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Abstract

Federated learning (FL), through its privacy-preserving collaborative learning ap-
proach, has significantly empowered decentralized devices. However, constraints
in either data and/or computational resources among participating clients introduce
several challenges in learning, including the inability to train large model architec-
tures, heightened risks of overfitting, and more. In this work, we present a novel
FL framework grounded in Bayesian learning to address these challenges. Our
approach involves training personalized Bayesian models at each client tailored
to the unique complexities of the clients’ datasets and efficiently collaborating
across these clients. By leveraging Bayesian neural networks and their uncertainty
quantification capabilities, our local training procedure robustly learns from small
datasets. And the novel collaboration procedure utilizing priors in the functional
(output) space of the networks facilitates collaboration across models of varying
sizes, enabling the framework to adapt well in heterogeneous data and compu-
tational settings. Furthermore, we present a differentially private version of the
algorithm, accompanied by formal differential privacy guarantees that apply with-
out any assumptions on the learning algorithm. Through experiments on popular
FL datasets, we demonstrate that our approach outperforms strong baselines in
both homogeneous and heterogeneous settings, and under strict privacy constraints.

1 Introduction

Federated Learning (FL) has emerged as a pivotal paradigm in various real-world applications,
offering a decentralized approach that allows participating clients to contribute to a shared model
without compromising the privacy of their raw data. However, implementing FL in practical scenarios
poses challenges due to the significant variability among participating clients in terms of their local
data and computational resources. Clients with restricted compute capacity may encounter difficulty
in training large machine learning models identical to those of other clients, and those with minimal
data may struggle to obtain reliable estimates of local model parameters.

Due to their ability to generalize under limited data and provide uncertainty quantifications [69, 2, 3],
we consider Bayesian based learning methods to construct improved local models. Employing
Bayesian learning in FL, however, would involve the following steps - each client doing local
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posterior inference to obtain a distribution over weight parameters and then communicating the local
posteriors to the server, the server receiving the local posteriors from the clients and aggregating
them to obtain a global posterior distribution, which is then broadcast to the clients for the next round
of training. This entire learning procedure, as it turns out, is highly resource and communication-
intensive. For solving an m-dimensional federated least squares estimation, this method will require
O(m3) computation on all the clients and server sites [4] which is much more as opposed to the cost
of standard FL (generally O(m)). How could we then utilize the strengths of Bayesian methods for
FL settings without paying such high costs? Additionally, given substantial variations in locally
available computing resources, how do we still enable efficient learning and collaboration on all
clients? We address these questions by proposing a framework that allows all clients to train their
own personal Bayesian models (with varying model complexities), and achieves collaboration across
clients by distilling knowledge from the peer clients via a shared unlabelled public dataset and
instilling that knowledge in the local models in the form of priors. The challenge of transferring
knowledge across models of different architectures is addressed by using the functional (output) space
to indirectly determine priors on weights of the local model parameters. Furthermore, to prevent the
data leaks in FL setup [22, 68, 23] and formally guarantee the privacy of the local client data, we
present a differentially-private version of the algorithm applying a formal well-known standard of
differential privacy [19], along with privacy analysis and a bound on the privacy loss of the entire
procedure.

This work provides a novel integrated Federated Learning (FL) framework, FedBNN, designed to
tackle challenges arising from both limited data and heterogeneous computational resources across
clients. Additionally, our method offers valuable characterizations of model uncertainties, and is able
to operate under strict data privacy constraints, thereby extending the applicability of FL to crucial
domains such as healthcare and legal, where these considerations are paramount. To the best of our
knowledge, no previous work has jointly addressed all these learning challenges in the FL context.
Our promising results significantly broaden the potential of FL for critical real-world applications.

Specifically, our key contributions can be summarized as :

• We propose a new approach to personalized federated learning utilizing Bayesian princi-
ples for improved robustness and reliability, particularly in contexts where data is scarce.
Despite its Bayesian framework, this method is designed to be both computationally and
communication efficient.

• A novel collaboration mechanism based on assigning prior distributions over the model
parameters via the output space, instead of directly sharing model parameters’ distributions,
which can be computationally expensive and raise privacy concerns, is proposed to enable
clients having different computational resources to train models with varying complexity.
This is important because in real-world FL applications, clients often have vastly different
capabilities.

• We provide a formal differential privacy guarantee for our method that applies to general
settings irrespective of the client’s learning algorithm and show that the method is able to
learn effectively even under strict privacy guarantees.

• We evaluated our method on several datasets and show that it outperforms the baselines
by a significant margin, particularly in heterogeneous data and model settings. This makes
FedBNN particularly well-suited for real-world FL applications, which often exhibit high
degrees of heterogeneity.

2 Related Work

This section provides a brief overview of the most relevant prior work in the fields of federated
learning, Bayesian FL, and Differential Privacy in FL.

Federated Learning FL was introduced as the FedAvg algorithm in the seminal work in [45]. Since
then many different modifications have been proposed that tackle specific challenges, including global
FL solutions as well as personalized solutions. FedPD [74], FedSplit [54], and FedDyn [1] proposed
methods for finding better fixed-point solutions to the FL optimization problem. [40, 73, 66, 58, 15]
show that point-wise aggregate of the local client models does not produce a good global model
and propose alternate aggregation mechanisms to achieve collaboration. Personalized FL has been
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Table 1: Contrasting our method, FedBNN, against previous works.

Method
Addressed Challenges

Limited
Data

Heterogeneous
Compute

Uncertainty
Quantification Privacy

FedProx ✗ ✗ ✗ ✓
pFedME ✓ ✗ ✓ ✗
FOLA ✓ ✗ ✓ ✗
pFedGP ✓ ✗ ✓ ✗
pFedBayes ✓ ✗ ✓ ✗
FedPop ✓ ✗ ✓ ✗
FedAUX ✗ ✓ ✗ ✓
FedBNN ✓ ✓ ✓ ✓

approached in many ways like meta-learning [20, 8, 31, 33], multi-task learning [59, 38, 60], by
clustering the clients [56, 26] and others [17, 37, 72, 57, 67, 43], [16] uses Bayesian view based
analysis to obtain a better trade-off between personal and global models. Knowledge distillation
for personalized FL settings has also been used previously for training heterogeneous models in
non-Bayesian settings [36, 40, 50]. Several other methods have proposed enhancements in FL
learning and privacy by using an auxiliary dataset like [15, 55, 36, 52]. Most of these methods rely
on the well-established knowledge distillation procedures. But since the transfer of knowledge or
information between Bayesian models itself has remained inadequately addressed, these methods are
not easily extensible to Bayesian settings. Our method on the other hand, utilizes a novel method
that enables collaboration across client specific Bayesian models by transferring knowledge through
a prior specification mechanism in the output space, which also enhances the field of Bayesian
knowledge distillation.

