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Abstract

Our goal is to develop a fast sampling method for Diffusion models (DMs) with1

a small number of steps while retaining high sample quality. To achieve this, we2

systematically analyze the sampling procedure in DMs and identify key factors that3

affect the sample quality, among which the method of discretization is most cru-4

cial. By carefully examining the learned diffusion process, we propose Diffusion5

Exponential Integrator Sampler (DEIS). It is based on the Exponential Integrator6

designed for discretizing ordinary differential equations (ODEs) and leverages7

a semilinear structure of the learned diffusion process to reduce the discretiza-8

tion error. The proposed method can be applied to any DMs and can generate9

high-fidelity samples in as few as 10 steps. By directly using pre-trained DMs,10

we achieve superior sampling performance when the number of score function11

evaluation (NFE) is limited, e.g., 4.17 FID with 10 NFEs, 2.86 FID with only 2012

NFEs on CIFAR10.13

1 Introduction14

The Diffusion model (DM) [10] is a generative modeling method developed recently that relies on the15

basic idea of reversing a given simple diffusion process. A time-dependent score function is learned16

for this purpose and DMs are thus also known as score-based models [27]. Compared with other17

generative models such as generative adversarial networks (GANs), in addition to great scalability,18

the DM has the advantage of stable training; it avoids mode-collapsing and is not hyperparameter19

sensitive [6, 18]. DMs have recently achieved impressive performances on a variety of tasks,20

including unconditional image generation [10, 27, 24, 8], text conditioned image generation [22, 23],21

text generation [12, 2], 3D point cloud generation [21], inverse problem [16, 29], etc.22

However, the remarkable performance of DMs comes at the cost of extremely slow sampling; it23

takes much longer time to produce high-quality samples compared with GANs. See Appendix A for24

discussions on existing methods. The objective of this work is to establish a principled discretization25

scheme for the learned backward diffusion processes in DMs so as to achieve fast sampling. Since26

the most expensive part in sampling a DM is the evaluation of the neural network that parameterizes27

the backward diffusion, we seek a discretization method that requires a small number of network28

function evaluation (NFE). We start with a family of marginal equivalent SDEs/ODEs associated29

with DMs and investigate numerical error sources, which include fitting error and discretization30

error. We observe that even with the same trained model, different discretization schemes can have31

dramatically different performances in terms of discretization error. We find out that the Exponential32

Integrator (EI) [11] that utilizes the semilinear structure of the backward diffusion has minimum33

error. To further reduce the discretization error, we propose to either use high order polynomials to34

approximate the nonlinear term in the ODE or employ Runge Kutta methods on a transformed ODE.35

Under review at the NeurIPS 2022 Workshop on Score-Based Methods. Do not distribute.



Figure 1: Generated images with various DMs. Latent diffusion [24] (Left), 256× 256 image with
text A shirt with inscription "World peace" (15 NFE). VE diffusion [27] (Mid), FFHQ 256× 256 (12
NFE). VP diffusion [10] (Right), CIFAR10 (7 NFE) and CELEBA (5 NFE).

The resulting algorithms, termed Diffusion Exponential Integrator Sampler (DEIS), achieve the best36

sampling quality with limited NFEs.37

Our contributions are summarized as follows: 1) We investigate a family of marginal equivalent38

SDEs/ODEs for fast sampling and conduct a systematic error analysis for their numerical solvers. 2)39

We propose DEIS, an efficient sampler that can be applied to any DMs to achieve superior sampling40

quality with a limited number of NFEs. 3) We conduct comprehensive experiments to validate the41

efficacy of DEIS. For instance, with a pre-trained model [27], DEIS is able to reach 4.17 FID with 1042

NFEs, and 2.86 FID with 20 NFEs on CIFAR10.43

2 Background on Diffusion Models44

A DM consists of a fixed forward diffusion (noising) process that adds noise to the data, and a learned45

backward diffusion (denoising) process that gradually removes the added noise.46

Forward noising diffusion: The forward diffusion of a DM for D-dimensional data is a linear47

diffusion described by the stochastic differential equation (SDE) [25]48

dx = Ftxdt+Gtdw, (1)

where Ft ∈ RD×D denotes the linear drift coefficient, Gt ∈ RD×D denotes the diffusion coefficient,49

and w is a standard Wiener process. The diffusion Eq (1) is initiated at the training data and simulated50

over a fixed time window [0, T ]. Denote by pt(xt) the marginal distribution of xt and by p0t(xt|x0)51

the conditional distribution from x0 to xt, then p0(x0) represents the underlying distribution of52

the training data. The simulated trajectories are represented by {xt}0≤t≤T . The parameters Ft53

and Gt are chosen such that the conditional marginal distribution p0t(xt|x0) is a simple Gaussian54

distribution, denoted as N (µtx0,Σt), and the distribution π(xT ) := pT (xT ) is easy to sample from.55

