
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DUAL FLOWS WITH CONTRASTIVE GUIDANCE
FOR GENERATING HIGHLY DESIGNABLE PROTEINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep generative models have achieved substantial success in protein design. A
prevalent approach for de novo protein design involves initially designing a pro-
tein backbone structure using deep generative models, such as diffusion and flow
models, followed by using a separate inverse folding model to design the corre-
ponding sequence. Recently, co-design methods, which aim to jointly generate the
structure and sequence of a protein, have attracted considerable attention. Despite
of this, co-designing sequences and structures of long proteins remains challeng-
ing. The complexity of this high-dimensional multimodal generative modeling
makes sampling of diffusion and flow models prone to accumulated errors, of-
ten leading to non-designable regions. To tackle this challenge, we introduce a
contrastive guided sampling algorithm with dual multimodal flows to sample both
sequences and structures of highly designable proteins. The contrastive guidance
uses the lower-quality flow to help the higher-quality flow avoid non-designable
regions by gently steering it during sampling. Our method achieves designabil-
ity of 80% for length-400 proteins and 37% for length-500 proteins, significantly
outperforming previous approaches.

1 INTRODUCTION

Proteins are fundamental molecules essential to biology. The ability to design novel proteins (Huang
et al., 2016) presents a promising pathway for the development of advanced therapeutics (Silva et al.,
2019), biomaterials (King et al., 2012), biocatalysis (Röthlisberger et al., 2008), among other appli-
cations. Protein engineering has traditionally relied on significant expertise and intensive experi-
mental efforts. This impedes the advancement of novel biotechnologies. Computational approaches
incorporating deep learning have transformed the paradigm, markedly accelerating the process of de
novo protein design (Ding et al., 2022).

Noticeably, deep generative models, such as diffusion (Ho et al., 2020; Song et al., 2021) and flow
(Lipman et al., 2022; Liu et al., 2022) models, have been extensively utilized in de novo protein de-
sign, yielding promising results. Following the fundamental biological principle that structure deter-
mines function, numerous efforts have been focused on generating protein backbone structures, i.e.,
protein backbone design. Various protein presentations have been explored in this field, including
Cα only (Trippe et al., 2022), backbone torsion angles (Wu et al., 2024), and residue frame repre-
sentation (Yim et al., 2023b; Lin & Alquraishi, 2023) which is adopted from AlphaFold2 (Jumper
et al., 2021) proposed for protein structure prediction. Among these, residue frame representation
has demonstrated the best performance (Watson et al., 2023) and has been adopted in recent stud-
ies of protein backbone design. Due to the lengthy reverse generative process of diffusion models
causing slow inference speed, researchers have shifted to flow models for faster and higher-quality
protein backbone generation (Yim et al., 2023a; Bose et al., 2023). Given these well-developed pro-
tein backbone design models along with inverse folding models (Dauparas et al., 2022; Hsu et al.,
2022), de novo protein design can be achieved by initially constructing a protein backbone structure
and subsequently designing sequences based on this structure. The inverse folding models (Dau-
paras et al., 2022) and folding models (Jumper et al., 2021; Lin et al., 2022) can be utilized together
as tools for in silico evaluation of protein backbone design by comparing the generated structures and
the refolded ones. Another line of research focuses on protein sequence generation, which mod-
els the distribution of protein sequences while ignoring structures. To bypass the complexities of
protein design pipelines with multiple models and more effectively capture the intricate relationship

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

between protein sequences and structures, some researchers have introduced the concept of pro-
tein sequence-structure co-design (Shi et al., 2022; Campbell et al., 2024), which aims to jointly
generate continuous protein structures alongside corresponding discrete amino acid sequences. Rep-
resentative works include: Protein Generator (Lisanza et al., 2023; 2024), a sequence space diffusion
model based on RoseTTAfold (Baek et al., 2021) that simultaneously generates protein sequences
and structures; ProtPardelle (Chu et al., 2024), an all-atom Euclidean diffusion model paired with
an iterative sequence prediction mechanism; Multiflow (Campbell et al., 2024), a multimodal flow
model; ESM3 (Hayes et al., 2024), a frontier multimodal generative language model that reasons
over the sequence, structure, and function of proteins. These works introduce a new paradigm and
highlight a promising direction for future research.

Despite significant achievements de novo protein design based on generative models has achieved,
designing long proteins remains challenging. This complexity arises from the vast search space and
the inherently challenging nature of high-dimensional generative modeling, as seen in other areas
such as image and text generation. Researchers in fields like image and text generation attempt
to overcome this challenge by scaling up both the training dataset size and the model parameters
(Achiam et al., 2023; Rombach et al., 2022). Acquiring large-scale, high-quality protein structure
datasets is challenging, resulting in a lack of effective solutions to the high-dimensional challenges in
the field of protein design. The performance of diffusion and flow models are attributed to sampling
errors (Xu et al., 2023), which mainly come from two aspects: discretization errors of SDE/ODE
samplers and the approximation error of the learned neural network relative to the ground truth drift
(e.g., the score function in diffusion models and the vector field in flow models). The errors can be
accumulated and further amplified along the sampling process (Li & van der Schaar, 2023). Under
the shadow of the aforementioned issues, even the most advanced protein design models are not
consistently able to generate high-quality proteins.

We assume that it is not possible to perfectly learn the joint distribution of protein sequence and
structure from limited high-quality data due to its intricate, high-dimensional nature and complex
structure. By aiming to improve protein sequence-structure co-design from the perspective of sam-
pling rather than training, we propose an approach based on dual flows with contrastive guidance
for generating high-designable proteins. This approach calibrates the drift (i.e., vector field) of one
flow with that of another during the sampling process. More specifically, we initially pretrain a mul-
timodal flow model following Campbell et al. (2024) and slightly fine-tune it on self-synthesized
data and selective self-synthesized data to obtain two flows differing in quality. Note that neither
of the dual flows is perfect. Leveraging the contrast of the dual flows, we can calibrate the vector
field of higher-quality flow by steering it away from the regions of non-designable samples pointed
out by the lower-quality flow. We provide both theoretical (albeit non-formal) justification and intu-
itive understanding of our work. We implement the contrastive guidance on Euclidean space, SO(3)
manifold, and categorical probability space for both the sequences and structures of proteins. With
all these together, our method achieves designability of 80% for length-400 proteins and 37% for
length-500 proteins, outperforming previous approaches by a significant margin.

2 PRELIMINARIES

In this section, we discuss the preliminary information about flow matching for modeling both con-
tinuous and discrete variables, which will be used in our method.

