comparison to ODE-based Methods . 15298

H.4 Sparse Observations . 16299

H.5 Synthetic Data Experiments with Regular Observations 17300

H.6 Interpretability: Inspecting the Spectrum . 17301

H.7 Model Expressiveness and Overfitting . 18302

I Medication Dosing Prediction: Implementation Details 19303

I.1 Data preprocessing . 19304

I.2 LSTM Baseline Implementation . 19305

I.3 Extended Results . 20306
307
308309

8

A NESDE Algorithm310

Algorithm 1 NESDE

Input: context C; control signal u(t); update times I ∈ RT ; prediction times {PIi
}Ii∈I

Initialize: µ,Σ, α,R← Prior(C)
for Ii in I: do
V, λ,Q,B, α,R← Hypernet(C, µ,Σ)
for t in PIi

do
µt,Σt ← ESDE

(
µ,Σ, u, t;V, λ,Q,B

)
predict: Ỹt ∼ N

(
µt + α,Σt +R

)
if given observation Ŷt then
µ,Σ← Filter(µt,Σt, R, Ŷt)

end if
end for

end for

B Related Work311

Classic filtering: Classic models for sequential prediction in time-series include ARIMA mod-312

els [Moran and Whittle, 1951] and the Kalman filter (KF) [Kalman, 1960]. The KF provides313

probabilistic distributions and in particular uncertainty estimation. While the classic KF is limited to314

linear dynamics, many non-linear extensions have been suggested [Krishnan et al., 2015, Coskun315

et al., 2017, Revach et al., 2021, Greenberg et al., 2021]. However, such models are typically limited316

to a constant prediction horizon (time-step). Longer-horizon predictions are often made by applying317

the model recursively [Herrera et al., 2007, Bontempi et al., 2013], This poses a significant challenge318

to many optimization methods [Kolen and Kremer, 2001], as also demonstrated in Appendix H.5.319

Limited types of irregularity can also be handled by KF with intermittent observations [Park and320

Sahai, 2011, Sinopoli et al., 2004] or periodical time-steps [Li et al., 2008].321

Recurrent neural networks: Sequential prediction is often addressed via neural network models,322

relying on architectures such as RNN [Rumelhart et al., 1986], LSTM [Hochreiter and Schmidhuber,323

1997] and transformers [Vaswani et al., 2017]. LSTM, for example, is a key component in many324

SOTA algorithms for non-linear sequential prediction [Neu et al., 2021]. LSTM can be extended325

to a filtering framework to alternately making predictions and processing observations, and even to326

provide uncertainty estimation [Gao et al., 2019]. However, these models are typically limited to327

constant time-steps, and thus suffer from the limitations discussed above.328

Neural-ODE models: Parameterized ODE models can be optimized by propagating the gradients329

of a loss function through an ODE solver [Chen et al., 2018, Liu et al., 2019, Rubanova et al.,330

2019]. By predicting the process derivative and using an ODE solver in real-time, these methods can331

choose the effective time-steps flexibly. Uncertainty estimation can be added via process variance332

prediction [De Brouwer et al., 2019]. However, since neural-ODE methods learn a non-linear333

dynamics model, the ODE solver operates numerically and recursively on top of multiple neural334

network calculations. This affects running time, training difficulty and data efficiency as discussed335

above. While neural-ODE models have been studied for medical applications with irregular data [Lu336

et al., 2021], simpler models are commonly preferred in practice. For example, the effects of Heparin337

on blood coagulation is usually modeled by either using discrete models [Nemati et al., 2016] or338

manually based on domain knowledge [Delavenne et al., 2017].339

Our method uses SDE with piecewise linear dynamics (note this is different from a piecewise340

linear process). The linear dynamics per time interval permit efficient and continuous closed-form341

forecasting of both mean and covariance. Schirmer et al. [2022] also rely on a linear ODE model,342

but only support operators with real-valued eigenvalues (which limits the modeling of periodic343

processes), and do not separate control signal from observations (which limits generalization to out-344

of-distribution control). Our piecewise linear architecture, tested below against alternative methods345

including De Brouwer et al. [2019] and Schirmer et al. [2022], is demonstrated to be more robust to346

noisy, sparse or small datasets, even under out-of-distribution control policies.347

9

C Preliminaries: Linear SDE348

We consider a particular case of the general linear Stochastic Differential Equation (SDE):349

dX(t) = [A ·X(t) + ũ(t)] + dW (t) (3)

where X : R→ Rn is a time-dependent state; A ∈ Rn×n is a fixed dynamics operator; ũ : R→ Rn350

is the control signal; and dW : R→ Rn is a Brownian motion vector with covariance Q ∈ Rn×n.351

General SDEs can be solved numerically using the first-order approximation ∆X(t) ≈ ∆t · dX(t),352

or using more delicate approximations [Wang and Lin, 1998]. The linear SDE, however, and in353

particular Eq. (3), can be solved analytically [Herzog, 2013]:354

X(t) = Φ(t)

(
Φ(t0)

