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Abstract
We present Chain-of-Action (CoA), a novel visuomotor policy paradigm built
upon Trajectory Autoregressive Modeling. Unlike conventional approaches that
predict next step action(s) forward, CoA generates an entire trajectory by explicit
backward reasoning with task-specific goals through an action-level Chain-of-
Thought (CoT) process. This process is unified within a single autoregressive
structure: (1) the first token corresponds to a stable keyframe action that encodes
the task-specific goals; and (2) subsequent action tokens are generated autoregres-
sively, conditioned on the initial keyframe and previously predicted actions. This
backward action reasoning enforces a global-to-local structure, allowing each local
action to be tightly constrained by the final goal. To further realize the action rea-
soning structure, CoA incorporates four complementary designs: continuous action
token representation; dynamic stopping for variable-length trajectory generation;
reverse temporal ensemble; and multi-token prediction to balance action chunk
modeling with global structure. As a result, CoA gives strong spatial generalization
capabilities while preserving the flexibility and simplicity of a visuomotor policy.
Empirically, we observe that CoA outperforms representative imitation learning
algorithms such as ACT and Diffusion Policy across 60 RLBench tasks and 8
real-world tasks.

1 Introduction

visuomotor policies have made substantial progress in enabling robots to perform complex manipu-
lation tasks from raw sensory observations. With the rise of large-scale demonstrations [5, 19, 37]
and powerful neural architectures [36, 11], recent methods have increasingly focused on end-to-end
learning from visual inputs to low-level control[15, 2].

To better model multi-modal action distributions and mitigate compounding errors, various modeling
paradigms have been proposed [3, 45]. For instance, ACT [45] employs a conditional variational
autoencoder to learn action distributions and introduces action chunking to reduce compounding errors.
Diffusion Policy [3] formulates action generation as a denoising process, capturing complex, multi-
modal behaviors more effectively. Many subsequent developments have explored enhancements in
multiple directions, including enriched sensory inputs [41, 40], improved network architecture [4, 24],
expanded datasets[5], and scaled model capacity, represented by trend of VLA (vision-language-
action) model [21, 28, 25, 1].
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Despite a wide range of these improvements, most of methods still follow a forward prediction
paradigm, as illustrated in Figure 1. While this formulation is intuitive and widely adopted, it suffers
from a critical limitation: the accumulation of compounding errors [32, 18, 22, 30] during execution.
The root cause lies in the training objective: these models are optimized to predict the next-step
action based on current observation, rather than to ensure successful completion of tasks with long-
horizon [32]. While techniques such as action chunking and image goal conditioned behavioral
cloning [28, 37] have been introduced to alleviate compounding errors, they primarily address the
symptoms rather than the root cause, which lies in the inherently myopic nature of forward prediction.
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Figure 1: Comparison between a conventional
visuomotor policy (left) and our proposed Chain-
of-Action (right). The former is optimized to predict
step-wise actions based on current observations, rather
than long-term goals, often leading misaligned behav-
iors during execution. In contrast, Chain-of-Action
adopts a backward generation paradigm, producing
goal-conditioned trajectories that reliably execute to-
ward the intended target.

We approach the problem from the opposite end,
both conceptually and practically, by reversing the
action generation process. While the change in
direction may appear simple, it reflects a funda-
mental shift in how we conceptualize action gen-
eration. Instead of predicting actions in a forward,
step-wise manner, we propose to construct action
sequences in reverse, forming a chain of actions
that starts from the a keyframe action [13, 34, 9, 8],
and backward towards the initial state. Our in-
sight is that the keyframe action encodes the task-
specific goal, which provides a strong structural
prior to guide the entire action sequence. By
explicitly generating actions from the goal back-
ward, our method enforces a global-to-local con-
sistency [26, 39] that significantly mitigates com-
pounding errors and enhances generalization un-
der distribution shifts.

To realize this backward reasoning paradigm while
maintaining scalability potential [16, 35] for end-to-end training, we unify the entire reverse genera-
tion process into a single autoregressive framework. While the formulation is theoretically effective,
its practical viability depends on four extra specific designs. These are not optional improvements,
but necessary for stable training and reliable closed-loop execution. (1) Continuous action represen-
tation: Discretizing actions into finite bins introduces resolution loss [20, 31, 23], which becomes
particularly problematic in long-horizon autoregressive generation. In our backward generation
setup, even small quantization errors can accumulate from the goal backward, leading to significant
deviations in earlier steps. To preserve fine-grained structure and trajectory fidelity, we adopt a
continuous action representation. (2) Local action modeling: While the backward autoregressive
structure effectively propagates high-level intent from the goal, it does not explicitly model local
action dependencies [20, 45, 3] within a sub-trajectory. To address this, we adopt a multi-token
prediction strategy [7, 43] during training, which encourages the model to jointly predict short action
chunks. This enhances local coherence and stabilizes training. (3) Dynamic stop: Closed-loop
execution [27] requires our generation stop at right point. However, in continuous action spaces,
there is no discrete end-of-sequence (EOS) token to indicate termination [43]. We thus design a
distance-based stop mechanism that enables the model to determine when to stop based on proximity
to the goal, reducing over-generation and improving execution efficiency. (4) Reverse temporal
ensemble: Original ensemble strategies [45], used in ACT, are designed under forward temporal
assumptions and are not directly applicable to our backward generation setting. To address this, we
develop a reverse-compatible variant that ensembles multiple backward rollouts, mitigating temporal
misalignment and reducing variance during closed-loop execution.

Chain-of-Action (CoA), which integrates these four essential components into a single autoregressive
framework, achieves strong performance in both simulation and real-world settings. CoA outper-
forms ACT by 16% and Diffusion Policy by 23% across 60 RLBench tasks, the most comprehensive
evaluation conducted on this benchmark to date, and surpasses ACT by 15% in real-world robotic
manipulation. Crucially, CoA adopts comparable architectures and training setups to ACT, underscor-
ing that the performance gains stem from a principled shift in the modeling paradigm. These results
position our trajectory autoregressive modeling as a competitive alternative for visuomotor policy
learning.
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Figure 2: Chain-of-Action built on trajectory autoregressive modeling. The left part illustrates
the network architecture where notation is for the training stage, and the right part illustrates the
execution process. The model encodes visual and proprioceptive observations and generates actions
in reverse order from a predicted keyframe action by an autoregressive decoder. For clarity, the
keyframe action aT is shown in green, and subsequent steps are visualized with a gradual color
transition.

