
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOEP: LLMS-DRIVEN AUTOMATION OF HYPERPA-
RAMETER EVOLUTION FOR METAHEURISTIC ALGO-
RITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dynamically configuring algorithm hyperparameters is a fundamental challenge in
computational intelligence. While learning-based methods offer automation, they
suffer from prohibitive sample complexity and poor generalization. We introduce
AutoEP, a novel framework that bypasses training entirely by leveraging Large
Language Models (LLMs) as zero-shot reasoning engines for algorithm control.
AutoEP’s core innovation lies in a tight synergy between two components: (1)
an online Exploratory Landscape Analysis (ELA) module that provides real-time,
quantitative feedback on the search dynamics, and (2) a multi-LLM reasoning chain
that interprets this feedback to generate adaptive hyperparameter strategies. This
approach grounds high-level reasoning in empirical data, mitigating hallucination.
Evaluated on three distinct metaheuristics across diverse combinatorial optimization
benchmarks, AutoEP consistently outperforms state-of-the-art tuners, including
neural evolution and other LLM-based methods. Notably, our framework enables
open-source models like Qwen3-30B to match the performance of GPT-4, demon-
strating a powerful and accessible new paradigm for automated hyperparameter
design. Our code is available at https://anonymous.4open.science/r/AutoEP-3E11.

1 INTRODUCTION

The performance of complex algorithms, from numerical optimizers to machine learning models, is
critically governed by their internal hyperparameters. Dynamically adapting these parameters to suit
the problem instance at hand represents a long-standing challenge in automated algorithm design
Wu et al. (2024; 2025). Metaheuristic algorithms, a cornerstone of solving complex combinatorial
problems, serve as a canonical example. Their effectiveness hinges on a delicate balance between
exploration (diversifying the search) and exploitation (intensifying the search in promising regions),
a trade-off directly controlled by their hyperparameter configurations Eiben et al. (2002a). Mastering
this balance is crucial for achieving state-of-the-art performance but remains a formidable open
problem.

Traditional approaches to dynamic hyperparameter adaptation fall into two categories. Manual,
rule-based strategies Eiben et al. (2002b); Thierens (2005); Ansótegui et al. (2009); Joshi & Bansal
(2020a); Leon & Xiong (2015); Li et al. (2025); Shao et al. (2025) embed human expertise into
hard-coded logic, but are brittle, labor-intensive, and fail to generalize across different problems
or algorithms. To overcome this, data-driven methods, particularly deep reinforcement learning
(DRL) Tessari & Iacca (2022); Ma et al. (2024); Liu et al. (2023); Tatsis & Parsopoulos (2020);
Yin et al. (2021), have attempted to learn adaptive policies from scratch. However, this paradigm
faces fundamental limitations: (1) prohibitive sample complexity, requiring millions of algorithm
executions to train a single policy, and (2) poor generalization, where policies often overfit to the
training distribution of problems and fail on unseen instances or algorithm variants Guo et al. (2024).
This reveals a critical gap: the need for a framework that can adapt algorithm behavior without
requiring expensive, instance-specific training.

The recent advent of Large Language Models (LLMs) offers a paradigm shift. Unlike traditional
learning models that learn policies from scratch, LLMs distill vast amounts of knowledge from
pre-training on extensive corpora of text and code. This process endows them with powerful

1

https://anonymous.4open.science/r/AutoEP-3E11

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

emergent reasoning capabilities and a rich prior understanding of abstract concepts like "convergence,"
"diversity," and "optimization" Liu et al. (2024); YE et al. (2024); Liu et al. (2025); Hu et al.
(2025). We hypothesize that this pre-trained knowledge can be harnessed to reason about optimal
hyperparameter adjustments in a zero-shot manner, bypassing the costly training phase that plagues
DRL-based approaches. This transforms the problem from one of learning a control policy to one of
prompting a reasoning engine.

In this paper, we introduce AutoEP, a novel framework that operationalizes this vision. AutoEP
synergizes the quantitative analysis of Exploratory Landscape Analysis (ELA) with the qualitative rea-
soning of LLMs, creating a new paradigm for zero-shot hyperparameter configuration. It overcomes
the limitations of both manual design and data-intensive learning models. Our key contributions are:

(1) A Zero-Shot Paradigm for Algorithm Control: We propose a novel, training-free framework
where LLMs act as a "pluggable" reasoning core to dynamically control algorithm hyperparameters.
This general-purpose approach is applicable to any metaheuristic algorithm without modification or
costly retraining (see Figure 1 for an overview).

(2) Grounding LLM Inference with Search Trajectory Analysis: To mitigate hallucinations and
ensure data-driven decisions, we ground the LLM’s inference in empirical evidence from the real-time
search trajectory. We achieve this by continuously supplying the LLM with quantitative metrics, such
as ELA features and historical decision data. These metrics, including fitness distribution, solution
diversity, and search difficulty estimates, provide the LLM with a concrete awareness of the current
optimization state. This process anchors the model’s abstract reasoning in the observable dynamics
of the search.

(3) Complex Reasoning via Collaborative Open-Source LLMs: We demonstrate that a collabo-
rative pipeline of smaller, locally-deployed open-source LLMs (e.g., Qwen-72B, DeepSeek-67B)
can effectively decompose and solve complex control tasks. Our empirical results show that this
approach achieves performance comparable to that of large-scale proprietary models, such as GPT-4,
while exhibiting significantly lower inference latency for the hyperparameter tuning task. This design
substantially enhances the accessibility, reproducibility, and overall efficiency of sophisticated AI
reasoning systems.

(4) State-of-the-Art Performance Across Diverse Benchmarks: Through extensive experiments
on three distinct metaheuristics (GA, PSO, ACO Holland (1992); Dorigo et al. (2007); Kennedy &
Eberhart (1995)) and four combinatorial optimization problems, we show that AutoEP consistently
and significantly outperforms both traditional hyperparameter tuning methods and recent LLM-based
approaches.

2 RELATED WORK

Optimization
problems

Metaheuristic
algorithm

Target
Problem f(x)

hyperparameter
initialization

Population
update

Result output

Dynamic
hyperparamete
r optimizationA

ut
oE

P

Observation

Exploration

Exploitation

Problem input

Final Result

I
te

ra
tion

End iteration

Figure 1: Process of hyperparameter tun-
ing in metaheuristic algorithms using
AutoEP.

Rule-Based and Heuristic Control. Early attempts to au-
tomate hyperparameter tuning relied on hard-coded, rule-
based heuristics. These methods embed expert knowl-
edge into predefined rules that adjust parameters based
on simple metrics like iteration count or population diver-
sity Thierens (2005). For instance, strategies might de-
terministically increase mutation rates to escape local op-
tima or adapt selection pressure over time Joshi & Bansal
(2020a). While an improvement over static settings, these
approaches are fundamentally brittle. The underlying
heuristics are problem-dependent and require extensive
manual calibration. They lack the ability to adapt to un-
foreseen dynamics in the search process, making them
unable to generalize across different problem classes or
algorithms.

Learning Control Policies from Scratch via Reinforce-
ment Learning. To overcome the rigidity of manual heuristics, a significant body of work has
focused on learning control policies from scratch using Reinforcement Learning (RL) Ma et al.
(2024); Liu et al. (2023); Tatsis & Parsopoulos (2020). In this paradigm, a metaheuristic’s state

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(e.g., population statistics) is used by an RL agent to select an action (i.e., a new hyperparameter
configuration), receiving a reward based on the improvement in solution quality. Frameworks like
GLEET Ma et al. (2024) and NeuroCrossover Liu et al. (2023) have successfully used policy gradient
algorithms like PPO to train agents for specific evolutionary operators or parameters. Despite their
success, these methods suffer from the characteristic limitations of RL: prohibitive sample complexity.
They require millions of computationally expensive simulation runs to converge to a robust policy,
and the resulting agent often overfits to the specific algorithm and problem distribution it was trained
on, exhibiting poor generalization to new scenarios Guo et al. (2024).