−1X(t0) +

∫ t

t0

Φ(τ)−1ũ(τ)dτ +

∫ t

t0

Φ(τ)−1dW (τ)

)
(4)

where X(t0) is an initial condition, and Φ(t) is the eigenfunction of the system. More specifically,355

if V is the matrix whose columns {vi}ni=1 are the eigenvectors of A, and Λ is the diagonal matrix356

whose diagonal contains the corresponding eigenvalues λ = {λi}ni=1, then357

Φ(t) = V eΛt =

 | | | | |
v1 · eλ1t . . . vi · eλit . . . vn · eλnt

| | | | |

 (5)

If the initial condition is given as X(t0) ∼ N(µ0,Σ0), Eq. (4) becomes358

X(t) ∼ N (µ(t),Σ(t))

µ(t) = Φ(t)

(
Φ(t0)

−1µ0 +

∫ t

t0

Φ(τ)−1ũ(τ)dτ

)
, Σ(t) = Φ(t)Σ′(t)Φ(t)⊤

(6)

where Σ′(t) = Φ(t0)
−1Σ0(Φ(t0)

−1)⊤ +
∫ t

t0
Φ(τ)−1Q(Φ(τ)−1)⊤dτ .359

Note that if ∀i : λi < 0 and ũ ≡ 0, we have µ(t) t→∞−−−→ 0 (stable system). In addition, if λ is complex,360

Eq. (6) may produce a complex solution; Appendix F explains how to use a careful parameterization361

to only calculate the real solutions.362

D Observation Filtering: The Conditional Distribution and the Relation to363

Kalman Filtering364

As described in Section 2, the NESDE algorithm keeps an estimated Normal distribution of the system365

state X(t) at any point of time. The distribution develops continuously through time according to the366

dynamics specified by Eq. (2), except for the discrete times where an observation Ŷ (t) is received: in367

every such point of time, the X(t) estimate is updated to be the conditional distribution X(t)|Ŷ (t).368

Calculating the conditional Normal distribution: The conditional distribution can be derived
as follows. Recall that X ∼ N(µ,Σ) (we remove the time index t as we focus now on filtering
at a single point of time). Denote X = (Y, Z)⊤ where Y ∈ Rm and Z ∈ Rn−m; and similarly,
µ = (µY , µZ)

⊤ and

Σ =

(
ΣY Y ΣY Z

ΣZY ΣZZ

)
First consider a noiseless observation (R = 0): then according to Eaton [1983], the conditional
distribution X|Y = Ŷ is given by X = (Y,Z)⊤, Y = Ŷ and Z ∼ N(µ′

Z ,Σ
′
ZZ), where

µ′
Z := µZ +ΣZY Σ

−1
Y Y (Ŷ − µY)

Σ′
ZZ := ΣZZ − ΣZY Σ

−1
Y Y ΣY Z

In the general case of R ̸= 0, we can redefine the state to include the observation explicitly:369

X̃ = (Ŷ , X)⊤ = (Ŷ , Y, Z)⊤, where µ̃, Σ̃ of X̃ are adjusted by µŶ = µy, ΣŶ Ŷ = ΣY Y + R,370

10

ΣŶ Y = R and ΣŶ Z = ΣY Z . Then, the conditional distribution can be derived as in the noiseless371

case above, by simply considering the new observation as a noiseless observation of X̃1:m = Ŷ .372

The relation to the Kalman filtering: The derivation of the conditional distribution is equivalent to373

the filtering step of the Kalman filter [Kalman, 1960], where the (discrete) model is374

Xt+1 = A ·Xt + ωt (ωt ∼ N(0, Q))

Ŷt = H ·Xt + νt (νt ∼ N(0, R)),

Our setup can be recovered by substituting the following observation model H ∈ Rm×n, which
observes the first m coordinates of X and ignores the rest:

H =


1 0 ... 0

1
... | | |

1
1 0 ... 0


and the Kalman filtering step is then

K := ΣH⊤(HΣH⊤ +R)−1

µ′ := µ+K(Ŷ −Hµ)

Σ′ := Σ−KHΣ

Note that while the standard Kalman filter framework indeed supports the filtering of distributions375

upon arrival of a new observation, its progress through time is limited to discrete and constant376

time-steps (see the model above), whereas our SDE-based model can directly make predictions to377

any arbitrary future time t.378

E Integrator Implementation379

Below, we describe the implementation of the integrator of the Eigen-SDE solver mentioned in380

Section 2.381

Numerical integration given u(t): In the presence of an arbitrary (continuous) control signal u(t),
it is impossible to compute the integral that corresponds with u(t) (Eq. (4)) analytically. On the
other hand, u(t) is given in advance, and the eigenfunction, Φ(t), is a known function that can be
calculated efficiently at any given time. By discretizing the time to any fixed ∆t, one could simply
replace the integral by a sum term∫ t

t0

Φ(τ)−1u(τ)dτ ≈

t−t0
∆t∑
i=0

Φ(t0 + i ·∆t)u(t0 + i ·∆t)∆t

while this sum represent t−t0
∆t calculations, it can be computed efficiently, as it does not require any382

recursive computation, as both Φ(t) and u(t) are pre-determined, known functions. Each element of383

the sum is independent of the other elements, and thus the computation could be parallelized.384