In flow matching (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022), we con-
sider a predefined marginal probability path pt that interpolates prior distribution p and data distri-
bution q, i.e., p0 = p and p1 = q, to train a generative model that transports a source sample x0 ∼ p
to a target sample x1 ∼ q. We use a conditional probability path pt(x|x1) with p0(·|x1) ≡ p(·)
and p1(·|x1) ≈ δ(x1) to construct the above pt by pt(x) =

∫
pt(x|x1)q(x1)dx1. The above idea

of using conditional probability to construct the marginal probability path and train the generative
model is utilized in both versions for modeling continuous and discrete variables.

For modeling continuous variables, given a simple implementation of pt(x|x1) (e.g., Gaussian
paths), we can easily derive the conditional vector field ut(x|x1) that satisfies the continuity equa-
tion ṗt(x|x1) + divx[pt(x|x1)ut(x|x1)] = 0, which means ut(·|x1) generates pt(·|x1). The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

marginal vector field can be defined as

ut(x) =

∫
ut(x|x1)

pt(x|x1)p(x1)

pt(x)
dx1. (1)

The key insight of flow matching is that ut(x) can be proved to generate pt(x), i.e., satisfying the
continuity equation ṗt(x) + divx[pt(x)ut(x)] = 0. Therefore, conditional flow-matching (CFM)
loss can be utilized to train a time-dependent neural network vθ as follows:

LCFM = Et,p(x1),pt(x|x1)∥vθ(x, t)− ut(x|x1)∥2. (2)

We can generate samples by solving the Ordinary Differential Equation (ODE) as dxt

dt = vθ(xt, t).

For modeling discrete variables, variants of flow matching are proposed, such as Dirichlet Flow
Matching (Stark et al., 2024), Discrete Flow Matching (Campbell et al., 2024; Gat et al., 2024) and
Fisher Flow Matching (Davis et al., 2024; Cheng et al., 2024). Here we follow the framework of
Discrete Flow Matching which is based on Continuous-Time discrete Markov Chain (CTMC). Here
x ∈ {1, . . . , S}D is a random discrete variable, e.g., a length-D sequence where each element takes
on one of S states, and we denote j as a specific state of x.

We first introduce the concept of rate matrix Rt ∈ RS×S , which plays a similar role to the marginal
vector field in the continuous case. The probability that xt jumps to a different state j is Rt(xt, j)dt
after a infinitesimal time step dt is R(xt, j)dt, i.e., pt+dt(j|xt) = δ{xt, j} + Rt(xt, j)dt where
δ{i, j} is an element-wise Kronecker delta which 1 in dimension d when id = jd and 0 other-
wise. If a rate matrix Rt and a probability path pt satisfy the Kolmogorov equation ∂tpt(xt) =∑

j ̸=xt
Rt(j,xt)pt(j) −

∑
j ̸=xt

Rt(xt, j)pt(xt) (analogous to continuity equation in the continu-
ous case), we say the rate matrix Rt generates pt(x).

In Discrete Flow Matching, we also use the conditional probability path to construct the marginal one
as pt(xt) := Ep(x1)[pt(xt|x1)]. We define Rt(xt, j|x1) as a conditional rate matrix that generates
pt(xt|x1). Notably, Rt(xt, j|x1) can usually be in a simple formula. For example, it can be that
Rt(xt, j|x1) := δ{x1, j}δ{xt,M}/(1 − t) where M is the mask token. It can be proved that the
marginal rate matrix Rt(xt, j) := Ep(x1|xt)[Rt(xt, j|x1)] can generate the marginal probaility path
pt(xt) which we have defined above, where pt(x1|xt) = p(xt|x1)q(x1)/pt(xt). Since the posterior
pt(x1|xt) is intractable, we can use a neural network pθt (x1|xt) to approximate it. And we denote
Rθ

t (xt, ·) := Epθ
t (x1|xt)[Rt(xt, ·|x1)]. Then we can generate a sample by iteratively sampling from

the process as

pt+dt(xt+dt|xt) = δ{xt+dt,xt}+Rθ
t (xt,xt+dt)dt+ o(dt). (3)

3 METHOD

In this section, we will present our method as illustrated in Fig. 1. In Sec. 3.1, we introduce the
pretraining procedure of the multimodal flow model for protein co-design following Campbell et al.
(2024). In Sec. 3.2, we offer both theoretical (albeit non-formal) justification and an intuitive under-
standing of the motivation behind constructing the dual flows. Finally, in Sec. 3.3, we introduce the
specific implementation of the proposed contrastive guidance for flow matching on Euclidean space,
SO(3) manifold, and categorical probability.

3.1 MULTIMODAL FLOW MATCHING FOR PROTEIN DESIGN

We focus on designing both the sequence and structure of proteins. Following Yim et al. (2023b), the
protein structure is referred to as the backbone atomic coordinates of each residue and is represented
as elements of SE(3) to capture the rigidity of the local frames along the backbone.

We follow the notation in Campbell et al. (2024). Specifically, a protein with D residues is repre-
sented as T = {T d}Dd=1, where T d = (xd, rd, ad) is the residue state of index d. Here x ∈ R3 is
the translation of the residue’s Cα atom, r ∈ SO(3) is the rotation of the residue’s local frame with
respect to the global reference frame, and a ∈ {1, . . . , 20} ∪ {M} is one of 20 amino acids or the
mask state M . Thus, the goal of protein sequence-structure co-design can be then formalized as a
generative task that models the distribution q(T).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Flow-LQ

Flow-HQ

Vector field calibration

Rate matrix calibration scRMSD = 0.939

scRMSD = 1.354

Spherical field calibration

Pretrained
flow model

Noise distribution

Protein distribution

sampling Euler steps
Euclidean x

SO(3) r

Discrete a

p(a1|at)

p(a1|at)

p(a1|at)

slightly
fine-tune

slightly
fine-tune

Real data All synthetic data

High-quality
synthetic data

x1

xt

x1
x1

...
A G Y K

...
A G Y K

...
A G Y K

r1

r1

r1

rt

S2

R3

Figure 1: Overview of our method. We initially pretrain a multimodal flow model on real data
for protein sequence-structure co-design. We then slightly fine-tune the base flow model on self-
synthesized data and selective high-quality self-synthesized data for a few epochs separately to de-
rive two models, named FLOW-LQ and FLOW-HQ. Due to the contrast of the dual flows, the vector
fields and rate matrix of FLOW-HQ can be calibrated by being pushed away from the vector fields of
FLOW-LQ which are more likely to point towards regions of non-designable samples. The sequence
and structure of the protein sampled by our method are highly consistent.