LLMs for Algorithm Design: From Offline Generation to Online Control. The advent of LLMs
has introduced a new frontier for algorithm design, leveraging their vast pre-trained knowledge
of code and logic. Seminal works like EoH Liu et al. (2024) and ReEvo YE et al. (2024) have
demonstrated that LLMs can act as powerful offline algorithm generators. They can be prompted to
create novel heuristic operators or suggest entire initial configurations, effectively automating parts
of the algorithm design process. However, these approaches are predominantly static: the LLM is
consulted before the optimization run to generate code or a configuration, but it does not participate
in the process itself. This leaves a critical gap, as the optimal strategy for a metaheuristic is not static
but state-dependent, evolving as the search progresses Surina et al. (2025). The true opportunity lies
in using an LLM not as an offline code generator, but as a real-time online reasoning engine that
dynamically steers the algorithm based on live feedback. Our work is the first to address this gap,
proposing a framework for online, dynamic hyperparameter control.

In summary, prior work has established the need for dynamic hyperparameter control but has fallen
short of a generalizable, training-free solution. Rule-based methods are brittle, RL-based methods
are sample-inefficient, and current LLM applications remain confined to offline generation. This
highlights the clear need for a framework that enables online, adaptive control by grounding the
reasoning capabilities of LLMs in the real-time dynamics of the search process.

3 AUTOEP

3.1 GROUNDING REASONING WITH QUANTITATIVE SEARCH DYNAMICS

To effectively control a metaheuristic algorithm, the decision-making agent requires a real-time,
quantitative understanding of the search process. As metaheuristics are black-box methods, we
employ Exploratory Landscape Analysis (ELA) Mersmann et al. (2011); Ma et al. (2025) to extract
features that characterize the algorithm’s state. We selected a concise yet comprehensive set of
features designed to capture four key aspects of the search: (1) the statistical distribution of the
current population’s fitness, (2) the structural properties of the local fitness landscape, (3) the diversity
of solutions, and (4) the recent progress of the search.

3.1.1 FITNESS DISTRIBUTION FEATURES.

Skewness (S). Measures the asymmetry of the solution distribution within the current population. It
is calculated as follows:

S =
1
n

∑n
i=1 (yi − ȳ)

3(√
1
n

∑n
i=1 (yi − ȳ)

2

)3 , (1)

where yi represent the fitness value of the i-th individual in the population, and ȳ denote the mean
fitness value of the population, where n is the population size. For a minimization goal, a value near
0 suggests a balanced population. Positive skew (S>0) implies a long tail of low-quality solutions,
indicating the search should intensify exploitation around the few discovered elites. Negative skew
(S<0) suggests the population is converging on high-quality solutions and may be at risk of premature
convergence, necessitating more exploration.

Kurtosis (K). Quantifies the "tailedness" of the solution distribution within the current population. It
is calculated as follows:

K =
1
n

∑n
i=1 (yi − ȳ)

4(√
1
n

∑n
i=1 (yi − ȳ)

2

)4 − 3, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

high kurtosis (K>0) indicates fitness values are tightly clustered with heavy tails, signaling low
diversity and the need for exploration. Low kurtosis (K<0) implies a flat, dispersed distribution,
suggesting exploitation is warranted to refine existing solutions.

3.1.2 FITNESS LANDSCAPE AND DIVERSITY FEATURES

Meta-Model: Coefficient of Determination (R2). Quantifies the goodness-of-fit of a simple model
(e.g., quadratic) to a sample of solutions, thereby assessing the structural predictability of the fitness
landscape. It is calculated as:

R2 = 1−
∑n

i=1(yi − f(x⃗i))
2∑n

i=1(yi − ȳ)2
, (3)

where yi is the fitness of the i-th individual, ȳ is the mean fitness, and f(xi) is the fitness predicted
by the model. A high R2 ≈ 1 indicates a well-structured landscape (i.e., a funnel), signaling a need
to increase exploitation. Conversely, a low R2 ≈ 0 implies a rugged or multi-modal landscape,
requiring an increase in exploration to avoid premature convergence.

Dispersion Ratio (Dratio). Measures the population’s diversity by comparing the spatial distribution
of the best solutions against that of the worst solutions. A low ratio indicates convergence into a
single promising region. It is calculated as follows:

Dratio =
D(Qbest)

D(Qworst)
, (4)

where Qbest and Qworst represent the sets of the best and worst solutions in the population
based on a fitness quantile (top and bottom 10%), respectively. The function D(Q) =

2
|Q|(|Q|−1)

∑
x⃗i,x⃗j∈Q,i<j d(x⃗i, x⃗j) calculates the average pairwise distance among all individuals

within a given set Q, using a distance metric d(·, ·) suitable for the decision space (e.g., Hamming
distance for binary problems). A value of Dratio ≪ 1 (e.g., < 0.2) is a strong indicator of a single
funnel structure, as the best solutions are tightly clustered. This signals the need to increase exploita-
tion to refine the search within this promising basin. Conversely, a value of Dratio ≈ 1 suggests a
multi-modal landscape, where elite solutions are found in disparate regions. This necessitates an
increase in exploration to avoid premature convergence to a local optimum.

3.1.3 SEARCH PROGRESS FEATURE

Variability (V). The four indicators above describe the solution structure within the population and
reflect the current state of the algorithm’s optimization process. To capture the dynamics of the search
more effectively, we design a rate-of-change indicator:

V =
1
m

∑g−1
m=g−m ȳm

ȳg
, (5)

to measure the evolutionary progress of the population, we introduce a rate of change indicator, V . Let
ȳg be the mean fitness of the population at generation g. The indicator V quantifies the improvement
in ȳg relative to the mean fitness over the previous m generations. For minimization problems, a
value of V > 1 signifies sufficient progress, prompting the algorithm to intensify exploitation through
local search. Conversely, V ≤ 1 suggests that the population is stagnating, which triggers an increase
in exploration to diversify the search.

These ELA features transform the black-box state of the metaheuristic into a structured, machine-
readable format. This representation serves as the empirical foundation for the LLM’s reasoning
process, enabling it to make informed, data-driven decisions about hyperparameter adjustments.

3.2 A CLOSED-LOOP ARCHITECTURE FOR LLM-DRIVEN CONTROL

AutoEP operates as a closed-loop control system that dynamically steers a metaheuristic algorithm.
As shown in Figure 2, the framework iteratively performs three main functions: State-Sensing,
Reasoning, and Action.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Task Scenarios

Algorithm name

Hyperparameter

Step2: Result output

Target value

Iteration number
Step1: Hyperparameter generation

Input

Multiple LLMs

Metaheuristic algorithm

Hyperparameter

Process Architecture Construction of CoR

Experience pool

Exploration Exploitation

ELA features

Understanding tasks and
metaheuristic algorithms

Analyze data experience to
determine the current state

Adjust the hyperparameters
based on the current state

History Information

Figure 2: The AutoEP Framework.

1. State-Sensing and Context Formulation: At each decision point, the framework captures the
current state of the metaheuristic algorithm. This involves calculating the ELA features described in
Sec 3.1. This real-time data is then combined with historical information from an Experience Pool.
The pool stores a memory of past states, actions (hyperparameter settings), and their outcomes (fitness
improvements). This collective information is formatted into a structured prompt that provides the
LLM with both the current situation and relevant historical context.

2. Reasoning via Multi-LLM Chain: The formulated prompt is passed to our Chain of Reasoning
(CoR) engine (detailed in Sec 3.3). This engine, composed of multiple collaborating LLMs, ana-
lyzes the current state in light of past experiences to determine whether to prioritize exploration or
exploitation and translates this strategy into a concrete set of hyperparameter values.

