
Published as a conference paper at ICLR 2021

HYPERGRID TRANSFORMERS: TOWARDS A SINGLE
MODEL FOR MULTIPLE TASKS

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, Da-Cheng Juan
Google Research
Mountain View, California
{yitay,zhezhao,dbahri,metzler,dacheng}@google.com

ABSTRACT

Achieving state-of-the-art performance on natural language understanding tasks
typically relies on fine-tuning a fresh model for every task. Consequently, this
approach leads to a higher overall parameter cost, along with higher technical
maintenance for serving multiple models. Learning a single multi-task model
that is able to do well for all the tasks has been a challenging and yet attractive
proposition. In this paper, we propose HyperGrid Transformers, a new Trans-
former architecture that leverages task-conditioned hyper networks for control-
ling its feed-forward layers. Specifically, we propose a decomposable hypernet-
work that learns grid-wise projections that help to specialize regions in weight
matrices for different tasks. In order to construct the proposed hypernetwork, our
method learns the interactions and composition between a global (task-agnostic)
state and a local task-specific state. We conduct an extensive set of experiments
on GLUE/SuperGLUE. On the SuperGLUE test set, we match the performance
of the state-of-the-art while being 16 times more parameter efficient. Our method
helps bridge the gap between fine-tuning and multi-task learning approaches.

1 INTRODUCTION

Learning a single multi-task model that performs well across multiple targeted tasks is an attractive
proposition for many reasons (Kaiser et al., 2017; Ruder, 2017; Clark et al., 2019b). Although ex-
tremely challenging, this paradigm enables a substantial savings in overall parameter costs, along
with eliminating the need for maintaining multiple models in production (Stickland and Murray,
2019). However, achieving state-of-the-art performance on natural language understanding bench-
marks today (Wang et al., 2018; 2019) still relies on fine-tuning a new model for every single task.
This methodology is infeasible in many situations. Moreover, certain tasks rely on an extensive en-
semble of models and/or task-specific fine-tuning tricks (Liu et al., 2019b; Devlin et al., 2018; Clark
et al., 2020).

The single-task fine-tuning paradigm is well-established to be the dominant approach (Raffel et al.,
2019), as training multiple tasks using a single set of parameters can be problematic in many ways,
such as catastrophic forgetting (French and Chater, 2002; McCloskey and Cohen, 1989; McClelland
et al., 1995; Kirkpatrick et al., 2017) or the inherent difficulty of finding a consistently good model
for all tasks (Clark et al., 2019b; Wu et al., 2020). Inevitable task conflicts and difficulty in fitting
all models within a set of hard parameters is also a challenging problem for multi-task co-training.

In this paper, we propose a new Transformer architecture, the HyperGrid Transformer for efficient
modeling of multiple tasks within a single set of model parameters. HyperGrid Transformers rely
on a hypernetwork-based (Ha et al., 2016) module that performs gridwise decomposable hyper pro-
jections. This module is task conditioned and dynamically learns to generate weights of the feed-
forward layers of the Transformer model.

Overall, our eventual goal is to dispense with task specific fine-tuning tricks altogether. While
neural networks typically maintain the same consistent set of parameters for all input instances, the
proposed HyperGrid Transformers introduces instance-specific parameters by conditioning on the
current input. This setup enables our model to learn task-specific reparameterization for each input
instance, which mitigates several challenges of multi-task co-training.

1

Published as a conference paper at ICLR 2021

Our proposed HyperGrid module belongs to a family of hypernetworks (Ha et al., 2016), in which a
side network is responsible for weight generation for the main network. In our case, task-conditioned
hypernetworks provide greater flexibility and expressiveness for capturing the dynamics of multiple
tasks within a single set of parameters. Specifically, we introduce two novel algorithmic improve-
ments over the existing methods.

First, we introduce the notion of grid-wise projections in which we assume a structural layout in
vanilla projection layers. For each input sample, our projections dynamically control the parameters
in a grid-wise, region-specific manner. The structural segmentation of feed-forward layers is similar
in spirit to mixture-of-experts gating (Shazeer et al., 2017), albeit at a lower-level. Conversely,
standard hypernetworks only consider row-wise re-weighting of weight matrices.

Second, we introduce decomposable hyper-projections. The key idea is to learn rich compositional
and pairwise interactions between dual hypernetworks. A dual setup is adopted, where we explore
different hypernetwork composition variants. We introduce a novel local-global setup, which com-
poses a local instance-specific and task-specific hyper-projection with a task agnostic global state
embedding. This is intuitive since this setup is not only highly expressive and flexible but also serves
as a factorization of local and global components. To the best of our knowledge, our work is the first
to explore this setup with respect to learning conditional parameters.

Finally, we conduct extensive experiments on GLUE/SuperGLUE. Our proposed model is able to
match the performance of individually fine-tuned state-of-the-art Text-to-Text Transformers (T5)
(Raffel et al., 2019) models with a single model that is learned to fit all GLUE and SuperGLUE tasks
at once. Moreover, our single model also outperforms strong baselines that employ ensembling and
other task-specific tricks (Liu et al., 2019b; Clark et al., 2020).

Our Contributions The contributions of this paper can be summarized as follows:

• We propose HyperGrid Transformers, a form of hypernetwork-based Transformer that
learns task-conditioned dynamic weights for its feed-forward layers.

• The key novelty behind HyperGrid Transformers is the factorization of local and global
components for weight generation. Our weight generation is grid-wise and imbues the
model with a structural layout.