2 Related work

Hierarchical modeling in robotic manipulation A widely adopted strategy in robotic manipulation
is to first identify high-level keyframes, and then rely on predefined controllers to handle the low-level
execution. This paradigm is exemplified by C2F-ARM [13] and extended by methods such as Per-
Act [34], RVT [9], RVT-2 [8]. Recent works like ChainedDiffuser [39] and HDP [26] propose neural
planners to replace traditional optimization-based planners. Despite these advances, such methods
still operate in an open-loop manner [39, 26] between keyframes and struggle to adapt to dynamic
environments. Our method also builds on the notion of keyframes, but differs fundamentally in its
formulation. By unifying keyframe detection and trajectory generation within a single autoregressive
framework, it enables efficient environment-aware action prediction and closed-loop execution, where
the model can continuously refines its actions based on feedback. As a result, our method no longer
relies on high-fidelity 3D inputs for one-shot accurate predictions, which are commonly required by
those hierarchical approaches.

CoT-style methods in robotic manipulation A separate line of research explores CoT-style VLA
agents [44, 6, 38, 46], which introduce intermediate semantic representations—such as imagined im-
age goal, visual trace, bounding boxes, or gripper pose, as guidance for subsequent action generation.
Orthogonal to these directions, our work focuses on modeling the reasoning process directly between
actions without relying on extra modalities as intermediate representations. This design makes our
method broadly compatible with different sensory inputs and policy architectures.

3 Chain-of-Action for robotic manipulation

Formulation The core idea of Chain-of-Action is to model trajectory generation in reverse: starting
from a task-specific goal and predicting actions backward in an autoregressive manner. This reverse
formulation imposes a global-to-local structure, anchoring the rollout to the final intent and mitigating
compounding errors. An overview of the CoA pipeline is shown on the left of Figure 2. We adopt
the definition of keyframe originally from C2F-ARM [13], where a keyframe is identified as a time
step at which the gripper state changes or the joint velocities approach zero. This simple yet effective
heuristic captures transitions between semantically meaningful phases, such as grasp completion or
object placement, and can be interpreted as a task-specific goal. Representing the goal as an action
allows it to share the same embedding space with all other actions, enabling seamless backward
generation. For each training sample, CoA learns to model the action sequence in reverse order using
an autoregressive decoder. This formulation enforces a reverse causal dependency among actions,
yielding a goal-conditioned reasoning chain. Such backward chaining lies at the heart of the our
framework, which models the trajectory distribution as:
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p(a1:T | O) = p(aT | O)︸ ︷︷ ︸
Keyframe Action

· p(aT−1 | aT , O) . . . p(a2 | a3:T , O)︸ ︷︷ ︸
Reverse Reasoning Actions

· p(a1 | a2:T , O)︸ ︷︷ ︸
Executed Action

(1)

where aT denotes the keyframe action, and O denotes the observation context, including visual input
I and proprioceptive state S. To make the meaning of a1:T explicit, we clarify how each training
sample is constructed. A sub-trajectory is sampled from an expert demonstration by selecting a
segment that starts at a random time step and ends at the next first keyframe action. The observation
O is taken from the initial step, and a1:T denotes the sequence of actions from the current step up to
(and including) the keyframe. Each pair (O,a1:T ) forms an independent training example.

Algorithm 1: Training Phase

1 Inputs: dataset D
2 Modules:

• Action encoder fenc: at 7→ xt

• Action decoder fdec: xt 7→ at

• Transformer Fθ: encoder-decoder model
Parameters: learned token xSOS, loss weight λ
for iteration n = 1, 2, . . . do

Sample (I,S, τ = (a1, . . . , aT )) from D based
on keyframe heuristic
x1:T ← REVERSE(fenc(a1:T ))
H ← CONCAT(xSOS, x1:T−1)
x̂1:T ← Fθ(H | I,S)
â1:T ← REVERSE(fdec(x̂1:T ))

Lreg ←
∑T

t=1 Laction(ât, at)

Llatent ←
∑T

t=1 Llatent(x̂t, fenc(at))
Ltotal ← Lreg + λ · Llatent
Update θ, xSOS via backprop on Ltotal

Algorithm 2: Inference Phase

1 Inputs: image I, proprioceptive state S
2 Modules:

• Action encoder fenc: at 7→ xt

• Action decoder fdec: xt 7→ at

• Transformer Fθ: encoder-decoder model
Parameters: learned token xSOS, max length
Tmax

Initialize H ← [xSOS]
for t = 1 to Tmax do

x̂t ← Fθ(H | I,S)
Append x̂t to H
if STOP(fdec(x̂t),S) then

break
Remove xSOS: H ′ ← H[1 :]
â1:T ← REVERSE(fdec(H

′))
Return: action sequence â1:T

Continuous action token representation CoA adopts continuous action token representation.
However, directly training with continuous latent tokens introduces its own challenge. Unlike discrete
token embeddings [21] that are fixed indices supervised by a softmax classifier, our latent actions are
generated through a learned encoder. In this setting, imposing loss directly on the action space fails
to constrain the latent space to exhibit temporal consistency during autoregressive decoding. As a
result, the latent space lacks meaningful regularization, allowing encoding errors to propagate and
amplify through the autoregressive process. To address this, we introduce a latent consistency loss
to regularize latent action space: Lconsistency = ∥x̂t − fenc(at)∥, where fenc(at) = Wencat + benc .
Here, x̂t denotes the predicted latent from the previous timestep, and fenc(at) is the encoded latent of
the ground-truth action. This loss acts as an inductive bias to align the latent space with temporal
dynamics, improving the quality of autoregressive generation.