Bayesian Federated Learning Bayesian approaches for federated learning can also be broadly
divided as methods using Bayesian inference to obtain a global model and personalized Bayesian
learning methods. Amongst the methods that train a global model, some methods just use Bayesian
mechanisms for achieving collaboration among non-Bayesian local models, like FedBE [15] which
uses Bayesian mechanism to aggregate the locally trained neural networks to obtain a Bayesian
ensemble at the server, [9] which suggests using an MCMC based method for obtaining a global
model from the local models, and PFNM [73] and FedMA [66] which use a Beta-Bernoullli process
to obtain the global models. Other methods that train local Bayesian models at the clients and at the
server include FedPA [4] that uses Laplace approximations for an efficient way of computing local
and global posteriors, [18] that suggests the use of Bayesian Optimization and Thompson Sampling
to obtain the solution to the global optimization problem, recently, [49] did an empirical study on
various ways of aggregation mechanisms for local variational Bayesian neural networks and their
effects on the solution. These methods that focus on obtaining a global solution are less suited for the
statistical heterogeneity present across clients [14], and therefore we focus more on the methods that
build personalized Bayesian solutions for clients. Among such methods, pFedGP [3] is a Gaussian
Process based estimation method that utilizes Deep Kernel Learning to collaboratively train a single
deep neural network with FedAvg and then uses personalized GPs for prediction. FedLoc [70] also
uses GP in FL but for regression tasks. pFedBayes [75] uses variational inference locally to optimize
a loss at each client that is a combination of the data likelihood term and distance to the prior and
iteratively determines the prior from the global posterior distribution. FOLA [41] proposed using
Laplace Approximation for posterior inference at both the server side and the client side, PAC-FL [11]
and [34, 65, 51] also proposed variants of methods that assume Bayesian models on local clients
but for all of them main assumption is that the local model parameters are generated from a shared
global distribution thus making them useful only in homogeneous settings. All the methods described
above choose priors by assuming a distribution over values for each weight, and thus choosing an
appropriate and meaningful prior becomes a challenge [14]. These issues led us to use functional
space priors instead which have been explored in limited centralized settings [63, 61, 21] but not in
FL. But most importantly, none of these methods are designed or could be easily extended to work
with compute heterogeneous settings limiting the applicability of these solutions in several real-world
scenarios. Table 1 compares our approach with the most closely related works.

Differential Privacy in FL Since decentralized learning does not guarantee that the data will remain
private, it is important that a formal rigorous guarantee be given on the data that is leaked by the
algorithm. Seminal works in DP propose using a Gaussian noise mechanism by adding Gaussian
noise to the intermediate results and achieving a bound on the algorithm by using composition
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results [19, 46, 32]. For FL, [24] and [44] independently proposed DP-FedSGD and DP-FedAvg
algorithms, which enhance FedAvg by adding Gaussian noise to the local client updates. Several
other works focus on analyzing the privacy-utility trade-off in DP in FL setting [25, 27, 5, 64, 39].
Recently, [30] proposed a DP-based solution for personalized FL that works only for linear models.
And then [47] improved it for general models and heterogeneous data in FL. These methods, however,
mostly focus on privacy guarantees while solving the non-Bayesian FL optimization problem.

3 Methodology

In this section, we first go over the problem setting and background, and then present our proposed
framework, FedBNN, with details of all the key components.

3.1 Background

Problem Description Consider an FL setting with N clients where each client i has local dataset
X i of size ni drawn from the local data distribution Di. The goal of a personalized federated learning
procedure is to obtain optimal weights for each client’s local model, W∗

i , given the entire data,
X =

⋃N
j=1 X j through collaboration but without compromising client data privacy. However, the

learning procedure faces challenges that are posed due to - system heterogeneity and statistical
heterogeneity. System heterogeneity refers to the variable amount of data and compute resources
across clients, meaning, i) the data resources on each client vary widely, i.e., nk >> nl for some
clients k and l, and ii) the compute across clients is non-identical due to which it is not possible to
train models of uniform architectures across clients, leading to non-identical weights, i.e., Wi ̸= Wj

for different clients i and j. Statistical heterogeneity implies that the data distribution across clients is
non-IID.

Bayesian Learning Instead of obtaining the optimal values of the model parameters, W∗
i , Bayesian

learning aims to learn posterior distributions (probability distributions over the values) for all the
model parameters from the given data - IP(W|X ). Thus, in a personalized Bayesian FL procedure,
the modified goal would be to learn distributions for local weights, IP(Wi|X ) from X =

⋃N
j=1 X j .

However, the exact inference for obtaining the posterior distribution for each of the weight parameter
in the network is intractable and several approximations have been studied to obtain approximate
distributions. Variational inference [29] is an approximation method that tries to learn parameterized
distribution q(w|θ) from a family of distributions Q, typically of simpler form, by optimizing the
parameters θ such that the new distribution q(w|θ∗), obtained for the optimal value of θ, is close
to the desired posterior distribution IP(W|X ). Precisely, θ∗ is obtained by solving the following
optimization problem and its expansion given below -

θ∗ = argmin
θ:q(W|θ)∈Q

KL[q(W|θ)||IP(W|X )] (1)

= argmin
θ:q(W|θ)∈Q

KL[q(W|θ)||p(W;ψ)]− Eq(W|θ)[logIP(X|W)] (2)

and then q(w|θ∗) is used in place of IP(W|X ). The optimization objective minimizes the distance of
q(W|θ) to a prior distribution p(W;ψ), used to encode any prior information about the parameters,
while also maximizing the likelihood of the observed data X under q(W|θ). A more detailed
discussion of Bayesian learning is included in Appendix A. Even though Bayesian approaches are
more computationally expensive than their point-estimation counterparts, their superior capabilities
for uncertainty quantification and performance in small data settings outweigh the extra compute
costs in many critical applications. Moreover, recent innovations like Bayes by Backprop [10] which
carefully uses the backpropagated gradients for learning the parameters of posterior distributions,
drastically reducing the added computation costs.

3.2 FedBNN Methodology

The FedBNN framework works iteratively in two steps - local optimization on the individual clients
to obtain local posterior distributions over the model parameters, and a global collaboration step
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where the output from each client is appropriately aggregated at the server and broadcast to all the
clients for the next rounds of training. These two steps are further described below, and the detailed
algorithm and the overview diagram are included in the Appendix B in Algorithm 1 and Figure 2
respectively.

Local Setting Let each client in the network be training a personalized Bayesian NN, which
for the client i is denoted by Φi and is parameterised by weights Wi. As commonly used in the
literature, we assume that the individual weights of the BNN are Normally distributed and satisfy
mean-field decomposition, i.e., wi,α ∼ N (µi,α, σ

2
i,α) for α ∈ [1, . . . , |Wi|] where µi,α is the mean

of the Gaussian distribution for the parameter α on the ith client and σ2
i,α is the variance of the

Gaussian distribution for the same parameter. To guarantee that σi,α takes non-negative values for
all clients i and all parameters α, we use a technique commonly used in inference procedures [10],
and replace each σi,α by another parameter ρi,α during the training, with σi,α = log(1 + exp(ρi,α)).
The individual weights of the local BNN, wi,α, are also assumed to each have a Gaussian prior
distribution, p(wi,α;ψi,α), parameterized by ψi,α = (µpi,α, σ

p
i,α).

3.2.1 Global Collaboration

We attain collaboration amongst clients via an auxiliary dataset called the Alignment Dataset (AD).
This is an unlabeled dataset typically small in size, and is used for providing peer supervision to
the individual clients by helping clients distill knowledge from other peer clients without explicitly
sharing a large number of locally learned parameter weight distributions. The experiments in
Figure 5 and Table 3 show the effect of the varying size and distribution of AD in achieving effective
collaboration.