• We conduct extensive experiments on natural language understanding benchmarks
(GLUE/SuperGLUE). With a single model, we match the state-of-the-art T5 model that
is finetuned in a per-task fashion (multiple models), resulting in 16x parameter savings.

2 HYPERGRID TRANSFORMERS

This section outlines the key idea of the proposed algorithm.

2.1 HYPERGRID MODULE

HyperGrid operates on weight matrices (linear transformations), i.e., Y = WX + b. In a hypernet-
work formulation, instead of letting W be free weights, we generate W using a parameterized side
network H(.).

Y = Wx+ b where W = H(X) (1)

where W ∈ Rdm×df . In the case where X is a single vector ∈ Rdm , we may parameterize H(.)
with a simple feed-forward layer.

H(X) = σ(UX)1> �W (2)

where 1 is a column vector of ones, σ is the sigmoid activation function and U ∈ Rdm×df . The key
idea is that the hypernetwork generates a vector, i.e., UX ∈ Rdf that is broadcast (multiplied by 1)
and multiplied by W , acting as a row-wise scaling of W . We are also able to reduce U ∈ Rdm×n

where df mod n = 0 and repeat the vector df

n times to form the original dimension of df . These
methods only consider scaling one dimension of W (e.g., row-wise). We now consider methods
beyond simple row-wise weight scaling.

2

Published as a conference paper at ICLR 2021

2.1.1 DECOMPOSABLE GRIDWISE PROJECTIONS

In our method, we propose grid-wise projections
that segments W into a grid, i.e., blocks of dm

dr
×

df

dc
. We generate blocks by the outer product of

Lr ∈ Rdr and Lc ∈ Rdc . Note that dr and
dc are user-specified hyperparameters that control
the grid-size for the fan-in and fan-out of the out-
put matrix. For simplicity, we consider divisible
blocks where dr < dm, dm mod dr = 0, and
dc < df , df mod dc = 0. In this case:

H(X) = ψ(σ((LrX)(LcX)>))�W (3)

where (LrX)(LcX)> ∈ Rdr×dc , ψ(.) is a re-
peat vector function that repeats its input dm

dr
times

on the row axis and df

dc
times on the column axis.

We name this approach the L2 variant, short for
Local-Local Gridwise Projection.

Transformer Weights

Local

Global

Repeat
(Expand)

Input

Figure 1: Detailed Illustration of the proposed De-
composable Gridwise Projections. Two decom-
posable vectors compose to form a gating ma-
trix which is expanded to construct task-adaptive
weight matrices.

Composition between Local and Global Factors The decomposable grid-wise projections learn
Lr and Lc from X , which makes it conditioned on local, instance-wise information. Here, we
postulate that it may be beneficial for either Lr or Lc to be a global embedding. By keeping Lc as a
global, trainable embedding, this can be formulated as:

H(X) = ψ(σ((LrX)G>c))�W (4)

where Gc ∈ Rdf . In this case, Lr is conditioned from X , the specific input sample. On the other
hand, Gc remains consistent across all input samples. Hence, the outer product is essentially a rich
dyadic composition between local and global factors.

Local-Global and Global-Local It is easy to see that there are two ways of composing L and G.
The above method considers the Local-Global approach where the fan-in uses a local hypernetwork
and the global part uses a trainable embedding. An alternative that flips this around to use a Global-
Local composition is evaluated in our experiments. Namely, this can be expressed as:

H(X) = ψ(σ((Gr(LcX)>))�W (5)

2.2 DYNAMIC WEIGHT GENERATION WITH HYPERGRID

This section describes how we use task-conditioned hypernetworks to influence and generate the
parameters for HyperGrid Transformers.

Self-Attention

InputTask Embedding

 Local NetworkGlobal

Transform

Transform

Transformer Block

HyperGrid

Decomposable Hyper
Projecton

Task
Embedding

Figure 2: Illustration of the proposed Hyper-
Grid architecture.

Task Conditioning The local network part of Hyper-
Grid L is learned via a task embedding T ∈ Rdm ,
which provides a task identifier and information to the
hypernetwork. In HyperGrid Transformers, we first ap-
ply self-attention of the task embedding by concatenat-
ing it with the input sequence. This is described as:

T ′ = MHSA([T ;X])[0] (6)

where [;] is a concatenation on the length dimension
and MHSA(.) is the multi-head self-attention function.
The input sequence X interacts with the task embed-
ding to generate T ′ which is used in our hypernetwork
module.

3

Published as a conference paper at ICLR 2021

Weight Gating The HyperGrid module is added at the position-wise feed-forward layers of the
Transformer models. More specifically, we equip the second positional FFN after the ReLU activa-
tions with HyperGrid. There are several reasons for doing so. In most Transformer implementations,
the fan out of this layer is typically scaled up to very large values (Raffel et al., 2019). Hence, the
influence on this layer has the greatest potential to benefit the Transformer model. Second, early ex-
periments on both of the positional feed-forward layers yielded no substantial improvements. Hence,
we opt to only modify the second positional FFN of the Transformer model.

Initialization In our experiments, we take advantage of existing pretrained model (Raffel et al.,
2019) and add additional HyperGrid parameters that are fine-tuned along with the rest of the net-
work. The overall formulation of the HyperGrid-enhanced Transformer can be written as:

Yi = Hi(Xi−1,Wi) +Wi(Xi−1) (7)

where i denotes the layer i. We construct a new HyperGrid (with non-shared parameters) for each
layer. Since W has been pretrained, we also add a residual connection of the original Wi(Xi−1)
computation to the mixture.