Locality modeling Multi token prediction (MTP) [7] can serve as a regularization for action locality
modeling. We assign the last K layers of the transformer decoder to produce predictions for different
future steps. Concretely, layer k predicts token x̂t+k, where k = 1, ...,K, making the model aware
of the mutual dependencies across the next K steps in a single forward pass. This design introduces
temporal locality into the decoding process, enhancing stability in long-horizon generation while
maintaining our global-to-local chain-like structure. Importantly, this regularization is applied only
during training and is removed at inference.

Dynamic stop To enable flexible-length trajectory generation in continuous action space, we in-
troduce a distance-based stop criterion. The core idea is to terminate decoding once the predicted
action sufficiently approximates the current execution state, indicating that the backward-generated
trajectory has successfully reached the present, as shown in bottom-right in Figure 2. This stop
mechanism is agnostic to the specific action representation and can be readily applied to delta actions
or joint-space control by adjusting the reference point accordingly.

Reverse temporal ensemble We introduce a reverse temporal ensembling strategy tailored for
CoA. As shown in the bottom-right corner of Figure 2, our approach aligns multiple reversed sub-
trajectories by their predicted keyframe action aT , which serves as the anchor point for autoregressive
decoding. This design offers a unique advantage in CoA: since each trajectory is decoded in reverse
from the keyframe, the compounding error is inherently constrained by the accuracy of the keyframe
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Figure 3: Visualization of predicted sub-trajectories across 10 widely used tasks. Detail refers to
Table 1. Red waypoints represent ground-truth trajectories, and green waypoints denote model
predictions. Each predicted trajectory is generated backward from a keyframe action to the current
gripper state, enabling consistent goal-conditioned trajectory generation. The model successfully
handles both straight and curved motion patterns.

action. By further improving the accuracy of the keyframe action through ensembling, we tighten
this constraint even more.

4 Implementation details
Network architecture Our network follows a similar overall architecture to ACT [45], consisting
of a 4-layer Transformer encoder and a 7-layer Transformer decoder. However, unlike ACT, our
model does not include the conditional variational autoencoder (CVAE) module. The final decoder
layer contains multiple parallel heads for multi-token prediction (MTP), which are only used during
training. The observations consist of multi-view RGB images and corresponding robot states, which
are encoded as follows: each image view is processed by a ResNet-18 vision encoder to extract visual
tokens. The gripper state is projected via a learnable linear layer into a token representation. All
tokens are concatenated and passed through the Transformer encoder to produce contextual features
for decoding. Autoregressive action generation is performed by the Transformer decoder, which is
initialized with a learnable start-of-sequence (SOS) token. This token serves as a query for the first
prediction, corresponding to the keyframe action. The decoder iteratively predicts previous actions
until the generated action becomes sufficiently close to the current gripper state, where the dynamic
stopping criterion is applied. Actions are encoded and decoded into a shared latent embedding space
via linear projection layers, which are regularized by the latent consistency loss as described earlier.
Additionally, sinusoidal positional embeddings are added to the action tokens to preserve temporal
ordering cues.

Training For each training sample, we apply two loss terms: a regression loss in the action space
and a consistency loss in the latent space. Both are computed with the MTP regularization, where the
model predicts a chunk of K actions at each decoding step. The total loss is defined as:

Ltotal =

T∑
t=1

K∑
k=1

∥∥âkt+k−1 − at+k−1

∥∥+ λ1

∥∥x̂k
t+k−1 − fenc(at+k−1)

∥∥ , (2)

where âkt+k−1 and x̂k
t+k−1 are the predicted action and its latent embedding from k-th head of

MTP layer at step t, and fenc(·) is the action encoder network. Note that for decoding steps where
t+k−1 > T , the corresponding terms are masked out and do not contribute to the loss. This ensures
that predictions beyond the trajectory horizon are excluded from supervision. For parallel training
with a batch of samples, we set Tmax as the maximum sub-trajectory length (practically the longest in
the dataset), and zero-pad all shorter sequences accordingly. The loss for padded steps is masked out
to avoid affecting gradient updates.

Execution For each inference, CoA generates an entire trajectory segment, which can be executed
in either open-loop or closed-loop mode. We generally adopt closed-loop control, as it allows
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reverse temporal ensembling to continuously refine the predicted actions during execution. Under the
dynamic stopping setting, we compute the Euclidean distance between the predicted action and the
current end-effector pose. This termination criterion is well-suited for our continuous end-effector
pose action space.

5 Experiments

Table 1: Success rate across 10 widely-used
tasks in RLBench.

Task CoA ACT DP Octo

Stack Wine 0.80 0.56 0.56 0.52
Turn Tap 0.56 0.36 0.32 0.28
Open Drawer 0.88 0.52 0.44 0.84
Push Button 0.76 0.08 0.12 0.76
Pick Up Cup 0.80 0.20 0.00 0.44
Take Lid 0.80 0.40 0.60 0.76
Press Switch 0.44 0.52 0.56 0.44
Reach Target 0.84 0.88 0.08 0.60
Sweep Dust 0.92 1.00 1.00 0.80
Open Box 0.76 0.36 0.48 0.96

Avg. 0.756 0.488 0.416 0.644

In Sec. 5.1, we introduce our experiment settings, includ-
ing simulation environment, train, evaluation settings
and metrics. Then we show detailed results of the overall
comparison in Section 5.2. To dive into the spatial gen-
eralization and obtain better understanding of how CoA
work, more specific evaluation is shown in Section 5.3.
Ablation studies of each components in CoA are shown
in Section 5.4. Finally, the real-world robot evaluations
are shown in Section 5.5

5.1 Simulation experiment settings

Simulation setup We conduct simulation experiments
using RLBench [14], a widely-used benchmark built on
CoppeliaSim and interfaced via PyRep. The robot is a
7-DoF Franka Emika Panda mounted behind a tabletop
workspace. Observations are collected from four RGB cameras (front, left shoulder, right shoulder,
and wrist). Images are rendered at a resolution of 128× 128.