In heterogeneous settings, the use of non-identical architecture models (Wi ̸= Wj) means that there
is no direct way of aggregating the distributions for prior specification. In fact, even in homogeneous
settings, aggregating the weight distributions can be prone to errors due to reasons like insufficient
understanding of the weight space, non-alignment of weights across models, etc. Thus, for the
purpose of collaboration, we use the function-space of the networks rather than the weight space.
Specifically, in each global communication round, the server shares the AD with all the clients. The
clients do a forward pass on AD to obtain the local output Φi(AD), where the local output of the
ith client is approximated by drawing m sets of weight samples, W(j)

i : j ∈ [1,m], from its local
posterior distribution IP(Wi|X ) using Monte Carlo sampling and aggregating the outputs under each

of these samples Φi(AD) =
1

m

∑m
j=1 Φi(AD;W(j)

i ). The obtained output for AD on each client is

then sent back to server which forms an aggregated representation, denoted by Φ̄(AD), obtained via
a weighted aggregation of all clients’ outputs, i.e., Φ̄(X) =

∑N
j=1 wjΦj(X). By default, all weights

are considered the same, however the formulation provides flexibility, for example to accommodate
situations where the aggregation weights could represent the relative strength of each client in terms
of its data or compute resources, i.e., clients with high compute (or data) resources receive more
weight as compared to clients with lower amount of resources. The obtained Φ̄(AD) is then uploaded
to all the clients for use in the next round of local training. More details about the Alignment Dataset
(AD) along with the explanations and experiments on the size, distribution, availability etc. of the
AD are included in the Appendix E.

3.2.2 Local Optimization on Clients

Prior Specification Design The Bayesian framework provides a natural way of incorporating
supervision in the form of priors. Conventional methods in Bayesian deep learning provide direct
priors for model weights as distribution over values. However, the relationship between the values of
the model weights/parameters and the outputs is complex and the priors in model’s weight-space
do not directly capture the desired functional properties. Also, since the number of parameters in
a neural network is large, most prior specifications tend to take a simplistic form like an isotropic
Gaussian, to make inference feasible. Thus, learning by specifying prior distributions over weights
does not always help translate prior knowledge in the learning process. In this work, we consider a
way of specifying priors in the functional space by first optimising the Bayesian neural networks over
the prior parameters for a fixed number of steps so that the BNN achieves a desired functional output.
These intuitive priors help in explicitly instilling the external knowledge during the training of the
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neural networks. Let p(Wi;ψ) represent the prior function over the weights Wi and is parameterized
by ψ, with ψ = {(µpi,α, σ

p
i,α), α ∈ [1, . . . , |Wi|]}, the prior parameters that determine the prior

distributions are learned by solving an optimization problem as below:

ψ∗
i = argmin

ψ
d(Y,Φi(AD;Wi)),

where d is a suitable distance function and Y represents the desired output, resulting in optimal priors
p(Wi;ψ

∗). Below we provide details of the prior specification for our method.

Local Optimization For the local optimization, the individual clients learn IP(Wi|X i) via vari-
ational inference. As described above, a variational learning algorithm tries to find optimal pa-
rameters θ∗ of a parameterized distribution q(Wi|θ) among a family of distributions denoted by
Q. In our setting, we set the family of distributions, Q, to be containing distributions of the form
wi,α ∼ N (µi,α, σ

2
i,α) for each parameter wi,α for α ∈ [1, . . . , |Wi|]. For inference in Bayesian neu-

ral networks, we use Bayes by Backprop [10] method to solve the variational inference optimization
problem.

At the beginning of each local optimization procedure (in each global communication round a specific
client is selected), we use the global information obtained from the server Φ̄(AD) to intialize the prior
for the BNN. Specifically, at the beginning of each local training round, the selected clients first tune
their priors to minimize the distance between the local output, Φi(AD;Wi) and the aggregated output
obtained from the server, Φ̄(AD). Since the aggregated output represents the collective knowledge
of all the clients and may not be strictly precise for the local model optimization, we consider this
aggregated output as “noisy" and correct it before using for optimization. Specifically, we generate
Φcorrected
i as a convex combination of the global output and the local output for a tunable parameter γ.

For the ith client,

Φcorrected
i = γΦ̄(AD) + (1− γ)Φi(AD;Wi). (3)

The prior optimization steps then optimize the distance between Φcorrected
i and Φi(AD;Wi) to train

the prior parameters ψ, with the aim of transferring the global knowledge encoded in Φcorrected
i to the

local model. Precisely,

ψ∗
i = argmin

ψ
d(Φcorrected

i ,Φi(AD;Wi)). (4)

When the outputs Φ(X;W) are logits, we use cross-entropy or the negative log-likelihood loss as the
distance measure. The optimization involves training the client’s personal BNN Φi to only learn the
parameters of the prior distribution denoted by ψ. This way of initializing the BNN prior enables
translating the functional properties, as captured by Φi(AD;Wi), to weight-space distributions. The
optimal prior parameters are then kept fixed while training the BNN over the local dataset. The local
optimization procedure now works to find the best q(Wi|θ) fixing the prior distribution through the
following optimization problem :

θ∗i = argmin
θ:q(Wi|θ)∈Q

KL[q(Wi|θ)||p(Wi;ψ
∗
i )]− Eq(Wi|θ)[logIP(X i|Wi)], (5)

which is similar to the optimization problem defined in Equation 1 except that now the prior parameters
are optimized so that the obtained prior distributions capture the global knowledge and can guide the
local learning process to make q(Wi|θ) close to the global collective knowledge.

3.2.3 Achieving Differential Privacy

In this variation, to control the release of information from the clients, we add a carefully designed
Gaussian mechanism wherein we add Gaussian noise to the Φi(AD) that is being shared by each
client. Specifically, each client i uploads Φi(AD)DP = Φi(AD)+N (0, σ2

g) to the server and then the
server aggregates Φi(AD)DP across clients to obtain and broadcast Φ̄(AD)DP which is used by the
clients in their next round of local optimization. The variance of the noise depends on the required
privacy guarantee.
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4 Privacy Analysis

Though our algorithm is inherently quite private as it refrains from explicitly sharing model weights,
we can also provide a formal Differential Privacy based guarantee. Our analysis in this section
focuses on providing record-level DP guarantee over the entire dataset X . This analysis quantifies
the level of privacy achieved towards any third party and an honest-but-curious server. In this section
we directly present the key result of our analysis. Due to the lack of space, additional definitions,
results and the proof for the theorem are mentioned in Appendix C.

Theorem 4.1 (Privacy Budget). The proposed algorithm is (ϵ, δ)-differentially private, if the total
privacy budget per global communication round per query is set to

ρ =
ϵ2

4EKlog 1
δ

for E number of global communication rounds and K number of queries to the algorithm per round.

The parameter ρ is related to the Gaussian noise by ρ =
∆2

2σ2
. The detailed proof is included in

Appendix C. Our analysis does not assume any specifics of how each client is trained and is therefore
applicable in more general settings. Note that we present a pessimistic analysis by providing a worst-
case analytical bound, wherein we assume that a change in single data point may entirely change the
output of the algorithm, and also since the public dataset remains common throughout the rounds,
the actual privacy loss due to querying on the public dataset does not typically add up linearly. Yet
the above analysis shows that we have several knobs to control to achieve the desired privacy-utility
trade off - balancing the number of global communication rounds with local epochs, reducing the
number of queries, and the standard noise scale. By appropriately tuning these controls we are able
to achieve good performance with a single digit ϵ (≈ 9.98) privacy guarantee and δ = 10−4.