Analytic integration: The control u is often constant over any single time-interval I (e.g., when the
control is piecewise constant). In such cases, for a given interval I = [t0, t] in which u(t) = uI , the
integral could be solved analytically:∫ t

t0

Φ(τ)−1u(τ)dτ =

∫ t

t0

e−ΛτV −1uIdτ =

∫ t

t0

e−ΛτdτV −1uI =
1

Λ

(
e−Λt0 − e−Λt

)
V −1uI

one might notice that for large time intervals this form is numerically unstable, to address this issue,
note that this integral is multiplied (Eq. (4)) by Φ(t) = V eΛt, hence we stabilize the solution with
the latter exponent:

Φ(t)
1

Λ

(
e−Λt0 − e−Λt

)
V −1uI = V

1

Λ

(
eΛ(t−t0) − eΛ(t−t)

)
V −1uI = V

1

Λ

(
eΛ(t−t0) − 1

)
V −1uI

to achieve a numerically stable computation.385

11

In addition to the integral over u(t), we also need to calculate the integral over Q (Eq. (6)). In this
case, Q is constant, and the following holds;∫ t

t0

Φ(τ)−1Q(Φ(τ)−1)⊤dτ =

∫ t

t0

e−ΛτV −1Q(V −1)⊤(e−Λτ)⊤dτ = V −1Q(V −1)⊤ ◦
∫ t

t0

e−Λ̃τdτ

where ◦ denotes the Hadamard product, and

Λ̃ =

 2λ1 · · · λ1 + λn

...
. . .

λn + λ1 · · · 2λn


In this form, it is possible to solve the integral analytically, similarly to the integral of the control386

signal, and again, we use the exponent term from Φ(t) to obtain a numerically stable computation.387

F The Dynamics Spectrum and Complex Eigenfunction Implementation388

The form of the eigenfunction matrix as presented in Appendix C is valid for real eigenvalues.
Complex eigenvalues induce a slightly different form; firstly, they come in pairs, i.e., if z = a+ bi is
an eigenvalue of A (Eq. (3)), then z̄ = a − bi (the complex conjugate of z) is an eigenvalue of A.
The corresponding eigenvector of z is complex as well, denote it by v = vreal + vimi, then v̄ (the
complex conjugate of v) is the eigenvector that correspond to z̄. Secondly, the eigenfunction matrix
takes the form:

Φ(t) = eat

(| |
vreal · cos(bt)− vim · sin(bt) vim · cos(bt) + vreal · sin(bt)

| |

)
For brevity, we consider only the elements that correspond with z, z̄. To parametrize this form, we
use the same number of parameters (each complex number need two parameters to represent, but
since they come in pairs with their conjugates we get the same overall number) which are organized
differently. Mixed eigenvalues (e.g., both real and complex) induce a mixed eigenfunction that is a
concatenation of the two forms. Since the complex case requires a different computation, we leave
the number of complex eigenvalues to be a hyperparameter. Same as for the real eigenvalues setting,
it is possible to derive an analytical computation for the integrals. Here, it takes a different form, as
the complex eigenvalues introduce trigonometric functions to the eigenfunction matrix. To describe
the analytical computation, first notice that:

Φ(t) = eat

(| |
vreal vim
| |

)(
cos(bt) sin(bt)
−sin(bt) cos(bt)

)
and thus:

Φ(t)−1 = e−at

(
cos(bt) −sin(bt)
sin(bt) cos(bt)

)(| |
vreal vim
| |

)−1

Note that here we consider a two-dimensional SDE, for the general case the trigonometric matrix is a389

block-diagonal matrix, and the exponent becomes a diagonal matrix in which each element repeats390

twice. It is clear that similarly to the real eigenvalues case, the integral term that includes u (as391

shown above) can be decomposed, and it is possible to derive an analytical solution for an exponent392

multiplied by sine or cosine. One major difference is that here we use matrix product instead of393

Hadamard product. The integral over Q becomes more tricky, but it can be separated and computed394

as well, with the assistance of basic linear algebra (both are implemented in our code).395

G Solver Analysis396

Below, we provide a proposition for the optimality of Eigen-SDE solver.397

Proposition 1 (Eigen-SDE solver optimality: complete formulation). Let X(t) be a signal that398

follows Eq. (2) for any time interval Ii = [ti, ti+1], and u(t) a control signal that is constant over399

12

Ii for any i. For any i, consider the Eigen-SDE solver with the parameters corresponding to Eq. (2)400

(for the same Ii). Assume that the first solver (i = 0) is initialized with the true initial distribution401