Backward denoising diffusion: Under mild assumptions [1, 27], the forward diffusion Eq (1) is56

associated with a reverse-time diffusion process57

dx = [Ftxdt−GtG
T
t ∇ log pt(x)]dt+Gtdw, (2)

where w denotes a standard Wiener process in the reverse-time direction. The distribution of the58

trajectories of Eq (2) with terminal distribution xT ∼ π coincides with that of Eq (1) with initial59

distribution x0 ∼ p0, that is, Eq (2) matches Eq (1) in probability law.60

Training: The basic idea of DMs is to use a time-dependent network sθ(x, t), known as a score61

network, to approximate the score ∇ log pt(x). This is achieved by score matching techniques [13,62

31] where the score network sθ is trained by minimizing the denoising score matching loss63

L(θ) = Et∼Unif[0,T ]Ep(x0)p0t(xt|x0)[∥∇ log p0t(xt|x0)− sθ(xt, t)∥2Λt
]. (3)

Here∇ log p0t(xt|x0) has a closed form expression as p0t(xt|x0) is a simple Gaussian distribution,64

and Λt denotes a time-dependent weight. We refer the reader to [10, 27] for more details on choices65

of Λt and training techniques.66
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3 Fast Sampling with learned score models67

Once the score network sθ(x, t) ≈ ∇ log pt(x) is trained, it can be used to generate new samples68

by solving the backward SDE Eq (2) with ∇ log pt(x) replaced by sθ(x, t). It turns out there are69

infinitely many diffusion processes one can use. In this work, we consider a family of SDEs70

dx̂ = [Ftx̂−
1 + λ2

2
GtG

T
t sθ(x̂, t)]dt+ λGtdw, (4)

parameterized by λ ≥ 0. Here we use x̂ to distinguish the solution to the SDE associated with the71

learned score from the ground truth x in Eq (1) and (2). When λ = 0, Eq (4) reduces to an ODE72

known as the probability flow ODE [27]. The reverse-time diffusion Eq (2) with an approximated73

score is a special case of Eq (4) with λ = 1. The following Proposition (Proof in Appendix B)74

justifies the usage of Eq (4) for generating samples.75

Proposition 1. When sθ(x, t) = ∇ log pt(x) for all x, t, and p̂∗T = π, the marginal distribution p̂∗t76

of Eq (4) matches pt of the forward diffusion Eq (1) for all 0 ≤ t ≤ T .77

To generate a new sample, one can sample x̂∗
T from π and solve Eq (4) to obtain a sample x̂∗

0. The78

objective of this work is to develop an efficient sampling scheme from Eq (4) with less discretization79

errors. In this section, we focus on the ODE approach with λ = 0.80

We investigate the discretization error of solving the probability flow ODE (λ = 0)81

dx̂

dt
= Ftx̂−

1

2
GtG

T
t sθ(x̂, t). (5)

Eq (5) is a semilinear stiff ODE [11]. The exact solution to this ODE is82

x̂t = Ψ(t, s)x̂s +

∫ t

s

Ψ(t, τ)[−1

2
GτG

T
τ sθ(x̂τ , τ)]dτ, (6)

where Ψ(t, s) satisfying ∂
∂tΨ(t, s) = FtΨ(t, s),Ψ(s, s) = I is known as the transition matrix83

associated with Fτ . We study the discretization error in solving Eq (5) to reduce gap between84

numerical results within a small number of NFEs and exact result Eq (6).85

Exponential Integrator over Euler method. The Euler method is an elementary explicit numerical86

method for ODEs and is widely used in numerical softwares [32]. When applied to Eq (5), it reads87

x̂t−∆t = x̂t − [Ftx̂t −
1

2
GtG

T
t sθ(x̂t, t)]∆t. (7)

This is used in many existing works in DMs [27, 9]. This approach however has low accuracy and is88

sometimes unstable when the stepsize is not sufficiently small. To improve the accuracy, we propose89

to use the Exponential Integrator (EI), a method that leverages the semilinear structure of Eq (5).90

When applied to Eq (5), the EI reads91

x̂t−∆t = Ψ(t−∆t, t)x̂t + [

∫ t−∆t

t

−1

2
Ψ(t−∆t, τ)GτG

T
τ dτ ]sθ(x̂t, t). (8)

It is effective if the nonlinear term sθ(x̂t, t) does not change much along the solution. In fact, for any92

given ∆t, Eq (8) solves Eq (5) exactly if sθ(x̂t, t) is constant over the time interval [t−∆t, t].93

Parametrization: ϵθ(x, t) over sθ(x, t). We find another source of large discretizaiton er-94

ror is caused by rapidly changing score ∇ log pt(x). It is found that the parameterization [10]95