Parameter Costs We note that the parameter counts added by HyperGrid are relatively negligible
since dr and dc are small. In the LG setting, the model adds dmdr+dc parameters at each layer. On
the GL setting, the parameter cost added is dr + dfdc. The most expensive option is L2 where the
added cost is dmdr + dfdc. These added parameter costs are often negligible for large Transformer
models.

3 EXPERIMENTAL RESULTS

We conduct experiments on GLUE (Wang et al., 2018) and SuperGLUE (Wang et al., 2019) which
are consolidated benchmarks of multiple challenging NLP and NLU tasks. While most of the work
in this area has been focused on achieving good task-specific performance, our work focuses on
trying to get good performance with a single model on all GLUE and SuperGLUE tasks. Therefore,
most of our experiments are conducted on a mixture of all GLUE and SuperGLUE tasks.

3.1 EXPERIMENTAL RESULTS

In this section, we discuss the empirical results of our experiments. Further details about the ex-
perimental setup can be found in the appendix. Pertaining to parameter counts (reported as θ in our
experiments), this is the total parameter cost for serving the entire suite of tasks. If a single model
(finetuned on a single task) is X parameters, then the costs of serving N tasks in a multi-model
setup would be NX .

3.1.1 SINGLE MODEL VERSUS MULTIPLE MODELS

These experiments investigate different model settings, namely using (1) multiple models (MM) or
a single model (SM) for all tasks. The MM model trains a fresh model on every single task and
retains the best checkpoint for all tasks. Meanwhile, the SM model is trained on all tasks at once.
We compare them against HGT, our single model HyperGrid Transformer approach.

Details about Baselines For the Single Model Baseline, this is the identical T5 model without
our HyperGrid layers which serves as a fair comparison to our model. This enables us to observe
the effect of HyperGrid directly. As for the multi-model method, this is done by finetuning T5
directly on each task and reporting results from the best checkpoint (of each task). This is a very
strong baseline because the model is also allowed to choose specific best checkpoints for each task
which the single model approach is prohibited against. As for the sampling strategy in the single-
model approach (baseline and our approaches), we use a proportionate mix of tasks according to the
number of samples in the each task/dataset.

4

Published as a conference paper at ICLR 2021

Model |θ| Avg CoLA SST MR STS QQP MNLI QNLI RTE
T5† (SOTA) 3.2B 83.4 53.8 92.7 88.9 88.0 91.6 84.4 90.5 76.3
Multi Model 3.2B 85.7 59.6 94.2 90.1 89.1 90.6 86.5 93.7 82.0
Single Model 0.2B 85.0 57.3 94.2 88.6 89.5 90.2 86.2 93.1 80.9

Our Single-Model Approaches
HGT (L2) 0.2B 85.2 59.4 90.6 90.1 88.9 90.3 86.5 93.1 79.1
HGT (LG) 0.2B 85.4 57.9 94.6 89.2 90.1 90.3 86.7 81.2 84.2
HGT (L) 0.2B 85.6 59.9 94.0 89.1 89.9 90.2 86.5 93.1 81.1

Table 1: Experimental results on GLUE dev set.

Model |θ| Avg BQ CB CP MultiRC Record RTE WiC WSC
T5† (SOTA) 3.2B 71.4 76.6 91.2/92.0 66.2 66.1/25.8 69.1/68.2 75.3 68.0 78.6
Multi Model 3.2B 74.8 82.9 96.4/92.0 63.0 79.1/44.0 77.6/76.8 83.8 71.6 73.1
Single Model 0.2B 73.6 81.5 77.3/83.9 64.0 78.2/43.3 76.9/76.1 84.1 66.9 74.0

Our Single-Model Approaches
HGT (L2) 0.2B 75.3 82.4 85.3/91.1 64.0 77.8/42.7 76.8/75.9 83.4 67.1 80.8
HGT (LG) 0.2B 74.8 82.5 83.1/89.3 64.0 77.9/42.8 77.1/76.3 84.1 65.5 78.8
HGT (L) 0.2B 74.5 82.5 81.5/89.3 66.0 78.8/41.0 76.8/76.0 85.9 66.5 78.8

Table 2: Experimental results on SuperGLUE dev set.

Results Table 2 reports results of our experiments on the GLUE and SuperGLUE benchmark. The
first key observation is that the single model (SM) approach is outperformed by multi model (MM).
This is a well known phenomena and therefore multi-model is generally adopted when the absolute
best score is desired on every single task. The interesting result is that we are able to come rather
close to the performance of single model with our approach. As a result, the multi-model has 16x
more parameters. To fit both GLUE and SuperGLUE, this would require 16x the parameters. Given
that our goal is to bridge the performance of a single model versus multiple models for multiple
tasks, we find that this result is considerably successful. Moreover, we observe that our single-
model approach outperforms the multi-model baseline by +0.6% on average across 8 tasks. We
observe similar trends as on the GLUE benchmark. Naturally, the best model is the multi-model
model which involves finetuning a specialized model for each task. The gap between multi-model
and single-model is at 74.8 versus 73.6. Our approach bridges this gap, improving the single-model
score to 74.5, competitive with the multi-model approach.

3.1.2 PERFORMANCE GAINS ACROSS MODEL SIZES

We investigate the gains of the proposed HyperGrid over the base model on various sizes of the T5
model. For models larger than Base, we train with 64 TPU V3 chips for 200K steps and select the
best checkpoint for all tasks based on the benchmark score.