X(0) ∼ N(µ0,Σ0), and for i ≥ 1, the i’th solver is initialized with the i− 1’th output, along with402

an observation filter if an observation was received. For any interval i and any time t ∈ Ii, consider403

the prediction X̃(t) ∼ N(µ(t),Σ(t)) of the solver. Then, µ(t) minimizes the expected square error404

of the signal X(t), and X̃(t) maximizes the expected log-likelihood of X(t).405

Proof. We prove by induction over i that for any i and any t ∈ Ii, X̃(t) corresponds to the true406

distribution of the signal X(t).407

For i = 0, X(ti) = X(0) corresponds to the true initial distribution, and since there are no408

“interrupting" observations within I0, then the solution Eqs. (4) and (6) of Eq. (2) corresponds to the409

true distribution of X(t) for any t ∈ [ti, ti+1). Since u is constant over I0, then the prediction X̃(t)410

of the Eigen-SDE solver follows Eq. (6) accurately using the analytic integration (see Appendix E;411

note that if u were not constant, the solver would still follow the solution up to a numeric integration412

error). Regarding t1, according to Appendix D, X̃(t1) corresponds to the true distribution of X(t1)413

after conditioning on the observation Ŷ (t1) (if there was an observation at t1; otherwise, no filtering414

is needed). This completes the induction basis. Using the same arguments, if we assume for an415

arbitrary i ≥ 0 that X̃(ti) corresponds to the true distribution, then X̃(t) corresponds to the true416

distribution for any t ∈ Ii = [ti, ti+1], completing the induction.417

Now, for any t, since X̃(t) ∼ N(µ(t),Σ(t)) is in fact the true distribution of X(t), the expected418

square error E [SE(t)] = E
[
(µ−X(t))2

]
is minimized by choosing µ := µ(t); and the expected419

log-likelihood E [ℓ(t)] = E [logP (X(t)|µ,Σ)] is maximized by µ := µ(t),Σ := Σ(t).420

H Extended Experiments421

H.1 Synthetic Data Experiments422

(a) Same control distribution (b) Out of distribution control

Figure 4: MSE vs. number of observations so far in the
trajectory, in the complex dynamics setting, for: (a) standard
test set, and (b) test set with out-of-distribution control policy.
95% confidence intervals are calculated over 5 seeds.

In this section, we test three main aspects423

of NESDE: (1) prediction from partial and424

irregular observations, (2) robustness to out-425

of-distribution control (OOD), and (3) sam-426

ple efficiency. We experiment with data427

of a simulated stochastic process, designed428

to mimic partially observable medical pro-429

cesses with indirect control.430

The simulated data includes trajectories of a431

1-dimensional signal Y , with noiseless mea-432

surements at random irregular times. The433

goal is to predict the future values of Y434

given its past observations. However, Y is435

mixed with a latent (unobservable) variable,436

and they follow linear dynamics with both decay and periodicity (i.e., complex dynamics eigen-437

values). In addition, we observe a control signal that affects the latent variable (hence affects Y ,438

but only indirectly through the dynamics). The control negatively correlated with the observations:439

ut = bt − 0.5 · Yt. bt ∼ U [0, 0.5] is a piecewise constant additive noise (changing 10 times per440

trajectory).441

Out-of-distribution control (OOD): We simulate two benchmarks – one with complex eigenvalues442

and another with real eigenvalues (no periodicity). We train all models on a dataset of 1000443

random trajectories, and test on a separate dataset – with different trajectories that follow the same444

distribution. In addition, we use an OOD test dataset, where the control is positively correlated445

with the observations: ut = bt + 0.5 · Yt. This can simulate, for example, forecasting of the same446

biochemical process after changing the medicine dosage policy.447

Table 2 and Fig. 4a summarize the prediction errors. Before changing the control policy, NESDE448

achieves the best accuracy in the complex dynamics, and is on par with GRU-ODE-Bayes in the real449

dynamics. Notice that CRU, which relies on a real-valued linear model in latent space, is indeed450

13

Table 2: Test errors in the irregular synthetic benchmarks, estimated over 5 seeds and 1000 test trajectories per
seed, with standard deviation calculated across seeds.

Model Complex dynamics eigenvalues Real dynamics eigenvalues
MSE OOD MSE MSE OOD MSE

LSTM 0.23± 0.001 0.589± 0.02 0.381± 0.002 2.354± 0.84
GRU-ODE-Bayes 0.182± 0.0004 0.361± 0.044 0.219± 0.0004 0.355± 0.005
CRU 0.233± 0.0054 0.584± 0.009 0.231± 0.001 0.541± 0.026
NESDE (ours) 0.176± 0.0001 0.178± 0.001 0.222± 0.0005 0.332± 0.005

sub-optimal under the complex dynamics, compared to NESDE and GRU-ODE-Bayes. The LSTM451

presents high errors in both benchmarks.452

Once the control changes, all models naturally deteriorate. Yet, NESDE presents the smallest453

deterioration and best accuracy in the OOD test datasets – for both complex and real dynamics. In454

particular, NESDE provides a high prediction accuracy after mere 2 observations (Fig. 4b), making455

it a useful zero-shot model. The robustness to the modified control policy can be attributed to the456

model of NESDE in Eq. (2), which decouples the control from the observations.457

In a similar setting in Appendix H.7, the control u used in the training data has continuous knowledge458

of Y . Since the model only observes Y in a limited frequency, u carries additional information about459

Y . This results in extreme overfitting and poor generalization to different control policies – for all460

methods except for NESDE, which maintains robust OOD predictions in this challenging setting.461

(a) Complex dynamics (b) Real dynamics

Figure 5: Test MSE vs. train data size. 95% confidence
intervals are calculated over 1000 test trajectories.