∇ log pt(x) ≈ −L−T
t ϵθ(x, t), where Lt can be any matrix satisfying LtL

T
t = Σt, leads to signifi-96

cant improvements of accuracy. The network ϵθ tries to follow ϵ which is sampled from a standard97

Gaussian and thus has a small magnitude. In comparison, the parameterization sθ = −L−T
t ϵθ can98

take large value as Lt → 0 as t approaches 0. It is thus better to approximate ϵθ than sθ with a neural99

network. We adopt this parameterization and rewrite Eq (5) as100

dx̂

dt
= Ftx̂+

1

2
GtG

T
t L

−T
t ϵθ(x̂, t). (9)

Applying the EI to Eq (9) yields101

x̂t−∆t = Ψ(t−∆t, t)x̂t + [

∫ t−∆t

t

1

2
Ψ(t−∆t, τ)GτG

T
τ L

−T
τ dτ ]ϵθ(x̂t, t). (10)
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FID for various DEIS
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 26.91 108+1 185+1 193+3 22.28 21.53 21.43 19.72 16.31 15.37
10 11.14 14.72 13.19+2 28.65+2 7.56 6.72 6.50 6.09 4.57 4.17
20 5.47 3.50 2.97+1 3.92 3.70 3.32 3.17 3.54 3.05 2.86
50 3.27 2.60 2.55+1 2.57+2 2.70 2.62 2.59 2.67 2.59 2.57

Table 1: DEIS for VPSDE on CIFAR10 with limited NFE. For ρRK-DEIS, the upper right number
indicates extra NFEs used. Bold numbers denote the best performance achieved with similar NFE.

Then we develop several fast sampling algorithms, all coined as the Diffusion Exponential Integrator102

Sampler (DEIS), based on Eq (10), for DMs. Interestingly, the discretization Eq (10) based on EI103

coincides with the popular deterministic DDIM when the forward diffusion Eq (1) is VPSDE [26].104

The update Eq (10) can be further improved by using a polynomial of time, rather than a constant,105

to approximation ϵθ over the interval [t − ∆t, t]. The resulting approach resembles the classical106

Adams–Bashforth [11] method, thus we term it tAB-DEIS. Another major factor that affects the107

performance of sampling is the choice of time discretization.108

4 Exponential Integrator: simplify probability Flow ODE109

Next we present a different perspective to DEIS based on ODE transformations. The probability110

ODE Eq (9) can be transformed into a simple non-stiff ODE, and then off-the-shelf ODE solvers111

can be applied to solve the ODE effectively. To this end, we introduce variable ŷt := Ψ(t, 0)x̂t and112

rewrite Eq (9) into113

dŷ

dt
=

1

2
Ψ(t, 0)GtG

T
t L

−T
t ϵθ(Ψ(0, t)ŷ, t). (11)

Note that, departing from Eq (9), Eq (11) does not possess semi-linear structure. Thus, we can114

apply off-the-shelf ODE solvers to Eq (11) without worrying about the semi-linear structure. This115

transformation Eq (11) can be further improved by taking into account the analytical form of116

Ψ,Gt,Lt. Here we present treatment for VPSDE; the results can be extended to other (scalar) DMs117

such as VESDE. See Appendix C for the proof.118

Proposition 2. For the VPSDE, with ŷt =
√

α0

αt
x̂t and the time-scaling β(t) =

√
α0(

√
1−αt

αt
−119 √

1−α0

α0
), Eq (9) can be transformed into120

dŷ

dρ
= ϵθ(

√
αβ−1(ρ)

α0
ŷ, β−1(ρ)), ρ ∈ [β(0), β(T )]. (12)

Based on the transformed ODE Eq (12), we propose two variants of the DEIS algorithm: ρRK-DEIS121

when applying classical RK methods, and ρAB-DEIS when applying Adams-Bashforth methods.122

We remark that the difference between tAB-DEIS and ρAB-DEIS lies in the fact that tAB-DEIS fits123

polynomials in t which may not be polynomials in ρ.124

5 Experiments and Conclusion125

Figure 2: The effects of EI, parametriza-
tion, polynomial approximation, and time
discretization.

We conduct experiment on CIFAR10 with pre-trained126

model from [27]. As in Fig 2, compared with other127

samplers, ODE sampler based on RK45 [27], SDE128

samplers based on Euler-Maruyama (EM) [27] and129

SDE adaptive step size solver [14], DEIS can converge130

much faster. We also include comaprison among var-131

ious DEIS algorithms in Tab 1 (See Appendix D for132

more experiment results). In summary, by utilizing133

structural information in Eq (5), DEIS can significantly accelerate DM sampling.134
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A Related works224

A lot of research has been conducted to speed up the sampling of DMs. In [19, 34] the authors optimize225

denosing process by modifying the underlying stochastic process. However, such acceleration can not226

generate high quality samples with a small number of discretization steps. In [26] the authors use a227

non-Markovian forward noising. The resulted algorihtm, DDIM, achieves significant acceleration than228