5 Experiments

In this section, we present an experimental evaluation of our method and compare it with different
baselines under diverse homogeneous and heterogeneous client settings. Specifically, we experiment
with three types of heterogeneity - i) heterogeneity in data resources (amount of data), ii) heterogeneity
in compute resources, and iii) statistical heterogeneity (non-IID data distribution across clients). We
also discuss the change in performance of our method when the degree and type of heterogeneity
changes. Due to the space constraint, additional experiments on varying the size and distribution of
the AD, privacy-utility trade-off and model calibration are included in the Appendix E, G and D
respectively.

5.1 Experimental Details

Datasets We choose three different datasets commonly used in prior federated learning works
from the popular FL benchmark, LEAF [13] including MNIST, CIFAR-10 and CIFAR-100. MNIST
contains 10 different classes corresponding to the 10 digits with 50,000 28×28 black and white
train images and 10,000 images for validation. CIFAR-10 and CIFAR-100 contain 50,000 train and
10,000 test-colored images for 10 classes and 100 classes respectively. The choice of these datasets is
primarily motivated by their use in the baseline methods.

Simulation Details We simulate three different types of heterogeneous settings - corresponding to
heterogeneity in compute resources, data resources and the statistical data distribution. Before starting
the training process, we create N different clients with different compute resources by randomly
selecting a fraction of clients that represent clients with smaller compute. Since these clients do not
have large memory and compute capacity, we assume that these clients train smaller-size BNNs as
opposed to the other high-capacity clients that train larger VGG-based models. In particular, the
small BNNs were constructed to have either 2 or 3 convolution layers, each followed by a ReLU
and 2 fully-connected layers at the end, and a VGG9-based architecture was used for larger BNNs.
The number of parameters in smaller networks is around 50K and that in larger networks is around
3M. Since the baselines only operate with identical model architectures across clients, we use the
larger VGG9-based models on the baselines for a fair comparison. We include the results of our
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method in both homogeneous compute settings (similar to baselines) as well as in heterogeneous
compute settings wherein we assume that 30% of the total clients have smaller compute and are
training smaller-sized models.

Next, we also vary the data resources across clients and test the methods under 3 different data
settings - small, medium and full. The small setting corresponds to each client having only 50 training
data instances per class, for the medium and full settings each client has 100 data instances and all
available data instances per class respectively for training. We simulate statistical heterogeneity by
creating non-IID data partitions across clients. We work in a rather strict non-IID setting by assuming
clients have access to data of disjoint classes. For each client a fraction of instance classes is sampled
and then instances corresponding to the selected classes are divided amongst the specific clients. For
the included experiments, we set number of clients N = 20 and divide the instances on clients such
that each client has access to only 5 of the 10 classes for MNIST and CIFAR-10, and 20 out of 100
classes for CIFAR-100.

Table 2: Test accuracy comparsion with baselines in non-IID settings.

Method
MNIST CIFAR10 CIFAR100

(small) (medium) (full) (small) (medium) (full) (small) (medium) (full)

(Non-Bayesian)
Local Training 88.7 ± 1.2 90.1 ± 1.0 91.9 ± 1.1 53.9 ± 2.1 59.5 ± 1.8 70.8 ± 1.4 28.8 ± 1.8 32.7 ± 1.9 43.5 ± 1.6
FedAvg 88.2 ± 0.5 90.15 ± 1.2 92.23 ± 1.0 43.14 ± 1.2 56.27 ± 1.8 78.17 ± 1.2 27.3 ± 1.9 32.81 ± 1.6 36.3 ± 0.2
FedProx 86.9 ± 0.8 89.91 ± 0.7 93.1 ± 0.4 44.27 ± 1.2 58.93 ± 0.9 79.19 ± 0.6 28.6 ± 2.7 34.31 ± 1.4 37.8 ± 0.9
FedAUX 90.1 ± 1.6 92.8 ± 1.34 94.4 ± 1.21 60.01 ± 1.96 68.6 ± 0.73 77.0 ± 0.84 37.05 ± 1.3 43.5 ± 1.7 45.2 ± 0.88
pFedME 91.95 ± 2.1 93.39 ± 1.2 95.62 ± 0.5 48.46 ± 1.5 64.57 ± 2.1 75.11 ± 1.2 32.4 ± 2.2 36.3 ± 2.0 41.8 ± 1.7
non-Bayesian KD 89.1 ± 0.4 92.5 ± 0.2 93.2 ± 0.3 33.9 ± 1.3 53.2 ± 1.5 69.8 ± 1.0 26.1 ± 2.0 35.2 ± 1.2 42.7 ± 0.8

(Bayesian with Homogeneous Architectures)
pFedGP 86.15 ± 1.3 90.59 ± 1.7 94.92 ± 0.3 45.62 ± 2.2 56.24 ± 1.8 72.89 ± 0.7 47.06 ± 1.3 53.1 ± 1.2 54.54 ± 0.2
pFedBayes 94.0 ± 0.2 94.6 ± 0.1 95.5 ± 0.3 58.7 ± 1.1 64.6 ± 0.8 78.3 ± 0.5 39.51 ± 1.8 41.43 ± 0.4 47.67 ± 1.1
FOLA 91.74 ± 1.0 92.87 ± 0.8 95.12 ± 0.6 43.29 ± 0.9 45.94 ± 0.7 67.98 ± 0.5 33.42 ± 1.3 48.8 ± 2.1 43.2 ± 1.6

Ours (Homo) 94.9 ± 1.0 95.72 ± 0.8 96.21 ± 0.3 70.6 ± 1.1 72.3 ± 0.6 79.7 ± 0.3 49.65 ± 1.4 55.4 ± 0.8 57.3 ± 0.8
Ours (Hetero) 93.1 ± 1.1 94.4 ± 0.2 95.9 ± 0.2 68.17 ± 2.0 71.73 ± 1.3 78.7 ± 0.7 47.5 ± 1.4 49.10 ± 1.1 51.1 ± 0.7
Ours (Hetero-DP) 89.82 ± 2.3 90.21 ± 1.6 91.43 ± 1.4 54.9 ± 1.91 61.83 ± 1.4 74.3 ± 1.6 43.7 ± 2.3 44.5 ± 1.7 47.0 ± 1.5

(DP-Baseline)
DP-FedAvg 80.1 ± 1.7 85.2 ± 1.8 86.2 ± 1.7 35.17 ± 0.8 50.22 ± 1.1 74.6 ± 1.2 26.5 ± 0.3 30.7 ± 1.4 32.4 ± 0.6

Training parameters and Evaluation We run all the algorithms for 200 global communication
rounds and report the accuracy on the test dataset at the end of the 200th round. The number of local
epochs is set to 20 and the size of AD is kept as 2000. Each client is allowed to train its personal model
for a fixed number of epochs, which is kept to 50 in experiments, before entering the collaboration
phase. The hyper-parameters of the training procedure are tuned on a set-aside validation set. At the
beginning of each global communication round, for optimizing the prior parameters at each client
according to Equation 4, we use an Adam optimizer with learning rate=0.0001 and run the prior
optimization procedure for 100 steps. Then with the optimized prior we train the local BNN using
Bayes-by-Backprop, with Adam optimizer, learning rate = 0.001 and batch size = 128. The noise
effect γ is selected after fine-tuning and kept to be 0.7. For these experiments, the aggregation weight
wj for each client j used to compute Φ̄(X) is set to 1/N , and the AD is obtained by using a separated
subset of the dataset in consideration. All the models are trained on a 4 GPU machine with GeForce
RTX 3090 GPUs and 24GB per GPU memory. For evaluation, we report the classification accuracy
obtained by running the trained models on test datasets from the MNIST, CIFAR10 and CIFAR100
datasets.