Sample efficiency: We train each method462

over datasets with different number of trajec-463

tories. Each model is trained on each dataset464

separately until convergence. As shown in465

Fig. 5, NESDE achieves the best test accu-466

racy for every training dataset, and learns467

reliably even from as few as 100 trajecto-468

ries. The other methods deteriorate signifi-469

cantly in the smaller datasets. Note that in470

the real dynamics, LSTM fails regardless471

of the amount of data, as also reflected in472

Table 2.473

GRU-ODE-Bayes achieves the best sample efficiency among the baselines. In Appendix H.3, we use474

a benchmark from the study of GRU-ODE-Bayes itself [De Brouwer et al., 2019], and demonstrate475

the superior sample efficiency of NESDE in that benchmark as well. Appendix H.4 extends the notion476

of sample efficiency to sparse trajectories: for a constant number of training trajectories, it reduces477

the number of observations per trajectory. NESDE demonstrates high robustness to the amount of478

data in that setting as well.479

Regular LSTM: Appendix H.5 extends the experiments for regular data with constant time-steps. In480

the regular setting, LSTM provides competitive accuracy when observations are dense. However,481

LSTM fails if the signal is only observed once in multiple time-steps, possibly because gradients482

have to be propagated over many steps. Hence, even in regular settings, LSTM struggles to provide483

predictions more frequent than the measurements.484

H.2 Ablation Study for Patient Individualization485

To provide an insight over the importance of the dynamics-individualization, we perform an ablation486

study for the hypernetwork module. We use the same medical benchmarks as in Section 3, and fit a487

version of NESDE with neutralized hypernetwork module. In particular, we fix the context inputs488

of the module to be a vector of 1s, and thus prevent any propagation from the context features to489

the model’s output. The results are presented in Table 3, and show a great degradation in model490

performance in the UH-dosing benchmark, approving that the hypernetwork indeed utilize the491

information within the context features. In the Vancomycin dosing benchmark, while we still observe492

a degradation comparing to NESDE, the version of NESDE without hypernetwork still outperforms493

LSTM in terms of MSE and the rest of the baselines (except NESDE) in terms of NLL.494

14

Table 3: Test mean square errors (MSE) and negative log-likelihood (NLL) in the medication-dosing benchmarks.
This is an extension of Table 1 with the additional results of NESDE without the hypernetwork.

Model UH Dosing Vancomycin Dosing
MSE NLL MSE NLL

Naive 613.3± 13.48 − 112.2± 16.4 −
LSTM 482.1± 6.52 − 92.89± 11.3 −
GRU-ODE-Bayes 491± 6.88 4.52± 0.008 80.54± 11.8 6.38± 0.12
CRU 450.4± 8.27 4.49± 0.012 76.4± 12.8 3.87± 0.2
NESDE – no hypernet 529.7± 13.34 5.42± 0.067 87.32± 11.57 3.73± 0.13
NESDE (ours) 411.2± 7.39 4.43± 0.01 70.71± 12.3 3.69± 0.13

H.3 Comparison to ODE-based Methods495

Appendix H.1 compares NESDE to GRU-ODE-Bayes [De Brouwer et al., 2019] – a recent ODE-496

based method that can provide an uncertainty estimation (which is a typical requirement in medical497

applications). Similarly to other recent ODE-based methods [Chen et al., 2018], GRU-ODE-Bayes498

relies on a non-linear neural network model for the differential equation. GRU-ODE-Bayes presents499

relatively poor prediction accuracy in Appendix H.1, which may be partially attributed to the500

benchmark settings. First, the benchmark required GRU-ODE-Bayes to handle a control signal. As501

proposed in De Brouwer et al. [2019], we incorporated the control as part of the observation space.502

However, such a control-observation mix raises time synchrony issues (e.g., most training input503

samples include only control signal without observation) and even affect the training supervision504

(since the new control dimension in the state space affects the loss). Second, as discussed above, the505

piecewise linear dynamics of NESDE provide higher sample efficiency in face of the 1000 training506

trajectories in Appendix H.1.507

Figure 6: A sample test trajectory of the sparsely-observable OU process. The observations and the NESDE
predictions (based on training over 400 trajectories) are presented separately for each of the two dimensions of
the process.

In this section, we explicitly study the sample efficiency of NESDE vs. GRU-ODE-Bayes in a problem
with no control signal. Specifically, we generate data from the GitHub repository of De Brouwer et al.
[2019]. The data consists of irregular samples of the two-dimensional Ornstein-Uhlenbeck process,
which follows the SDE

dxt = θ(µ− xt)dt+ σdWt,

where the noise follows a Wiener process, which is set in this experiment to have the covariance
matrix

Cov =

(
1 0.5
0.5 1

)
.

