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ABSTRACT

Deep generative models have achieved substantial success in protein design. A
prevalent approach for de novo protein design involves initially designing a pro-
tein backbone structure using deep generative models, such as diffusion and flow
models, followed by using a separate inverse folding model to design the corre-
ponding sequence. Recently, co-design methods, which aim to jointly generate the
structure and sequence of a protein, have attracted considerable attention. Despite
of this, co-designing sequences and structures of long proteins remains challeng-
ing. The complexity of this high-dimensional multimodal generative modeling
makes sampling of diffusion and flow models prone to accumulated errors, of-
ten leading to non-designable regions. To tackle this challenge, we introduce a
contrastive guided sampling algorithm with dual multimodal flows to sample both
sequences and structures of highly designable proteins. The contrastive guidance
uses the lower-quality flow to help the higher-quality flow avoid non-designable
regions by gently steering it during sampling. Our method achieves designabil-
ity of 80% for length-400 proteins and 37% for length-500 proteins, significantly
outperforming previous approaches.

1 INTRODUCTION

Proteins are fundamental molecules essential to biology. The ability to design novel proteins (Huang
et al., 2016) presents a promising pathway for the development of advanced therapeutics (Silva et al.,
2019), biomaterials (King et al., 2012), biocatalysis (Röthlisberger et al., 2008), among other appli-
cations. Protein engineering has traditionally relied on significant expertise and intensive experi-
mental efforts. This impedes the advancement of novel biotechnologies. Computational approaches
incorporating deep learning have transformed the paradigm, markedly accelerating the process of de
novo protein design (Ding et al., 2022).

Noticeably, deep generative models, such as diffusion (Ho et al., 2020; Song et al., 2021) and flow
(Lipman et al., 2022; Liu et al., 2022) models, have been extensively utilized in de novo protein de-
sign, yielding promising results. Following the fundamental biological principle that structure deter-
mines function, numerous efforts have been focused on generating protein backbone structures, i.e.,
protein backbone design. Various protein presentations have been explored in this field, including
Cα only (Trippe et al., 2022), backbone torsion angles (Wu et al., 2024), and residue frame repre-
sentation (Yim et al., 2023b; Lin & Alquraishi, 2023) which is adopted from AlphaFold2 (Jumper
et al., 2021) proposed for protein structure prediction. Among these, residue frame representation
has demonstrated the best performance (Watson et al., 2023) and has been adopted in recent stud-
ies of protein backbone design. Due to the lengthy reverse generative process of diffusion models
causing slow inference speed, researchers have shifted to flow models for faster and higher-quality
protein backbone generation (Yim et al., 2023a; Bose et al., 2023). Given these well-developed pro-
tein backbone design models along with inverse folding models (Dauparas et al., 2022; Hsu et al.,
2022), de novo protein design can be achieved by initially constructing a protein backbone structure
and subsequently designing sequences based on this structure. The inverse folding models (Dau-
paras et al., 2022) and folding models (Jumper et al., 2021; Lin et al., 2022) can be utilized together
as tools for in silico evaluation of protein backbone design by comparing the generated structures and
the refolded ones. Another line of research focuses on protein sequence generation, which mod-
els the distribution of protein sequences while ignoring structures. To bypass the complexities of
protein design pipelines with multiple models and more effectively capture the intricate relationship
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between protein sequences and structures, some researchers have introduced the concept of pro-
tein sequence-structure co-design (Shi et al., 2022; Campbell et al., 2024), which aims to jointly
generate continuous protein structures alongside corresponding discrete amino acid sequences. Rep-
resentative works include: Protein Generator (Lisanza et al., 2023; 2024), a sequence space diffusion
model based on RoseTTAfold (Baek et al., 2021) that simultaneously generates protein sequences
and structures; ProtPardelle (Chu et al., 2024), an all-atom Euclidean diffusion model paired with
an iterative sequence prediction mechanism; Multiflow (Campbell et al., 2024), a multimodal flow
model; ESM3 (Hayes et al., 2024), a frontier multimodal generative language model that reasons
over the sequence, structure, and function of proteins. These works introduce a new paradigm and
highlight a promising direction for future research.

Despite significant achievements de novo protein design based on generative models has achieved,
designing long proteins remains challenging. This complexity arises from the vast search space and
the inherently challenging nature of high-dimensional generative modeling, as seen in other areas
such as image and text generation. Researchers in fields like image and text generation attempt
to overcome this challenge by scaling up both the training dataset size and the model parameters
(Achiam et al., 2023; Rombach et al., 2022). Acquiring large-scale, high-quality protein structure
datasets is challenging, resulting in a lack of effective solutions to the high-dimensional challenges in
the field of protein design. The performance of diffusion and flow models are attributed to sampling
errors (Xu et al., 2023), which mainly come from two aspects: discretization errors of SDE/ODE
samplers and the approximation error of the learned neural network relative to the ground truth drift
(e.g., the score function in diffusion models and the vector field in flow models). The errors can be
accumulated and further amplified along the sampling process (Li & van der Schaar, 2023). Under
the shadow of the aforementioned issues, even the most advanced protein design models are not
consistently able to generate high-quality proteins.