3. Action and Feedback: The new hyperparameter configuration generated by the CoR engine is
fed back to the metaheuristic algorithm, which uses it for the subsequent phase of the search. The
performance outcome of this action is recorded and added to the Experience Pool, completing the
feedback loop. This iterative process allows AutoEP to continuously adapt its strategy based on
observed performance, effectively performing in-context learning throughout the optimization run.

3.3 DECOMPOSING CONTROL LOGIC WITH A CHAIN OF REASONING

Controlling a complex algorithm requires multi-faceted reasoning: understanding the task, diagnosing
the current state, and deciding on a precise action. Entrusting this entire process to a single LLM
with a monolithic prompt can lead to high inference latency and unstable outputs Wang et al. (2023).
To address this, we introduce the CoR, a multi-LLM framework that decomposes the control task
into a pipeline of specialized, more manageable reasoning steps. This approach not only improves
performance through specialization Shen et al. (2023) but also enhances robustness through cross-
validation. Our CoR pipeline consists of three distinct agents:

The Strategist LLM (One-time Setup): At the start of a run, the Strategist receives the problem
description and the chosen metaheuristic algorithm, such as a GA. It generates a static "control
mapping" that defines the qualitative effect of each hyperparameter (such as mutation rate and
crossover probability) on the search process. For example, it might map the mutation rate to the
concept of "boosting exploration". This map is generated once and serves as a foundational reference
for the other agents.

The Analyst LLM (State Diagnosis): At each decision point, the Analyst LLM uses real-time ELA
features and historical data from the Experience Pool to diagnose the current search state. It addresses
the core question of whether to prioritize exploration or exploitation. To do this, it synthesizes ELA
signals to identify consensus (where multiple indicators, like low diversity and stagnation, both
suggest exploration) or conflict (where indicators are contradictory, such as low diversity but rapid
progress). Based on this diagnosis, it outputs a clear strategic directive, for instance, ACTION:
Increase Exploration.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The Actuator LLM (Decision and Tuning): The Actuator receives the strategic directive from the
Analyst (Increase Exploration) and the static control map from the Strategist. Its task is to translate
the qualitative directive into a quantitative hyperparameter configuration. It performs this in two
stages:

Parameter Selection: Using the control map, it identifies which hyperparameters to modify (e.g.,
increase mutation rate, decrease crossover probability).

Magnitude Determination: It determines the degree of adjustment. This is achieved through
in-context learning, where it examines examples from the Experience Pool to infer effective tuning
magnitudes from similar past situations. For instance, it might learn that small, incremental changes
are better during stable progress, while large, aggressive changes are needed to escape deep stagnation.

This decomposed CoR pipeline transforms a complex, unstructured control problem into a series of
focused, interconnected reasoning tasks, enabling more reliable and efficient automated algorithm
configuration, as shown in Figure 3. The detailed prompts for each agent are provided in Appendix C.

Question2

Answer1

Question1

Could you analyze the impact of crossover and
mutation probabilities on the exploration
exploitation balance in genetic algorithms?

In the GA, crossover probability promotes
exploitation by controlling gene exchange, while
mutation probability enhances exploration by
introducing random disturbances to search new
solution spaces.

Here is the current data in the < Experience
Pool >. Refer to the <data characteristics >
and determine if the algorithm should prioritize
exploration or exploitation. No other outputs
are needed.

Based on the analysis of the experience pool
data, the algorithm currently requires increased
exploration.

Answer2

<Answer1+Answer2+Experience Pool>How should
the hyperparameters of the GA algorithm be
adjusted? Please analyze and think carefully
without outputting anything else.

When the GA needs to increase exploration, the
mutation probability should be increased, while
the crossover probability should be reduced. The
adjusted parameters are < specific data >.

Question3

Answer3

Figure 3: Demonstration of CoR.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

To comprehensively evaluate AutoEP’s performance, we selected classic combinatorial optimization
datasets, including TSP Matai et al. (2010), CVRP Dantzig & Ramser (1959), and FSSP Emmons &
Vairaktarakis (2012), as well as a more complex, realistic optimization task involving UAV-enabled
IoT data collection Zhan et al. (2017). We compared AutoEP against three categories of algorithms:

Hyperparameter tuning methods for metaheuristic algorithms. PT Joshi & Bansal (2020b) is a
recent manually designed method for hyperparameter tuning. GLEET Ma et al. (2024) represents
the SOTA in reinforcement learning-based hyperparameter tuning; we retrained the network strictly
following the original experimental settings for different algorithms and datasets. BEA Lan et al.
(2022) is a leading method using bayesian optimization for hyperparameter tuning.

Neural combinatorial optimization. DACT Ma et al. (2021) and LEHD Luo et al. (2023) are
advanced methods for solving combinatorial optimization problems.

LLMs-enhanced metaheuristic methods. ReEvo and EoH are SOTA methods leveraging LLMs to
enhance metaheuristic operators.

Experimental settings for AutoEP and the comparison algorithms are detailed in Appendix D. For
performance testing on these datasets, both EoH and ReEvo used the GPT-3.5-turbo model, as
mentioned in their respective papers, while AutoEP utilized the Qwen3-30B LLMs. To ensure
statistical robustness and mitigate the effects of random variation, all experiments were repeated 30
times. The results presented in this paper are the mean values from these runs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 RESULTS

4.2.1 VALIDATION ON TSP
Table 1: Comparison with various baselines on TSP. Opt.gap represents the percentage gap between
the average run result and the optimal solution for this dataset; a smaller value is better. Time is the
average runtime (unit: minute).

Method eil51 Rd100 Kroa150 rd300 rat575 dsj1000
Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time

DACT 0.00 0.6(m) 0.09 4.1(m) 0.13 7.9(m) 0.93 18.7(m) 2.55 26.3(m) 4.97 71.5(m)
LEHD 0.08 0.2(m) 0.21 0.2(m) 0.96 0.3(m) 1.38 0.4(m) 2.64 0.6(m) 5.54 1.8(m)
GA 1.47 0.6(m) 3.61 0.9(m) 5.26 1.7(m) 11.33 2.8(m) 14.75 3.3(m) 21.94 5.3(m)
GA+PT 0.33 0.7(m) 1.61 0.9(m) 3.94 1.7(m) 8.82 2.8(m) 9.43 3.3(m) 19.25 5.3(m)
GA+GLEET 0.07 1.2(m) 1.49 1.5(m) 3.23 2.4(m) 7.11 3.7(m) 8.06 4.9(m) 16.23 6.8(m)
GA+BEA 0.14 0.8(m) 2.55 1.1(m) 3.76 1.8(m) 7.28 2.9(m) 9.07 3.5(m) 16.91 5.5(m)
GA+EoH 0.31 0.6(m) 1.38 1.1(m) 3.61 1.9(m) 7.16 3.1(m) 8.32 3.4(m) 19.39 5.3(m)
GA+ReEvo 0.27 0.7(m) 1.97 1.0(m) 3.39 1.9(m) 7.58 3.0(m) 8.39 3.4(m) 16.53 5.4(m)
GA+AutoEP 0.11 3.1(m) 1.06 3.4(m) 2.15 4.2(m) 6.27 5.3(m) 6.92 5.8(m) 14.02 7.8(m)
GA-2opt 0.17 3.3(m) 0.43 7.6(m) 0.87 29.4(m) 1.62 56.3(m) 3.35 167.6(m) 7.14 309.8(m)
GA-2opt+PT 0.05 3.6(m) 0.08 8.0(m) 0.24 29.9(m) 0.54 56.7(m) 1.46 168.1(m) 6.07 310.3(m)
GA-2opt+GLEET 0.00 3.5(m) 0.02 7.9(m) 0.09 30.9(m) 0.33 57.8(m) 0.91 171.2(m) 5.47 311.5(m)
GA-2opt+BEA 0.01 4.5(m) 0.07 8.9(m) 0.25 30.8(m) 0.41 57.7(m) 1.03 169.0(m) 5.86 311.2(m)
GA-2opt+EoH 0.00 3.4(m) 0.04 7.8(m) 0.27 29.7(m) 0.63 56.5(m) 2.91 167.9(m) 5.83 310.0(m)
GA-2opt+ReEvo 0.00 3.9(m) 0.02 8.5(m) 0.16 30.2(m) 0.48 57.2(m) 2.68 168.5(m) 5.95 310.7(m)
GA-2opt+AutoEP 0.00 5.8(m) 0.01 10.1(m) 0.01 31.9(m) 0.09 58.9(m) 0.08 170.2(m) 3.58 312.8(m)
GA-2opt+EoH+AutoEP 0.00 5.9(m) 0.01 10.2(m) 0.01 32.5(m) 0.11 59.1(m) 0.08 169.6(m) 3.61 312.6(m)
GA-2opt+ReEvo+AutoEP 0.00 6.2(m) 0.01 10.6(m) 0.01 32.1(m) 0.10 59.8(m) 0.07 170.1(m) 3.59 312.3(m)