The process is sparsely-observed: we use a sample rate of 0.6 (approximately 6 observations for508

10 time units). Each sampled trajectory has a time support of 10 time units. The process has two509

dimensions, and each observation can include either of the dimensions or both of them. The dynamics510

of the process are linear and remain constant for all the trajectories; however, the stable “center" of511

the dynamics of each trajectory (similarly to α in Eq. (2)) is sampled from a uniform distribution,512

increasing the difficulty of the task and requiring to infer α in an online manner.513

Fig. 6 presents a sample of trajectory observations along with the corresponding predictions of the514

NESDE model (trained over 400 trajectories). Similarly to De Brouwer et al. [2019], the models are515

15

https://github.com/edebrouwer/gru_ode_bayes

tested over each trajectory by observing all the measurements from times t ≤ 4, and then predicting516

the process at the times of the remaining observations until the end of the trajectory.517

Figure 7: Top: losses of NESDE and GRU-ODE-Bayes over the OU benchmark, along with confidence intervals
of 95% over the test trajectories. NESDE demonstrates higher data efficiency, as its deterioration in small
training datasets is moderate in comparison to GRU-ODE-Bayes. Bottom: errors vs. time, given 400 training
trajectories, where all the test predictions rely on observations from times t ≤ 4. The advantage of NESDE
becomes larger as the prediction horizon is longer.

To test for data efficiency, we train both models over training datasets with different numbers of518

trajectories. As shown in Fig. 7, the sparsely-observable setting with limited training data causes519

GRU-ODE-Bayes to falter, whereas NESDE learns robustly in this scenario. The advantage of520

NESDE over GRU-ODE-Bayes increases when learning from smaller datasets (Fig. 7, top), or when521

predicting for longer horizons (Fig. 7, bottom). This demonstrates the stability and data efficiency of522

the piecewise linear dynamics model of NESDE in comparison to non-linear ODE models.523

H.4 Sparse Observations524

This experiment addresses the sparsity of each trajectory. We use the same benchmark as in Ap-525

pendix H.1 and generate 4 train datasets, each one contains 400 trajectories, and a test set of 1000526

trajectories. In each train-set, the trajectories have the same number of data samples, which varies527

between datasets (4,6,8,10). The test-set contains trajectories of varying number of observations,528

over the same support. For each train-set, we train all the models until convergence, and test them.529

Fig. 8 presents the MSE over the test set, for both the complex and the real eigenvalues settings. It530

is noticeable that even with very sparse observations, NESDE achieves good performance. Here,531

GRU-ODE-Bayes appears to be more sample-efficient than CRU and LSTM, but it is less sample532

efficient than NESDE.533

(a) Complex dynamics (b) Real dynamics
Figure 8: Test MSE vs. train observations-per-trajectory. 95% confidence intervals are calculated over 1000 test
trajectories.

16

H.5 Synthetic Data Experiments with Regular Observations534

While NESDE (and ODE-based models) can provide predictions at any point of time, a vanilla LSTM535

is limited to the predefined prediction horizon. Shorter horizons provide higher temporal resolution,536

but this comes with a cost: more recursive computations are needed per time interval, increasing both537

learning complexity and running time. For example, if medical measurements are available once538

per hour while predictions are required every 10 seconds, the model would have to run recursively539

360 times between consecutive measurements, and would have to be trained accordingly in advance.540

We use the synthetic data environment from Appendix H.1, in the complex dynamics setting, and541

test both regularly and out-of-distribution control (see Appendix H.1). Here, we use LSTM models542

trained with resolutions of 1, 8 and 50 predictions per observation. All the LSTM models receive the543

control u and the current observation Y as an input, along with a boolean bo specifying observability:544

in absence of observation, we set Y = 0 and bo = 0. The models consist of a linear layer on top of545

an LSTM layer, with 32 neurons between the two. To compare LSTMs with various resolutions, we546

work with regular samples, 10 samples, one at each second. The control changes in a 10−2 seconds’547

resolution, and contains information about the true state.548

In Fig. 9c we present a sample trajectory (without the control signal) with the predictions of the549

various LSTMs and NESDE. It can be observed that while NESDE provides continuous, smooth550

predictions, the resolution of the LSTMs must be adapted for a good performance. As shown in551

Fig. 9a, all the methods perform well from time t = 3 and on, still, NESDE and the low-resolution552

variants of LSTM attain the best results. The poor accuracy of the high-resolution LSTM demonstrates553

the accuracy-vs-resolution tradeoff in recursive models, moreover, GRUODE shows similar behavior554

in this analysis, which may hint on the recursive components within GRUODE.555

(a) One-step prediction (b) Out of distribution control (c) Sample trajectory

Figure 9: MSE for predictions, relying on the whole history of the trajectory for (a) the test set, and (b)
out-of-distribution test set. The uncertainty corresponds to 0.95-confidence-intervals over 1000 trajectories. (c)
Sample trajectory and predictions. The LSTM predictions are limited to predefined times (e.g., LSTM 1:1 only
predicts at observation times), but their predictions are connected by lines for visibility. The shading corresponds
to NESDE uncertainty (note that the LSTM does not provide uncertainty estimation).