Model GLUE SuperGLUE AVG
Base 84.99 73.55 79.27
Ours 85.22 (+0.27%) 75.30 (+2.7%) 80.26 (+1.3%)
Large 88.22 80.04 84.13
Ours 88.31 (+0.1%) 81.56 (+1.9%) 84.94 (+1.0%)
3B 89.53 84.22 86.87
Ours 89.67 (+0.2%) 85.75 (+1.8%) 87.71 (+1.0%)

Table 3: Effect of HyperGrid Transformers across all model
sizes. HyperGrid improves single-model co-training consis-
tently overly different model sizes. Improvement over Su-
perGLUE is greater than GLUE.

Findings Table 3 reports results of
GLUE and SuperGLUE scores (and
their macro-average). We find that
performance gains on SuperGLUE
averages is reasonably good (+1.9%
on Large). The model still outper-
forms the vanilla model on GLUE
with marginal performance gains.
Overall, on a macro-average of 18
tasks, we find an overall +1.0% im-
provement across three sizes. These
results show that performance gains
scale with model size.

3.1.3 EFFECT OF MODELING CHOICES

To ascertain the effectiveness of our approach, we test different architectural variants of HyperGrid
Transformers, along with other architectural variants considered during model development.

5

Published as a conference paper at ICLR 2021

Setup We evaluate all four model variants of HyperGrid Transformers (L, L2, GL and LG). For
the other architectural variants, we were mainly interested to know if a hypernetwork setup (weight
gating) is better than gating on the output representations (details can be found in the supplementary
material). For the base setting, we ran the baseline T5 model (single-model) four times and reported
the mean and standard deviation of the runs. When comparing the performance gain of our method,
we compare against the max run of the baseline runs. We report relative performance gains/loss
against this max baseline score. We conduct ablation studies on the four composition types on the
large models1.

Variant GLUE SuperGLUE AVG
Base Models

Baseline 85.03 (± 0.087) 73.77 (±0.150) 79.40 (±0.091)
Base (Max) 85.11 73.83 79.40
L 85.60 (+0.6%) 74.50 (+0.9%) 80.05 (+0.8%)
L2 85.22 (+0.1%) 75.30 (+2.0%) 80.26 (+1.1%)
GL 85.12 (+0.0%) 75.00 (+1.6%) 80.05 (+0.8%)
LG 85.43 (+0.4%) 74.78 (+1.3%) 80.10 (+0.9%)
OG 85.13 (+0.0%) 73.31 (-0.7%) 79.22 (-0.2%)
OG (16) 84.94 (-0.2%) 73.10 (-1.0%) 79.01 (-0.5%)
OG (32) 84.84 (-0.3%) 72.93 (-1.2%) 78.89 (-0.6%)
OG (64) 85.07 (-0.0%) 74.11 (+0.4%) 79.59 (+0.2%)

Large Models
Baseline 88.22 80.04 84.13
L 88.07 (-0.2%) 80.51 (+0.6%) 84.29 (+0.2%)
L2 88.05 (-0.2%) 80.68 (+0.8%) 84.36 (+0.3%)
GL 88.33 (+0.1%) 80.30 (+0.3%) 84.32 (+0.2%)
LG 88.31 (+0.1%) 81.56 (+1.9%) 84.94 (+1.0%)

Table 4: Ablation Study. OG stands for Output Gating.

Findings of HyperGrid Variants
Table 4 reports our key ablation
results. Pertaining to results of
the base models, our overall find-
ing is that HyperGrid generally im-
proves performance over the max
baseline. Gains are mainly on Su-
perGLUE while maintaining good
performance on GLUE. The over-
all average gain is about +1%.
Amongst the different variants of
HyperGrid, the best performing
model on this setup is the L2 setup.
On the large setting, we find that
the LG model performs the best
while the L and L2 variants per-
form similar to the baseline.

Is Output Gating Better? The other architectural variants (OutGate) do not perform well and
generally perform with a net loss in performance as compared to the baseline. As such, we ascertain
that gating on weights is more effective than gating on the output representations. This verifies that
our hypernetwork-based approach is indeed effective as opposed to simple task-conditioned output
gating.

3.1.4 EFFECT OF GRID SIZE ON PERFORMANCE

We investigate the effect of Grid size (fan-in and fan-out) of our proposed HyperGrid method. The
purpose of this experiment is to discover how fine-grained or coarse-grained the hypernetwork
should be. Notably, smaller values of dr, dc signify a more coarse-grained control of the Trans-
former weights.

Setup We searched dr (fan-in) and dc (fan-out) in the ranges of {4, 8, 16, 32, 128, 256} and
{8, 16, 32, 128, 256} respectively and report the results on GLUE + SuperGLUE (macro-average)
by varying a single value. When varying dr, we took the average of all dc runs and plot the max,
mean and min. Likewise, when varying dc, we took the average of all dr runs and plot max, mean
and average. We report scores across the L2, LG, and GL variants of HyperGrid.

Findings pertaining to Grid Size Figures 3 to Figures 8 illustrates performance across varied grid
sizes. We observe that a clear trend exists. For most settings, a small fan-out (dc) works well (e.g.,
32) as noted by many spikes around this region. For fan-in (dr) a smaller value also works well.
However, performance gets better at higher fan-out dc values again (e.g., > 128). Trends are quite
consistent across all three variations that we considered. These results suggest that a more coarse
grid may be more effective, as the regions within the grid become larger.