Baselines We compare our method against the standard non-Bayesian FL algorithms and Bayesian-FL
methods that build personalized models for clients. We also show results of differentially private
FedAvg algorithm under similar privacy guarantee to provide perspective on the privacy. Apart
from local training where all clients train independent models locally without collaboration, the
non-Bayesian FL baselines include - i) FedAvg, ii) FedProx, iii) pFedME (which uses personalized
models on each client using Monreau envelopes in loss). We also compare our method to other
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baselines that use an auxiliary dataset for collaboration in non-Bayesian FL, namely i) FedAUX,
which uses federated distillation for achieving collaboration in FL, we do not use FedMD [36] as a
baseline since it requires a labelled auxiliary dataset. Further, we create a baseline corresponding
to the non-Bayesian version of our method that works with knowledge distillation and call it non-
Bayesian KD. The Bayesian FL baselines include - i) pFedGP, a Gaussian process based approach
that trains common deep kernels across clients and personal tree-based GPs for classification, ii)
pFedBayes, which uses a variational inference-based approach for personalized FL by training
personal models which are close to the aggregated global models, iii) FOLA, bayesian method using
Gaussian product for model aggregation. And lastly, the DP baseline includes - i) DP-FedAvg, the
FedAvg algorithm with gradient clipping and noise addition to the gradient at each client. The size of
the AD is changed to 1000, number of local epochs to 40 and global communication rounds to 100
for DP-based experiments. For all the experiments, the hyper-parameters were obtained by tuning on
a held-out validation dataset. We used our own implementation of the pFedBayes algorithm since the
source code was not publicly available but we could not compare against FedPop due to the lack of
some implementation details and publicly unavailable code.

(a) (b) (c)

Figure 1: Performance comparison of our method with baselines under different types and varying
degree of heterogeneity for CIFAR-10 dataset with 20 clients. Figure (a) is for heterogeneity in
compute capacity across clients under non-IID data setting, figure (b) for compute heterogeneity
under IID setting, and figure (c) for heterogeneity in data resources. When a fraction of clients in
the setting have low computing resources, the baselines being homogeneous can only train smaller
models on all the clients as shown by constant performance. The results show that our method is
more tolerant to both model heterogeneity and data heterogeneity across clients.

5.2 Results

The performance of our method and the baselines under the non-IID data setting are reported in Table 2.
Under the non-IID setting, we report the results corresponding to different dataset sizes on each client.
To recall, in the small, medium, and full settings, each client has access to 50, 100, and all training
data points per class respectively. We observe that our method with homogeneous architectures across
clients outperforms all other baselines. Moreover, when we consider the performance of our method
under a heterogeneous setting by considering 30% of the total clients to be small capacity, it is evident
that our method is better than the higher capacity homogeneous baselines for more complex tasks like
in CIFAR-10 and CIFAR-100. On average, our method achieves about 6% performance improvement
over the baselines in the small and medium data settings. Figure 1 compares the performance of our
method with the highest-performing baselines under model, data and statistical types of heterogeneity.
Since our method can work with heterogeneous clients, we see that just by the proposed collaboration
and having higher capacity clients in the FL ecosystem, the lower capacity clients are able to gain
about 10% increase in their performance. Also, the performance degradation of our method with
a change in the number of clients with limited data resources is more graceful as compared to the
baselines. In an additional experiment intended to compare the performance of the baseline methods
with additional data, we trained the priors for baseline methods’ encoders using the unlabeled data,
AD, before starting their own prescribed FL procedure. We observed that the performance of the
baseline methods does not change on doing this because the FL procedure that they incorporate
forgets all the prior existing local knowledge at the client side. A similar result was also reported
in [55]. The superior performance of our method could be attributed to the innovative and effective
collaboration achieved by first distilling peer knowledge in the form of the aggregated output on the
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AD, and then ensuring that this knowledge is successfully transferred to each client by specifying
priors in the functional-space of the client model. Furthermore, the parameter in Equation 3 allows
the clients the flexibility to choose the amount of global knowledge that needs to be incorporated,
providing flexibility on the degree of personalization.

6 Discussion

This paper introduced a novel method for personalized Bayesian learning in heterogeneous FL
settings and demonstrated that it is able to outperform existing approaches under different types of
heterogeneous situations, while also providing a privacy guarantee and calibrated responses. The
experiments show that the method is particularly useful for clients with lower data and lower compute
resources as they can benefit the most by the presence of other, more powerful clients in the ecosystem.
While our method assumes the availability of a small, unlabelled auxiliary dataset at the server, it is
typically a very mild requirement as such data can often be obtained from several open sources on the
web. In many cross-silo and cross-device applications, the server often possesses its dataset alongside
private data from clients. For example, hospitals with access to patient records may combine this data
with private patient data collected from individual devices such as wearables or sensors for FL, source
code generation applications might leverage open-source code along with private code repositories
from developers, etc. [6, 7] also mention use-cases where such data is available in real-world. Recent
advances in generative AI have made creation of synthetic data for training a much easier task. The
privacy analysis on the method provides an intuitive and a rigorous guarantee with various tunable
knobs that can be adjusted to achieve the desired privacy-utility trade-off. And while the application
explored in the proposed work consists of image related tasks, both the proposed framework and the
privacy analysis are generic and independent of specific training algorithms, therefore resulting in
its wide applicability in various applications across data modalities. Also, while Bayesian methods
are inherently more computationally expensive as they have to maintain distributions rather than
point estimates, this extra work is invaluable in many applications where uncertainty quantification
is important, for example to help engineers account for uncertainties in material properties, loading
conditions, and manufacturing processes, leading to safer and more reliable designs [53]. The recent
use of transformer based Bayesian methods [76, 42, 62] in varied applications indicate that the
proposed framework can be also applied to settings where much larger neural networks are required.
One limitation that originates from the Bayesian nature, and is common to all applications of Bayesian
learning, is that the exact inference of the posterior distributions is infeasible and therefore variational
approximation has been used for inference of the posterior distributions.
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Supplement for “A Bayesian Approach for Personalized
Federated Learning in Heterogeneous Settings”

In this supplementary material, we first go over the preliminaries of Bayesian learning methods, followed by
the pseudo-code of the algorithm used for training our framework. Then, we provide definitions and results
used in the privacy analysis of the method along with the proof of our privacy budget theorem. We show model
calibration metrics and present results demonstrating our method is well-calibrated. We also discuss the details
about the alignment dataset, AD, its affect on the performance, include additional experimental results and
discuss the communication and computation cost of the procedure.

A Bayesian Learning

Consider a learning setting where we are trying to train a neural network on a dataset X . The aim of this setting
is thus to obtain the set of weights, denoted by W , for the corresponding neural network that best fits the data.
We could also view a neural network as a model that outputs IP(y|x,W) which is the distribution of the label y
for a given data point x under the weights W , for classification this would be the output of the softmax function.
Now, the weights of the network can be learnt by Maximum Likelihood Estimation (MLE) for a given set of
datapoints X = (xi, yi)

n
i=1 by solving the following optimization problem.

WMLE = argmax
W

∑
i

logP (yi|xi,W)

This optimization could be solved by gradient descent based methods and obtains a point estimate of the weight
vector, denoted by WMLE .