The out-of-distribution test results (Fig. 9b) show that a change in the control policy could result with556

major errors; while NESDE achieves errors which are close to Fig. 9a, the other methods deteriorate557

in their performance. Notice the scale difference between the figures. The high-resolution LSTM and558

the ODE-based methods suffer the most, and the low-resolution variants of the LSTM, demonstrate559

robustness to the control change. This result is similar to the results we present in Appendix H.1,560

although here we see similarities between the variants of the LSTM and the ODE-based methods.561

H.6 Interpretability: Inspecting the Spectrum562

In addition to explicit predictions at flexible times, NESDE provides direct estimation of the process563

dynamics, carrying significant information about the essence of the process.564

For example, consider the following 3 processes, each with one observable variable and one latent vari-565

able: A1 =
(−0.5 −2

2 −1

)
with the corresponding eigenvalues λ1 ≈ −0.75± 1.98i; A2 =

(−0.5 −0.5
−0.5 −1

)
566

with λ2 ≈ (−1.3,−0.19)⊤; and A3 =
(
1 −2
2 −1

)
with λ3 ≈ ±1.71i. As demonstrated in Fig. 10, the567

three processes have substantially different dynamics: roughly speaking, real negative eigenvalues568

correspond to decay, whereas imaginary eigenvalues correspond to periodicity.569

17

(a) Complex λ (b) Real λ (c) Imaginary λ
Figure 10: Sample trajectories with different types of dynamics (the control signal is not shown). In addition to
the predictions, NESDE directly estimates the dynamics defined by λ.

For each process, we train NESDE over a dataset of 200 trajectories with 5-20 observations each. We570

set NESDE to assume an underlying dimension of n = 2 (i.e., one latent dimension in addition to571

the m = 1 observable variable); train it once in real mode (real eigenvalues) and once in complex572

mode (conjugate pairs of complex eigenvalues); and choose the model with the better NLL over the573

validation data. Note that instead of training twice, the required expressiveness could be obtained574

using n = 4 in complex mode (see Appendix F); however, in this section we keep n = 2 for the sake575

of spectrum interpretability.576

As the processes have linear dynamics, for each of them NESDE learned to predict a consistent577

dynamics model: all estimated eigenvalues are similar over different trajectories, with standard578

deviations smaller than 0.1. The learned eigenvalues for the three processes are λ̃1 = −0.77± 1.98i;579

λ̃2 = (−0.7,−0.19)⊤; and λ̃3 = −0.03 ± 0.83i. That is, NESDE recovers the eigenvalues class580

(complex, real, or imaginary), which captures the essence of the dynamics – even though it only581

observes one of the two dimensions of the process. The eigenvalues are not always recovered with582

high accuracy, possibly due to the latent dimensions making the dynamics formulation ambiguous.583

H.7 Model Expressiveness and Overfitting584

It is well known that more complex models are capable to find complex connections within the data,585

but are also more likely to overfit the data. It is quite common that a data that involves control is586

biased or affected by confounding factors: a pilot may change his course of flight because he saw587

a storm that was off-the-radar; a physician could adapt his treatment according to some measure588

that is off-charts. Usually, using enough validation data could solve the overfitting issue, although589

sometimes the same confounding effects show in the validation data, which results in a model that is590

overfitted to the dataset. When targeting a model for control adjustment, it is important that it would591

be robust to changes in the control; a model that performs poorly when facing different control is592

unusable for control tuning. To exemplify an extreme case of confounding factors in the context of593

control, we add a correlation between the control (observed at all times) to the predictable measure594

(observed sparsely), in particular at times that the predictable is unobserved. We harness the same595

synthetic data benchmark as in Appendix H.1, and use regular time samples, and the same LSTM596

baselines as in Appendix H.5 but here we generate different two types of control signals:597

1. Same Distribution (SD): at each time t, the control u(t) = bt − 0.8 · Yt.598

2. Out of Distribution(OOD): at each time t, the control u(t) = bt + 0.8 · Yt.599

bt is a random piecewise constant and Yt is the exact value of the measure we wish to predict. The600

first type is used to generate the train and the test sets, additionally we generate an out-of-distribution601

test-set using the second type. We observe in Fig. 11 that GRU-ODE-Bayes and the high-resolution602

LSTM achieve very low MSE over the SD as seen during training. CRU also achieves very low MSE,603

although not as much. The results over the OOD data show that the high performance over SD came604

with a cost – the better a model is over SD the worse it is over OOD. The results of LSTM 1:1 are605

not surprising, it sees the control signal only at observation-times, so it cannot exploit the hidden606

information within the control signal. NESDE does not ignore such information, while maintaining607

the robustness w.r.t. control.608

18

(a) Same control distribution (b) Out of distribution control
Figure 11: MSE for predictions under regular time samples, where the control signal is correlated to the
measure we wish to predict, even in times when it is unobserved. (a) Shows the results for a test set that has the
same correlation between the control and the predictable measure as in the train set. (b) present the MSE for a
different test set, with different correlation. Notice the different scales of the graphs.