We assume that it is not possible to perfectly learn the joint distribution of protein sequence and
structure from limited high-quality data due to its intricate, high-dimensional nature and complex
structure. By aiming to improve protein sequence-structure co-design from the perspective of sam-
pling rather than training, we propose an approach based on dual flows with contrastive guidance
for generating high-designable proteins. This approach calibrates the drift (i.e., vector field) of one
flow with that of another during the sampling process. More specifically, we initially pretrain a mul-
timodal flow model following Campbell et al. (2024) and slightly fine-tune it on self-synthesized
data and selective self-synthesized data to obtain two flows differing in quality. Note that neither
of the dual flows is perfect. Leveraging the contrast of the dual flows, we can calibrate the vector
field of higher-quality flow by steering it away from the regions of non-designable samples pointed
out by the lower-quality flow. We provide both theoretical (albeit non-formal) justification and intu-
itive understanding of our work. We implement the contrastive guidance on Euclidean space, SO(3)
manifold, and categorical probability space for both the sequences and structures of proteins. With
all these together, our method achieves designability of 80% for length-400 proteins and 37% for
length-500 proteins, outperforming previous approaches by a significant margin.

2 PRELIMINARIES

In this section, we discuss the preliminary information about flow matching for modeling both con-
tinuous and discrete variables, which will be used in our method.

In flow matching (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022), we con-
sider a predefined marginal probability path pt that interpolates prior distribution p and data distri-
bution q, i.e., p0 = p and p1 = q, to train a generative model that transports a source sample x0 ∼ p
to a target sample x1 ∼ q. We use a conditional probability path pt(x|x1) with p0(·|x1) ≡ p(·)
and p1(·|x1) ≈ δ(x1) to construct the above pt by pt(x) =

∫
pt(x|x1)q(x1)dx1. The above idea

of using conditional probability to construct the marginal probability path and train the generative
model is utilized in both versions for modeling continuous and discrete variables.

For modeling continuous variables, given a simple implementation of pt(x|x1) (e.g., Gaussian
paths), we can easily derive the conditional vector field ut(x|x1) that satisfies the continuity equa-
tion ṗt(x|x1) + divx[pt(x|x1)ut(x|x1)] = 0, which means ut(·|x1) generates pt(·|x1). The
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marginal vector field can be defined as

ut(x) =

∫
ut(x|x1)

pt(x|x1)p(x1)

pt(x)
dx1. (1)

The key insight of flow matching is that ut(x) can be proved to generate pt(x), i.e., satisfying the
continuity equation ṗt(x) + divx[pt(x)ut(x)] = 0. Therefore, conditional flow-matching (CFM)
loss can be utilized to train a time-dependent neural network vθ as follows:

LCFM = Et,p(x1),pt(x|x1)∥vθ(x, t)− ut(x|x1)∥2. (2)

We can generate samples by solving the Ordinary Differential Equation (ODE) as dxt

dt = vθ(xt, t).

For modeling discrete variables, variants of flow matching are proposed, such as Dirichlet Flow
Matching (Stark et al., 2024), Discrete Flow Matching (Campbell et al., 2024; Gat et al., 2024) and
Fisher Flow Matching (Davis et al., 2024; Cheng et al., 2024). Here we follow the framework of
Discrete Flow Matching which is based on Continuous-Time discrete Markov Chain (CTMC). Here
x ∈ {1, . . . , S}D is a random discrete variable, e.g., a length-D sequence where each element takes
on one of S states, and we denote j as a specific state of x.

We first introduce the concept of rate matrix Rt ∈ RS×S , which plays a similar role to the marginal
vector field in the continuous case. The probability that xt jumps to a different state j is Rt(xt, j)dt
after a infinitesimal time step dt is R(xt, j)dt, i.e., pt+dt(j|xt) = δ{xt, j} + Rt(xt, j)dt where
δ{i, j} is an element-wise Kronecker delta which 1 in dimension d when id = jd and 0 other-
wise. If a rate matrix Rt and a probability path pt satisfy the Kolmogorov equation ∂tpt(xt) =∑

j ̸=xt
Rt(j,xt)pt(j) −

∑
j ̸=xt

Rt(xt, j)pt(xt) (analogous to continuity equation in the continu-
ous case), we say the rate matrix Rt generates pt(x).

In Discrete Flow Matching, we also use the conditional probability path to construct the marginal one
as pt(xt) := Ep(x1)[pt(xt|x1)]. We define Rt(xt, j|x1) as a conditional rate matrix that generates
pt(xt|x1). Notably, Rt(xt, j|x1) can usually be in a simple formula. For example, it can be that
Rt(xt, j|x1) := δ{x1, j}δ{xt,M}/(1 − t) where M is the mask token. It can be proved that the
marginal rate matrix Rt(xt, j) := Ep(x1|xt)[Rt(xt, j|x1)] can generate the marginal probaility path
pt(xt) which we have defined above, where pt(x1|xt) = p(xt|x1)q(x1)/pt(xt). Since the posterior
pt(x1|xt) is intractable, we can use a neural network pθt (x1|xt) to approximate it. And we denote
Rθ

t (xt, ·) := Epθ
t (x1|xt)[Rt(xt, ·|x1)]. Then we can generate a sample by iteratively sampling from

the process as

pt+dt(xt+dt|xt) = δ{xt+dt,xt}+Rθ
t (xt,xt+dt)dt+ o(dt). (3)

3 METHOD

In this section, we will present our method as illustrated in Fig. 1. In Sec. 3.1, we introduce the
pretraining procedure of the multimodal flow model for protein co-design following Campbell et al.
(2024). In Sec. 3.2, we offer both theoretical (albeit non-formal) justification and an intuitive under-
standing of the motivation behind constructing the dual flows. Finally, in Sec. 3.3, we introduce the
specific implementation of the proposed contrastive guidance for flow matching on Euclidean space,
SO(3) manifold, and categorical probability.