Baseline We compare our method against representative approaches from three categories: (1)
training visuomotor policies from scratch, including ACT and Diffusion Policy (DP); (2) finetuned
generalist robotic policies, represented by Octo [28]; (3) 3D-based hierarchical methods, including
PerAct [34], 3D Diffuser Actor [17], and RVT-2 [8]. We note 3D-based hierarchical methods
fundamentally differ from our approach by relying on 3D inputs and motion planners to generate
trajectories. We provide additional discussion on these differences in Appendix A.

Training and evaluation protocol To ensure broad and representative evaluation, our main bench-
mark is conducted on a tailored set of 60 RLBench tasks, where CoA is compared with ACT and DP,
Each method is trained on 100 demonstrations and evaluated on 25 demonstrations per task. For ACT
and DP, we follow the RLBench training protocol introduced in [33], which is detailed in Appendix D.
To better demonstrate the effectiveness of our modeling paradigm, we align our base architecture
with ACT and introduce modifications primarily in the transformer decoder, as detailed in Section 4.
The strong performance of these baselines—such as perfect success rates on tasks like Sweep Dust
and competitive results on others (Table 1)—confirms that all reference models are properly trained.
For comparison with Octo, we adopt the evaluation subset RLBench-10 proposed in [42] and use
the reported results. This subset is also used for our ablation studies for convenience. To facilitate
comparison with 3D-based hierarchical methods, we evaluate on the RLBench-18 split [34], using
reported results from prior work [8]. Note that our RLBench-18 setup is not strictly identical to
the PerAct protocol: we train single-task policies and use only variation 0 for both training and
evaluation. Hence, the RLBench-18 results are reported as contextual reference rather than a fully
protocol-matched comparison.

5.2 Overall comparisons

The overall results are presented in Figure 4, with task-wise averages summarized in the accompany-
ing wrapped table. To better assess the effectiveness of our method, we report task-level improvements
over both ACT and DP. Compared to ACT, our method achieves higher success rates on 81.7% of the
tasks, with an average improvement of 16.3%. Relative to DP, our method improves performance on
80.0% of the tasks, with an average gain of 23.2%. These improvements are especially pronounced
in tasks involving significant variation in object position and pose, indicating stronger spatial gener-
alization. As ACT and CoA share a consistent Transformer encoder-decoder architecture and are
trained on the same setting, the observed gains highlight the effectiveness of our modeling paradigm.
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Figure 4: Success rate improvement on RLBench-60, sorted by improvement from high to low. The
average success rate over all tasks is shown in the inset on the right.

Table 2: Comparison on the RLBench-18. 3D-based hierarchical methods use 3D point clouds and
motion planners, while image-based visuomotor policies operate directly on RGB inputs.

3D-based hierarchical methods Image-based visuomotor policies

Task PerAct 3D Diffuser Actor RVT-2 Image-BC (CNN) Image-BC (ViT) DP ACT CoA

Close Jar 55.2 ± 4.7 96.0 ± 2.5 100.0 ± 0.0 0 0 0 0 0
Drag Stick 89.6 ± 4.1 100.0 ± 0.0 99.0 ± 1.7 0 0 0 0 0
Insert Peg 5.6 ± 4.1 65.6 ± 4.1 40.0 ± 0.0 0 0 0 0 0
Meat off Grill 70.4 ± 2.0 96.8 ± 1.6 99.0 ± 1.7 0 0 16 32 88
Open Drawer 88.0 ± 5.7 89.6 ± 4.1 74.0 ± 11.8 4 0 44 52 88
Place Cups 2.4 ± 3.2 24.0 ± 7.6 38.0 ± 4.5 0 0 0 0 0
Place Wine 44.8 ± 7.8 93.6 ± 4.8 95.0 ± 3.3 0 0 56 56 80
Push Buttons 92.8 ± 3.0 98.4 ± 2.0 100.0 ± 0.0 0 0 0 32 28
Put in Cupboard 28.0 ± 4.4 85.6 ± 4.1 66.0 ± 4.5 0 0 0 0 8
Put in Drawer 51.2 ± 4.7 96.0 ± 3.6 96.0 ± 0.0 8 0 40 60 88
Put in Safe 84.0 ± 3.6 97.6 ± 2.0 96.0 ± 2.8 4 0 24 36 80
Screw Bulb 17.6 ± 2.0 82.4 ± 2.0 88.0 ± 4.9 0 0 0 0 0
Slide Block 74.0 ± 13.0 97.6 ± 3.2 92.0 ± 2.8 0 0 0 36 64
Sort Shape 16.8 ± 4.7 44.0 ± 4.4 35.0 ± 7.1 0 0 0 0 0
Stack Blocks 26.4 ± 3.2 68.3 ± 3.3 80.0 ± 2.8 0 0 0 0 0
Stack Cups 2.4 ± 2.0 47.2 ± 8.5 69.0 ± 5.9 0 0 0 0 0
Sweep to Dustpan 52.0 ± 0.0 84.0 ± 4.4 100.0 ± 0.0 0 0 100 100 92
Turn Tap 88.0 ± 4.4 99.2 ± 1.6 99.0 ± 1.7 8 16 32 36 56

Average 48.7 81.3 81.4 1.33 0.89 17.33 24.44 37.33

The results suggest that a principled change in how action sequences are represented and generated
can lead to substantially better performance under distribution shifts. The detailed per-task results are
in Appendix B. In addition, the comparison with Octo and detailed results with ACT and DP over 10
selected tasks are shown in Table 1. Results on the RLBench-18 benchmark are reported in Tab 2.
We observe that, in these settings, CoA outperforms the finetuned generalist robot policy Octo, while
a substantial performance gap remains compared to the 3D-based hierarchical methods.

5.3 Dive into spatial generalization

Although CoA significantly outperforms ACT and DP on the overall benchmark, it remains crucial to
understand why such improvements emerge. To this end, we investigate the spatial generalization
behavior of our model from three complementary perspectives.