DDPMs. More recently, the authors of [3] optimize the backward Markovian process to approximate229

the non-Markovian forward process and get an analytic expression of optimal variance in denoising230

process. Another strategy to make the forward diffusion nonlinear and trainable [36, 30, 7, 33, 4] in231

the spirit of Schrödinger bridge [5]. This however comes with a heavy training overhead.232

More closely related to our method is [20], which interprets update step in stochastic DDIM as a233

combination of gradient estimation step and transfer step. It modifies high order ODE methods to234

provide an estimation of the gradient and uses DDIM for transfer step. However, the decomposition235

of DDIM into two separate components is not theoretically justified. Based on our analysis on236

Exponential Integrator, Liu et al. [20] uses Exponential Integral but with a Euler discretization-237

based approximation of the nonlinear term. This approximation is inaccurate and may suffer large238

discretization error if the step size is large.239

The semilinear structure presented in probability flow ODE has been widely investigated in physics240

and numerical simulation [11, 35], from which we get inspirations. The stiff property of the ODEs241

requires more efficient ODE solvers instead of black-box solvers that are designed for general ODE242

problems. In this work, we investigate sovlers for differential equations in diffusion model and take243

advantage of the semilinear structure.244

B Proof of Proposition 1245

The proof is inspired by [36]. We show that the marginal distribution induced by Eq (4) does not246

depend on the choice of λ and equals the marginal distribution induced by Eq (2) when the score247

model is perfect.248

Consider the distribution q induced by the SDE249

dx = [Ftx−
1 + λ2

2
GtG

T
t ∇ log qt(x)]dt+ λGtdw. (13)

Eq (13) is simulated from t = T to t = 0. According to the Fokker-Planck-Kolmogorov (FPK)250

Equation, q solves the partial differential equation251

∂qt(x)

∂t
=−∇ · {[Ftx−

1 + λ2

2
GtG

T
t ∇ log qt(x)]qt(x)} −

λ2

2
⟨GtG

T
t ,

∂2

∂xi∂xj
qt(x)⟩

=−∇ · {[Ftx−
1

2
GtG

T
t ∇ log qt(x)]qt(x)}+∇ · {[

λ2

2
GtG

T
t ∇ log qt(x)]qt(x)}−

λ2

2
⟨GtG

T
t ,

∂2

∂xi∂xj
qt(x)⟩,

where ∇· denotes the divergence operator. Since252

∇ · {[λ
2

2
GtG

T
t ∇ log qt(x)]qt(x)} = ∇ · [

λ2

2
GtG

T
t ∇qt(x)] = ⟨

λ2

2
GtG

T
t ,

∂2

∂xi∂xj
qt(x)⟩, (14)

we obtain253
∂qt(x)

∂t
= −∇ · {[Ftx−

1

2
GtG

T
t ∇ log qt(x)]qt(x)}. (15)

Eq (15) shows that the above partial differential equation does not depend on λ. Thus, the marginal254

distribution of Eq (13) is independent of the value of λ.255

C Proof of Proposition 2256

We start our proof with Eq (11). In VPSDE, Eq (11) reduce to257

dŷ

dt
= −1

2

√
α0

αt

d logαt

dt

1√
1− αt

ϵθ(Ψ(0, t)ŷ, t). (16)
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Now we consider a rescaled time ρ, which satisfies the following equation258

dρ

dt
= −1

2

√
α0

αt

d logαt

dt

1√
1− αt

. (17)

Plugging Eq (17) into Eq (16), we reach259

dŷ

dρ
= ϵθ(Ψ(0, t)ŷ, t). (18)

In VPSDE, we αt is a monotonically decreasing function with respect to t. Therefore, there exists a260

bijective mapping between ρ and t based on Eq (17), which we define as β and ρ = β(t). Furthermore,261

we can solve Eq (17) for β262

β(t) =
√
α0(

√
1− αt

αt
−
√

1− α0

α0
). (19)

D More experiment details263

D.1 Important technical details and modifications264

• It is found that correcting steps and an extra denoising step can improve image quality at265

additional NFE costs [27, 14]. For a fair comparison, we disable the correcting steps, extra266

denoising step, or other heuristic clipping tricks for all methods and experiments in this267

work unless stated otherwise.268

• Due to numerical issues, we set ending time t0 in DMs during sampling a non-zero number.269

Song et al. [27] suggests t0 = 10−3 for VPSDE and t0 = 10−5 for VESDE. In practice,270

we find the value of t0 and time scheduling have huge impacts on FIDs. This finding is271

not new and has been pointed out by existing works [14, 17, 26]. Interestingly, we found272

different algorithms have different preferences for t0 and time scheduling. We report the273

best FIDs for each method among different choices of t0 and time scheduling in Tab 1.274