For the TSP problem, we selected the TSPLIBReinelt (1991) dataset and used GAHolland (1992)
and GA-2opt Sabba & Chikhi (2013) as baseline algorithms. GA is a widely used metaheuristic
algorithm, while GA-2opt, which combines global and local search, is a robust heuristic for TSP.
Detailed experimental results are presented in Table 1.The first row displays the performance of
neural combinatorial optimization methods on various TSP datasets. The second row compares
hyperparameter tuning methods and LLMs-enhanced metaheuristic operators using the GA algorithm.
Among hyperparameter tuning methods, GLEET performed the best, while ReEvo showed promising
results in enhancing metaheuristic operators. AutoEP, after optimizing GA’s hyperparameters,
achieved the best results across all problem sizes.The third row evaluates GA-2opt, which combines
population-based and local search strategies, resulting in strong performance. The test results indicate
that the algorithm with dynamically controlled hyperparameters by AutoEP achieved SOTA results
across all test datasets, surpassing current neural combinatorial optimization SOTA methods like
LEHD and DACT. These comparative results demonstrate that AutoEP, as a plug-and-play framework
for tuning metaheuristic algorithm hyperparameters, significantly enhances the performance of the
original algorithms. To validate AutoEP’s ability to dynamically adjust hyperparameters when
integrated as a plugin with any metaheuristic algorithm, we applied it to ReEvo and EoH-enhanced
GA-2opt algorithms, as shown in the fourth row. Our results demonstrate that AutoEP further
improves the performance of these enhanced algorithms, with final results closely matching those of
GA-2opt+AutoEP. This confirms two key points:

(1) Online adaptation is crucial: Even a well-designed initial heuristic benefits from dynamic, state-
aware control during the run.

(2) AutoEP is a general-purpose enhancer: It acts as a plug-and-play module that can improve any
given metaheuristic, including those already enhanced by other methods.

Computational Overhead is Minimal. Our CoR architecture, which leverages efficient 30B-parameter
models, is highly practical. The average inference latency per decision is negligible (30 ms). Over
an entire optimization run with hundreds of adjustments, the total added time is minimal (e.g., 2-5
minutes on longer runs), a small price for a significant improvement in solution quality.

4.2.2 VALIDATION ON CVRP, FSSP, AND UAV TRAJECTORY OPTIMIZATION

A detailed analysis of the experimental results on the CVRP, FSSP, and UAV trajectory optimization
datasets can be found in Appendix B.

4.3 ABLATION STUDIES: DECONSTRUCTING AUTOEP’S PERFORMANCE

To isolate the contributions of AutoEP’s key components, we conducted two ablation studies on the
TSP benchmark.

The Criticality of State-Sensing (ELA) and Reasoning (CoR). Table 2 demonstrates that both the
ELA module and the CoR engine are essential for effective performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Without ELA, the LLM lacks situational awareness. Though it can still see past actions and outcomes
from the experience pool, its performance degrades significantly, as it is reasoning without a real-time
understanding of the search dynamics.

Without CoR (using a single LLM), performance drops to the level of the baseline. This shows
that simply feeding raw state features to a standard LLM is insufficient; our structured, decomposed
reasoning pipeline is crucial for translating state information into an effective strategy.

Without both, the framework operates blindly, leading to chaotic adjustments that perform worse
than the untuned baseline.

Efficiency and Accessibility: CoR vs. Monolithic SOTA LLMs. We then investigated whether our
multi-LLM CoR could be replaced by a single, powerful, proprietary model (e.g., GPT-o1, Gemini
2.5 Pro). As shown in Table 3, our CoR, built with efficient 30B-class open-source models, achieves
performance on par with these massive SOTA models. However, it does so with an order of magnitude
less computational time (e.g., 5.8 min vs. 50 min on eil51). This is a critical finding: our structured
reasoning framework provides a path to achieving SOTA performance without relying on expensive,
slow, and proprietary APIs. It makes advanced, LLM-driven algorithm control practical, accessible,
and locally deployable.

Table 2: Component ablation study of AutoEP on TSP.

Method eil51 Rd100 Kroa150 rd300 rat575 dsj1000
Opt.gap(%)↓ Opt.gap(%)↓ Opt.gap(%)↓ Opt.gap(%)↓ Opt.gap(%)↓ Opt.gap(%)↓

GA-2opt 0.17 0.43 0.87 1.62 3.35 7.14
GA-2opt+AutoEP (Without ELA) 0.06 0.33 0.57 1.30 3.11 6.46
GA-2opt+AutoEP (Without CoR) 0.16 0.43 0.81 1.60 3.37 7.11
GA-2opt+AutoEP (Without ELA+CoR) 0.21 0.56 1.37 1.84 3.91 7.93
GA-2opt+AutoEP 0.00 0.01 0.01 0.09 0.08 3.58

Table 3: Comparison of CoR components with other reasoning LLMs.

Method eil51 Rd100 Kroa150 rd300 rat575 dsj1000
Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time

AutoEP without CoR(GPT-o1) 0.00 44.7(m) 0.01 49.4(m) 0.01 71.0(m) 0.09 97.9(m) 0.09 209.2(m) 1.59 351.1(m)
AutoEP without CoR (Claude 3.7) 0.00 43.6(m) 0.03 47.5(m) 0.02 69.1(m) 0.11 95.4(m) 0.10 203.8(m) 1.58 343.6(m)
AutoEP without CoR (Gemini 2.5 Pro) 0.00 51.6(m) 0.01 56.9(m) 0.01 78.2(m) 0.08 105.1(m) 0.08 214.5(m) 1.57 361.1(m)
AutoEP without CoR (DeepSeek-R1) 0.00 53.9(m) 0.01 58.2(m) 0.01 81.3(m) 0.09 107.4(m) 0.11 218.6(m) 1.59 363.4(m)
AutoEP with CoR (Qwen3-30B) 0.00 5.8(m) 0.01 10.1(m) 0.01 31.9(m) 0.09 58.9(m) 0.08 170.2(m) 1.58 312.8(m)

4.4 ROBUSTNESS TO FOUNDATIONAL MODEL CAPABILITIES

A key concern with LLM-based systems is their dependence on the underlying model’s power.
We tested this by running AutoEP, EoH, and ReEvo with various LLMs. As shown in Figure 4,
the performance of EoH and ReEvo, which rely on the LLM’s raw generative ability, degrades
significantly when using smaller models. In contrast, AutoEP maintains its high performance even
with less powerful models. This demonstrates that AutoEP’s strength comes from its structured
framework (grounding via ELA, reasoning via CoR), not just the raw intelligence of the LLM. This
architectural robustness makes AutoEP more reliable and practical for real-world deployment.