First, in the Interpolation vs. Extrapolation case study, we analyze CoA’s performance under
controlled spatial distributions within a single representative task. This study reveals that CoA
not only achieves higher success rates under in-distribution (interpolation) configurations, but also
demonstrates a substantially larger advantage in out-of-distribution (extrapolation) settings, indicating
stronger spatial generalization.
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Figure 5: Correlation between success rate and spatial variance. Left image: Overall success rate decreases
as object spatial variance increases. Middle and right image: CoA consistently outperforms ACT and DP across
varying spatial generalization levels, with larger advantages in more challenging (higher variance) settings.
Table: Pearson correlations highlight CoA’s robustness to spatial perturbations.
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Figure 6: Interpolate vs. extrapolate performance. Success rate comparison on interpolation (in-distribution)
and extrapolation (out-of-distribution) subsets for the Push Button task. CoA maintains stronger performance
across both regimes, with a notably smaller degradation under extrapolation. The gray dashed line denotes
the 2D convex hull computed from the training samples. Cross markers represent training data, while circular
markers denote evaluation samples, where green circles indicate successful executions and red circles indicate
failures.

Second, in Correlation with spatial distribution, we quantitatively examine how task performance
correlates with spatial variation difficulty across the 60 RLBench tasks. The results show that CoA
consistently improves over ACT and DP across all spatial variance levels, and that the performance
gap widens as spatial generalization becomes more challenging.

Finally, in Attention-based analysis of action chain, we visualize the attention maps between action
tokens in the Transformer decoder. The attention patterns clearly reveal structured dependencies along
the predicted action sequence, supporting the hypothesis that CoA performs chain-like global-to-local
reasoning throughout the trajectory generation process.

Interpolation vs. Extrapolation case study We conduct qualitative analyses on Push button task to
contrast model behavior under interpolated (in-distribution) versus extrapolated (out-of-distribution)
spatial configurations. For this analysis, we choose the Push Button task due to its large spatial
variation and its frequent use in prior works. Unlike the standard benchmark setting, we randomly
sample 200 demonstrations from the full dataset and project the button target positions onto the (x, y)
workspace plane. We then compute the centroid of all sampled positions and select the 150 samples
closest to this centroid based on Euclidean distance, which are used to form a 2D convex hull. Within
this convex hull, we randomly assign 100 samples for training and 50 samples for interpolation
testing, while the remaining 50 samples lying outside the convex hull are used as extrapolation testing
data. This protocol ensures a controlled and reproducible evaluation of spatial generalization, where
extrapolation explicitly corresponds to goal configurations beyond the spatial support of the training
distribution.

Correlation with spatial distribution We examine the relationship between success rate and
the spatial distribution of objects in the evaluation set, aiming to quantify each model’s spatial
generalization ability. We use the variance of object coordinates to measure how widely objects are
spread in the workspace. As shown in the left plot of Figure 5, all methods exhibit a clear trend:
success rate decreases as spatial variance increases. This indicates that there spatial generalization
becomes more difficult when object placement is more diverse. The improvement plots in the Figure 5
reveal more details. Compared to ACT and DP, our method consistently outperforms across all levels
of spatial variance, and its advantage becomes more pronounced as task difficulty increases. This
trend is further supported by quantitative Pearson correlation.
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Figure 7: Attention-based analysis of action chains. Self-attention maps reveal two key patterns: (1)
chain-like dependencies, where each action token attends to recent predecessors, and (2) long-range
dependencies (highlighted in the red box in Layer 1), where some tokens directly attend to the initial
keyframe action.

As shown in Figure 6, our method outperforms both ACT and DP under both interpolation and
extrapolation conditions. Interestingly, while the success rate of CoA in extrapolated settings is about
half of that in interpolation, ACT and DP suffer from significantly steeper drops. This highlights the
particular difficulty of spatial extrapolation for forward modeling approaches, and suggests that the
reverse autoregressive modeling in CoA provides more robust generalization under spatial distribution
shifts.

Attention-based analysis of action chain Figure 7 presents the self-attention maps among action
tokens across all decoder layers in our model. The horizontal and vertical indices correspond to the
autoregressive decoding order of action tokens, where index 0 denotes keyframe action. We observe
two distinct attention patterns: (1) a dominant local chain-like structure, where each action token
primarily attends to a recent window of preceding tokens, directly reflecting modeling of CoA; and
(2) occasional long-range dependencies (e.g., red box in layer 1 and most of tokens in layer 6), where
later tokens exhibit strong attention to initial tokens. This behavior suggests the model leverages the
goal-conditioned actions to anchor and guide the full trajectory generation.

5.4 Ablation on architectural components

Table 3: Ablation study on individual components by
replacing them with alternative settings. The bold
indicates the best setting adopted by our final model.

Components Setting Avg. SR

Modeling Paradigm
Reverse 0.756
Forward 0.668
Hybrid 0.600

Embedding Loss Action consistency 0.212
Latent consistency 0.756

Execution Non-ensemble 0.66
Reverse ensemble 0.756

Num. of MTP head

1 0.710
2 0.704
4 0.720
5 0.756
8 0.672
10 0.660

We summarize how each architectural com-
ponent contributes to performance across 10
representative RLBench tasks (selected con-
sistently with Table 1). The average success
rate of each variants are provided in Table 3.

Modeling paradigm. CoA’s modeling in-
corporates two core designs: (1) chain-style
autoregressive generation, and (2) goal anchor-
ing via a keyframe action. To assess the neces-
sity of each component, we compare Reverse
ordering of CoA against two ablated variants:

Forward ordering retains the autoregressive
structure but removes goal anchoring, start-
ing from the current state and predicting ac-
tions forward. Compared to CoA, its lower
success rate (0.668 vs. 0.756) highlights the
importance of reverse ordering, the core of our
proposed modeling. On the other hand, it sig-
nificantly outperforms ACT (0.668 vs. 0.488),
which also uses a autoregressive architecture
but predicts fixed-length action chunks. This contrast underscores the advantage of modeling the
joint distribution over the entire trajectory, rather than treating it as separated chunks.