We use t0 suggested by the original paper and codebase for different checkpoints and275

quadratic time scheduling suggested by Song et al. [26] unless stated otherwise. We include276

a comprehensive study about t0 and time scheduling in Appendix D.3277

• Because PNDM needs 12 NFE for the first 3 steps, we compare PNDM only when NFE is278

great than 12. However, our proposed iPNDM can work when NFE is less than 12.279

• We include the comparison against A-DDIM [3] with its official checkpoints and implemen-280

tation in Appendix D.5.281

• We only provide qualitative results for text-to-image experiment with pre-trained model [23].282

• We include proposed r-th order iPNDM in Appendix D.2. We use r = 3 by default unless283

stated otherwise.284

D.2 Improved PNDM285

By Eq (10), PNDM can be viewed as a combination of Exponential Integrator and linear multistep286

method based on the Euler method. More specifically, it uses a linear combination of multiple score287

evaluations instead of using only the latest score evaluation. PNDM follows the steps288

ϵ̂
(3)
t =

1

24
(55ϵt − 59ϵt+∆t + 37ϵt+2∆t − 9ϵt+3∆t), (20)

x̂t−∆t =

√
αt−∆t

αt
x̂t + [

√
1− αt−∆t −

√
αt−∆t

αt

√
1− αt]ϵ̂

(4)
t , (21)

where ϵt = ϵθ(x̂t, t), ϵt+∆t = ϵθ(x̂t+∆t, t + ∆t). The coefficients in Eq (20) are derived based289

on black-box ODE Euler discretization with fixed step size. Similarly, there exist lower order290

approximations291

ϵ̂
(0)
t = ϵt (22)

ϵ̂
(1)
t =

3

2
ϵt −

1

2
ϵt+∆t (23)

ϵ̂
(2)
t =

1

12
(23ϵt − 16ϵt+∆t + 5ϵt+2∆t). (24)
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Table 2: Comparison between PNDM and tAB-DEIS. The bold results denote the best result with a
fixed NFE on each dataset. The advantage of DEIS is obvious when NFE is small.

Method

FID NFE

5 10 20 50

PNDM - - 6.42 3.03
iPNDM 70.07 9.36 4.21 3.00
DDIM 30.64 11.71 6.12 4.25
tAB1 20.01 6.09 3.81 3.32
tAB2 16.53 4.57 3.41 3.09
tAB3 16.10 4.17 3.33 2.99

(a) CIFAR10

Method

FID NFE

5 10 20 50

PNDM - - 7.60 3.51
iPNDM 59.87 7.78 5.58 3.34
0-DEIS 30.42 13.53 6.89 4.17
1-DEIS 26.65 8.81 4.33 3.19
2-DEIS 25.13 7.20 3.61 3.04
3-DEIS 25.07 6.95 3.41 2.95

(b) CELEBA

Originally, PNDM uses Runge-Kutta for warming start and costs 4 score network evaluation for292

each of the first 3 steps. To reduce the NFE in sampling, the improved PNDM (iPNDM) uses lower293

order multistep for warming start. We summarize iPNDM in Alg 1. We include a comparison with294

tAB-DEIS in Tab 2, we adapt uniform step size for tAB-DEIS when NFE=50 in CIFAR10 as we find295

its performance is slightly better than the quadratic one.296

Algorithm 1 Improved PNDM (iPNDM)

Input: {ti}Ni=0, ti = i∆t, order r
Instantiate: xtN , Empty ϵ-buffer
for i in N,N − 1, · · · , 1 do
j = min(N − i+ 1, r)
ϵ-buffer.append(ϵθ(x̂ti , ti))
Simulate ϵ̂

(j)
ti based on j and ϵ-buffer

x̂ti−1 ← Simulate Eq (21) with x̂ti and ϵ̂
(j)
ti

end for

D.3 Impact of t0 and time scheduling on FIDs297

We present a study about sampling with difference t0 and time scheduling based VPSDE. We consider298

two choices of t0 (10−3, 10−4) and three choices for time scheduling. The first time scheduling299

follows the power function in t300

ti = (
N − i

N
t

1
κ
0 +

i

N
t

1
κ

N )κ, (25)

the second time scheduling follows power function in ρ301

ρi = (
N − i

N
ρ

1
κ
0 +

i

N
ρ

1
κ

N )κ, (26)

and the last time scheduling follows a uniform step in log ρ space302

log ρi =
N − i

N
log ρ0 +

i

N
log ρN . (27)

We include the comparison between different t0 and time scheduling in Tab 3 to 5. We notice t0 has a303

huge influence on image FIDs, which is also noticed and investigated across different studies [17, 9].304

Among various scheduling, we observe tAB-DEIS has obvious advantages when NFE is small and305