3.1 MULTIMODAL FLOW MATCHING FOR PROTEIN DESIGN

We focus on designing both the sequence and structure of proteins. Following Yim et al. (2023b), the
protein structure is referred to as the backbone atomic coordinates of each residue and is represented
as elements of SE(3) to capture the rigidity of the local frames along the backbone.

We follow the notation in Campbell et al. (2024). Specifically, a protein with D residues is repre-
sented as T = {T d}Dd=1, where T d = (xd, rd, ad) is the residue state of index d. Here x ∈ R3 is
the translation of the residue’s Cα atom, r ∈ SO(3) is the rotation of the residue’s local frame with
respect to the global reference frame, and a ∈ {1, . . . , 20} ∪ {M} is one of 20 amino acids or the
mask state M . Thus, the goal of protein sequence-structure co-design can be then formalized as a
generative task that models the distribution q(T).
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Figure 1: Overview of our method. We initially pretrain a multimodal flow model on real data
for protein sequence-structure co-design. We then slightly fine-tune the base flow model on self-
synthesized data and selective high-quality self-synthesized data for a few epochs separately to de-
rive two models, named FLOW-LQ and FLOW-HQ. Due to the contrast of the dual flows, the vector
fields and rate matrix of FLOW-HQ can be calibrated by being pushed away from the vector fields of
FLOW-LQ which are more likely to point towards regions of non-designable samples. The sequence
and structure of the protein sampled by our method are highly consistent.

We build our base flow model as introduced by Campbell et al. (2024). We first define the conditional
probability path introduced in Sec. 2 as pt(Tt|T1) :=

∏D
d=1 pt(x

d
t |xd

1)pt(r
d
t |rd1)pt(adt |ad1).

pt(x
d
t |xd

1) and pt(r
d
t |rd1) are implicitly defined by the sampling procedure: xd

t = txd
1+(1−t)xd

0 and
rdt = exprd0 (t logrd0 (r

d
1)) where xd

0 ∼ N (0, I) rd0 ∼ USO(3). USO(3) is the uniform distribution over
SO(3). exp and log are exponential and logarithm maps. rdt can be seen as the linear interpolant
along the geodesic path connection rd0 and rd1 (Chen & Lipman, 2023). pt(a

d
t |ad1) is defined as

Cat(tδ{ad1, adt }+(1− t)δ{M,adt }), which means that we linearly interpolate between a probability
mass concentrated entirely on the mask token and the data distribution.

With the above conditional probability path, we train a neural network to approximate the vector field
on Euclidean space and SO(3) manifold for protein structures and rate matrix for protein sequences.
In practice, we use a neural network parameterized with θ to estimate the vector fields and rate
matrix as:

v̂dx(Tt)=
x̂d
1(Tt)− xd

t

1− t
, v̂dr (T)=

logrdt (r̂
d
1(Tt))

1− t
, R̂d

t (Tt, j
d)=

p̂(ad1 = jd|Tt)

1− t
δ{adt ,M}, (4)

where x̂d
1(Tt), r̂

d
1(Tt), p̂(a

d
1 = jd|Tt) are translation, rotation, and amino acid type of d-th residue

at time t = 1 predicted by the neural network θ given the noisy protein Tt and time t as input.

The overall training objective can be formalized with as follows:

L = Et,T1,Tt

[
D∑

d=1

[
∥x̂1(Tt)− xd

1∥2

1− t
+

∥ logrdt (r̂
d
1(Tt))− logrdt (r̂

d
1)∥2

1− t
− log p̂(ad1|Tt)

]]
, (5)

where t ∼ U(0, 1),T1 ∼ p(T),Tt ∼ pt(Tt|T1). Note that there are slight adjustments on the
coefficients based on time t which we omit related details of derivation here for brevity.

3.2 MOTIVATION AND DERIVATION OF DUAL FLOWS

While the base multimodal flow model is powerful in modeling distributions over short proteins,
it struggles with generating long proteins effectively. The reasons are multifaceted: approximation
errors (i.e., model estimation errors) and discretization errors of the ODE solver (i.e., the sampler),
among others (Xu et al., 2023). These errors accumulate throughout the sampling process. Due to
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the high-dimensional nature of the problem when generating long proteins, these errors can further
deteriorate, potentially causing the sampling trajectories to become lost in the vast probability space
and ultimately leading to regions of non-designable samples.

The designable proteins have intrinsic properties and correlation of structures and sequences, which
the neural network cannot easily and perfectly learn. Thus, we properly assume that the flow models
that correspond to real data distribution q(T) are always unavailable.

We further assume that the synthesized proteins genrated by the pretrained base model as introduced
in Sec. 3.1 follows the distribution p̃(T) = p(T) exp(−ζ(T)), where ζ(·) is a function for which
we do not know the explicit formula. Note that the above assumption implies certain constraints on
ζ(·) since p̃(T) is self-normalized, i.e.,

∫
p(T) exp(−ζ(T)) = 1, thereby satisfying the property

required to be a probability density function.

We curate two small datasets using the self-synthesized proteins generated by the base flow model.
Specifically, we use the pretrained base model to generate a small set consisting of both designable
and non-designable proteins as the first dataset and then select the designable proteins from the
first dataset to construct the second dataset. We slightly fine-tune the pretrained base model on
the two datasets separately to derive the dual flow models, denoted as FLOW-LQ (low quality)
and FLOW-HQ (high quality). We denote the induced distribution by FLOW-LQ and FLOW-HQ
as pL(T) and pH(T), respectively. Here we assume pL(T) = p(T) exp(−ζL(T)) and pH(T) =
p(T) exp(−ζH(T)). Since training generative models on self-synthesized data usually leads to a
decrease in quality (Alemohammad et al., 2023), pL and pH show worse performance in expectation
than native proteins in terms of designability. Nonetheless, due to the the fact that the above two self-
synthesized datasets explicitly differ in data quality, we could safely assume that, for any designable
protein (denoted as TH), we have that pH(TH) > pL(TH), and for any non-designable protein
(denoted as TL), we have that pH(TL) < pL(TL). Although we have no knowledge about the
explicit formula about ζL(·) and ζH(·), the above claims still indicate that ζL(TH) > ζH(TH) and
ζL(TL) < ζH(TL).