4.5 SENSITIVITY TO ADJUSTMENT FREQUENCY

We analyzed the trade-off between decision frequency and performance on the UAV problem (Figure
5). While adjusting at every iteration yields the fastest convergence, less frequent adjustments (e.g.,
every 3-5 iterations) still provide substantial benefits while reducing computational overhead. This
provides a practical "knob" for users: on problems with very long runtimes, one can reduce the
adjustment frequency to save time without sacrificing the majority of the performance gain.

5 DISCUSSION AND CONCLUSION

In this work, we introduced AutoEP, a framework that pioneers a new paradigm for automated
algorithm configuration. By synergizing real-time search analytics (ELA) with the reasoning ca-
pabilities of LLMs, we have demonstrated a system that can dynamically control complex meta-
heuristic algorithms in a zero-shot, training-free manner. Our extensive experiments show that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Comparison of Experimental Results Across Different LLMs. The baseline algorithm for
adjustment is GA-2opt.

this approach not only outperforms state-of-the-art hyperparameter tuners but also elevates clas-
sical heuristics to a performance level competitive with specialized neural optimization methods.

Figure 5: Comparison of hyperparameter tuning
frequencies.

Broader Implications: A Shift from Learning
to Reasoning. Our work represents a funda-
mental departure from the dominant "learning
from scratch" paradigm, exemplified by rein-
forcement learning. Instead of investing mas-
sive computational resources to train a control
policy for every new problem or algorithm vari-
ant, AutoEP leverages the rich prior knowledge
embedded within pre-trained LLMs. This trans-
forms the problem of algorithm control from one
of sample-intensive learning to one of efficient,
in-context reasoning. At the core of AutoEP
is a "sense-reason-act" loop, where ELA pro-
vides the senses, the CoR provides the reasoning,
and hyperparameter adjustments are the actions.
This loop offers a generalizable blueprint for
creating more adaptive and intelligent computa-
tional systems.

Practical Advantages for Real-World Optimization. Beyond its novelty, AutoEP is designed
for practicality. Its plug-and-play framework makes it a general-purpose tool for enhancing any
metaheuristic algorithm. Crucially, as demonstrated by our ablation studies, AutoEP’s structured
reasoning framework reduces the dependency on a single, monolithic LLM’s raw intelligence. This
architectural strength allows it to achieve SOTA performance using smaller, open-source models (e.g.,
30B-32B class). This is a critical advantage for real-world applications like factory scheduling or
logistics, where local deployment is necessary to ensure data privacy, low latency, and operational
reliability, and where deploying massive proprietary models is often infeasible.

6 ETHICAL STATEMENT AND REPRODUCIBILITY STATEMENT

Our paper has no conflicts of interest and complies with ethical standards. Our paper code is
reproducible, and we have provided an anonymous link to the reproducible code.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. A gender-based genetic algorithm for the
automatic configuration of algorithms. In International Conference on Principles and Practice of
Constraint Programming, pp. 142–157. Springer, 2009.

George B Dantzig and John H Ramser. The truck dispatching problem. Management science, 6(1):
80–91, 1959.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE computational
intelligence magazine, 1(4):28–39, 2007.

Ágoston E Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on evolutionary computation, 3(2):124–141, 2002a.

Ágoston E Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on evolutionary computation, 3(2):124–141, 2002b.

Hamilton Emmons and George Vairaktarakis. Flow shop scheduling: theoretical results, algorithms,
and applications, volume 182. Springer Science & Business Media, 2012.

Victor Fernandez-Viagas and Jose M Framinan. On insertion tie-breaking rules in heuristics for the
permutation flowshop scheduling problem. Computers & Operations Research, 45:60–67, 2014.

Hongshu Guo, Yining Ma, Zeyuan Ma, Jiacheng Chen, Xinglin Zhang, Zhiguang Cao, Jun Zhang, and
Yue-Jiao Gong. Deep reinforcement learning for dynamic algorithm selection: A proof-of-principle
study on differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems,
2024.

John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

Qinglong Hu, Xialiang Tong, Mingxuan Yuan, Fei Liu, Zhichao Lu, and Qingfu Zhang. Discovering
interpretable programmatic policies via multimodal llm-assisted evolutionary search. arXiv preprint
arXiv:2508.05433, 2025.

Susheel Kumar Joshi and Jagdish Chand Bansal. Parameter tuning for meta-heuristics. Knowledge-
Based Systems, 189:105094, 2020a.

Susheel Kumar Joshi and Jagdish Chand Bansal. Parameter tuning for meta-heuristics. Knowledge-
Based Systems, 189:105094, 2020b.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of ICNN’95-
international conference on neural networks, volume 4, pp. 1942–1948. ieee, 1995.

Gongjin Lan, Jakub M Tomczak, Diederik M Roijers, and AE Eiben. Time efficiency in optimization
with a bayesian-evolutionary algorithm. Swarm and Evolutionary Computation, 69:100970, 2022.

Miguel Leon and Ning Xiong. Greedy adaptation of control parameters in differential evolution for
global optimization problems. In 2015 IEEE Congress on Evolutionary Computation (CEC), pp.
385–392. IEEE, 2015.

Xiaobin Li, Kai Wu, Xiaoyu Zhang, and Handing Wang. B2opt: Learning to optimize black-box
optimization with little budget. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 39, pp. 18502–18510, 2025.

Cuntao Liu, Yan Guo, Ning Li, and Xiaoxiang Song. Aoi-minimal task assignment and trajectory
optimization in multi-uav-assisted iot networks. IEEE Internet of Things Journal, 9(21):21777–
21791, 2022.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In 41st International Conference on Machine Learning (ICML 2024), 2024.

Fei Liu, Rui Zhang, Xi Lin, Zhichao Lu, and Qingfu Zhang. Fine-tuning large language model for
automated algorithm design. arXiv preprint arXiv:2507.10614, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haoqiang Liu, Zefang Zong, Yong Li, and Depeng Jin. Neurocrossover: An intelligent genetic locus
selection scheme for genetic algorithm using reinforcement learning. Applied Soft Computing, 146:
110680, 2023.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Advances
in Neural Information Processing Systems, 34:11096–11107, 2021.

Zeyuan Ma, Jiacheng Chen, Hongshu Guo, Yining Ma, and Yue-Jiao Gong. Auto-configuring
exploration-exploitation tradeoff in evolutionary computation via deep reinforcement learning. In
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1497–1505, 2024.

Zeyuan Ma, Jiacheng Chen, Hongshu Guo, and Yue-Jiao Gong. Neural exploratory landscape
analysis for meta-black-box-optimization. In The Thirteenth International Conference on Learning
Representations, 2025.

Rajesh Matai, Surya Prakash Singh, and Murari Lal Mittal. Traveling salesman problem: an overview
of applications, formulations, and solution approaches. Traveling salesman problem, theory and
applications, 1(1):1–25, 2010.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter Rudolph.
Exploratory landscape analysis. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pp. 829–836, 2011.

Muhammad Nawaz, E Emory Enscore Jr, and Inyong Ham. A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983.

Zixiao Pan, Ling Wang, Jingjing Wang, and Jiawen Lu. Deep reinforcement learning based optimiza-
tion algorithm for permutation flow-shop scheduling. IEEE Transactions on Emerging Topics in
Computational Intelligence, 7(4):983–994, 2021.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Sara Sabba and Salim Chikhi. Integrating the best 2-opt method to enhance the genetic algorithm
execution time in solving the traveler salesman problem. In Complex Systems and Dependability,
pp. 195–208. Springer, 2013.

Frédéric Semet and Eric Taillard. Solving real-life vehicle routing problems efficiently using tabu
search. Annals of Operations research, 41:469–488, 1993.