We build our base flow model as introduced by Campbell et al. (2024). We first define the conditional
probability path introduced in Sec. 2 as pt(Tt|T1) :=

∏D
d=1 pt(x

d
t |xd

1)pt(r
d
t |rd1)pt(adt |ad1).

pt(x
d
t |xd

1) and pt(r
d
t |rd1) are implicitly defined by the sampling procedure: xd

t = txd
1+(1−t)xd

0 and
rdt = exprd0 (t logrd0 (r

d
1)) where xd

0 ∼ N (0, I) rd0 ∼ USO(3). USO(3) is the uniform distribution over
SO(3). exp and log are exponential and logarithm maps. rdt can be seen as the linear interpolant
along the geodesic path connection rd0 and rd1 (Chen & Lipman, 2023). pt(a

d
t |ad1) is defined as

Cat(tδ{ad1, adt }+(1− t)δ{M,adt }), which means that we linearly interpolate between a probability
mass concentrated entirely on the mask token and the data distribution.

With the above conditional probability path, we train a neural network to approximate the vector field
on Euclidean space and SO(3) manifold for protein structures and rate matrix for protein sequences.
In practice, we use a neural network parameterized with θ to estimate the vector fields and rate
matrix as:

v̂dx(Tt)=
x̂d
1(Tt)− xd

t

1− t
, v̂dr (T)=

logrdt (r̂
d
1(Tt))

1− t
, R̂d

t (Tt, j
d)=

p̂(ad1 = jd|Tt)

1− t
δ{adt ,M}, (4)

where x̂d
1(Tt), r̂

d
1(Tt), p̂(a

d
1 = jd|Tt) are translation, rotation, and amino acid type of d-th residue

at time t = 1 predicted by the neural network θ given the noisy protein Tt and time t as input.

The overall training objective can be formalized with as follows:

L = Et,T1,Tt

[
D∑

d=1

[
∥x̂1(Tt)− xd

1∥2

1− t
+

∥ logrdt (r̂
d
1(Tt))− logrdt (r̂

d
1)∥2

1− t
− log p̂(ad1|Tt)

]]
, (5)

where t ∼ U(0, 1),T1 ∼ p(T),Tt ∼ pt(Tt|T1). Note that there are slight adjustments on the
coefficients based on time t which we omit related details of derivation here for brevity.

3.2 MOTIVATION AND DERIVATION OF DUAL FLOWS

While the base multimodal flow model is powerful in modeling distributions over short proteins,
it struggles with generating long proteins effectively. The reasons are multifaceted: approximation
errors (i.e., model estimation errors) and discretization errors of the ODE solver (i.e., the sampler),
among others (Xu et al., 2023). These errors accumulate throughout the sampling process. Due to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the high-dimensional nature of the problem when generating long proteins, these errors can further
deteriorate, potentially causing the sampling trajectories to become lost in the vast probability space
and ultimately leading to regions of non-designable samples.

The designable proteins have intrinsic properties and correlation of structures and sequences, which
the neural network cannot easily and perfectly learn. Thus, we properly assume that the flow models
that correspond to real data distribution q(T) are always unavailable.

We further assume that the synthesized proteins genrated by the pretrained base model as introduced
in Sec. 3.1 follows the distribution p̃(T) = p(T) exp(−ζ(T)), where ζ(·) is a function for which
we do not know the explicit formula. Note that the above assumption implies certain constraints on
ζ(·) since p̃(T) is self-normalized, i.e.,

∫
p(T) exp(−ζ(T)) = 1, thereby satisfying the property

required to be a probability density function.

We curate two small datasets using the self-synthesized proteins generated by the base flow model.
Specifically, we use the pretrained base model to generate a small set consisting of both designable
and non-designable proteins as the first dataset and then select the designable proteins from the
first dataset to construct the second dataset. We slightly fine-tune the pretrained base model on
the two datasets separately to derive the dual flow models, denoted as FLOW-LQ (low quality)
and FLOW-HQ (high quality). We denote the induced distribution by FLOW-LQ and FLOW-HQ
as pL(T) and pH(T), respectively. Here we assume pL(T) = p(T) exp(−ζL(T)) and pH(T) =
p(T) exp(−ζH(T)). Since training generative models on self-synthesized data usually leads to a
decrease in quality (Alemohammad et al., 2023), pL and pH show worse performance in expectation
than native proteins in terms of designability. Nonetheless, due to the the fact that the above two self-
synthesized datasets explicitly differ in data quality, we could safely assume that, for any designable
protein (denoted as TH), we have that pH(TH) > pL(TH), and for any non-designable protein
(denoted as TL), we have that pH(TL) < pL(TL). Although we have no knowledge about the
explicit formula about ζL(·) and ζH(·), the above claims still indicate that ζL(TH) > ζH(TH) and
ζL(TL) < ζH(TL).

This inspires us to sample highly designable proteins utilizing the difference between these two
flows. Our goal is to sample following the probability defined by

p̄(T) ∝ pH(T)

[
pH(T)

pL(T)

]λ
∝ p(T)

exp
(
− (1 + λ)ζH(T)

)
exp(−λζL(T))

, (6)

where λ > 0 is a constant hyperparameter.

It is straightforward to prove that p̄(TH) > p(TH) and p̄(TL) < p(TL), which means that the
calibrated target distribution p̄ puts more (resp. less) probability mass on designable (resp. non-
designable) samples than the real-data underlying distribution p. Therefore, sampling according to
Eq. (6) leads to highly designable proteins, even when all the models we utilize perform worse than
the ideal generator corresponds to the ground-truth data distribution, which is hardly available in
practice due to the challenges we have discussed at the beginning of this subsection.

3.3 CONTRASTIVE GUIDANCE

We will show how to sample according to the distribution in Eq. (6). We start with the flow over
Euclidean space. Song et al. (2021) have shown the relationship between the probability ODE flows
(whose drift is vector field) and the score-based generative models (whose drift is score function)
by Kolmogorov’s forward equation (Fokker-Planck equation) (Øksendal, 2003). Zheng et al. (2023)
have also show the relationship between vector fields and score function. In our case, similarly, we
can also relate the estimated vector field over Euclidean space to the underlying score function

vdx(Tt) =
1

t
xd
t +

1− t

t
∇xd

t
log pt(Tt). (7)

We define the calibrated marginal probability path at time t as

p̄t(Tt) ∝ pH,t(Tt)[pH,t(Tt)/pL,t(Tt)]
λ, (8)

where pH,t (resp. pL,t) corresponds to the marginal probability path induced by FLOW-HQ (resp.
FLOW-LQ) at time t.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

By applying the score function to both sides in Eq. (8), we have

∇xd
t
log p̄t(Tt) = (1 + λ)∇xd

t
log p̄H,t(Tt)− λ∇xd

t
log p̄L,t(Tt). (9)

We define the calibrated vector field as

v̄x(Tt) := (1 + λ)vH
x (Tt)− λvL

x(Tt), (10)

where vH
x (resp. vL

x) is the vector field of FLOW-HQ (resp. FLOW-LQ), and we ignore residue index
d for brevity without ambiguity.