1Due to the relative increased cost of searching large models, we performed a sparingly low number of
ablations on large models.

6

Published as a conference paper at ICLR 2021

8 16 32 64 128
Dimensions (Fanin)

78.5

79.0

79.5

80.0

80.5

GL
UE

 +
 S

up
er

GL
UE

 S
co

re

mean
max
min

Figure 3: fan-in on L2 setting.

8 16 32 64 128
Dimensions (Fanin)

78.5

79.0

79.5

80.0

80.5

GL
UE

 +
 S

up
er

GL
UE

 S
co

re

mean
max
min

Figure 4: fan-in on LG setting.

8 16 32 64 128
Dimensions (Fanin)

78.5

79.0

79.5

80.0

80.5

GL
UE

 +
 S

up
er

GL
UE

 S
co

re

mean
max
min

Figure 5: fan-in on GL setting.

4816 32 64 128 256
Dimensions (Fanout)

78.5

79.0

79.5

80.0

80.5

GL
UE

 +
 S

up
er

GL
UE

 S
co

re

mean
max
min

Figure 6: fan-out on L2 setting.

4816 32 64 128 256
Dimensions (Fanout)

78.6

78.8

79.0

79.2

79.4

79.6

79.8

80.0

80.2

GL
UE

 +
 S

up
er

GL
UE

 S
co

re

mean
max
min

Figure 7: fan-out on LG setting.

4816 32 64 128 256
Dimensions (Fanout)

78.8

79.0

79.2

79.4

79.6

79.8

80.0

80.2

GL
UE

 +
 S

up
er

GL
UE

 S
co

re

mean
max
min

Figure 8: fan-out on GL setting.

3.1.5 PERFORMANCE ON TEST SET

For our final runs, we submit our model predictions to the GLUE and SuperGLUE test servers.

Model |θ| Avg CoLA SST MR STS QQP MNLI QNLI RTE WNLI
Bert∗ - 80.5 60.5 94.9 84.5 86.5 89.3 86.7 92.7 70.1 65.1
RoBERTa∗ - 88.1 67.8 96.7 89.8 91.9 90.2 90.8 95.4 88.2 89.0
Albert∗ - - 69.1 97.1 91.2 92.0 90.5 91.3 - 89.2 89.0
XLNet∗ - - 70.2 97.1 90.5 92.6 90.4 90.9 - 88.5 89.1
Electra∗ 5B 89.4 71.7 97.1 90.7 92.5 90.8 91.3 95.8 88.5 92.5
T5 (3B) 48B 88.5 67.1 97.4 90.0 89.8 82.1 91.3 96.3 91.1 89.7
T5 (11B) 176B 89.7 70.8 97.1 90.0 92.1 82.5 90.9 96.7 92.5 93.2
HGT (3B) 3B 88.2 65.6 97.5 89.0 91.6 81.9 90.9 95.9 90.1 89.7
HGT (11B) 11B 89.4 69.0 97.6 89.2 92.6 82.0 91.3 96.4 91.5 93.2

Table 5: Test set performance on GLUE (Wang et al., 2018). Models with ∗ are large ensembles. All
models are single-tasked fine-tuned except ours. Parameter costs are reported considering ensembles
and cost required to fit all of GLUE and SuperGLUE.

Model |θ| Avg BQ CB CP MultiRC Record RTE WiC WSC
BERT++ 2.7B 71.5 79.0 84.8/90.4 73.8 70.0/24.1 72.0/71.3 79.0 69.6 64.4
RoBERTa 56B 84.6 87.1 90.5/95.2 90.6 84.5/52.5 90.6/90.0 88.2 69.9 89.0
T5 (3B) 48B 86.4 89.9 90.3/94.4 92.0 86.8/58.3 91.2/90.4 90.7 72.1 90.4
T5 (11B) 176B 88.9 91.0 93.0/96.4 94.8 88.2/62.3 93.3/92.5 92.5 76.1 93.8
HGT 3B 3B 84.7 89.2 81.7/90.4 89.6 86.6/58.7 91.1/90.3 90.8 70.6 87.7
HGT 11B 11B 88.9 91.1 93.9/96.8 94.6 88.1/62.4 93.5/92.7 92.3 74.6 91.6

Table 6: Test set performance on SuperGLUE (Wang et al., 2019). Our HyperGrid Transformers
achieves competitive performance to the state-of-the-art with a single model. Parameter costs refers
to total number of parameters used to fit all GLUE and SuperGLUE tasks

7

Published as a conference paper at ICLR 2021

Setup We run experiments with a 3B and 11B HyperGrid Transformer model in multi-task2 setup
(GLUE + SuperGLUE). We initialize with the T5 pre-trained checkpoints. Since this is a relatively
expensive run, we only train the single model HyperGrid once using a 32 × 128 grid with the LG
(local-global) setting. For GLUE, we compare against baselines reported in (Clark et al., 2020)
which includes models such as BERT (Devlin et al., 2018), ALBERT Lan et al. (2019), RoBERTa
(Liu et al., 2019b), and XLNet (Yang et al., 2019). Note that all these models are ensembles and
heavily rely on task-specific fine-tunining strategies. More details can be found in the supplementary
material.