This inspires us to sample highly designable proteins utilizing the difference between these two
flows. Our goal is to sample following the probability defined by

p̄(T) ∝ pH(T)

[
pH(T)

pL(T)

]λ
∝ p(T)

exp
(
− (1 + λ)ζH(T)

)
exp(−λζL(T))

, (6)

where λ > 0 is a constant hyperparameter.

It is straightforward to prove that p̄(TH) > p(TH) and p̄(TL) < p(TL), which means that the
calibrated target distribution p̄ puts more (resp. less) probability mass on designable (resp. non-
designable) samples than the real-data underlying distribution p. Therefore, sampling according to
Eq. (6) leads to highly designable proteins, even when all the models we utilize perform worse than
the ideal generator corresponds to the ground-truth data distribution, which is hardly available in
practice due to the challenges we have discussed at the beginning of this subsection.

3.3 CONTRASTIVE GUIDANCE

We will show how to sample according to the distribution in Eq. (6). We start with the flow over
Euclidean space. Song et al. (2021) have shown the relationship between the probability ODE flows
(whose drift is vector field) and the score-based generative models (whose drift is score function)
by Kolmogorov’s forward equation (Fokker-Planck equation) (Øksendal, 2003). Zheng et al. (2023)
have also show the relationship between vector fields and score function. In our case, similarly, we
can also relate the estimated vector field over Euclidean space to the underlying score function

vdx(Tt) =
1

t
xd
t +

1− t

t
∇xd

t
log pt(Tt). (7)

We define the calibrated marginal probability path at time t as

p̄t(Tt) ∝ pH,t(Tt)[pH,t(Tt)/pL,t(Tt)]
λ, (8)

where pH,t (resp. pL,t) corresponds to the marginal probability path induced by FLOW-HQ (resp.
FLOW-LQ) at time t.
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By applying the score function to both sides in Eq. (8), we have

∇xd
t
log p̄t(Tt) = (1 + λ)∇xd

t
log p̄H,t(Tt)− λ∇xd

t
log p̄L,t(Tt). (9)

We define the calibrated vector field as

v̄x(Tt) := (1 + λ)vH
x (Tt)− λvL

x(Tt), (10)

where vH
x (resp. vL

x) is the vector field of FLOW-HQ (resp. FLOW-LQ), and we ignore residue index
d for brevity without ambiguity.

By plugging Eq. (7) (the linearity relationship between the vector field and the score function of
the underlying distribution) into both the left and right hand side, we can derive that v̄x(Tt) gen-
erate the marginal probability p̄t(Tt), which justifies that we can use the calibrated vector field to
approximately sample from the calibrated target distribution.

Notably, Eq. (10) resembles the formula of classifier-free diffusion guidance (Ho & Salimans, 2022).
Likewise, Eq. (10) also holds straightforward meanings. Standing on a data point Tt, the vector field
of FLOW-HQ can be calibrated by adjusting its direction away from the vector field of FLOW-LQ,
because the latter points more to the regions of non-designable samples. The behind mechanism
motivates us to name the method as contrastive guidance.

In practice, we calibrate the estimated “clean” samples (the predicted x̂1) instead of directly on
vector fields. Specifically, by plugging Eq. (4) into Eq. (10), we can easily derive that

v̄x(Tt) =
(1 + λ)x̂H

1 (Tt)− λx̂L
1(Tt)− xt

1− t
, (11)

where x̂H
1 (Tt) (resp. x̂L

1(Tt)) is the frame translation of the predicted “clean” sample given the
noisy protein Tt. Eq. (11) implies that calibrating the vector fields of FLOW-HQ and FLOW-LQ as
Eq. (10) is equivalent to directly calibrating the predicted “clean” sample as

x̄1(Tt) := (1 + λ)x̂H
1 (Tt)− λx̂L

1(Tt) = (1 + λ)(x̂H
1 (Tt)− x̂L

1(Tt)) + x̂L
1(Tt). (12)

We follow the above intuition to calibrate the vector field for the rotation of residue frames. There-
fore, we can extend Eq. (12) from Euclidean space to SO(3) manifold and define

r̄1(Tt) := expr̂L
1(Tt)

(
(1 + λ) logr̂L

1(Tt)

(
r̂H
1 (Tt)

))
and v̄r(T) :=

logrt(r̄1(Tt))

1− t
. (13)

where r̂H
1 (Tt) (resp. r̂L

1(Tt)) is the frame rotation of the predicted “clean” sample given the noisy
protein Tt. The geometric understanding behind Eq. (13) is that FLOW-LQ subtly pushes FLOW-
HQ away along the geodesic path connecting their predicted r̂1. We use v̄r(T) defined in Eq. (13)
as the calibrated vector field on SO(3) manifold.