By plugging Eq. (7) (the linearity relationship between the vector field and the score function of
the underlying distribution) into both the left and right hand side, we can derive that v̄x(Tt) gen-
erate the marginal probability p̄t(Tt), which justifies that we can use the calibrated vector field to
approximately sample from the calibrated target distribution.

Notably, Eq. (10) resembles the formula of classifier-free diffusion guidance (Ho & Salimans, 2022).
Likewise, Eq. (10) also holds straightforward meanings. Standing on a data point Tt, the vector field
of FLOW-HQ can be calibrated by adjusting its direction away from the vector field of FLOW-LQ,
because the latter points more to the regions of non-designable samples. The behind mechanism
motivates us to name the method as contrastive guidance.

In practice, we calibrate the estimated “clean” samples (the predicted x̂1) instead of directly on
vector fields. Specifically, by plugging Eq. (4) into Eq. (10), we can easily derive that

v̄x(Tt) =
(1 + λ)x̂H

1 (Tt)− λx̂L
1(Tt)− xt

1− t
, (11)

where x̂H
1 (Tt) (resp. x̂L

1(Tt)) is the frame translation of the predicted “clean” sample given the
noisy protein Tt. Eq. (11) implies that calibrating the vector fields of FLOW-HQ and FLOW-LQ as
Eq. (10) is equivalent to directly calibrating the predicted “clean” sample as

x̄1(Tt) := (1 + λ)x̂H
1 (Tt)− λx̂L

1(Tt) = (1 + λ)(x̂H
1 (Tt)− x̂L

1(Tt)) + x̂L
1(Tt). (12)

We follow the above intuition to calibrate the vector field for the rotation of residue frames. There-
fore, we can extend Eq. (12) from Euclidean space to SO(3) manifold and define

r̄1(Tt) := expr̂L
1(Tt)

(
(1 + λ) logr̂L

1(Tt)

(
r̂H
1 (Tt)

))
and v̄r(T) :=

logrt(r̄1(Tt))

1− t
. (13)

where r̂H
1 (Tt) (resp. r̂L

1(Tt)) is the frame rotation of the predicted “clean” sample given the noisy
protein Tt. The geometric understanding behind Eq. (13) is that FLOW-LQ subtly pushes FLOW-
HQ away along the geodesic path connecting their predicted r̂1. We use v̄r(T) defined in Eq. (13)
as the calibrated vector field on SO(3) manifold.

The contrastive guidance for the discrete case (i.e., the sequence of the protein) is slightly different
from the continuous case (i.e., the structure of the protein) due to the lack of definition of vector
field and score function as in Eq. (7). However, as the vector field and score function can describe
how the sample or marginal probability changes as time evolves, we turn to the transition probability
with similar meanings in CTMC and define the target transition probability that we want to sample
from as follows:

p̄(at+dt|Tt) ∝ pH(at+dt|Tt)[pH(at+dt|Tt)/pL(at+dt|Tt)]
λ. (14)

For brevity and clarity, we rewrite the above equation as follows:

p̄(at+dt= i|at= j) ∝ pH(at+dt= i|at=j)[pH(at+dt= i|at=j)/pL(at+dt= i|at=j)]λ, (15)

where i, j are specific amino acid types. We omit the residue index d and the complete context,
i.e., the noisy residues Tt, though we indeed provide them with the neural network as input. Since
Eq. (15) resembles the predictor-free guidance proposed by Nisonoff et al. (2024), we can leverage
their theoretical results and define the calibrated rate matrix as follows:

R̄t(j, i) = RH,t(j, i)
1+λRL,t(j, i)

−λ, for i ̸= j, (16)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where RH,t(i, j) is transition rate from state i to state j at time t estimated by FLOW-HQ. We have
R̄t(i, i) = −

∑
j ̸=i R̄t(i, j) by the definition of the rate matrix.

In our case, since the conditional rate matrix describes a masking process, i.e,

Rt(at, j|a1) =
δ{a1,M}δ{at,M}

1− t
. (17)

Thus, we have

R̂t(at, j) = Ep̂(a1=j|at)[Rt(at, j|a1 = j)] =
p̂(a1 = j|at)

1− t
δ{at,M}. (18)

It is trivial to verify that the constraint induced by the definition of rate matrix is automatically
satisfied, i.e.,

∑
j R̂t(at, j) ≡ 1 for all at. So we calibrate the predicted posterior in an equivalent

way to Eq. (16) as follows:

p̄(a1 = j|at) ∝ p̂H(a1 = j|at)1+λp̂L(a1 = j|at)−λ, (19)

which can be efficiently computed because we only consider 20 types of amino acids. Finally, we
arrive at the calibrated transition probability p̄(at+dt|at) expressed with

p̄(at+dt|at) =
∑

j p̄(a1 = j|at)p(at+dt|a1 = j, at). (20)

Therefore, at each Euler step, to sample at+dt from the distribution p̄(at+dt|at), we can sample
a1, at+dt form the joint distribution p̄(a1|at)p(at+dt|a1, at), and keep only the at+dt part of this
joint sample. In other words, from time t to t + dt, the operation that first unmasks all tokens
and then random mask parts of them is equivalent to the operation that randomly selects the same
ratio of tokens to unmask. A benefit that we calibrated on the predicted posterior as in Eq. (19)
instead of rate matrix or transition probability brings is that we can seamlessly introduce purity
sampling scheme (Tang et al., 2022) to the sampling process with contrastive guidance. Specifically,
from time t to t + dt, we select residues with the top-k values of p̄(a1 = j|at) to unmask, where
k = Bin(nt,

dt
1−t), Bin(·, ·) is a binomial distribution, and nt is the number of mask tokens. The