I Medication Dosing Prediction: Implementation Details609

Below, we elaborate on the implementation details of Section 3.610

I.1 Data preprocessing611

Heparin: We derive our data from the MIMIC-IV dataset [Johnson et al., 2020], available under the612

PhysioNet Credentialed Health Data License. For the UH dosing dataset, we extract the patients that613

were given UH during their intensive care unit (ICU) stay. We exclude patients that were treated614

with discrete (not continuous) doses of UH, or with other anticoagulants; or that were tested for615

aPTT less than two times. The control signal (UH dosing rate) is normalized by the patient weight.616

Each trajectory of measurements is set to begin one hour before the first UH dose, and is split in the617

case of 48 hours without UH admission. This process resulted with 5866 trajectories, containing a618

continuous UH signal, an irregularly-observed aPTT signal, and discretized context features. Note619

that we do not normalize the aPTT values.620

Vancomycin: The VM dosing dataset derived similarly, from patients who received VM during their621

ICU stay, where we consider only patients with at least 2 VM concentration measurements. Each622

trajectory begins at the patient’s admission time, and we also split in the case of 48 hours without VM623

dosage. Additionally, we add an artificial observation of 0 at time t = 0, as the VM concentration is624

0 before any dose was given (we do not use these observations when computing the error).625

General implementation details: For each train trajectory, we only sample some of the observations,626

to enforce longer and different prediction horizons, which was found to aid the training robustness.627

Hyperparameters (e.g., learning rate) were chosen by trial-and-error with respect to the validation-set628

(separately for each model).629

Context variables C are used in both domains. We extract 42 features, some measured continuously630

(e.g., heart rate, blood pressure), some discrete (e.g., lab tests, weight) and some static (e.g., age,631

background diagnoses). Each feature is averaged (after removing outliers) over a fixed time-interval632

of four hours, and then normalized.633

I.2 LSTM Baseline Implementation634

The LSTM module we use as a baseline has been tailored specifically to the setting:635

1. It includes an embedding unit for the context, which is updated whenever a context is636

observed, and an embedded context is stored for future use.637

2. The inputs for the module include the embedded context, the previous observations, the638

control signal and the time difference between the current time and the next prediction time.639

3. Where the control signal is piecewise constant: any time it changes we produce predictions640

(even though no sample is observed) that are then used as an input for the model, to model641

the effect of the UH more accurately.642

19

https://physionet.org/content/mimiciv/view-license/0.4/

We train it with the same methodology we use for NESDE where the training hyperparameters chosen643

by the best performance over the validation data.644

Architecture for the medication dosing benchmarks: The model contains two fully connected645

elements: one for the context, with two hidden layers of size 32 and 16-dimensional output which646

is fed into a Tanh activation; the second one uses the LSTM output to produce a one-dimensional647

output, which is fed into a ReLU activation to produce positive outputs, its size determined by the648

LSTM dimensions. The LSTM itself has an input of 19 dimensions; 16 + 1 + 1 + 1 for the context,649

control, previous observations and the time interval to predict. It has a hidden size of 64 and two650

recurrent layers, with dropout of 0.2. All the interconnections between the linear layers include ReLU651

activations.652

Architecture for the synthetic data benchmarks: Here, there is no context, then the model contains653

one fully connected element that receives the LSTM output and has two linear layers of sizes 32654

and 1 with a Tanh activation between them. The LSTM has an input of 3 dimensions; for the state,655

control signal, and the time interval to predict. It has a hidden size of 32 and two recurrent layers,656

with dropout of 0.2.657

I.3 Extended Results658

The figures below present more detailed information for the experiments discussed in Section 3. All659

experiments were run on a single Ubuntu machine with eight i9-10900X CPU cores and Nvidia’s660

RTX A5000 GPU. NESDE required several hours to train per benchmark.661

Figure 12: Histogram of prediction horizons in the UH dosing data (Section 3). Notice that the peak of the
histogram around 6 hours (360 minutes) corresponds to the accuracy peak of the LSTM and GRU-ODE-Bayes
in Fig. 3.

662

20

	Introduction
	Neural Eigen-SDE
	Experiments: Medication Dosing
	Results

	Conclusion
	Appendices
	 Appendices
	NESDE Algorithm
	Related Work
	Preliminaries: Linear SDE
	Observation Filtering: The Conditional Distribution and the Relation to Kalman Filtering
	Integrator Implementation
	The Dynamics Spectrum and Complex Eigenfunction Implementation
	Solver Analysis
	Extended Experiments
	Synthetic Data Experiments
	Ablation Study for Patient Individualization
	Comparison to ODE-based Methods
	Sparse Observations
	Synthetic Data Experiments with Regular Observations
	Interpretability: Inspecting the Spectrum
	Model Expressiveness and Overfitting

	Medication Dosing Prediction: Implementation Details
	Data preprocessing
	LSTM Baseline Implementation
	Extended Results