Shuai Shao, Ye Tian, and Yajie Zhang. Deep reinforcement learning assisted surrogate model
management for expensive constrained multi-objective optimization. Swarm and Evolutionary
Computation, 92:101817, 2025.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugginggpt:
Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
learning. arXiv preprint arXiv:2504.05108, 2025.

Eric Taillard. Benchmarks for basic scheduling problems. european journal of operational research,
64(2):278–285, 1993.

Vasileios A Tatsis and Konstantinos E Parsopoulos. Reinforced online parameter adaptation method
for population-based metaheuristics. In 2020 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pp. 360–367. IEEE, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michele Tessari and Giovanni Iacca. Reinforcement learning based adaptive metaheuristics. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1854–1861,
2022.

Dirk Thierens. An adaptive pursuit strategy for allocating operator probabilities. In Proceedings of
the 7th annual conference on Genetic and evolutionary computation, pp. 1539–1546, 2005.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Xingyu Wu, Sheng-hao Wu, Jibin Wu, Liang Feng, and Kay Chen Tan. Evolutionary computation
in the era of large language model: Survey and roadmap. IEEE Transactions on Evolutionary
Computation, 2024.

Xingyu Wu, Jibin Wu, Yu Zhou, Liang Feng, and Kay Chen Tan. Towards robustness and explain-
ability of automatic algorithm selection. In Forty-second International Conference on Machine
Learning, 2025.

Hui Yan, Weidong Bao, Xiaoqing Li, Xiaomin Zhu, Yaohong Zhang, Ji Wang, and Ling Liu. Fault-
tolerant scheduling of heterogeneous uavs for data collection of iot applications. IEEE Internet of
Things Journal, 11(16):26623–26644, 2023.

Haoran YE, Jiarui WANG, Zhiguang CAO, Federico BERTO, Chuanbo HUA, Haeyeon KIM, Jinkyoo
PARK, and Guojie SONG. Reevo: Large language models as hyper-heuristics with reflective
evolution. In Proceedings of the 38th Conference on Neural Information Processing (NeurIPS
2024), Vancouver, Canada, December, pp. 10–15, 2024.

Shiyuan Yin, Yi Liu, GuoLiang Gong, Huaxiang Lu, and Wenchang Li. Rlepso: Reinforcement
learning based ensemble particle swarm optimizer. In Proceedings of the 2021 4th International
Conference on Algorithms, Computing and Artificial Intelligence, pp. 1–6, 2021.

Cheng Zhan, Yong Zeng, and Rui Zhang. Energy-efficient data collection in uav enabled wireless
sensor network. IEEE Wireless Communications Letters, 7(3):328–331, 2017.

A LLM USAGE

We only used LLMs to polish the paper writing.

B DETAILED EXPERIMENTAL RESULTS

B.1 VALIDATION ON CVRP

For the CVRP problem, we used the VRPLIB Semet & Taillard (1993) dataset and included both
GA-2opt and PSO-2opt Sabba & Chikhi (2013) algorithms to evaluate AutoEP’s performance across
different metaheuristic algorithms. The test results are presented in Table 4.In the first column, DACT
and LEHD continue to show strong performance. The second column compares various methods
for improving PSO-2opt, where AutoEP achieves superior results. The third column evaluates
enhancements to GA-2opt, with AutoEP demonstrating the best performance. Additionally, GA-2opt
combined with AutoEP achieves the smallest gap from the optimal solutions across all datasets.

B.2 VALIDATION ON FSSP

For the FSSP problem, we used the Taillard Taillard (1993) dataset and GA-2opt as the baseline
algorithm. We also included advanced methods for FSSP: NEH Nawaz et al. (1983), NEHFF
Fernandez-Viagas & Framinan (2014), and PFSPNet_NEH Pan et al. (2021). The test results are
presented in Table 5. In the first column, PFSPNet_NEH shows superior performance among
the comparison algorithms. The second column demonstrates that AutoEP significantly enhances
GA-2opt across all datasets, consistently achieving the best results.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 4: Comparison with various baselines on CVRP. Opt.gap represents the percentage gap between
the average run result and the optimal solution; a smaller value is better. Time is the average runtime
(unit: minute).

Method N=20 N=50 N=100 N=200 N=500
Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time

DACT 0.01 0.5(m) 0.09 3.8(m) 0.57 7.2(m) 3.45 16.5(m) 7.52 24.0(m)
LEHD 0.01 0.2(m) 0.13 0.2(m) 0.64 0.3(m) 3.61 0.4(m) 7.64 0.7(m)

PSO-2opt 1.38 3.0(m) 1.65 7.5(m) 2.33 28.0(m) 6.53 55.0(m) 9.66 165.0(m)
PSO-2opt+PT 0.19 3.3(m) 0.29 7.9(m) 1.13 28.4(m) 3.77 55.3(m) 5.81 165.4(m)
PSO-2opt+GLEET 0.08 3.8(m) 0.14 9.2(m) 0.97 30.2(m) 2.93 57.1(m) 4.82 167.2(m)
PSO-2opt+BEA 0.11 4.1(m) 0.26 8.7(m) 1.04 29.3(m) 3.59 56.2(m) 5.31 166.3(m)
PSO-2opt+EoH 0.12 3.2(m) 0.33 7.7(m) 1.30 28.3(m) 4.71 55.2(m) 7.47 165.2(m)
PSO-2opt+ReEvo 0.09 3.7(m) 0.27 8.3(m) 1.27 28.8(m) 3.92 55.8(m) 6.41 165.8(m)
PSO-2opt+AutoEP 0.06 5.8(m) 0.09 10.7(m) 0.83 31.2(m) 2.48 58.6(m) 4.25 168.5(m)
GA-2opt 0.91 3.5(m) 1.03 8.0(m) 1.88 31.0(m) 5.89 59.0(m) 8.1 178.0(m)
GA-2opt+PT 0.26 3.8(m) 0.20 8.4(m) 0.59 31.5(m) 1.93 59.4(m) 5.93 178.5(m)
GA-2opt+GLEET 0.01 3.7(m) 0.07 8.2(m) 0.19 31.8(m) 1.44 59.7(m) 4.07 178.8(m)
GA-2opt+BEA 0.07 4.6(m) 0.11 9.1(m) 0.24 32.1(m) 1.63 60.1(m) 4.71 179.1(m)
GA-2opt+EoH 0.08 3.6(m) 0.15 8.2(m) 0.63 31.2(m) 2.17 59.2(m) 6.55 178.2(m)
GA-2opt+ReEvo 0.03 4.0(m) 0.08 8.6(m) 0.44 31.6(m) 1.69 59.6(m) 5.27 178.6(m)
GA-2opt+AutoEP 0.01 6.1(m) 0.05 10.9(m) 0.13 33.9(m) 1.08 62.1(m) 3.17 181.1(m)
GA-2opt+EoH+AutoEP 0.01 6.3(m) 0.06 11.2(m) 0.13 34.2(m) 1.09 62.3(m) 3.17 181.4(m)
GA-2opt+ReEvo+AutoEP 0.01 6.2(m) 0.05 11.1(m) 0.14 34.1(m) 1.07 62.4(m) 3.15 181.3(m)

Table 5: Comparison with various baselines on FSSP. Opt.gap represents the percentage gap between
the average run result and the optimal solution; a smaller value is better. Time is the average runtime
(unit: minute).