The contrastive guidance for the discrete case (i.e., the sequence of the protein) is slightly different
from the continuous case (i.e., the structure of the protein) due to the lack of definition of vector
field and score function as in Eq. (7). However, as the vector field and score function can describe
how the sample or marginal probability changes as time evolves, we turn to the transition probability
with similar meanings in CTMC and define the target transition probability that we want to sample
from as follows:

p̄(at+dt|Tt) ∝ pH(at+dt|Tt)[pH(at+dt|Tt)/pL(at+dt|Tt)]
λ. (14)

For brevity and clarity, we rewrite the above equation as follows:

p̄(at+dt= i|at= j) ∝ pH(at+dt= i|at=j)[pH(at+dt= i|at=j)/pL(at+dt= i|at=j)]λ, (15)

where i, j are specific amino acid types. We omit the residue index d and the complete context,
i.e., the noisy residues Tt, though we indeed provide them with the neural network as input. Since
Eq. (15) resembles the predictor-free guidance proposed by Nisonoff et al. (2024), we can leverage
their theoretical results and define the calibrated rate matrix as follows:

R̄t(j, i) = RH,t(j, i)
1+λRL,t(j, i)

−λ, for i ̸= j, (16)
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where RH,t(i, j) is transition rate from state i to state j at time t estimated by FLOW-HQ. We have
R̄t(i, i) = −

∑
j ̸=i R̄t(i, j) by the definition of the rate matrix.

In our case, since the conditional rate matrix describes a masking process, i.e,

Rt(at, j|a1) =
δ{a1,M}δ{at,M}

1− t
. (17)

Thus, we have

R̂t(at, j) = Ep̂(a1=j|at)[Rt(at, j|a1 = j)] =
p̂(a1 = j|at)

1− t
δ{at,M}. (18)

It is trivial to verify that the constraint induced by the definition of rate matrix is automatically
satisfied, i.e.,

∑
j R̂t(at, j) ≡ 1 for all at. So we calibrate the predicted posterior in an equivalent

way to Eq. (16) as follows:

p̄(a1 = j|at) ∝ p̂H(a1 = j|at)1+λp̂L(a1 = j|at)−λ, (19)

which can be efficiently computed because we only consider 20 types of amino acids. Finally, we
arrive at the calibrated transition probability p̄(at+dt|at) expressed with

p̄(at+dt|at) =
∑

j p̄(a1 = j|at)p(at+dt|a1 = j, at). (20)

Therefore, at each Euler step, to sample at+dt from the distribution p̄(at+dt|at), we can sample
a1, at+dt form the joint distribution p̄(a1|at)p(at+dt|a1, at), and keep only the at+dt part of this
joint sample. In other words, from time t to t + dt, the operation that first unmasks all tokens
and then random mask parts of them is equivalent to the operation that randomly selects the same
ratio of tokens to unmask. A benefit that we calibrated on the predicted posterior as in Eq. (19)
instead of rate matrix or transition probability brings is that we can seamlessly introduce purity
sampling scheme (Tang et al., 2022) to the sampling process with contrastive guidance. Specifically,
from time t to t + dt, we select residues with the top-k values of p̄(a1 = j|at) to unmask, where
k = Bin(nt,

dt
1−t ), Bin(·, ·) is a binomial distribution, and nt is the number of mask tokens. The

purity sampling considers the confidence of the model prediction and has a great positive impact on
performance empirically.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. We strictly follow the settings in Campbell et al. (2024) to train our base flow model. The
training data used in Campbell et al. (2024) includes the data used in Yim et al. (2023b) for a total of
18,684 proteins with length 60-384 (which are originally from Protein Data Bank (PDB) (Berman
et al., 2000)) and extra 4,179 examples which are distilled from ProteinMPNN (Dauparas et al.,
2022). The details about the distillation dataset can be found in Campbell et al. (2024). We use
the pretraiend base flow model to generate around 6,000 proteins with length 400 as the fine-tuning
dataset for FLOW-LQ. And we select the designable proteins from the 6,000 proteins, resulting in
a smaller but higher-quality dataset, which is used for fine-tuning FLOW-HQ. Both FLOW-HQ and
FLOW-LQ are fine-tuned for 3 epochs, which takes less than 1 hour on 4 A100 Nvidia GPUs using
the AdamW optimizer (Loshchilov, 2017) with learning rate 0.0001. The fine-tuning settings (e.g.,
optimizer configuration) are inherited from the training settings of Multiflow (Campbell et al., 2024)
and are not specifically tuned for out setting.

Baselines. To comprehensively evaluate the ability for de novo protein design, we compare our
method with three types of baselines: backbone design methods, sequence design methods, and
co-design methods. The backbone design methods include: RFdiffusion (Watson et al., 2023), a
model derived from fine-tuning the RoseTTAFold structure prediction network on protein struc-
ture denoising tasks; Chroma (Ingraham et al., 2023), which introduces a diffusion process that
upholds the conformational statistics of polymer ensembles and employs an efficient graph neu-
ral network for feature extraction; FrameDiff (Yim et al., 2023b) and Genie (Lin & Alquraishi,
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Table 1: Summary of evaluation metrics on length-400 protein design.

length 400

scTM ↑ scRMSD (Å) ↓ Des.* ↑ Des. ↑ ppl ↓ pLDDT ↑ Diversity ↓ Novelty ↓

Native PDBs 0.84 ± 0.20 5.56 ± 7.68 0.53 0.91 7.82 ± 5.03 77.72 ± 13.65 0.27 ± 0.02 N/A