The Bayesian learning methods, on the other hand, obtain a posterior distribution on the weights given the
training data, IP(W|X ), which as opposed to the point estimates denotes the joint distribution of all the weight
parameters of the network over the set of values they are likely to take under the observed data and the prior
information encoded in the prior distribution. The predictions for any new data point, x, are then obtained
by taking expectation of the prediction under the posterior distribution, y = Ew∼IP(W|X )[IP(y|x,w)]. Exact
inference of the posterior distribution, however, is intractable for neural networks. Variational inference is a
traditional approximation method used to obtain an approximation of the posterior weight distribution, and it has
also been shown to work for neural networks [29]. Specifically, variational inference tries to learn a simpler
parameterized distribution q(w|θ) from a family of distributions Q by optimizing the parameters θ such that the
new distribution q(w|θ∗) obtained for the optimal value of θ is close to the true posterior distribution IP(W|X ).
Precisely, the optimization problem looks like

θ∗ = argmin
θ:q(W|θ)∈Q

KL[q(W|θ)||IP(W|X )] (6)

= argmin
θ:q(W|θ)∈Q

∫
q(W|θ)log

q(W|θ)
IP(W)IP(X|W)

(7)

= argmin
θ:q(W|θ)∈Q

KL[q(W|θ)||p(W;ψ)]− Eq(W|θ)[logIP(X|W)] (8)

where p(W;ψ) signifies the prior distribution over weights W parameterized by ψ. The prior distribution is
typically used to encode any previously available information about the weights of the network. The above given
objective is the same objective as in Equation 5 that is used for local training in our method.

B Algorithm

The pseudo-code of the algorithm used in the FedBNN method is included in the Algorithm 1. The Algorithm 1
works in the setting when there is a server connected to N clients with each client i having local dataset X i

of size ni drawn from the local data distribution Di, and the server has an auxilliary unlabelled dataset called
AD. The output of the algorithm is the set of personalized models Φi parameterized by Wi for each client i. All
Wi’s, instead of being point estimates, are determined by a posterior distribution IP(Wi|.) which is learnt from
the data via variational inference. As mentioned in the Section 3.2, the learning procedure first optimizes the
prior parameters by minimizing Equation 4 and then learns the posterior parameters keeping the prior fixed by
minimizing Equation 5.

C Privacy Analysis

Some known results on differential privacy that are used to determine the privacy loss of our algorithm are given
in this section and then the proof of the Theorem 4.1 is presented.
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Algorithm 1 FedBNN Algorithm
Input: number of clients N , number of global communication rounds E, number of local epochs
e, weight vector [w1, w2, . . . wN ], noise parameter γ
Output: Personalized BNNs {Φi|i ∈ [1, N ]}, parameterized by Wi ∼ IP(Wi|X )
Server Side -
X = AD
for t = 1 to E do

Select a subset of clients Nt

for each selected client i ∈ Nt do
Φi(X) = LocalTraining(t, Φ̄(X)(t−1),X)

end for
Φ̄(X)(t) =

∑Nt

j=1 wjΦj(X)
end for
Return Φ1(E),Φ2(E) . . .ΦN (E)

LocalTraining(t, Φ̄(X)(t−1),X)
Run inference on X to obtain Φi(X)
Generate Φcorrected

i (X) = γΦ̄(X)(t−1) + (1− γ)Φi(X)
for each prior epoch do

Minimize CrossEntropy(Φcorrected
i (X),Φi(X)) to obtain prior parameters ψ of the BNN Φi

end for
for each local epoch do

Minimize KL[q(Wi|θ)||p(Wi;ψ
∗)] − Eq(Wi|θ)[logIP(X i|Wi)] over {θ : q(Wi|θ) ∈ Q} to

obtain θ∗
end for
IP(Wi|X ) ≈ q(Wi|θ∗)
Obtain m Monte-carlo samples W(j)

i : j ∈ [1,m] from IP(Wi|X )

Compute Φi(X) =
1

m

∑m
j=1 Φi(X;W(j)

i )

Return Φi(X)

…….

Client 1 Client N

prior
prior

posteriorposterior

local data
local data

ഥΦ 𝐴𝐷 = σ𝑤𝑖Φ𝑖(𝐴𝐷) 

Figure 2: A schematic overview of our method: Local BNN on each client obtain a posterior
distribution over local parameters using the prior distribution and local data. These local models
generate outputs on the AD using their respective posterior distributions and share these outputs with
the server. The server aggregates these outputs and distributes the aggregated output on the AD back
to all clients, guiding the prior distribution on each client. These updated prior distributions then
further guide the learning of the posterior distributions.
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Definition C.1 ((ϵ, δ)- Differential Privacy). A randomized algorithm M is (ϵ, δ)-DP if for any two neighboring
datasets D and D′ that differ in at most one data point, the output of the algorithm M on D and D′ is bounded
as

IP[M(D) ∈ S] ≤ eϵIP[M(D′) ∈ S] + δ, ∀S ⊆ Range(M).

A generalization of differential privacy is known as concentrated differential privacy(CDP). And an alternative
form of concentrated differential privacy called zero-concentrated differential privacy(zCDP) was proposed
to enable tighter privacy analysis [12]. We will also use the zCDP notion of privacy for our analysis. The
relationship between standard DP and zCDP is shown below.

Proposition C.2 ((ϵ, δ)-DP and ρ-zCDP). For a randomized algorithm M to satisfy (ϵ, δ)-DP, it is sufficient for
it to satisfy ϵ2

4log 1
δ

-zCDP. And a randomized algorithm M that satisfies ρ-zCDP, also satisfies (ϵ′, δ)-DP where

ϵ′ = ρ+
√

4ρlog 1
δ

.

As opposed to the notion of DP, the zCDP definition provides tighter bounds for the total privacy loss under
compositions, allowing better choice of the noise parameters. The privacy loss under the serial composition and
parallel composition incurred under the definition of zCDP was proved by [71] and is recalled below.

Proposition C.3 (Sequential Composition). Consider two randomized mechanisms, M1 and M2, if M1 is
ρ1-zCDP and M2 is ρ2-zCDP, then their sequesntial composition given by (M1(),M2()) is (ρ1 + ρ2)-zCDP.

Proposition C.4 (Parallel Composition). Let a mechanism M consists of a sequence of k adaptive mechanisms,
(M1,M2, . . .Mk) working on a randomized partition of theD = (D1, D2, . . . Dk), such that each mechanism
Mi is ρi-zCDP and Mt :

∏t−1
j=1 Oj × Dt → Ot, then M(D) = (M1(D1),M2(D1), . . .Mk(Dk)) is

maxi ρi-zCDP.

After computing the total privacy loss by an algorithm using the tools described above, we can determine the
variance of the noise parameter σ for a set privacy budget. The relationship of the noise variance to privacy has
been shown in prior works by [19, 71] and is given below.

Definition C.5 (L2 Sensitivity). For any two neighboring datasets, D and D′ that differ in at most one data
point, L2 sensitivity of a mechanism M is given by maximum change in the L2 norm of the output of M on
these two neighboring datasets

∆2(M) = sup
D,D′

||M(D)−M(D′)||2.

Proposition C.6 (Gaussian Mechanism). Consider a mechanism M with L2 sensitivity ∆, if on a query q, the
output of M is given as M(x) = q(x) +N (0, σ2), then M is ∆2

2σ2 -zCDP.