ρRK-DEIS is competitive when we NFE is relatively large.306

D.4 More abalation study307

We include more quantitative comparisons of the introduced ingredients in Tab 6 for Fig 2. Since308

ingredients ϵθ-based parameterization and polynomial extrapolation are only compatible with the309
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FID for various DEIS with κ = 1 in Eq (25)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 47.59 207+1 238+1 212+3 35.14 32.51 32.02 25.99 25.06 44.29
10 16.60 84.55 66.81+2 78.57+2 10.47 8.85 8.18 9.51 7.71 7.18
15 10.39 46.36+1 47.45 41.27+1 6.69 5.70 5.24 6.47 5.51 5.01
20 7.93 34.87 28.35+1 27.21 5.27 4.56 4.24 5.20 4.50 4.14
50 4.36 11.58 7.00+1 7.48+2 3.32 3.08 2.99 3.32 3.09 2.99

FID for various DEIS with κ = 2 in Eq (25)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 30.64 256+1 357+1 342+3 24.58 23.60 23.48 20.01 16.52 16.10
10 11.71 56.62 56.51+2 103+2 7.56 6.72 6.50 6.09 4.57 4.17
15 7.67 10.62+1 14.96 36.15+1 4.93 4.40 4.26 4.29 3.57 3.37
20 6.11 6.33 4.74+1 12.81 4.16 3.84 3.77 3.81 3.41 3.33
50 4.24 3.88 3.75+1 3.78+2 3.70 3.68 3.69 3.62 3.61 3.36

FID for various DEIS with κ = 3 in Eq (25)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 34.07 356+1 388+1 377+3 29.80 29.35 29.38 24.87 22.57 22.06
10 14.59 115 171+2 267+2 10.73 10.16 10.11 8.11 6.36 5.97
15 9.22 32.94+1 77.44 103+1 6.45 6.03 5.98 5.21 4.26 4.05
20 7.27 13.06 11.55+1 50.56 5.17 4.83 4.78 4.45 3.88 3.75
50 4.64 3.76 3.68+1 3.74+2 3.92 3.82 3.79 3.81 3.72 3.71

FID for various DEIS with Eq (27)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 54.58 216+1 335+1 313+3 49.25 48.56 48.47 37.99 28.45 26.11
10 20.03 14.72 13.19+2 28.65+2 14.05 12.63 12.18 10.36 7.03 5.71
15 11.99 5.03+1 5.88 6.88+1 7.72 6.67 6.29 6.22 4.69 4.13
20 8.92 4.12 3.97+1 4.14 5.79 5.05 4.78 4.97 4.10 3.80
50 5.05 3.67 3.75+1 3.73+2 4.01 3.84 3.79 3.89 3.74 3.72

Table 3: DEIS for VPSDE on CIFAR10 with t0 = 10−3.

exponential integrator, we cannot combine them with the Euler method. We also provide performance310

when applying quadratic timestamp scheduling to Euler Tab 7 directly. We find sampling with small311

NFE and large NFE have different preferences for time schedules.312

We also report the performance of the RK45 ODE solver for VPSDE on CIFAR10 in Tab 8 1. As a313

popular and well-developed ODE solver, RK45 has decent sampling performance when NFE ≥ 50.314

However, the sampling quality with limited NFE is not satisfying. Such results are within expectation315

as RK45 does not take advantage of the structure information of diffusion models. The overall316

performance of RK45 solver is worse than iPNDM and DEIS when NFE is small.317

D.5 Comparison with Analytic-DDIM (A-DDIM) [3]318

We also compare our algorithm with Analytic-DDIM (A-DDIM) in terms of fast sampling perfor-319

mance. We failed to reproduce the significant improvements claimed in [3] in our default CIFAR10320

checkpoint. There could be two factors that contribute to this. First, we use a score network trained321

with continuous time loss objective and different weights [27]. However, Analytic-DDIM is proposed322

for DDPM with discrete times and finite timestamps. Second, some tricks have huge impacts on the323

sampling quality in A-DDIM. For instance, A-DDIM heavily depends on clipping value in the last324

few steps [3]. A-DDIM does not provide high-quality samples without proper clipping when NFE is325

low.326

1We use scipy.integrate.solve_ivp and tune tolerance to get different performances on different NFE. We
find different combinations of absolute tolerance and relative tolerance may result in the same NFE but different
FID. We report the best FID in that case.
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FID for various DEIS with κ = 1 in Eq (25)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 42.38 239+1 232+1 199+3 33.09 31.06 30.67 26.01 20.57 42.35
10 17.23 143 95.13+2 130+2 12.44 11.04 10.41 12.01 10.57 8.04
15 12.06 99.76+1 77.37 88.56+1 9.12 8.25 7.79 9.08 8.20 7.50
20 9.71 82.89 57.54+1 66.61 7.57 6.89 6.50 7.60 6.90 6.45
50 5.76 31.56 13.10+1 15.73+2 4.64 4.25 4.06 4.67 4.28 4.10