Method n20m10 N50m10 N100m20 N200m20 N500m20
Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time Opt.gap(%)↓ Time

NEH 4.05 0.4(m) 3.47 0.7(m) 3.58 1.8(m) 5.27 3.8(m) 4.59 4.7(m)
NEHFF 4.15 0.5(m) 3.62 0.8(m) 3.73 2.0(m) 5.82 4.0(m) 4.83 4.9(m)
PFSPNet 4.04 0.6(m) 3.48 0.9(m) 3.56 2.2(m) 6.05 4.2(m) 5.36 5.0(m)

GA-2opt 4.37 3.6(m) 5.15 8.2(m) 6.42 31.5(m) 5.62 60.0(m) 7.83 178.0(m)
GA-2opt+PT 3.16 3.9(m) 3.70 8.6(m) 4.19 32.0(m) 3.93 60.4(m) 4.09 178.5(m)
GA-2opt+GLEET 2.64 4.1(m) 2.95 10.5(m) 3.67 33.8(m) 3.28 62.3(m) 3.52 180.2(m)
GA-2opt+BEA 2.91 4.5(m) 3.36 9.3(m) 3.95 32.6(m) 3.53 61.2(m) 3.81 179.3(m)
GA-2opt+EoH 3.31 3.7(m) 3.87 8.4(m) 4.43 31.8(m) 3.64 60.2(m) 4.22 178.3(m)
GA-2opt+ReEvo 2.85 4.0(m) 3.16 8.9(m) 3.88 32.2(m) 3.31 60.7(m) 3.74 178.8(m)
GA-2opt+AutoEP 2.09 6.3(m) 2.80 10.8(m) 3.16 34.6(m) 2.93 63.2(m) 2.83 181.5(m)
GA-2opt+EoH+AutoEP 2.08 6.5(m) 2.81 11.0(m) 3.16 34.9(m) 2.96 63.5(m) 2.85 181.8(m)
GA-2opt+ReEvo+AutoEP 2.08 6.4(m) 2.80 10.9(m) 3.14 34.7(m) 2.93 63.3(m) 2.81 181.6(m)

B.3 VALIDATION ON UAV TRAJECTORY OPTIMIZATION

In remote or disaster-stricken areas where ground-based network connectivity is unavailable, using
UAVs for data collection and transmission has become a significant research focus Yan et al. (2023).
Testing AutoEP’s performance in more complex optimization scenarios is therefore highly relevant.
UAV trajectory optimization for data collection involves factors such as flight speed, energy consump-
tion due to environmental resistance, data collection rate, and storage capacity. The optimization
goal is to minimize data collection time. The ACO Dorigo et al. (2007) algorithm, widely used in
trajectory optimization, was chosen as the baseline for comparison.A detailed mathematical model is
presented in Liu et al. (2022). Experimental results, presented in Table 6, show the minimized data
collection times for varying sensor node numbers. Compared to other methods that improve ACO,
AutoEP demonstrated the greatest enhancement, improving ACO’s performance by 17.16% with 300
sensor nodes.

Table 6: Comparison of UAV Trajectory Optimization Experiments. Traj.Length is the length of the
drone’s flight trajectory, where a lower value indicates a better performance. Time is the average
runtime (unit: minute).

Method n20 N50 N100 N200 N300
Traj.Length↓ Time Traj.Length↓ Time Traj.Length↓ Time Traj.Length↓ Time Traj.Length↓ Time

ACO 147.33 2.2(m) 312.23 4.0(m) 607.29 20.0(m) 1387.05 38.5(m) 1912.74 90.0(m)
ACO+PT 133.04 2.5(m) 297.73 4.4(m) 576.18 20.5(m) 1182.78 39.0(m) 1713.64 90.5(m)
ACO+GLEET 129.86 2.7(m) 295.97 6.0(m) 564.91 22.8(m) 1125.31 41.3(m) 1683.40 92.8(m)
ACO+BEA 131.70 2.6(m) 297.63 5.2(m) 572.84 21.2(m) 1146.79 39.7(m) 1706.41 91.2(m)
ACO+EoH 136.41 2.4(m) 302.54 4.3(m) 587.46 20.3(m) 1208.19 38.8(m) 1774.25 90.3(m)
ACO+ReEvo 131.56 2.5(m) 297.46 4.7(m) 571.26 20.9(m) 1184.46 39.2(m) 1690.83 90.9(m)
ACO+AutoEP 122.08 4.2(m) 291.58 6.5(m) 550.31 23.0(m) 1079.83 41.7(m) 1574.90 93.5(m)
ACO+EoH+AutoEP 122.09 4.5(m) 291.61 6.9(m) 550.33 23.4(m) 1079.87 42.0(m) 1574.87 93.8(m)
ACO+ReEvo+AutoEP 122.06 4.3(m) 291.58 6.7(m) 550.30 23.2(m) 1079.82 41.9(m) 1574.92 93.6(m)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C PROMPT

C.1 PROMPT FOR THE GA

Below is the complete set of prompts used for the GA algorithm in solving the TSP problem:

In genetic algorithms, hyperparameters such as crossover probability and mutation probability play a critical role.
Could you analyze the impact of these hyperparameters on the algorithm's exploration-exploitation balance?

Figure 6: GA:Prompt for Strategist LLM.

The experience pool contains data from previous iterations:
Iterations: 10,Crossover Probability: 0.7, Mutation Probability: 0.1, Best Fitness Value: 1168.
Current algorithm state features: Kurtosis: 0.3, Skewness: 0.27, Diversity: 1, 𝑹𝟐:0.13, Dratio:0.78.
Feature descriptions:
1. If the skewness value is close to 0, the solution distribution is symmetric, indicating a balance between
exploration and exploitation. If the skewness is significantly greater than 0, most solutions are poor, suggesting the
need for more local search and exploitation. If skewness is significantly less than 0, there is a risk of converging to
a local optimum, necessitating an increase in exploration.
2. If the kurtosis is near 0, the fitness values are balanced between the mean and the tails. When the kurtosis is
significantly greater than 0, the solutions are concentrated, and diversity is low, requiring an increase in exploration.
Conversely, when the kurtosis is significantly less than 0, the solution set is dispersed, suggesting a need to search
for local optima, thus increasing exploitation.
3. If the diversity value is greater than 1, the population is still evolving, and increasing local search could improve
exploitation. If the diversity is less than or equal to 1, the population is stuck, and increasing exploration is
necessary.
4. A high 𝑹𝟐 ≈ 𝟏 indicates a well-structured landscape (i.e., a funnel), signaling a need to increase exploitation.
Conversely, a low 𝑹𝟐 ≈ 𝟎 implies a rugged or multi-modal landscape, requiring an increase in exploration to avoid
premature convergence.
5. A value of Dratio ≪ 𝟏 (e.g., < 0.2) is a strong indicator of a single funnel structure, as the best solutions are

tightly clustered. This signals the need to increase exploitation to refine the search within this promising basin.
Conversely, a value of Dratio ≈ 𝟏 suggests a multi-modal landscape, where elite solutions are found in disparate

regions. This necessitates an increase in exploration to avoid premature convergence to a local optimum.

Based on feature descriptions and historical decision information, determine whether the algorithm requires further
exploration or development. No additional output is required.

Figure 7: GA: Prompt for Analyst LLM.

The current hyperparameters of the genetic algorithm are:
Crossover Probability: 0.7,Mutation Probability: 0.1. The range of both parameters is [0, 1]. In genetic algorithms,
crossover probability promotes development by controlling gene exchange, while mutation probability enhances
exploration by introducing random disruptions to search new solution spaces. Based on the algorithm state analysis,
there is a need to increase exploration. Please analyze how to adjust hyperparameters by referencing historical
decision information. No additional output is required; only the specific values of the hyperparameters need to be
provided.

Figure 8: GA: Prompt for Actuator LLM.

C.2 PROMPT FOR THE PSO

Below is the complete set of prompts for the PSO algorithm in solving the CVRP problem:

In the PSO algorithm, key hyperparameters include inertia weight, social learning factor, and individual learning
factor. Could you analyze how these hyperparameters affect the exploration-exploitation balance of the algorithm?