1-RFdiffusion 0.63 ± 0.26 10.49 ± 7.62 0.22 0.64 N/A N/A 0.34 ± 0.02 0.79 ± 0.05
1-FrameFlow 0.55 ± 0.24 14.55 ± 10.67 0.10 0.53 N/A N/A 0.32 ± 0.02 0.79 ± 0.05
1-Chroma 0.50 ± 0.16 14.44 ± 5.85 0.00 0.35 N/A N/A 0.37 ± 0.04 0.77 ± 0.06
1-FrameDiff 0.61 ± 0.24 12.82 ± 12.25 0.03 0.68 N/A N/A 0.49 ± 0.06 0.77 ± 0.04
1-FoldFlow-SFM 0.34 ± 0.09 20.31 ± 7.10 0.00 0.04 N/A N/A 0.35 ± 0.00 0.72 ± 0.01
1-FoldFlow-Base 0.31 ± 0.08 23.07 ± 8.23 0.00 0.01 N/A N/A N/A N/A
1-FoldFlow-OT 0.34 ± 0.10 19.92 ± 6.72 0.00 0.07 N/A N/A 0.35 ± 0.03 0.70 ± 0.08
1-Genie 0.21 ± 0.02 30.02 ± 4.00 0.00 0.00 N/A N/A N/A N/A

8-RFdiffusion 0.86 ± 0.15 3.66 ± 3.78 0.48 0.96 N/A N/A 0.35 ± 0.02 0.80 ± 0.05
8-FrameFlow 0.76 ± 0.19 6.12 ± 4.94 0.30 0.89 N/A N/A 0.32 ± 0.02 0.77 ± 0.05
8-Chroma 0.73 ± 0.15 6.51 ± 4.47 0.09 0.91 N/A N/A 0.32 ± 0.03 0.76 ± 0.05
8-FrameDiff 0.75 ± 0.17 6.09 ± 4.70 0.16 0.90 N/A N/A 0.48 ± 0.06 0.76 ± 0.04
8-FoldFlow-SFM 0.42 ± 0.08 15.02 ± 3.14 0.00 0.12 N/A N/A 0.36 ± 0.04 0.75 ± 0.02
8-FoldFlow-Base 0.39 ± 0.07 16.35 ± 3.02 0.00 0.06 N/A N/A 0.37 ± 0.01 0.74 ± 0.03
8-FoldFlow-OT 0.43 ± 0.09 14.75 ± 3.08 0.00 0.23 N/A N/A 0.35 ± 0.03 0.74 ± 0.06
8-Genie 0.24 ± 0.02 24.85 ± 1.31 0.00 0.00 N/A N/A N/A N/A

ProGen2 N/A N/A N/A N/A 4.51 ± 3.57 57.80 ± 20.92 N/A N/A
EvoDiff N/A N/A N/A N/A 16.78 ± 1.53 33.75 ± 11.27 N/A N/A
DPLM N/A N/A N/A N/A 3.50 ± 1.45 88.12 ± 8.98 N/A N/A

ProteinGenerator 0.78 ± 0.21 11.85 ± 7.92 0.05 0.83 7.38 ± 1.31 61.52 ± 15.12 0.48 ± 0.02 0.81 ± 0.04
ProtPardelle 0.50 ± 0.13 34.22 ± 13.21 0.00 0.42 5.57 ± 1.08 43.11 ± 10.94 0.35 ± 0.06 0.80 ± 0.05
Multiflow 0.93 ± 0.07 2.71 ± 3.65 0.68 0.98 7.53 ± 1.77 80.18 ± 8.94 0.37 ± 0.04 0.82 ± 0.04
ESM3 0.64 ± 0.27 33.01 ± 30.22 0.15 0.53 6.78 ± 2.98 69.88 ± 17.94 0.28 ± 0.06 0.89 ± 0.08
Ours 0.95 ± 0.05 1.99 ± 2.14 0.80 0.99 6.38 ± 1.14 80.92 ± 5.87 0.44 ± 0.04 0.82 ± 0.05

2023), which are based on diffusion and have demonstrated commendable generative capabili-
ties; FrameFlow (Yim et al., 2023a) and FoldFlow (Bose et al., 2023), which engage in pro-
tein backbone generation through flow matching. Note that there are three versions of Fold-
Flow: FoldFlow-Base which utilizes standard flow matching similar to FrameFlow; FoldFlow-
SFM which extends to a stochastic flow; FoldFlow-OT which uses optimal transport data cou-
pling instead of independent data coupling for better training of flow matching. Notably, the
inference steps of the above flow models are generally fewer than those of diffusion models.

sequence guidance coefficient
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Figure 2: Effects of different sequence guid-
ance coefficients and sampling temperatures on
scRMSD (Å).

The sequence design methods include: Pro-
Gen2 (Nijkamp et al., 2023) which is an
autoregressive protein language model (we
use its 700M version); EvoDiff (Alam-
dari et al., 2023) which is designed as an
order-agnostic autoregressive diffusion model;
DPLM (Wang et al., 2024) which employs a
diffusion language model for sequence gener-
ation. The co-design methods include: Pro-
teinGenerator (Lisanza et al., 2023; 2024),
a sequence space diffusion model based on
RoseTTAfold (Baek et al., 2021) that can sam-
ple from the joint distribution of protein se-
quences and structures; ProtPardelle (Chu
et al., 2024), an all-atom Euclidean diffusion
model with an iterative sequence prediction
mechanism; Multiflow (Campbell et al., 2024),
a multimodal flow model; ESM3 (Hayes et al.,
2024), a generative masked language models
that model both sequence and tokenized struc-
tures. Additionally, to facilitate comparison with natural proteins (denoted as Native PDBs in our
tables), we filtered Protein Data Bank (PDB) to construct a standardized comparison dataset. Similar
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Table 2: Summary of evaluation metrics on length-500 protein design.