FID for various DEIS with κ = 2 in Eq (25)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 26.91 271+1 362+1 348+3 22.28 21.53 21.43 19.72 16.31 15.37
10 11.14 66.25 63.53+2 111+2 7.65 6.89 6.67 6.74 5.49 5.02
15 7.06 13.48+1 17.15 44.83+1 4.69 4.16 3.99 4.38 3.78 3.50
20 5.47 6.62 4.15+1 15.14 3.70 3.32 3.17 3.57 3.19 3.03
50 3.27 2.65 2.55+1 2.57+2 2.70 2.62 2.59 2.70 2.61 2.59

FID for various DEIS with κ = 3 in Eq (25)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 32.11 364+1 393+1 383+3 28.87 28.58 28.62 25.78 23.66 23.38
10 13.18 135 199+2 298+2 9.89 9.38 9.33 7.74 6.20 5.77
15 7.92 42.04+1 99.64 122+1 5.41 4.99 4.91 4.48 3.65 3.37
20 5.92 17.05 16.66+1 64.40 4.04 3.69 3.60 3.54 3.05 2.86
50 3.36 2.77 2.57+1 2.71+2 2.73 2.63 2.60 2.67 2.59 2.57

FID for various DEIS with Eq (27)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 54.85 230+1 382+1 370+3 51.94 51.62 51.58 43.84 39.91 38.76
10 19.80 23.35 25.08+2 82.17+2 14.63 13.43 13.07 11.14 7.78 6.02
15 11.29 5.63+1 7.46 8.90+1 7.31 6.28 5.90 5.89 4.35 3.71
20 7.91 3.84 3.05+1 4.14 4.91 4.19 3.91 4.23 3.35 3.00
50 3.82 2.60 2.56+1 2.59+2 2.86 2.70 2.64 2.79 2.63 2.58

Table 4: DEIS for VPSDE on CIFAR10 with t0 = 10−4 in Eq (25)

FID for various DEIS with κ = 7 in Eq (26)
NFE DDIM ρ2Heun ρ3Kutta ρ4RK ρAB1 ρAB2 ρAB3 tAB1 tAB2 tAB3

5 53.20 108+1 185+1 193+3 47.56 46.36 46.13 36.98 28.76 25.76
10 18.99 18.75 20.27+2 54.92+2 13.38 11.84 11.21 10.92 8.26 6.87
15 10.91 4.89+1 6.31 9.79+1 6.90 5.86 5.42 6.12 4.86 4.33
20 7.81 3.50 2.97+1 3.92 4.84 4.10 3.80 4.48 3.69 3.38
50 3.84 2.60 2.58+1 2.59+2 2.86 2.69 2.64 2.82 2.66 2.61

Table 5: DEIS for VPSDE on CIFAR10 with t0 and time scheduling suggested by Karras et al. [15]

To compare with A-DDIM, we conduct another experiment with checkpoints provided by [3] and327

integrate iPNDM and DEIS into the provided codebase; the results are shown in Tab 9. We use328

piecewise linear function to fit discrete SDE coefficients in [3] for DEIS. Without any ad-hoc tricks,329

the plugin-and-play iPNDM is comparable or even slightly better than A-DDIM when the NFE330

budget is small, and DEIS is better than both of them.331

D.6 Sampling quality on ImageNet 32× 32332

We conduct experiments on ImageNet 32 × 32 with pre-trained VPSDE model provided in [28].333

Again, we observe significant improvement over DDIM and iPNDM methods when the NFE budget334
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FID with various NFE
Method 5 10 20 30 50 100 200 500 1000

Euler 246.16 90.52 27.38 14.99 8.46 4.96 3.54 2.81 2.62
+ EI 283.67 216.47 137.20 100.74 68.03 37.93 18.81 6.66 3.69
+ϵθ 42.38 17.23 9.71 7.56 5.76 4.24 3.37 2.83 2.67
+ Poly 30.67 10.41 6.50 5.13 4.06 3.07 2.69 2.58 2.57
+ Opt {ti} 15.37 5.02 3.03 2.70 2.59 2.57 2.56 2.56 2.56

Table 6: Quantitative comparison in Fig 2 for introduced ingredients, Exponential Integrator (EI),
ϵθ-based score parameterization, polynomial extrapolation, and optimizing time discretization {ti},
where we change uniform stepsize to quadratic one t0 = 10−4. We include Tab 3 to 5 for more
ablation studies regarding time discretization.