Hybrid ordering retains goal anchoring but drops chain-style reasoning. It initializes from the
keyframe action but switches to forward action generation, removing backward generation process
between actions. As a result, the local continuity of autoregressive is lost, and performance drops
greatly to 0.600.

These results confirm that trajectory autoregressive modeling is essential for effective robotic manipu-
lation. Furthermore, reverse autoregressive ordering further enhances performance by anchoring the
generation process to the a task-specific goal, providing global guidance throughout the rollout.
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Figure 8: Real-world experiments on 8 kitchen tasks.
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Figure 9: Real-world experimental results.

Number of MTP heads Multi-token prediction regularization enables the model to capture local
action chunks while preserving global causality. Allocating too few heads underutilizes this local
context, whereas allocating too many heads disrupts the causal structure. A moderate configuration
of 5 heads strikes an effective balance, achieving the highest overall score 0.752.

Latent consistency loss We ablate the latent consistency loss by replacing it with a direct action
reconstruction loss, which supervises the action encoder and action decoder to reproduce the input
action. This substitution leads to a significant performance drop from 0.752 to 0.212, and results
in unstable trajectories with unnatural curling. In contrast, enforcing latent consistency yields a
well-structured representation and substantially improves task success.

Reverse temporal ensemble We evaluate the impact of reverse temporal ensemble by comparing
it with a non-ensemble baseline. Without ensembling, the model achieves 0.660. Applying our
reverse-compatible ensemble strategy improves performance to 0.756, highlighting the benefit of
aggregating multiple backward rollouts during inference.

5.5 Real-world experiments

We deploy our method on a Fetch robot featuring a 7-DoF arm and a mobile base for real-world
validation. For each task, the robot navigates to a predefined location using its built-in 2D LiDAR-
based localization system. Observations are captured from a single RGB camera at 640 × 480.
resolution and resized to 224× 224. for policy input. Execution is command by absolute end effector
poses. To execute commands, we implement a PD controller that calculates the difference between
current and desired end effector poses, projects this error into joint space via the Jacobian, and sends
velocity commands to the robot. The neural policy operates at 10Hz on a laptop with a 4070 GPU,
while the PD controller runs locally on the robot at 1000Hz, with communication handled through
ROS for both image data and control commands. As shown in Figure 8, we evaluated CoA and ACT
on 8 kitchen tasks, with the number of expert demonstrations ranging from 35 to 81 per task. Each
task was evaluated over 10 trials. The results, summarized in Figure 9, show that CoA achieves an
average success rate of 0.613, outperforming ACT, which achieves 0.463, by a margin of 15%. The
detailed results are in Appendix C.

6 Conclusion

We present Chain-of-Action, an action-level reasoning model built upon trajectory autoregressive
modeling. By decomposing the joint distribution of the trajectory in reverse, starting from a keyframe
and progressing backward to the initial gripper state, our formulation imposes a global-to-local
structure that enforces consistency between local actions and global task goal. To enable stable
training and execution under this backward autoregressive framework, we introduce four necessary
design components. Overall, our proposed visuomotor modeling paradigm significantly improves
spatial generalization, and we hope it offers a compelling alternative for future visuomotor policy
design. However, the current modeling paradigm relies on keyframe heuristics to split the trajectory,
which may not generalize well to diverse task types. Future work can explore learning keyframe
structures in an unsupervised manner.
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A Comparison on RLBench-18

The RLBench-18 subset was originally introduced by PerAct [34] and later became the standard
comparison benchmark for 3D hierarchical methods. The results are detailed in Table 2. To clarify
the fundamental difference between these two categories of approaches, Table 4 summarizes their
methodological distinctions. 3D-based hierarchical methods typically rely on 3D perception and
motion planning, whereas image-based visuomotor policies operate directly on raw RGB observations
and learn end-to-end trajectory generation without explicit planners. We observe that, for RGB-
only policies, several tasks in RLBench-18 are challenging and frequently result in zero success
rates, which limits their discriminative power. This observation motivates our use of the proposed
RLBench-60 evaluation split.

Table 4: Key differences between 3D-based hierarchical methods and image-based visuomotor
policies.

Aspect 3D-based Hierarchical Methods Image-based Visuomotor Policies
Typical Methods PerAct, RVT, RVT-2, 3D Diffuser Actor ACT, Diffusion Policy, CoA
Input Modality 3D point cloud / RGB-D RGB-only
Pipeline Two-stage: keyframe action detection + motion planning End-to-end trajectory prediction without explicit planning
Execution Mode Open-loop execution between keyframes Closed-loop prediction and control

B Per-task success rates on RLBench-60

To complement the summary figure in the main paper, which visualizes the performance gap between
CoA and baseline methods, we provide the full success rates on all 60 RLBench tasks in Table 5. This
table lists the per-task success rate of CoA, ACT, and DP, along with the gap of baselines over CoA.
Tasks are ordered by the maximum improvement CoA achieves over either baseline, highlighting
where our method provides the most substantial gains.

Table 5: Detailed results of the overall comparison on RLBench. The simplified names used in
Figure 4 are matched with their corresponding original task names. The success gap between ACT,
DP and CoA is shown as superscripts.