Figure 9: PSO: Prompt for Strategist LLM.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

The experience pool contains data from previous iterations:
Iterations: 20, Inertia Weight: 0.3, Social Learning Factor: 2.2, Individual Learning Factor: 1.5,Best Fitness Value:
790.Current algorithm state features: Kurtosis: 0.22, Skewness: -0.35, Diversity: 1.3, 𝑹𝟐:0.85, Dratio:0.14.
Feature descriptions:
1. If the skewness value is close to 0, the solution distribution is symmetric, indicating a balance between
exploration and exploitation. If the skewness is significantly greater than 0, most solutions are poor, suggesting the
need for more local search and exploitation. If skewness is significantly less than 0, there is a risk of converging to
a local optimum, necessitating an increase in exploration.
2. If the kurtosis is near 0, the fitness values are balanced between the mean and the tails. When the kurtosis is
significantly greater than 0, the solutions are concentrated, and diversity is low, requiring an increase in exploration.
Conversely, when the kurtosis is significantly less than 0, the solution set is dispersed, suggesting a need to search
for local optima, thus increasing exploitation.
3. If the diversity value is greater than 1, the population is still evolving, and increasing local search could improve
exploitation. If the diversity is less than or equal to 1, the population is stuck, and increasing exploration is
necessary.
4. A high 𝑹𝟐 ≈ 𝟏 indicates a well-structured landscape (i.e., a funnel), signaling a need to increase exploitation.
Conversely, a low 𝑹𝟐 ≈ 𝟎 implies a rugged or multi-modal landscape, requiring an increase in exploration to avoid
premature convergence.
5. A value of Dratio ≪ 𝟏 (e.g., < 0.2) is a strong indicator of a single funnel structure, as the best solutions are

tightly clustered. This signals the need to increase exploitation to refine the search within this promising basin.
Conversely, a value of Dratio ≈ 𝟏 suggests a multi-modal landscape, where elite solutions are found in disparate

regions. This necessitates an increase in exploration to avoid premature convergence to a local optimum.

Based on feature descriptions and historical decision information, determine whether the algorithm requires further
exploration or development. No additional output is required.

Figure 10: PSO: Prompt for Analyst LLM.

The current hyperparameters for the PSO algorithm are:
Inertia Weight: 0.3, Social Learning Factor: 2.2, Individual Learning Factor: 1.5. The range of the inertia weight
is [0.2, 1]. In the PSO algorithm, increasing inertia weight enhances exploration but weakens exploitation, while
decreasing inertia weight strengthens exploitation but reduces exploration. Increasing the individual learning factor
boosts exploration, whereas increasing the social learning factor enhances exploitation. Given the algorithm‘s need
for increased exploitation. Please analyze how to adjust hyperparameters by referencing historical decision
information. No additional output is required; only the specific values of the hyperparameters need to be provided.

Figure 11: PSO: Prompt for Actuator LLM.

C.3 PROMPT FOR THE ACO

Below is the complete set of prompts for the ACO algorithm in solving the UAV Trajectory Opti-
mization problem:

In the Ant Colony Optimization algorithm, key hyperparameters include the pheromone factor, heuristic factor, and
pheromone evaporation rate. Could you analyze how these hyperparameters affect the exploration-exploitation
balance of the algorithm?

Figure 12: ACO: Prompt for Strategist LLM.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The experience pool contains data from previous iterations:
Iterations: 90, Pheromone Factor: 1.8, Heuristic Factor: 1.3, Pheromone Evaporation Rate: 0.2,Best Fitness Value:
437.Current algorithm state features: Kurtosis: 0.02, Skewness: 0.02, Diversity: 1.1, 𝑹𝟐:0.47, Dratio:0.53.
Feature descriptions:
1. If the skewness value is close to 0, the solution distribution is symmetric, indicating a balance between
exploration and exploitation. If the skewness is significantly greater than 0, most solutions are poor, suggesting the
need for more local search and exploitation. If skewness is significantly less than 0, there is a risk of converging to
a local optimum, necessitating an increase in exploration.
2. If the kurtosis is near 0, the fitness values are balanced between the mean and the tails. When the kurtosis is
significantly greater than 0, the solutions are concentrated, and diversity is low, requiring an increase in exploration.
Conversely, when the kurtosis is significantly less than 0, the solution set is dispersed, suggesting a need to search
for local optima, thus increasing exploitation.
3. If the diversity value is greater than 1, the population is still evolving, and increasing local search could improve
exploitation. If the diversity is less than or equal to 1, the population is stuck, and increasing exploration is
necessary.
4. A high 𝑹𝟐 ≈ 𝟏 indicates a well-structured landscape (i.e., a funnel), signaling a need to increase exploitation.
Conversely, a low 𝑹𝟐 ≈ 𝟎 implies a rugged or multi-modal landscape, requiring an increase in exploration to avoid
premature convergence.
5. A value of Dratio ≪ 𝟏 (e.g., < 0.2) is a strong indicator of a single funnel structure, as the best solutions are

tightly clustered. This signals the need to increase exploitation to refine the search within this promising basin.
Conversely, a value of Dratio ≈ 𝟏 suggests a multi-modal landscape, where elite solutions are found in disparate

regions. This necessitates an increase in exploration to avoid premature convergence to a local optimum.

Based on the description of the features, determine whether the algorithm needs more exploration or exploitation.
No additional output is required.

Figure 13: ACO: Prompt for Analyst LLM.

The current hyperparameters for the ACO algorithm are:
Pheromone Factor: 1.8, Heuristic Factor: 1.3, Pheromone Evaporation Rate: 0.2. The pheromone factor and
heuristic factor ranges are [1, 4], and the pheromone evaporation rate range is [0.1, 0.9]. In the ACO algorithm,
increasing the pheromone factor and heuristic factor enhances exploitation, while decreasing them increases
exploration. Increasing the pheromone evaporation rate promotes exploration. Based on the current algorithm state
analysis, the goal is to maintain a balance. Please analyze how to adjust hyperparameters by referencing historical
decision information. No additional output is required.

Figure 14: ACO: Prompt for Actuator LLM.

D DETAILS OF THE EXPERIMENTAL SETUP

All LLMs used in this study were accessed via the publicly available APIs provided by their respective
developers. The experiments were conducted on a system equipped with an Intel Core i9-13900K
CPU and an NVIDIA A800*4 GPU. On average, adjusting hyperparameters using AutoEP took
0.3 seconds per run. For performance evaluation, the LLM employed by AutoEP was Qwen3-30B,
while the LLMs used in other methods followed the configurations specified in the original papers.
The configurations for the comparison algorithms were strictly adhered to as outlined in the original
studies. The parameter settings for the improved base algorithm are shown in Table 7.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Parameterization of each meta - heuristic algorithm

Algorithm Parameter Value

GA

Population size 500
Maximum number of iterations 500

Initial crossover probability 0.6
Initial mutation probability 0.1

PSO

Population size 500
Maximum number of iterations 500
Initial individual learning factor 1.5

Initial social learning factor 1.5
Inertia weights 0.3

ACO

Population size 500
Maximum number of iterations 500

Initial pheromone factor 2
Initial heuristic factor 2

Initial pheromone volatility factor 0.3

17

	Introduction
	Related work
	AutoEP
	Grounding Reasoning with Quantitative Search Dynamics
	Fitness Distribution Features.
	Fitness Landscape and Diversity Features
	Search Progress Feature

	A Closed-Loop Architecture for LLM-Driven Control
	Decomposing Control Logic with a Chain of Reasoning

	Experiment
	Experimental settings
	Results
	Validation on TSP
	Validation on CVRP, FSSP, and UAV trajectory optimization

	Ablation Studies: Deconstructing AutoEP's Performance
	Robustness to Foundational Model Capabilities
	Sensitivity to Adjustment Frequency

	Discussion and Conclusion
	Ethical Statement and Reproducibility Statement
	LLM Usage
	Detailed experimental results
	Validation on CVRP
	Validation on FSSP
	Validation on UAV trajectory optimization

	Prompt
	Prompt for the GA
	Prompt for the PSO
	Prompt for the ACO

	Details of the experimental setup