length 500

scTM ↑ scRMSD (Å) ↓ Des.* ↑ Des. ↑ ppl ↓ pLDDT ↑ Diversity ↓ Novelty ↓

Native PDBs 0.84 ± 0.19 5.47 ± 7.24 0.50 0.94 6.70 ± 4.47 77.17 ± 13.93 0.26 ± 0.02 N/A

1-RFdiffusion 0.57 ± 0.23 13.41 ± 7.61 0.12 0.59 N/A N/A 0.34 ± 0.03 0.76 ± 0.05
1-FrameFlow 0.47 ± 0.19 18.94 ± 12.69 0.04 0.31 N/A N/A 0.31 ± 0.02 0.77 ± 0.06
1-Chroma 0.47 ± 0.17 16.90 ± 6.57 0.01 0.28 N/A N/A 0.32 ± 0.01 0.75 ± 0.06
1-FrameDiff 0.42 ± 0.23 25.38 ± 20.28 0.00 0.36 N/A N/A 0.49 ± 0.05 0.75 ± 0.04
1-FoldFlow-SFM 0.31 ± 0.07 25.78 ± 11.35 0.00 0.00 N/A N/A N/A N/A
1-FoldFlow-Base 0.29 ± 0.07 25.90 ± 12.10 0.00 0.00 N/A N/A N/A N/A
1-FoldFlow-OT 0.30 ± 0.07 24.39 ± 9.62 0.00 0.01 N/A N/A N/A N/A
1-Genie 0.21 ± 0.02 31.44 ± 3.27 0.00 0.00 N/A N/A N/A N/A

8-RFdiffusion 0.76 ± 0.19 6.71 ± 5.54 0.29 0.87 N/A N/A 0.33 ± 0.02 0.76 ± 0.04
8-FrameFlow 0.66 ± 0.19 9.78 ± 5.83 0.15 0.76 N/A N/A 0.32 ± 0.02 0.75 ± 0.05
8-Chroma 0.71 ± 0.18 8.25 ± 5.73 0.01 0.81 N/A N/A 0.29 ± 0.01 0.76 ± 0.05
8-FrameDiff 0.57 ± 0.23 15.61 ± 15.53 0.01 0.66 N/A N/A 0.40 ± 0.06 0.74 ± 0.04
8-FoldFlow-SFM 0.37 ± 0.05 18.39 ± 2.97 0.00 0.02 N/A N/A N/A N/A
8-FoldFlow-Base 0.37 ± 0.05 18.37 ± 3.24 0.00 0.02 N/A N/A N/A N/A
8-FoldFlow-OT 0.37 ± 0.06 17.66 ± 2.70 0.00 0.02 N/A N/A N/A N/A
8-Genie 0.24 ± 0.01 26.84 ± 1.61 0.00 0.00 N/A N/A N/A N/A

ProGen2 N/A N/A N/A N/A 4.27 ± 3.60 54.30 ± 18.79 N/A N/A
EvoDiff N/A N/A N/A N/A 16.51 ± 3.82 32.94 ± 9.76 N/A N/A
DPLM N/A N/A N/A N/A 3.33 ± 1.80 82.57 ± 12.53 N/A N/A

ProteinGenerator 0.41 ± 0.19 33.91 ± 15.10 0.00 0.19 7.07 ± 1.96 44.22 ± 8.72 0.45 ± 0.03 0.80 ± 0.04
ProtPardelle 0.41 ± 0.10 41.24 ± 10.85 0.00 0.23 4.83 ± 0.80 36.62 ± 7.34 0.34 ± 0.03 0.76 ± 0.05
Multiflow 0.83 ± 0.15 8.48 ± 7.02 0.24 0.92 6.95 ± 1.46 69.73 ± 10.61 0.35 ± 0.02 0.79 ± 0.04
ESM3 0.57 ± 0.24 37.74 ± 25.22 0.03 0.49 6.90 ± 3.40 62.62 ± 15.89 0.21 ± 0.03 0.86 ± 0.11
Ours 0.86 ± 0.11 4.98 ± 3.58 0.37 0.99 6.01 ± 0.94 71.70 ± 8.90 0.40 ± 0.03 0.77 ± 0.05

to FrameDiff (Yim et al., 2023b), we initially filtered out structural data with resolutions < 5Å. Sub-
sequently, we employed DSSP (Kabsch & Sander, 1983) to eliminate structures with loop regions
exceeding 50%. Following this, we categorized the structures based on their lengths. In particular,
for proteins with lengths ranging from 450 to 550 residues, we categorized them into the 500-
length category for statistical purposes. Similarly, for proteins ranging from 350 to 450 residues,
we grouped them into the 400-length category. Subsequently, for each set of proteins within every
length category, we de-duplicated using TMalign (Zhang & Skolnick, 2005) and randomly selected
50 proteins for evaluation.

Evaluation. We evaluate the ability of de novo long protein design of all the baselines and our
method from both perspectives of sequences and structures. In order to evaluate the designability
of the generated proteins, for backbone design methods, we used ProteinMPNN (Dauparas et al.,
2022) and ESMFold (Lin et al., 2022) to refold the generated protein structures, and evaluated the
model’s designability through two self-consistency metrics (scTM and scRMSD) over 100 gener-
ated proteins each on lengths {400, 500}.