Equipped with the above definitions and results, we now re-state the bound on the privacy loss of our algorithm
and provide a proof below.

Theorem C.7 (Privacy Budget). The proposed algorithm is (ϵ, δ)-differentially private, if the total privacy
budget per global communication round per query is set to

ρ =
ϵ2

4EKlog 1
δ

for E number of global communication rounds and K number of queries to the algorithm per round.

Proof. After using Gaussian mechanism on each client and adding noise to each coordinate of Φi(AD), the
local mechanism at each client becomes ρ-zCDP for ρ = ∆2

2σ2 . Since each client outputs the logit representation
for each input, i.e., the normalized output of the clients, ∆2 ≤ 2. The sensitivity, denoted as ∆, is defined
in Definition C.4 in the paper which defines L2-sensitivity as the maximum change in the L2 norm of the
algorithm’s output between two neighboring datasets differing in at most one data point. Let D and D′ be two
neighboring datasets that differ in one data point present at the ith row (without loss of generality), and let
Φ(D(i, :)) be the nc (number of classes) dimensional output probabilities from the model Φ for the ith row
datapoint in D and Φ(D′(i, :)) be the output probabilities for the ith row datapoint in D′. The L2 sensitivity of
Φ is -

∆(Φ) = ||Φ(D)− Φ(D′)||2
Since all other data-points between D and D′ are identical, the L2 sensitivity of Φ becomes -

∆(Φ) = ||Φ(D(i, :))− Φ(D′(i, :))||2
Now, Φ(D(i, :)) and Φ(D′(i, :)) are both probability distributions, therefore it can be seen that the squared L2

norm of their difference is bounded by 2, i.e., ∆(Φ)2 ≤ 2 (the maximum occurs when Φ(D(i, :))k = 1 and
Φ(D(i, :))l = 1 for two separate indices k ̸= l).
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Now, suppose in each global communication round we make K queries to each client, then by sequential
composition C.3, we get EKρ, for E number of global communication rounds. By parallel composition C.4,
the total privacy loss for all N clients is the maximum of the loss on each client and therefore remains EKρ.

Relating it to the (ϵ, δ)-DP from C.2, we get ρ =
ϵ2

4EKlog 1
δ

for any δ > 0.

D Uncertainty Quantification and Calibration

Model calibration is a way to determine how well the model’s predicted probability estimates the model’s true
likelihood for that prediction. Well-calibrated models are much more important when the model decision is used
in critical applications like health, legal etc. because in those cases managing risks and taking calculated actions
require a confidence guarantee as well. Visual tools such as reliability diagrams are often used to determine
if a model is calibrated or not. In a reliability diagram, model’s accuracy on the samples is plotted against the
confidence. A perfectly calibrated model results in an identity relationship. Other numerical metrics that could
be used to measure model calibration include Expected Calibration Error (ECE) and Maximum Calibration
Error (MCE). ECE measures the expected difference between model confidence and model accuracy whereas
MCE measures the maximum deviation between the accuracy and the confidence. The definitions and empirical
formulas used for calculating ECE and MCE are as given below.

ECE = EP̂ [IP(Ŷ = Y |P̂ = p)− p],

MCE = max
p∈[0,1]

|IP(Ŷ = Y |P̂ = p)− p|.

Empirically,

ECE =

M∑
i=1

|Bi|
n

|accuracy(Bi)− confidence(Bi)|,

MCE = max
i∈[1,M ]

|accuracy(Bi)− confidence(Bi)|,

where Bi is a bin with set of indices whose prediction confidence according to the model falls into the range(
i−1
M
, i
M

)
. Figure 3 shows the reliability diagram along with the ECE and MCE scores for our method measured

on MNIST and CIFAR-10 dataset in the non-IID data setting.

(a) Dataset: CIFAR-10, ECE: 0.070, MCE: 0.134 (b) Dataset: MNIST, ECE: 0.032, MCE: 0.156

Figure 3: Reliability diagrams and scores showing model calibration. Figure (a) is for the results
corresponding to the CIFAR-10 dataset and Figure (b) for MNIST dataset.

For the next analysis, we consider an approach similar to analysis on uncertainty quantification done in exemplar
works in this area [35, 48]. One of the key requirement of reliable estimates and uncertainty quantification is
ensuring high confidence in correct predictions and low confidence in incorrect predictions. To assess whether
the proposed method meets this criterion, we train our method using standard MNIST train dataset, and test it
on the MNIST test dataset as well as on an out-of-distribution dataset composed of NotMNIST10 (featuring
images of alphabets instead of digits). Then, we compute the entropy of the predictive distribution (distribution
over output class probabilities) for each dataset and visualize this entropy in the provided Figure ??. In the first
row corresponding to the in-distribution dataset, both our Bayesian model and the non-Bayesian model exhibit
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low entropy, as expected. However, for the out-of-distribution test dataset, while the non-Bayesian method
demonstrates low entropy, our method yields high entropy. This observation implies that the non-Bayesian
method tends to be overly confident in its predictions on unknown classes, which could pose significant risks in
practical scenarios, especially in critical applications.

Figure 4: Distribution of the entropy of class-probability distributions across different clients demon-
strating the confidence of methods in predicting on in-distribution vs out-of-distribution data.

E Alignment Dataset (AD)

Figure 5: Ablation study comparing the affect of AD size on the performance. The included results
are for CIFAR-10 dataset in the small data setting with non-IID partitions and heterogeneous clients.

In FedBNN, the alignment dataset (AD) is used to achieve collaboration across clients. Since the only assumption
on AD is for it to be of the same domain as the target application, there is no practical constraint on obtaining
the AD in real-world settings. In many cases it could be obtained from web, for example images from common
datasets in Huggingface, texts from Wikipedia, Reddit etc. Furthermore, the server having its own dataset in
addition to the private data on the clients is common in various cross-silo and cross-device applications. For
instance, hospitals with access to patient records may combine this data with private patient data collected from
individual devices such as wearables or sensors for federated learning, source code generation applications
might leverage open-source code along with private code repositories from developers to enhance generative
models, self-driving car companies may collect their own data and utilize it alongside private data collected from
customers’ vehicles, and many more. The use of AD is not different from how several other methods use an
additional dataset for augmentation, and several other methods have used a labelled or an unlabelled auxiliary

20



Table 3: Effect of varying distribution of AD on the clients’ performance for the non-IID seeting with
CIFAR-10 dataset and 20 clients where each client has data for the 5 different classes.

Architecture Setting Local Training CIFAR10(10) CIFAR10(8) CIFAR10(5) CIFAR10(2) SVHN

Homogeneous Architectures 64.3± 0.36 72.7 ± 0.15 69.7 ± 0.28 68.8 ± 0.97 67.2 ± 1.5 70.1 ± 0.18
Heterogeneous Architectures 61.2± 0.17 71.6 ± 0.93 68.4 ± 0.80 68.8 ± 1.4 68.1 ± 1.9 69.3 ± 0.8

dataset to improve the performance and privacy of the FL algorithms [52, 36, 55]. The effect of size of AD on
the performance of models is demonstrated in Figure 5 for CIFAR-10 dataset in the small data and non-IID
setting. In that figure, we observe that when the size of AD is small the performance of the model is low but as
the size of AD increases the performance increases up to a point and becomes constant afterwards. The number
of data points in AD that are required to achieve good improvement in the model performance is small and
practical.