purity sampling considers the confidence of the model prediction and has a great positive impact on
performance empirically.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. We strictly follow the settings in Campbell et al. (2024) to train our base flow model. The
training data used in Campbell et al. (2024) includes the data used in Yim et al. (2023b) for a total of
18,684 proteins with length 60-384 (which are originally from Protein Data Bank (PDB) (Berman
et al., 2000)) and extra 4,179 examples which are distilled from ProteinMPNN (Dauparas et al.,
2022). The details about the distillation dataset can be found in Campbell et al. (2024). We use
the pretraiend base flow model to generate around 6,000 proteins with length 400 as the fine-tuning
dataset for FLOW-LQ. And we select the designable proteins from the 6,000 proteins, resulting in
a smaller but higher-quality dataset, which is used for fine-tuning FLOW-HQ. Both FLOW-HQ and
FLOW-LQ are fine-tuned for 3 epochs, which takes less than 1 hour on 4 A100 Nvidia GPUs using
the AdamW optimizer (Loshchilov, 2017) with learning rate 0.0001. The fine-tuning settings (e.g.,
optimizer configuration) are inherited from the training settings of Multiflow (Campbell et al., 2024)
and are not specifically tuned for out setting.

Baselines. To comprehensively evaluate the ability for de novo protein design, we compare our
method with three types of baselines: backbone design methods, sequence design methods, and
co-design methods. The backbone design methods include: RFdiffusion (Watson et al., 2023), a
model derived from fine-tuning the RoseTTAFold structure prediction network on protein struc-
ture denoising tasks; Chroma (Ingraham et al., 2023), which introduces a diffusion process that
upholds the conformational statistics of polymer ensembles and employs an efficient graph neu-
ral network for feature extraction; FrameDiff (Yim et al., 2023b) and Genie (Lin & Alquraishi,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Summary of evaluation metrics on length-400 protein design.

length 400

scTM ↑ scRMSD (Å) ↓ Des.* ↑ Des. ↑ ppl ↓ pLDDT ↑ Diversity ↓ Novelty ↓

Native PDBs 0.84 ± 0.20 5.56 ± 7.68 0.53 0.91 7.82 ± 5.03 77.72 ± 13.65 0.27 ± 0.02 N/A

1-RFdiffusion 0.63 ± 0.26 10.49 ± 7.62 0.22 0.64 N/A N/A 0.34 ± 0.02 0.79 ± 0.05
1-FrameFlow 0.55 ± 0.24 14.55 ± 10.67 0.10 0.53 N/A N/A 0.32 ± 0.02 0.79 ± 0.05
1-Chroma 0.50 ± 0.16 14.44 ± 5.85 0.00 0.35 N/A N/A 0.37 ± 0.04 0.77 ± 0.06
1-FrameDiff 0.61 ± 0.24 12.82 ± 12.25 0.03 0.68 N/A N/A 0.49 ± 0.06 0.77 ± 0.04
1-FoldFlow-SFM 0.34 ± 0.09 20.31 ± 7.10 0.00 0.04 N/A N/A 0.35 ± 0.00 0.72 ± 0.01
1-FoldFlow-Base 0.31 ± 0.08 23.07 ± 8.23 0.00 0.01 N/A N/A N/A N/A
1-FoldFlow-OT 0.34 ± 0.10 19.92 ± 6.72 0.00 0.07 N/A N/A 0.35 ± 0.03 0.70 ± 0.08
1-Genie 0.21 ± 0.02 30.02 ± 4.00 0.00 0.00 N/A N/A N/A N/A

8-RFdiffusion 0.86 ± 0.15 3.66 ± 3.78 0.48 0.96 N/A N/A 0.35 ± 0.02 0.80 ± 0.05
8-FrameFlow 0.76 ± 0.19 6.12 ± 4.94 0.30 0.89 N/A N/A 0.32 ± 0.02 0.77 ± 0.05
8-Chroma 0.73 ± 0.15 6.51 ± 4.47 0.09 0.91 N/A N/A 0.32 ± 0.03 0.76 ± 0.05
8-FrameDiff 0.75 ± 0.17 6.09 ± 4.70 0.16 0.90 N/A N/A 0.48 ± 0.06 0.76 ± 0.04
8-FoldFlow-SFM 0.42 ± 0.08 15.02 ± 3.14 0.00 0.12 N/A N/A 0.36 ± 0.04 0.75 ± 0.02
8-FoldFlow-Base 0.39 ± 0.07 16.35 ± 3.02 0.00 0.06 N/A N/A 0.37 ± 0.01 0.74 ± 0.03
8-FoldFlow-OT 0.43 ± 0.09 14.75 ± 3.08 0.00 0.23 N/A N/A 0.35 ± 0.03 0.74 ± 0.06
8-Genie 0.24 ± 0.02 24.85 ± 1.31 0.00 0.00 N/A N/A N/A N/A

ProGen2 N/A N/A N/A N/A 4.51 ± 3.57 57.80 ± 20.92 N/A N/A
EvoDiff N/A N/A N/A N/A 16.78 ± 1.53 33.75 ± 11.27 N/A N/A
DPLM N/A N/A N/A N/A 3.50 ± 1.45 88.12 ± 8.98 N/A N/A

ProteinGenerator 0.78 ± 0.21 11.85 ± 7.92 0.05 0.83 7.38 ± 1.31 61.52 ± 15.12 0.48 ± 0.02 0.81 ± 0.04
ProtPardelle 0.50 ± 0.13 34.22 ± 13.21 0.00 0.42 5.57 ± 1.08 43.11 ± 10.94 0.35 ± 0.06 0.80 ± 0.05
Multiflow 0.93 ± 0.07 2.71 ± 3.65 0.68 0.98 7.53 ± 1.77 80.18 ± 8.94 0.37 ± 0.04 0.82 ± 0.04
ESM3 0.64 ± 0.27 33.01 ± 30.22 0.15 0.53 6.78 ± 2.98 69.88 ± 17.94 0.28 ± 0.06 0.89 ± 0.08
Ours 0.95 ± 0.05 1.99 ± 2.14 0.80 0.99 6.38 ± 1.14 80.92 ± 5.87 0.44 ± 0.04 0.82 ± 0.05

2023), which are based on diffusion and have demonstrated commendable generative capabili-
ties; FrameFlow (Yim et al., 2023a) and FoldFlow (Bose et al., 2023), which engage in pro-
tein backbone generation through flow matching. Note that there are three versions of Fold-
Flow: FoldFlow-Base which utilizes standard flow matching similar to FrameFlow; FoldFlow-
SFM which extends to a stochastic flow; FoldFlow-OT which uses optimal transport data cou-
pling instead of independent data coupling for better training of flow matching. Notably, the
inference steps of the above flow models are generally fewer than those of diffusion models.

sequence guidance coefficient

0.250.500.751.001.251.501.752.00 sam
pli

ng
 te

mpe
rat

ure

0.5
1.0

1.5
2.0

2.5
3.0

3.5
4.0

sc
RM

SD
 (Å

)

2.2

2.4

2.6

2.8

3.0

3.2

2.2

2.4

2.6

2.8

3.0

Figure 2: Effects of different sequence guid-
ance coefficients and sampling temperatures on
scRMSD (Å).