Results on Test Set We find that our single model approach can achieve highly competitive results
on both GLUE and SuperGLUE. Our model achieves a strong performance of 88.9 on SuperGLUE,
matching the reported T5 results while having 16 times fewer total parameters. On GLUE, the
performance gap is also small, almost matching the T5 model at 89.4 versus 89.7. The gap on the
base model remains similar at 88.2 versus 88.5. On SuperGLUE, our 3B model achieves 84.7, a
respectable score that matches the performance of RoBERTa ensembles fine-tuned individually with
task specific tricks (Liu et al., 2019b).

4 RELATED WORK

Multi-task learning (MTL) (Caruana, 1997) is a long standing research problem. Learning a single
unified model that does well on multiple tasks is an uphill battle given well-known problems such as
catastrophic forgetting (Kirkpatrick et al., 2017). As such, learning a large number of tasks with a
single set of model parameters is an extremely challenging endeavour. Moreover, the disproportion-
ate amount of data per task is also potentially problematic (Lee et al., 2017; Pfeiffer et al., 2020),
which results in models overfitting on high resource tasks but underfitting on low resource tasks.

Early work in multi-task NLP typically considered a hierarchical taxonomy of tasks (Hashimoto
et al., 2016) where a clear hierarchy of tasks exist, such as POS → Chunking → entailment. The
Joint Many-Task (JMT) model explores an incremental and hierarchical paradigm for building multi-
task NLP models. Similarly, (Sanh et al., 2019) proposed a hierarchical multi-task model based on
the intuition of low-level and high-level tasks. Another line of recent work explores casting all
tasks into a form of question answering problem (McCann et al., 2018) and using an interpolated
pointer-generator (See et al., 2017) mechanism for generating ‘answers’.

Exploiting task relatedness as a means for improved model quality has been frequently explored.
In relatively recent work, (Liu et al., 2019a) proposed MTDNN, a multi-task deep neural network
that shares parameters between several NLP tasks. The model achieves strong performance on
the GLUE benchmark. However, MTDNN simply leverages MTL as a form of pretraining and
uses task-specific models for final evaluation. The recent T5 (Text-to-Text Transfer Transformers)
model (Raffel et al., 2019) frames all NLP problems as a Seq2Seq (Sutskever et al., 2014) problem.
However, the best results are again obtained by task-specific fine-tuning.

Orthogonal to other research efforts, (Clark et al., 2019b) proposed Born Again Neural Networks
(BAM), a clever way to obtain a single multi-task network by knowledge distillation. (Stickland and
Murray, 2019) proposed Projected Attention Layers for task-specific fine-tuning of BERT (Devlin
et al., 2018). (Zaremoodi et al., 2018) proposed Adaptive Knowledge Sharing3 for low-resource
neural machine translation. Our work is related to the literature surrounding hypernetworks (Ha
et al., 2016) which have been found to useful in areas such as continual learning (von Oswald et al.,
2019). Learning task-adaptive parameters to avoid catastrophic forgetting has also been a go-to
strategy for continual learning (Yoon et al., 2019). Outside of the NLP domain, flexible parameter
sharing approaches are also dominant strategies for learning multi-task models (Ma et al., 2018;
2019).

2Since we did not co-train with the WNLI dataset due to issues stated in (Raffel et al., 2019), we simply
report T5 results on WNLI. To be fair, we ignore WNLI parameter counts for all baseline models.

3The authors of (Raffel et al., 2019) explored this approach but did not find it to be satisfactory.

8

Published as a conference paper at ICLR 2021

5 CONCLUSION

We proposed Hypergrid Transformers, a new Transformer architecture that leverages Grid-wise De-
composable Hyper Projections (HyperGrid), a hypernetwork-based projection layer for task condi-
tioned weight generation. We learn and fit all GLUE and SuperGLUE tasks within the same set
of model parameters and achieve competitive results to the same state-of-the-art model that is spe-
cially and individually fine-tuned on each and every task. On GLUE/SuperGLUE, this efficient
single-model method results in 16x fewer parameters.

REFERENCES

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and
Idan Szpektor. The second pascal recognising textual entailment challenge. In Proceedings of the
second PASCAL challenges workshop on recognising textual entailment, volume 6, pages 6–4.
Venice, 2006.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing
textual entailment challenge. In TAC, 2009.

Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL,
2019a.

Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D Manning, and Quoc V
Le. Bam! born-again multi-task networks for natural language understanding. arXiv preprint
arXiv:1907.04829, 2019b.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, pages 177–190. Springer, 2005.

Marie-Catherine De Marneff, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-
vestigating projection in naturally occurring discourse. proceedings of Sinn und Bedeutung 23,
2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Robert M French and Nick Chater. Using noise to compute error surfaces in connectionist networks:
A novel means of reducing catastrophic forgetting. Neural computation, 14(7):1755–1769, 2002.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and Bill Dolan. The third pascal recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment
and paraphrasing, pages 1–9. Association for Computational Linguistics, 2007.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsuruoka, and Richard Socher. A joint many-task
model: Growing a neural network for multiple nlp tasks. arXiv preprint arXiv:1611.01587, 2016.

Shankar Iyer, Nikhil Dandekar, and Kornel Csernai. First quora dataset
release: Question pairs, 2017. URL https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs.

9

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Published as a conference paper at ICLR 2021

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. One model to learn them all. arXiv preprint arXiv:1706.05137, 2017.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface:a challenge set for reading comprehension over multiple sentences. In Pro-
ceedings of North American Chapter of the Association for Computational Linguistics (NAACL),
2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint
arXiv:1909.11942, 2019.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann. Fully character-level neural machine translation
without explicit segmentation. Transactions of the Association for Computational Linguistics, 5:
365–378, 2017.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of Knowledge Representation and Reasoning,
2012.

Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural networks
for natural language understanding. arXiv preprint arXiv:1901.11504, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task relation-
ships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1930–1939,
2018.

Jiaqi Ma, Zhe Zhao, Jilin Chen, Ang Li, Lichan Hong, and Ed H Chi. Snr: Sub-network routing
for flexible parameter sharing in multi-task learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 216–223, 2019.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018.

James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there are complementary
learning systems in the hippocampus and neocortex: insights from the successes and failures of
connectionist models of learning and memory. Psychological review, 102(3):419, 1995.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages 109–
165. Elsevier, 1989.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. arXiv preprint arXiv:2005.00052, 2020.

Mohammad Taher Pilehvar and os’e Camacho-Collados. Wic: 10, 000 example pairs for evaluating
context-sensitive representations. CoRR, abs/1808.09121, 2018. URL http://arxiv.org/
abs/1808.09121.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

10

http://arxiv.org/abs/1808.09121
http://arxiv.org/abs/1808.09121

Published as a conference paper at ICLR 2021

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI Spring Symposium Series, 2011.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Victor Sanh, Thomas Wolf, and Sebastian Ruder. A hierarchical multi-task approach for learning
embeddings from semantic tasks. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 6949–6956, 2019.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with pointer-
generator networks. arXiv preprint arXiv:1704.04368, 2017.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
arXiv preprint arXiv:1804.04235, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool,
Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff Young, et al. Mesh-tensorflow: Deep
learning for supercomputers. In Advances in Neural Information Processing Systems, pages
10414–10423, 2018.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on empirical methods in natural language pro-
cessing, pages 1631–1642, 2013.

Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers for efficient adap-
tation in multi-task learning. arXiv preprint arXiv:1902.02671, 2019.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pages 3104–3112, 2014.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems, pages 3261–
3275, 2019.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 1112–1122. Association for Computational Linguistics,
2018. URL http://aclweb.org/anthology/N18-1101.

Sen Wu, Hongyang R Zhang, and Christopher Ré. Understanding and improving information trans-
fer in multi-task learning. arXiv preprint arXiv:2005.00944, 2020.

11

http://aclweb.org/anthology/N18-1101

Published as a conference paper at ICLR 2021

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural
information processing systems, pages 5754–5764, 2019.

Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju Hwang. Oracle: Order robust adaptive
continual learning. arXiv preprint arXiv:1902.09432, 2019.

Poorya Zaremoodi, Wray Buntine, and Gholamreza Haffari. Adaptive knowledge sharing in multi-
task learning: Improving low-resource neural machine translation. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
656–661, 2018.

Sheng Zhang, Xiaodong Liu, Jingjing Liu, Jianfeng Gao, Kevin Duh, and Benjamin Van Durme.
Record: Bridging the gap between human and machine commonsense reading comprehension.
arXiv preprint arXiv:1810.12885, 2018.

12

Published as a conference paper at ICLR 2021

6 SUPPLEMENTARY MATERIAL

6.1 DATASETS

6.1.1 GLUE

The datasets in GLUE are CoLA (Corpus of Linguistic Acceptability) (Warstadt et al., 2018),
Sentiment Treebank SST-2 Socher et al. (2013), Microsoft Research Paraphrase Corpus (MRPC)
(Dolan and Brockett, 2005), QQP (Quora Question Pairs) (Iyer et al., 2017), Semantic Textual
Similarity Benchmark (STSB) (Cer et al., 2017), MNLI (Multi-Genre Natural Language Infer-
ence) Williams et al. (2018), QNLI (Rajpurkar et al., 2016), RTE (Dagan et al., 2005), Wino-
grad Schema Challenge WNLI (Levesque et al., 2012). More details can be found at https:
//github.com/tensorflow/datasets/blob/master/docs/catalog/glue.md.

6.1.2 SUPERGLUE

The datasets in SuperGLUE (Wang et al., 2019) are BoolQ (Boolean Questions) (Clark et al., 2019a),
CB (Commitment Bank) (De Marneff et al., 2019), CoPA (Roemmele et al., 2011) (Choice of Plau-
sible Alternatives), MultiRC (Multi-Sentence Reading Comprehension Dataset) (Khashabi et al.,
2018), Record (Reading Comprehension with Commonsense Reasoning) (Zhang et al., 2018), RTE
(Recognizing Textual Entailment) (Dagan et al., 2005; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009), Word-in-Context (WiC) (Pilehvar and os’e Camacho-Collados, 2018),
and WSC (Winograd Schema Challenge) (Levesque et al., 2012). We use Tensorflow datasets for
loading and preprocessing these datasets. More details can be found at https://github.com/
tensorflow/datasets/blob/master/docs/catalog/super_glue.md.

6.2 EXPERIMENT SETTINGS

This section describes most of the hyperparameter settings for our experiments.