Simplified name Original name CoA ACT DP

pick up cup pick_up_cup 0.80 0.20−0.60 0.00−0.80

phone on base phone_on_base 0.80 0.04−0.76 0.04−0.76

reach target reach_target 0.84 0.88+0.04 0.08−0.76

remove meat meat_off_grill 0.88 0.32−0.56 0.16−0.72

push button push_button 0.76 0.08−0.68 0.12−0.64

put money in safe put_money_in_safe 0.80 0.36−0.44 0.24−0.56

move hanger move_hanger 0.88 0.68−0.20 0.32−0.56

slide block slide_block_to_target 0.52 0.32−0.20 0.00−0.52

remove toilet roll take_toilet_roll_off_stand 0.56 0.40−0.16 0.08−0.48

lamp off lamp_off 0.68 0.68−0.00 0.20−0.48

lamp on lamp_on 0.48 0.44−0.04 0.00−0.48

open door open_door 0.92 0.44−0.48 0.60−0.32

open drawer open_drawer 0.88 0.52−0.36 0.44−0.44

remove frame take_frame_off_hanger 0.64 0.44−0.20 0.24−0.40

Continued on next page
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Simplified name Original name CoA ACT DP

open washer open_washing_machine 0.76 0.44−0.32 0.60−0.16

remove pan lid take_lid_off_saucepan 0.80 0.40−0.40 0.60−0.20

unplug charger unplug_charger 0.60 0.56−0.04 0.20−0.40

buzz game beat_the_buzz 0.36 0.12−0.24 0.00−0.36

remove umbrella take_umbrella_out_of_
umbrella_stand

0.52 0.16−0.36 0.20−0.32

drag to target reach_and_drag 0.64 0.36−0.28 0.28−0.36

get ice get_ice_from_fridge 0.60 0.32−0.28 0.24−0.36

open box open_box 0.32 0.16−0.16 0.32−0.00

place knife place_knife_on_chopping_
board

0.04 0.04−0.00 0.00−0.04

play jenga play_jenga 1.00 1.00−0.00 0.72−0.28

place plate put_plate_in_colored_dish_
rack

0.32 0.12−0.20 0.04−0.28

put bottle in fridge put_bottle_in_fridge 0.28 0.00−0.28 0.00−0.28

remove plate take_plate_off_colored_
dish_rack

0.40 0.40−0.00 0.12−0.28

turn tap turn_tap 0.56 0.36−0.20 0.32−0.24

remove from scale take_off_weighing_scales 0.84 0.44−0.40 0.64−0.20

stack wine stack_wine 0.80 0.56−0.24 0.56−0.24

close drawer close_drawer 1.00 0.96−0.04 0.76−0.24

close box close_box 1.00 0.96−0.04 0.76−0.24

set clock change_clock 0.40 0.28−0.12 0.20−0.20

hang frame hang_frame_on_wall 0.16 0.08−0.08 0.00−0.16

open microwave open_microwave 0.44 0.40−0.04 0.40−0.04

close fridge close_fridge 0.92 0.84−0.08 0.76−0.16

remove USB take_usb_out_of_computer 0.60 0.48−0.12 0.72+0.12

change channel change_channel 0.12 0.00−0.12 0.00−0.12

insert USB insert_usb_in_computer 0.92 0.80−0.12 0.88−0.04

seat down toilet_seat_down 1.00 0.96−0.04 0.88−0.12

close grill close_grill 0.56 0.48−0.08 0.68+0.12

lift block lift_numbered_block 0.08 0.00−0.08 0.08−0.00

seat up toilet_seat_up 0.84 0.76−0.08 0.88+0.04

take out shoes take_shoes_out_of_box 0.08 0.00−0.08 0.16+0.08

take out money take_money_out_safe 0.76 0.80+0.04 0.68−0.08

screw nail screw_nail 0.08 0.12+0.04 0.00−0.08

water plants water_plants 0.48 0.40−0.08 0.56+0.08

hockey hockey 0.08 0.04−0.04 0.00−0.08

open wine open_wine_bottle 0.36 0.28−0.08 0.40+0.04

hit ball hit_ball_with_cue 0.08 0.00−0.08 0.00−0.08

put groceries put_groceries_in_cupboard 0.08 0.04−0.04 0.00−0.08

turn on oven turn_oven_on 0.36 0.32−0.04 0.28−0.08

set checkers setup_checkers 0.04 0.00−0.04 0.04−0.00

basketball basketball_in_hoop 0.76 0.72−0.04 0.72−0.04

hang hanger place_hanger_on_rack 0.32 0.04−0.28 0.00−0.32

open grill open_grill 0.24 0.00−0.24 0.00−0.24

straighten rope straighten_rope 0.00 0.04+0.04 0.00−0.00

sweep dust sweep_to_dustpan 0.92 1.00+0.08 1.00+0.08

press switch press_switch 0.44 0.52+0.08 0.56+0.12

close microwave close_microwave 0.72 0.80+0.08 0.80+0.08
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C Supplementary real-world results

Table 6 reports the per-task success rates of CoA, ACT, and DP across 8 real-world kitchen manipula-
tion tasks. CoA consistently achieves the highest average performance.

Table 6: Per-task success rate in real-world experiments.

Task CoA ACT DP
close cabinet 0.80 1.00 0.90
close fridge lower 0.20 0.50 0.60
close fridge upper 0.70 0.40 0.80
open cabinet 0.50 0.40 0.10
open fridge lower 0.70 0.40 0.00
open microwave 0.80 0.30 0.50
place in cabinet 0.70 0.10 0.00
place in fridge 0.50 0.60 0.00

Avg. 0.613 0.463 0.363

D Hyperparameters for RLBench

We provide the training and evaluation hyperparameters for CoA and all baseline methods used in
the simulation experiments. To ensure a fair comparison, the hyperparameters for ACT are largely
aligned with those of CoA, allowing us to isolate and assess the impact of our proposed modeling
paradigm. For DP, we observe slower convergence relative to CoA and ACT, and thus extend its
training duration to 100,000 iterations. In addition, we incorporate temporal ensembling into DP
following the implementation in ACT. Octo converges substantially faster, and we find that 2,000
training iterations are sufficient. Given that Octo is primarily pretrained on single-camera data, we
finetune it using only the front camera, while increasing the image resolution to enhance visual
fidelity. All models are trained on a single NVIDIA H100 GPU per task.