The sequence design methods include: Pro-
Gen2 (Nijkamp et al., 2023) which is an
autoregressive protein language model (we
use its 700M version); EvoDiff (Alam-
dari et al., 2023) which is designed as an
order-agnostic autoregressive diffusion model;
DPLM (Wang et al., 2024) which employs a
diffusion language model for sequence gener-
ation. The co-design methods include: Pro-
teinGenerator (Lisanza et al., 2023; 2024),
a sequence space diffusion model based on
RoseTTAfold (Baek et al., 2021) that can sam-
ple from the joint distribution of protein se-
quences and structures; ProtPardelle (Chu
et al., 2024), an all-atom Euclidean diffusion
model with an iterative sequence prediction
mechanism; Multiflow (Campbell et al., 2024),
a multimodal flow model; ESM3 (Hayes et al.,
2024), a generative masked language models
that model both sequence and tokenized struc-
tures. Additionally, to facilitate comparison with natural proteins (denoted as Native PDBs in our
tables), we filtered Protein Data Bank (PDB) to construct a standardized comparison dataset. Similar

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Summary of evaluation metrics on length-500 protein design.

length 500

scTM ↑ scRMSD (Å) ↓ Des.* ↑ Des. ↑ ppl ↓ pLDDT ↑ Diversity ↓ Novelty ↓

Native PDBs 0.84 ± 0.19 5.47 ± 7.24 0.50 0.94 6.70 ± 4.47 77.17 ± 13.93 0.26 ± 0.02 N/A

1-RFdiffusion 0.57 ± 0.23 13.41 ± 7.61 0.12 0.59 N/A N/A 0.34 ± 0.03 0.76 ± 0.05
1-FrameFlow 0.47 ± 0.19 18.94 ± 12.69 0.04 0.31 N/A N/A 0.31 ± 0.02 0.77 ± 0.06
1-Chroma 0.47 ± 0.17 16.90 ± 6.57 0.01 0.28 N/A N/A 0.32 ± 0.01 0.75 ± 0.06
1-FrameDiff 0.42 ± 0.23 25.38 ± 20.28 0.00 0.36 N/A N/A 0.49 ± 0.05 0.75 ± 0.04
1-FoldFlow-SFM 0.31 ± 0.07 25.78 ± 11.35 0.00 0.00 N/A N/A N/A N/A
1-FoldFlow-Base 0.29 ± 0.07 25.90 ± 12.10 0.00 0.00 N/A N/A N/A N/A
1-FoldFlow-OT 0.30 ± 0.07 24.39 ± 9.62 0.00 0.01 N/A N/A N/A N/A
1-Genie 0.21 ± 0.02 31.44 ± 3.27 0.00 0.00 N/A N/A N/A N/A

8-RFdiffusion 0.76 ± 0.19 6.71 ± 5.54 0.29 0.87 N/A N/A 0.33 ± 0.02 0.76 ± 0.04
8-FrameFlow 0.66 ± 0.19 9.78 ± 5.83 0.15 0.76 N/A N/A 0.32 ± 0.02 0.75 ± 0.05
8-Chroma 0.71 ± 0.18 8.25 ± 5.73 0.01 0.81 N/A N/A 0.29 ± 0.01 0.76 ± 0.05
8-FrameDiff 0.57 ± 0.23 15.61 ± 15.53 0.01 0.66 N/A N/A 0.40 ± 0.06 0.74 ± 0.04
8-FoldFlow-SFM 0.37 ± 0.05 18.39 ± 2.97 0.00 0.02 N/A N/A N/A N/A
8-FoldFlow-Base 0.37 ± 0.05 18.37 ± 3.24 0.00 0.02 N/A N/A N/A N/A
8-FoldFlow-OT 0.37 ± 0.06 17.66 ± 2.70 0.00 0.02 N/A N/A N/A N/A
8-Genie 0.24 ± 0.01 26.84 ± 1.61 0.00 0.00 N/A N/A N/A N/A

ProGen2 N/A N/A N/A N/A 4.27 ± 3.60 54.30 ± 18.79 N/A N/A
EvoDiff N/A N/A N/A N/A 16.51 ± 3.82 32.94 ± 9.76 N/A N/A
DPLM N/A N/A N/A N/A 3.33 ± 1.80 82.57 ± 12.53 N/A N/A

ProteinGenerator 0.41 ± 0.19 33.91 ± 15.10 0.00 0.19 7.07 ± 1.96 44.22 ± 8.72 0.45 ± 0.03 0.80 ± 0.04
ProtPardelle 0.41 ± 0.10 41.24 ± 10.85 0.00 0.23 4.83 ± 0.80 36.62 ± 7.34 0.34 ± 0.03 0.76 ± 0.05
Multiflow 0.83 ± 0.15 8.48 ± 7.02 0.24 0.92 6.95 ± 1.46 69.73 ± 10.61 0.35 ± 0.02 0.79 ± 0.04
ESM3 0.57 ± 0.24 37.74 ± 25.22 0.03 0.49 6.90 ± 3.40 62.62 ± 15.89 0.21 ± 0.03 0.86 ± 0.11
Ours 0.86 ± 0.11 4.98 ± 3.58 0.37 0.99 6.01 ± 0.94 71.70 ± 8.90 0.40 ± 0.03 0.77 ± 0.05

to FrameDiff (Yim et al., 2023b), we initially filtered out structural data with resolutions < 5Å. Sub-
sequently, we employed DSSP (Kabsch & Sander, 1983) to eliminate structures with loop regions
exceeding 50%. Following this, we categorized the structures based on their lengths. In particular,
for proteins with lengths ranging from 450 to 550 residues, we categorized them into the 500-
length category for statistical purposes. Similarly, for proteins ranging from 350 to 450 residues,
we grouped them into the 400-length category. Subsequently, for each set of proteins within every
length category, we de-duplicated using TMalign (Zhang & Skolnick, 2005) and randomly selected
50 proteins for evaluation.