FID with various NFE
Method 5 10 20 30 50 100 200 500 1000

Uniform 246.16 90.52 27.38 14.99 8.46 4.96 3.54 2.81 2.62
Quadratic 294.01 138.73 39.82 19.26 8.49 3.96 2.88 2.61 2.57

Table 7: Effects of different timesteps on the Euler method. We use t0 = 10−4 which has lower FID
score compared with the default t0 = 10−3 [27] in the experiments.

is low. Even with 50 NFE, DEIS is able to outperform blackbox ODE solver in terms of sampling335

quality.336

D.7 More results on VPSDE337

We include mean and standard deviation for CELEBA in Tab 11.338

D.8 More reuslts on VESDE339

Though VESDE does not achieve the same accelerations as VPSDE, our method can significantly340

accelerate VESDE sampling compared with previous method for VESDE. We show the accelerated341

FID for VESDE on CIFAR10 in Tab 12 and sampled images in Fig 3.342

D.9 Checkpoint used and code licenses343

Our code will be released in the future. We implemented our approach in Jax and PyTorch. We have344

also used code from a number of sources in Tab 13.345

We list the used checkpoints and the corresponding experiments in Tab 14.346
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NFE 14 26 32 38 50 62 88.2 344
FID 61.11 36.64 15.18 9.88 6.32 2.63 2.56 2.55

Table 8: Quantitative performance of RK45 ODE solver with t0 = 10−4 in Fig 2.

Method

FID NFE

5 10 20 50

A-DDIM 51.47 14.06 6.74 4.04
1-iPNDM 30.13 13.01 8.25 5.65
2-iPNDM 84.00 10.45 6.79 4.73
3-iPNDM 105.38 14.03 5.79 4.24
tAB1-DEIS 20.45 8.11 4.91 3.88
tAB2-DEIS 18.87 7.47 4.66 3.79
tAB3-DEIS 18.43 7.12 4.53 3.78

Table 9: Comparison with A-DDIM on the checkpoint and time scheduling provided by [3] on
CIFAR10

Method

FID NFE

5 10 20 50

iPNDM 54.62 15.32 9.26 8.26
DDIM 49.08 23.52 13.69 9.44
tAB1-DEIS 34.69 13.94 9.55 8.41
tAB2-DEIS 29.50 11.36 8.79 8.29
tAB3-DEIS 28.09 10.55 8.58 8.25

Table 10: Sampling quality on VPSDE ImageNet32× 32 with the checkpoint provided by Song
et al. [28]. Blackbox ODE solver reports FID 8.34 with ODE tolerance 1× 10−5 (NFE around 130).

Dataset

Method

FID NFE

5 10 20 50

CELEBA

PNDM - - 7.60±0.12 3.51±0.03
iPNDM 59.87±1.01 7.78±0.18 5.58±0.11 3.34±0.04
DDIM 30.42±0.87 13.53±0.48 6.89±0.11 4.17±0.04
tAB1-DEIS 26.65±0.63 8.81±0.23 4.33±0.07 3.19±0.03
tAB2-DEIS 25.13±0.56 7.20±0.21 3.61±0.05 3.04±0.02
tAB3-DEIS 25.07±0.49 6.95±0.09 3.41±0.04 2.95±0.03

Table 11: Mean and standard deviation of multiple runs with 4 different random seeds on the
checkpoint and time scheduling provided by Liu et al. [20] on CELEBA.

SDE

Method

FID NFE

5 10 20 50

VESDE

tAB0-DEIS 103.52±2.09 46.90±0.38 27.64±0.05 19.86±0.03
tAB1-DEIS 56.33±0.87 26.16±0.12 18.52±0.03 16.64±0.01
tAB2-DEIS 58.65±0.25 20.89±0.09 16.94±0.03 16.33±0.02
tAB3-DEIS 96.70±0.90 25.01±0.03 16.59±0.03 16.31±0.02

Table 12: FID results of DEIS on VESDE CIFAR10. We note the Predictor-Corrector algorithm
proposed in [27] have ≥ 100 FID if sampling with limited NFE budget (≤ 50).
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Figure 3: Generated images with tABr-DEIS on VESDE CIFAR10.

URL Citation License
https://github.com/yang-song/score_sde [27] Apache License 2.0
https://github.com/luping-liu/PNDM [20] Apache License 2.0
https://github.com/CompVis/latent-diffusion [24] MIT
https://github.com/baofff/Analytic-DPM [3] Unknown

Table 13: Code Used and License

Experiment Citation License
CIFAR10 Tab 1, 3 to 5, 8, 11 and 12, FFHQ Fig 1 [27] Apache License 2.0
CIFAR10 Tab 9 [3] Unknown
CELEBA Tab 11 [20] Apache License 2.0
ImageNet 32× 32 Tab 10 [28] Unknown
Text-to-image [24] MIT

Table 14: Checkpoints for experiments
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https://github.com/yang-song/score_sde
https://github.com/luping-liu/PNDM
https://github.com/CompVis/latent-diffusion
https://github.com/baofff/Analytic-DPM
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