Table 7: Hyperparameters for CoA

Backbone ImageNet-trained ResNet18 [10]
Action dimension 8 (3 position + 4 quaternion + 1 gripper)
Cameras wrist, front, right shoulder, left shoulder
Learning rate 1e−4

Weight decay 1e−4

Image size 128× 128
Execution horizon 1
Observation horizon 1
# encoder layers 4
# decoder layers 7 (6 + 1 multi-token prediction layer)
# heads 8
Feedforward dimension 3200
Hidden dimension 512
Dropout 0.1
Iteration 20000
Batch size 128
Temporal ensembling true (reverse temporal ensemble)
Action normalization [−1, 1]
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Table 8: Hyperparameters for ACT
Backbone ImageNet-trained ResNet18 [10]
Action dimension 8 (3 position + 4 quaternion + 1 gripper)
Cameras wrist, front, right shoulder, left shoulder
Learning rate 1e−4

Weight decay 1e−4

Image size 128× 128
Action sequence 20
Execution horizon 1
Observation horizon 1
# encoder layers 4
# decoder layers 7
# heads 8
Feedforward dimension 3200
Hidden dimension 512
Dropout 0.1
Iteration 20000
Batch size 128
Temporal ensembling true
Action normalization [−1, 1]

Table 9: Hyperparameters for DP

Backbone ImageNet-trained ResNet18 [10]
Noise predictor UNet [29]
Action dimension 8 (3 position + 4 quaternion + 1 gripper)
Cameras wrist, front, right shoulder, left shoulder
Learning rate 1e−4

Weight decay 1e−6

Image size 128× 128

Observation horizon 1
Action sequence 20
Execution horizon 1
Train, test diffusion steps 50, 50
Hidden dimension 512
Iteration 100000
Batch size 128
Temporal ensembling true (following ACT’s)
Scheduler DDPM [12]
Action normalization [-1, 1]
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Table 10: Hyperparameters for Octo

Pretrained model Octo-small [28]
Action dimension 8 (7 delta joints + 1 gripper)
Cameras front
Learning rate 3e−4

Weight decay 1e−2

Image size 256× 256

Observation horizon 1
Action sequence 4
Execution horizon 1
Iteration 2000
Batch size 128
Temporal ensembling false
Action normalization mean 0, std 1
Finetuning head linear head
Image augmentation resized crop, brightness, contrast, saturation, hue

E ACT variant with keyframe action

To further examine the impact of keyframe action on action sequence modeling, we conduct an
additional ablation by modifying the ACT baseline. Specifically, we introduce a variant, ACT+KF, in
which an extra keyframe action is appended to ACT’s original action chunk.

As shown in Table 11, ACT+KF achieves a higher average success rate (0.516) compared to the
original ACT (0.488), indicating that injecting keyframe actions yields marginal improvements.
However, the overall gain remains limited.

This result suggests that while keyframe actions may provide some global guidance, they do not
substantially improve the final action quality when introduced in this manner. A similar trend is
observed in the poor performance of Hybrid (Table 3), a variant of CoA that incorporates both
keyframe supervision and causal decoding but lacks trajectory continuity. The limited effectiveness
of both ACT+KF and Hybrid underscores a key insight: merely injecting keyframe signals and
enforcing an autoregressive structure is not sufficient. Instead, it is crucial to model the entire
trajectory holistically with temporal continuity, whch is explicitly realized in our CoA formulation.

Table 11: Comparison of ACT vs. ACT+KF (with keyframe action) on 10 RLBench tasks.

Task ACT ACT+KF

Stack Wine 0.56 0.56
Turn Tap 0.36 0.32
Open Drawer 0.52 0.76
Push Button 0.08 0.16
Pick Up Cup 0.20 0.36
Take Lid 0.40 0.40
Press Switch 0.52 0.28
Reach Target 0.88 0.72
Sweep Dust 1.00 0.96
Open Box 0.36 0.64

Avg. 0.488 0.516
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions, including
the trajectory autoregressive modeling and its key components. These claims are supported
by experiments across 60 RLBench tasks and real-world tests.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses key limitations, including the reliance on hand-crafted
keyframe heuristics for trajectory segmentation. This limitation is acknowledged in the
conclusion section and help clarify the scope of the proposed approach.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [No]

Justification: Our work introduces a autoregressive modeling framework for visuomotor poli-
cies, with contributions that are primarily architectural and algorithmic. As the focus is on
empirical performance and system-level design rather than formal theoretical development,
no formal theorems or proofs are provided.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the model architecture, training
setting, and evaluation protocols across all experiments, including both simulation and
real-robot settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be open-sourced upon publication. The simulation data used
in our experiments is based on the publicly available RLBench benchmark and can be
generated by its official code base.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and evaluation details are provided in main paper, except for
hyperparameters, which are reported in the appendix. We also include the hyperparameter
settings used for all baseline methods to ensure fair comparison.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: We report success rates averaged over 25 evaluation trials per task for all 60
RLBench tasks, but we do not provide error bars or other statistical significance metrics.
We acknowledge this limitation and plan to include such measures in future versions to
strengthen the statistical interpretation of our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide details of the compute resources used in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research does not involve human subjects, personally identifiable data,
or other ethically sensitive content. All experiments were conducted in simulation or on
standard robotic platforms, and the work complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not include an explicit discussion of societal impacts. Our
work focuses on improving robotic manipulation through a novel trajectory generation
method and is intended primarily for academic and industrial automation research. We do
not foresee direct negative societal impacts such as disinformation, surveillance, or fairness
concerns, as the method is task-agnostic and does not involve human subjects or personal
data.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of models or datasets with a high risk
for misuse. It focuses on visuomotor policy learning for robotic manipulation.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We use the RLBench dataset, which is publicly available. We also build upon
the ACT, Diffusion Policy, Octo codebases, both of which are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve any crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects and thus does not require IRB
or equivalent approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology does not involve large language models as any important,
original, or non-standard component.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related work
	Chain-of-Action for robotic manipulation
	Implementation details
	Experiments
	Simulation experiment settings
	Overall comparisons
	Dive into spatial generalization
	Ablation on architectural components
	Real-world experiments

	Conclusion
	Acknowledgements
	Comparison on RLBench-18
	Per-task success rates on RLBench-60
	Supplementary real-world results
	Hyperparameters for RLBench
	ACT variant with keyframe action