Evaluation. We evaluate the ability of de novo long protein design of all the baselines and our
method from both perspectives of sequences and structures. In order to evaluate the designability
of the generated proteins, for backbone design methods, we used ProteinMPNN (Dauparas et al.,
2022) and ESMFold (Lin et al., 2022) to refold the generated protein structures, and evaluated the
model’s designability through two self-consistency metrics (scTM and scRMSD) over 100 gener-
ated proteins each on lengths {400, 500}.

We use two versions of evaluation protocols for backbone design methods: refold once (with “1-”
as the prefix of method name) and refold 8 times and select the best scRMSD/scTM to report and
calculate the related metrics (with “8-” as the prefix of method name). We consider two standards
for considering a generated protein is designable: scTM>0.5 and more stringent scRMSD<2.0 Å.
We report the ratio of designable proteins over all the generated samples as Des.* (scRMSD<2.0Å)
and Des. (scTM>0.5). We also evaluate the diversity and novelty of generated protein structures.
For diversity, we report the average pairwise TM-score of designable samples (scTM>0.5) among
50 generated samples. For measuring the novelty of a design, we identify the most similar known
structure to the designed protein within the Protein Data Bank (PDB) and record its TM-score. We
report an average of this value over designable samples among 50 generated samples as Novelty.
For co-design methods, we directly predict the structure of the generated sequence using ESMFold
(once) and compute all the above metrics based on the folded structure and generated structure. For
sequence design methods, we do not report the above metrics since no structure is generated. Note
that, for a method whose Des is lower than 0.04, we do not its diversity and novelty. To evaluate
the quality of the generated sequence, we report perplexity (ppl) from an autoregressive protein

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.00 0.05 0.10 0.15 0.20
Structure Guidance Coefficient

4.0

4.2

4.4

4.6

4.8

5.0

5.2

sc
RM

SD
 (Å

)

2 3 4 5 6
epoch

0

2

4

6

8

sc
RM

SD
 (Å

)

Inverse Flow-LQ Flow-HQ Contrastive Guidance

Figure 3: Left: scRMSD (Å) changes over the structure guidance coefficient. Right: scRMSD (Å)
of our approach with dual flows fine-tuned for different epochs. “Inverse” stands for the guidance
with the switched roles of FLOW-LQ and FLOW-HQ, i.e., using FLOW-HQ to calibrate FLOW-LQ.

language model (ProGen2 (Nijkamp et al., 2023)) to quantify if the patterns of generated sequences
lie in natural sequence distribution and report ESMFold predicted pLDDT scores for structural
plausibility. For backbone design methods, since no sequence is generated, we do not report these
two metrics. See more details in App. A.

4.2 MAIN RESULTS

The evaluation metrics on length-400 proteins of all the baselines and our method are reported in
Table. 1. Our method performs the best on scTM, scRMSD, Des.*, and Des. over all the meth-
ods. This demonstrates our hypothesis introduced in Sec. 3.2 and the effectiveness of contrastive
guidance. Notably, our dual flow approach outperforms its counterpart (also its base model) by a
significant margin in designability-related metrics. Our method shows similar diversity and novelty
to its counterpart, Multiflow, though these two metrics of our method slightly fall behind the other
methods. This also meets our expectation since classifier-free guidance for diffusion and flow mod-
els (Ho & Salimans, 2022; Zheng et al., 2023) also suffers from similar issues. Our methods also
show competetive performance in evaluation metrics related to sequence quality, which indicates
that our contrastive guidance in categorical distribution can effectively improve the plausibility of
the generated sequence. The results on length-500 proteins are reported in Table. 2. Many methods
totally fail under this setting. Our method still performs the best over all the methods, even though
FLOW-HQ and FLOW-LQ are not fine-tuned on length-500 proteins as introduced in Sec. 4.1. This
demonstrates the generalizability of our approach. See generated examples in App. B.

4.3 ABLATION STUDIES

We conduct ablation studies on the effects of the contrastive guidance coefficients λ on the per-
formance in terms of designability. In practice, for calibrating the probability flow on protein
sequences, in addition to this coefficient, we also introduce sampling temperature, a widely-used
coefficient in sequence generation to control the smoothness of a categorical distribution, to esti-
mated posterior in Eq. (19). Results of the effects of different coefficients of sequences / structures
contrastive guidance are shown in Fig. 2 and Fig. 3, respectively.

5 CONCLUSION

In this work, we introduced a contrastive guided sampling algorithm with dual multimodal flows
to sample both sequences and structures of highly designable proteins, effectively addressing the
challenges inherent in high-dimensional generative modeling of long proteins.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Alex X Lu, Nicolo Fusi, Ava P Amini, and
Kevin K Yang. Protein generation with evolutionary diffusion: sequence is all you need. In
Machine Learning for Structural Biology Workshop, NeurIPS 2023, 2023.

Michael Samuel Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic
interpolants. In The Eleventh International Conference on Learning Representations, 2022.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein
Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
models go mad. arXiv preprint arXiv:2307.01850, 2023.

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate prediction of
protein structures and interactions using a three-track neural network. Science, 373(6557):871–
876, 2021.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexan-
der Tong. Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint
arXiv:2310.02391, 2023.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Ricky TQ Chen and Yaron Lipman. Riemannian flow matching on general geometries. arXiv
preprint arXiv:2302.03660, 2023.

Chaoran Cheng, Jiahan Li, Jian Peng, and Ge Liu. Categorical flow matching on statistical mani-
folds. arXiv preprint arXiv:2405.16441, 2024.

Alexander E Chu, Jinho Kim, Lucy Cheng, Gina El Nesr, Minkai Xu, Richard W Shuai, and Po-Ssu
Huang. An all-atom protein generative model. Proceedings of the National Academy of Sciences,
121(27):e2311500121, 2024.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–
based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Oscar Davis, Samuel Kessler, Mircea Petrache, Avishek Joey Bose, et al. Fisher flow matching for
generative modeling over discrete data. arXiv preprint arXiv:2405.14664, 2024.

Wenze Ding, Kenta Nakai, and Haipeng Gong. Protein design via deep learning. Briefings in
bioinformatics, 23(3):bbac102, 2022.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Tomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
of evolution with a language model. bioRxiv, pp. 2024–07, 2024.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. ICML, 2022.
doi: 10.1101/2022.04.10.487779. URL https://www.biorxiv.org/content/early/
2022/04/10/2022.04.10.487779.

Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320–327, 2016.

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
space with a programmable generative model. Nature, 623(7989):1070–1078, 2023.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern recog-
nition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on
Biomolecules, 22(12):2577–2637, 1983.