We also vary the distribution of the AD being used and test the final performance of the models and report
it in Table 3. We run these experiments on 20 clients for CIFAR-10 dataset where each client had access to
only 5 of the 10 classes and each client belonged to the medium data setting. For the first experiment, we use
a held-out dataset from the CIFAR-10 data as AD but vary the composition of the dataset by changing the
distribution of the classes present in the AD, for example, CIFAR10(10) is composed of all 10 classes present
in the CIFAR-10 dataset but CIFAR10(2) is composed of only 2 out of the 10 classes present in the AD and
likewise. We also test the performance of our method when a significantly different dataset SVHN consisting
of the colored house number images is used. Table 3 suggests that the performance of the method even with
different datasets as AD always improves and that the gain between local training and the proposed procedure
is better highlighted in the heterogeneous architecture settings, since there local client capacities and model
architectures differ significantly and clients are able to utilize the peer knowledge to learn better models locally.
We observed that even for different and dissimilar data distributions in AD, it is possible to obtain a value for the
parameter γ such that the final performance of the local client model with collaboration is better than the model
independently trained locally on the client. The best results for CIFAR-10 classification are seen when AD is
composed of a held-out set from all 10 classes of CIFAR-10 denoted as CIFAR10(10) which is as expected.
Then, as the composition of AD is changed from 10 classes to random 8, 5 and 2 classes of CIFAR-10 (denoted
as CIFAR10(8), CIFAR10(5) and CIFAR10(2) respectively) the performance keeps on decreasing. We see that
the performance of the same task with SVHN as AD is only strictly better than CIFAR10(2) as AD. We believe
that the SVHN dataset as AD works better than the CIFAR10(2) because it provides more variability in the data
distribution. A similar observation was also recorded in FedAUX [55] which also uses additional unlabelled data
for knowledge distillation, which noted that the out-of-domain unlabelled data for distillation can perform even
better. Moreover, the parameter γ controls the amount of global knowledge to be incorporated on each client and
with appropriately set γ, the AD also helps achieve regularization for the local client model such that the local
models do not overfit to the relatively smaller local datasets and generalize better.

F Communication and Computation Efficiency

Communication Cost In FedBNN, each global communication round requires that the server sends the
alignment dataset to all the clients and the clients upload the outputs of their respective models on the common
dataset AD. Since AD is a publicly available dataset, AD could be transmitted to the clients by specifying the
source and the indices, and does not really needs to be communicated across the channel. The client output
on AD, on the other hand, depends on the number of instances in AD, let’s call it K, therefore, the total
communication cost in each round of our method is O(K). As shown in Figure 5, having K = 2000 gives
a good performance. The communication cost between the clients and the server, thus, is also invariant of
the number of model parameters which tends to run in millions. This allows our method to be much more
communication efficient as compared to the conventional FL algorithms and other Bayesian FL methods that
transmit model parameters or parameter distributions in each communication round, making it practically more
useful.

Computation Cost Similarly, the computation cost of a FL procedure involves the costs incurred in local
training at the individual clients and the cost of aggregation at the server, both of which are discussed below.

• Server-side computation cost The server side computation cost arises from the need to aggregate
knowledge obtained from individual clients. In the state-of-the-art bayesian FL algorithms, the server
aggregates posterior distributions for each weight parameter in the neural network obtained from
various clients. The number of such weight parameters typically run in millions. In our method we do
not aggregate the parameter distributions but achieve collaboration by aggregating the client outputs
on the AD (with size 2000), thus the server side computation cost in our method is many orders
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Table 4: Performance comparison as a function of the privacy guarantee.

Privacy (ϵ) per round Test Accuracy

≈ 1 75.5 %
≈ 0.1 71.3 %
≈ 0.01 68.6 %
≈ 0.001 62.2 %
≈ 0.0001 59.6 %

Table 5: Test accuracy comparison with more number of clients (500) in the setting.

Method Test Accuracy

pFedGP 53.2 ± 0.4
pFedBayes 52.9 ± 0.8
Ours(Homo) 56.1 ± 0.3
Ours(Hetero) 54.7 ± 1.0

of magnitude lower than the conventional methods and does not depend on the number of model
parameters. This makes our method much more efficient and scalable than existing federated bayesian
solutions.

• Client-side computation cost The client-side computation cost is mostly determined by the cost of
training a Bayesian Neural Network at the client side, which in turn depends on the type of inference
procedure used for obtaining the posterior distribution over weights for each parameter of the neural
network. In the proposed work, the method used for inference is Bayes by Backprop which uses
the gradient computations similar to backpropagation(BP) algorithm to obtain the posterior distri-
butions where the posterior distributions are characterized by the mean and standard deviation. A
re-parameterization trick is used to compute the mean and std of the distributions from the back-
propagated gradients. Thus the cost for obtaining the posterior distributions is similar to the cost of
backpropagation. Moreover, since the method only uses gradient updates, the optimizations used for
SGD like asynchronous SGD etc. could be readily used for obtaining the posteriors. An unrelated but
similar algorithm in [28] does probabilistic backpropagation to train BNNs and shows that the average
run time of probabilistic BP is not higher than that of BP.

To summarize, the communication cost and the server-side computation cost of the proposed method is orders of
magnitude lower than that of the other Bayesian baseline methods. On the other hand, the client-side computation
cost is determined by the inference procedure used to obtain the posterior distributions and for which Bayes by
Backprop provides an efficient mechanism. Several works in the recent past have discussed the use of related
Bayesian inference based methods for training uncertainty-aware transformers [76, 62, 42] proving that Bayesian
methods are not limited to use in simpler models. And therefore, our framework can also be extended to apply in
settings where much larger neural networks are required.

G Additional Experiments

Privacy vs Performance Since the amount of noise required to be added to the client’s outputs via the
Gaussian Mechanism is directly proportional to the guaranteed privacy, we test the affect of the privacy guarantee
on the performance of the proposed framework by comparing the performance of the method with varying ϵ and
δ = 10−4. The results are reported in Table 4. We observe that, as expected, when we reduce the amount of
privacy loss in each iteration by adding more noise to the clients’ outputs going to the server, the performance of
the method drops. However the drop in performance in all the cases is not drastic as the clients can tune the level
of personalization or global knowledge required by appropriately setting the parameter γ in Equation 3.

More clients To test the performance of the proposed method when a large number of clients are involved
in the setup, we did additional experiments with 500 clients and non-IID setting with 5 classes per client in
the medium data setting on the CIFAR-10 dataset where in each communication round only 10% of the clients
are selected for participation and γ = 0.7. The obtained results at the end of 200th communication round are
reported in Table 5. We observe that the homogeneous version of our method is better than the baselines by a
significant margin and the heterogeneous version is slightly better than the baselines.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We support all the claims made in the abstract and introduction by thorough experimental
evaluation in the paper. Please refer Section 5 for details.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
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preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
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(and correct) proof?

Answer: [Yes]

Justification: The detailed analysis is presented in the Section 4 and Appendix C due to space
constraints.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
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are provided or not.
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their results reproducible or verifiable.
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checkpoint, or other means that are appropriate to the research performed.
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to provide some reasonable avenue for reproducibility, which may depend on the nature of the
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a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The code will be released on acceptance of the paper.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please refer Section 5 and subsection 5.1 for these details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We understand the NeurIPS Code of Ethics and the work conforms to that.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: The work in this paper does not have societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

26

https://neurips.cc/public/EthicsGuidelines


12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have carefully cited the datasets and codes used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: NA.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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