6.3 DATASETS AND EXPERIMENTAL SETUP

Our experiments are built upon the existing state-of-the-art model, T5. We run most of our ex-
periments using the base T5 setting, which is comprised of 220M parameters. We fine-tune for a
maximum of 100K steps. We initialize our models with the released pretrained checkpoints4. Our
implementation is in Mesh Tensorflow (Shazeer et al., 2018). We consider the following setups for
the baseline T5 model. First, we compare with the T5 results reported in the original5 paper (Raffel
et al., 2019). These results are denoted with T5†. Second, we compare with T5 (PTFT), which
stands for pretrain-finetune. In this setup, we fine-tune a T5 model for each task individually follow-
ing common practice. Finally, we compare with T5 (MTL) which is a fair comparison of T5 without
HyperGrid. In this setting, T5 is co-trained and results are reported from a single model checkpoint
selected from the best overall GLUE dev score. Note that in the MTL setting, we co-train GLUE
and SuperGLUE within the same model.

Experiments for Base Models For all experiments with base models, we train models for 100K
steps with a batch size of 128. We use the en mix mixture which samples each task proportionately
to the number of examples in the dataset. Learning rate is a constant 0.001 with Adafactor (Shazeer
and Stern, 2018). All results for baselines are reported with scores at the last checkpoint. During
fine-tuning, the embeddings are not fine-tuned. Experiments are run with 16 TPU V3 chips and are
typically completed in about 8 to 10 hours.

Experiments with Large Models We increased the search for large models to 200K steps pick
the best checkpoint for all models based on the best GLUE score. Experiment and hyperparameter
settings remain identical although we use 64 TPU V3 chips for finetuning which typically take about
12 hours to complete.

4https://github.com/google-research/text-to-text-transfer-transformer.
5This model is not directly comparable as they used less pretraining steps. No dev score results on a

comparable setup is reported. We report this score for the sake of completeness.

13

https://github.com/tensorflow/datasets/blob/master/docs/catalog/glue.md
https://github.com/tensorflow/datasets/blob/master/docs/catalog/glue.md
https://github.com/tensorflow/datasets/blob/master/docs/catalog/super_glue.md
https://github.com/tensorflow/datasets/blob/master/docs/catalog/super_glue.md
https://github.com/google-research/text-to-text-transfer-transformer

Published as a conference paper at ICLR 2021

Experiments with 3B and 11B Models For the large models, we only use 1 − 2 HyperGrid
configurations 32x128 or 32x256 in LGmode for finetuning the model. We submit each model only
once to the leaderboard6. Finetuning hyperparameters remain identical. We pick a single checkpoint
based on the best GLUE score. Finetuning for the 3B model is using 64 TPU V3 chips and the 11B
model is fine-tuned with 128 TPU V3 chips.

6.4 COMPARING WITH OUTPUT GATING

One of the model architecture variants we compared with is Output Gating. It can be formulated as:

Y = max(Wx+ b, 0)� (σ(UX)1>) (8)

Comparing to the HyperGrid, which gates the weights in the Relu layer, output gating directly gates
the Relu layer outputs. We can apply either the basic projection method (Equation (2)), or the
grid-wise projection method with block-wise projection on layer outputs.

There are two key differences: (1) Output Gating applies sigmoid gating on Relu layer outputs,
while HyperGrid applies sigmoid gating on weights before the Relu function. Output gating is
similar to the Mixture-of-Expert architecture while concatenating the expert outputs. (2) Based on
this formulation, the full grid-based projection cannot be applied to output gating.

6.5 FURTHER ARCHITECTURAL ABLATIONS

We include more architectural ablations to supplement the results and findings of the paper.

Ablation Architectures We run experiments for 6 different ablations. The first (1) - (4) is con-
cerning with where to apply HyperGrid. (1) applies on the entire network (all QKV + both FFNs),
(2) applies it to both positional FFNs, (3) applies it on the 1st FFN only and (4) applies it on the 2nd
FFN only. For (5) and (6), we evaluate on different weighting schemes for HyperGrid. (5) projects
HyperGrid to a scalar value by pooling (in essense, instead of upsampling the grid, we downsample
the grid into a scalar value). As fo (6), this is the setting where the the row and column size of the
HyperGrid is essentially the same as the FFN.

Ablation AVG
Baseline 79.40
(1) All (QKV Transforms + FFN) 79.05
(2) FFN (both FFN) 80.20
(3) FFN (1st FFN only) 80.23
(4) FFN (2nd FNN only) 80.26
(5) Scalar HyperGrid 79.20
(6) Max-Grid HyperGrid 80.10

Table 7: More results (SuperGLUE + GLUE) studies on applying HyperGrid to different parts of
the Transformer.

Results Our ablation studies show that the best place to place the FFN is only at the 2nd FFN.
Using HyperGrid on all the layers, apart from slowing down the network, would also degrade per-
formance. This can be observed because the difference between (1) and (2) is the addition of QKV
HyperGrids to the model. In (5) and (6), we also note that Scalar HyperGrid performs poorly and
worse than the Baseline model. Finally, the Max-Grid HyperGrid performs reasonably well. How-
ever, this incurs a huge cost because the hyper network is now larger (as composed to learning small
grids and upsampling).

6Discounting submissions that turn out to be incomplete or error submissions.

14

	Introduction
	HyperGrid Transformers
	HyperGrid Module
	Decomposable Gridwise Projections

	Dynamic Weight Generation with HyperGrid

	Experimental Results
	Experimental Results
	Single Model versus Multiple Models
	Performance Gains across Model Sizes
	Effect of Modeling Choices
	Effect of Grid Size on Performance
	Performance on Test Set

	Related Work
	Conclusion
	Supplementary Material
	Datasets
	GLUE
	SuperGLUE

	Experiment Settings
	Datasets and Experimental Setup
	Comparing with Output Gating
	Further Architectural Ablations