Neil P King, William Sheffler, Michael R Sawaya, Breanna S Vollmar, John P Sumida, Ingemar
André, Tamir Gonen, Todd O Yeates, and David Baker. Computational design of self-assembling
protein nanomaterials with atomic level accuracy. Science, 336(6085):1171–1174, 2012.

Yangming Li and Mihaela van der Schaar. On error propagation of diffusion models. In The Twelfth
International Conference on Learning Representations, 2023.

Yeqing Lin and Mohammed Alquraishi. Generating novel, designable, and diverse protein struc-
tures by equivariantly diffusing oriented residue clouds. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 20978–21002. PMLR, 23–29 Jul 2023.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Allan
dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of
protein sequences at the scale of evolution enable accurate structure prediction. bioRxiv, 2022.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
ing for generative modeling. In The Eleventh International Conference on Learning Representa-
tions, 2022.

Sidney Lyayuga Lisanza, Jake Merle Gershon, Sam Tipps, Lucas Arnoldt, Samuel Hendel,
Jeremiah Nelson Sims, Xinting Li, and David Baker. Joint generation of protein sequence and
structure with rosettafold sequence space diffusion. bioRxiv, pp. 2023–05, 2023.

Sidney Lyayuga Lisanza, Jacob Merle Gershon, Samuel WK Tipps, Jeremiah Nelson Sims, Lucas
Arnoldt, Samuel J Hendel, Miriam K Simma, Ge Liu, Muna Yase, Hongwei Wu, et al. Multistate
and functional protein design using rosettafold sequence space diffusion. Nature Biotechnology,
pp. 1–11, 2024.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. Progen2: Ex-
ploring the boundaries of protein language models. Cell Systems, 14:968–978.e3, 11 2023. ISSN
24054712. doi: 10.1016/j.cels.2023.10.002.

Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
for discrete state-space diffusion and flow models. arXiv preprint arXiv:2406.01572, 2024.

12

https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779
https://www.biorxiv.org/content/early/2022/04/10/2022.04.10.487779

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bernt Øksendal. Stochastic differential equations. In Stochastic differential equations, pp. 65–84.
Springer, 2003.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Daniela Röthlisberger, Olga Khersonsky, Andrew M Wollacott, Lin Jiang, Jason DeChancie, Jamie
Betker, Jasmine L Gallaher, Eric A Althoff, Alexandre Zanghellini, Orly Dym, et al. Kemp
elimination catalysts by computational enzyme design. Nature, 453(7192):190–195, 2008.

Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, and Jian Tang. Protein sequence and struc-
ture co-design with equivariant translation. arXiv preprint arXiv:2210.08761, 2022.

Daniel-Adriano Silva, Shawn Yu, Umut Y Ulge, Jamie B Spangler, Kevin M Jude, Carlos Labão-
Almeida, Lestat R Ali, Alfredo Quijano-Rubio, Mikel Ruterbusch, Isabel Leung, et al. De novo
design of potent and selective mimics of il-2 and il-15. Nature, 565(7738):186–191, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=PxTIG12RRHS.

Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. arXiv
preprint arXiv:2402.05841, 2024.

Zhicong Tang, Shuyang Gu, Jianmin Bao, Dong Chen, and Fang Wen. Improved vector quantized
diffusion models. arXiv preprint arXiv:2205.16007, 2022.

Brian L Trippe, Jason Yim, Doug Tischer, Tamara Broderick, David Baker, Regina Barzilay, and
Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-
scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion
language models are versatile protein learners. arXiv preprint arXiv:2402.18567, 2024.

Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
protein structure and function with rfdiffusion. Nature, 620(7976):1089–1100, 2023.

Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu, and
Ava P Amini. Protein structure generation via folding diffusion. Nature communications, 15(1):
1059, 2024.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. Advances in Neural Information Processing Sys-
tems, 36:76806–76838, 2023.

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b.

Yang Zhang and Jeffrey Skolnick. Tm-align: a protein structure alignment algorithm based on the
tm-score. Nucleic acids research, 33(7):2302–2309, 2005.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

13

https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A METRICS

TM score. The template modeling score or TM score serves as a metric for assessing the resem-
blance between two protein structures. The TM score indicates the similarity between two structures
by a score between (0, 1], with 1 denoting a complete match (hence, higher score indicate greater
similarity). TM score between two protein structures is defined by

TM score = max

[
1

Dnorm

Dcommon∑
i

1

1 + (di

d0(Dtarget)2
)

]
, (21)

where Dtarget is the length of the amino acid sequence of the target protein, Dquery is the length of
the amino acid sequence of the template protein, and Dcommon is the number of residues that appear
in both the template and target structures. Dnorm := Dcommon for “altmscore”, Dnorm := Dtarget for
“qtmscore”, and Dnorm := Dtemplate for “ttmscore”. di is the distance between the ith pair of residues
in the template and target structures, and d0(Dtarget) = 1.24 3

√
Dtarget − 15 − 1.8 is a distance scale

that normalizes distances.

RMSD. The root mean square deviation of atomic positions, commonly known as RMSD, quanti-
fies the average distance between atoms (typically backbone atoms) of aligned molecules. When
examining globular protein conformations, researchers typically assess three-dimensional structural
similarity by calculating the RMSD of the Cα atomic coordinates following optimal rigid body
superposition.

RMSD =

√√√√ 1

D

D∑
i

δ2i , (22)

where δi is the distance between atom i and either a reference structure or the mean position of the
N equivalent atoms. This is often calculated for the backbone heavy atoms C, N , O, and Cα or
sometimes just the Cα atoms.

B VISUALIZATION OF GENERATED EXAMPLES

Length: 400
scRMSD: 1.10

Length: 500
scRMSD: 1.27

Length: 400
scRMSD: 1.24

Length: 500
scRMSD: 1.66

Length: 400
scRMSD: 1.35

Length: 500
scRMSD: 1.36

Length: 400
scRMSD: 1.03

Length: 500
scRMSD: 1.71

Length: 400
scRMSD: 1.49

Length: 500
scRMSD: 1.26

Figure 4: Examples of generated structures in green compared to refolded structures (generated se-
quence → ESMFold) in grey. Samples with scRMSD < 2 Å for lengths 400 (top) and 500 (bottom).

14

	Introduction
	Preliminaries
	Method
	Multimodal Flow Matching for Protein Design
	Motivation and Derivation of Dual Flows
	Contrastive Guidance

	Experiment
	Experimental Setup
	Main Results
	Ablation Studies

	Conclusion
	Metrics
	Visualization of Generated Examples