We use two versions of evaluation protocols for backbone design methods: refold once (with “1-”
as the prefix of method name) and refold 8 times and select the best scRMSD/scTM to report and
calculate the related metrics (with “8-” as the prefix of method name). We consider two standards
for considering a generated protein is designable: scTM>0.5 and more stringent scRMSD<2.0 Å.
We report the ratio of designable proteins over all the generated samples as Des.* (scRMSD<2.0Å)
and Des. (scTM>0.5). We also evaluate the diversity and novelty of generated protein structures.
For diversity, we report the average pairwise TM-score of designable samples (scTM>0.5) among
50 generated samples. For measuring the novelty of a design, we identify the most similar known
structure to the designed protein within the Protein Data Bank (PDB) and record its TM-score. We
report an average of this value over designable samples among 50 generated samples as Novelty.
For co-design methods, we directly predict the structure of the generated sequence using ESMFold
(once) and compute all the above metrics based on the folded structure and generated structure. For
sequence design methods, we do not report the above metrics since no structure is generated. Note
that, for a method whose Des is lower than 0.04, we do not its diversity and novelty. To evaluate
the quality of the generated sequence, we report perplexity (ppl) from an autoregressive protein
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Figure 3: Left: scRMSD (Å) changes over the structure guidance coefficient. Right: scRMSD (Å)
of our approach with dual flows fine-tuned for different epochs. “Inverse” stands for the guidance
with the switched roles of FLOW-LQ and FLOW-HQ, i.e., using FLOW-HQ to calibrate FLOW-LQ.

language model (ProGen2 (Nijkamp et al., 2023)) to quantify if the patterns of generated sequences
lie in natural sequence distribution and report ESMFold predicted pLDDT scores for structural
plausibility. For backbone design methods, since no sequence is generated, we do not report these
two metrics. See more details in App. A.

4.2 MAIN RESULTS

The evaluation metrics on length-400 proteins of all the baselines and our method are reported in
Table. 1. Our method performs the best on scTM, scRMSD, Des.*, and Des. over all the meth-
ods. This demonstrates our hypothesis introduced in Sec. 3.2 and the effectiveness of contrastive
guidance. Notably, our dual flow approach outperforms its counterpart (also its base model) by a
significant margin in designability-related metrics. Our method shows similar diversity and novelty
to its counterpart, Multiflow, though these two metrics of our method slightly fall behind the other
methods. This also meets our expectation since classifier-free guidance for diffusion and flow mod-
els (Ho & Salimans, 2022; Zheng et al., 2023) also suffers from similar issues. Our methods also
show competetive performance in evaluation metrics related to sequence quality, which indicates
that our contrastive guidance in categorical distribution can effectively improve the plausibility of
the generated sequence. The results on length-500 proteins are reported in Table. 2. Many methods
totally fail under this setting. Our method still performs the best over all the methods, even though
FLOW-HQ and FLOW-LQ are not fine-tuned on length-500 proteins as introduced in Sec. 4.1. This
demonstrates the generalizability of our approach. See generated examples in App. B.

4.3 ABLATION STUDIES

We conduct ablation studies on the effects of the contrastive guidance coefficients λ on the per-
formance in terms of designability. In practice, for calibrating the probability flow on protein
sequences, in addition to this coefficient, we also introduce sampling temperature, a widely-used
coefficient in sequence generation to control the smoothness of a categorical distribution, to esti-
mated posterior in Eq. (19). Results of the effects of different coefficients of sequences / structures
contrastive guidance are shown in Fig. 2 and Fig. 3, respectively.

5 CONCLUSION

In this work, we introduced a contrastive guided sampling algorithm with dual multimodal flows
to sample both sequences and structures of highly designable proteins, effectively addressing the
challenges inherent in high-dimensional generative modeling of long proteins.
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A METRICS

TM score. The template modeling score or TM score serves as a metric for assessing the resem-
blance between two protein structures. The TM score indicates the similarity between two structures
by a score between (0, 1], with 1 denoting a complete match (hence, higher score indicate greater
similarity). TM score between two protein structures is defined by

TM score = max

[
1

Dnorm

Dcommon∑
i

1

1 + ( di

d0(Dtarget)2
)

]
, (21)

where Dtarget is the length of the amino acid sequence of the target protein, Dquery is the length of
the amino acid sequence of the template protein, and Dcommon is the number of residues that appear
in both the template and target structures. Dnorm := Dcommon for “altmscore”, Dnorm := Dtarget for
“qtmscore”, and Dnorm := Dtemplate for “ttmscore”. di is the distance between the ith pair of residues
in the template and target structures, and d0(Dtarget) = 1.24 3

√
Dtarget − 15 − 1.8 is a distance scale

that normalizes distances.

RMSD. The root mean square deviation of atomic positions, commonly known as RMSD, quanti-
fies the average distance between atoms (typically backbone atoms) of aligned molecules. When
examining globular protein conformations, researchers typically assess three-dimensional structural
similarity by calculating the RMSD of the Cα atomic coordinates following optimal rigid body
superposition.

RMSD =

√√√√ 1

D

D∑
i

δ2i , (22)

where δi is the distance between atom i and either a reference structure or the mean position of the
N equivalent atoms. This is often calculated for the backbone heavy atoms C, N , O, and Cα or
sometimes just the Cα atoms.

B VISUALIZATION OF GENERATED EXAMPLES

Length: 400 
scRMSD: 1.10 

Length: 500 
scRMSD: 1.27 

Length: 400 
scRMSD: 1.24 

Length: 500 
scRMSD: 1.66 

Length: 400 
scRMSD: 1.35 

Length: 500 
scRMSD: 1.36 

Length: 400 
scRMSD: 1.03 

Length: 500 
scRMSD: 1.71 

Length: 400 
scRMSD: 1.49 

Length: 500 
scRMSD: 1.26 

Figure 4: Examples of generated structures in green compared to refolded structures (generated se-
quence → ESMFold) in grey. Samples with scRMSD < 2 Å for lengths 400 (top) and 500 (bottom).
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