
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Watermarking Autoregressive Image Generation

Anonymous Authors1

Abstract
Watermarking the outputs of generative models
has emerged as a promising approach for track-
ing their provenance. Despite significant interest
in autoregressive image generation models and
their potential for misuse, no prior work has at-
tempted to watermark their outputs at the token
level. In this work, we present the first such ap-
proach by adapting language model watermark-
ing techniques to this setting. We identify a key
challenge: the lack of reverse cycle-consistency
(RCC), wherein re-tokenizing generated image
tokens significantly alters the token sequence, ef-
fectively erasing the watermark. To address this
and to make our method robust to common image
transformations and removal attacks, we intro-
duce a custom tokenizer-detokenizer finetuning
procedure that improves RCC and a watermark
synchronization step. As our experiments demon-
strate, our approach enables robust watermark
detection with theoretically grounded p-values.

1 Introduction
Autoregressive models are powerful frameworks for un-
derstanding and generating diverse content types. By con-
verting multiple modalities into discrete representations via
custom tokenizers (Razavi et al., 2019; Van Den Oord et al.,
2017; Zeghidour et al., 2022), a single transformer is able
to seamlessly process multiple domains, including text, im-
ages (Chameleon Team, 2024; Chern et al., 2024; Tian et al.,
2024a; Wu et al., 2024), audio (Borsos et al., 2022; Défossez
et al., 2024), and even molecules (Hsu et al., 2022). Fol-
lowing patterns observed in large language models (LLMs),
established scaling laws (Aghajanyan et al., 2023; Henighan
et al., 2020; Shukor et al., 2025) demonstrate that the per-
formance of these models improves predictably with size
and computational resources, leading to increasing adop-
tion across research and industry (DeepMind, 2023a; Meta,

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the ICML 2025 Tokenization
Workshop. Do not distribute.

2025; OpenAI, 2024). Most notably, in the image domain,
autoregressive models are widely studied as an alternative to
diffusion models for high-quality generation (Ramesh et al.,
2021; Sun et al., 2024; Tian et al., 2024b; Yu et al., 2022).

Watermarking generative model outputs. Regardless
of the specific method, the widespread deployment of high-
quality generative models has made the detection of AI-
generated content increasingly challenging. This has raised
significant concerns about misuse, including deepfakes,
harmful content generation, and intellectual property vi-
olations. One promising direction to help address these
issues is generative AI watermarking, in which the model
provider proactively embeds imperceptible signals into gen-
erated content to verify its origin later, even under common
transformations or attacks.

Recent research in this area can be categorized into post-
hoc methods, which modify generated content in a model-
agnostic way (Bui et al., 2023a; Chang et al., 2024; Deep-
Mind, 2023b; Fernandez et al., 2024; San Roman et al.,
2024; Zhu et al., 2018), and modality-specific generation-
time methods, which alter the generation process of a spe-
cific model (Aaronson & Kirchner, 2023; Dathathri et al.,
2024; Fernandez et al., 2023b; Kirchenbauer et al., 2023;
Wen et al., 2023; Yang et al., 2024). The latter are the stan-
dard in LLM watermarking, offering theoretically grounded
watermark detection with provably low false positive rates.
However, most image watermarking research focuses on
diffusion, and no prior work has attempted to adapt LLM
watermarks to other token types, which could be a way to
enable watermarking for autoregressive image generation.
This motivates our key question:

Can we robustly watermark autoregressive image
generation models at the token level?

This work. To answer this question, we adapt LLM wa-
termarks to autoregressive image generation, watermarking
image tokens together with text as illustrated in Fig. 1. We
identify and address a key technical challenge. Namely,
while image tokenization is designed to be forward cycle-
consistent, i.e., tokenizing and detokenizing an image does
not significantly alter it, reverse cycle-consistency (RCC) is
often violated—we show that decoding model-generated to-
kens and then re-tokenizing the resulting image leads to, on

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Watermarking Autoregressive Image Generation

Watermark
DetectionDetokenizer

2 9 1 4 7 ? 8

Autoregressive
Model

Watermarked
Sampling

Tokenizer

Watermarked!
p-value: 1.2 x 10-7

Generated Content

…
The Black Minorca is a rare
and historic breed
originating from the
Balearic Islands of Spain.
Here's an image of a Black
Minorca hen, showcasing
its signature green sheen
on its feathers:

What is Black Minorca ?

Finetuned tokenizer Watermark synchronization

2 9 1 4 7 8

Figure 1: We watermark autoregressively generated images together with text in a theoretically-principled way by adapting LLM
watermarking. We identify and address the novel challenges present in this setting (Sec. 3) via a custom (de)tokenizer finetuning procedure
(Sec. 3.1) and a watermark synchronization layer (Sec. 3.2).

average, one-third of the tokens being different. The tokens
differ even more if the images are transformed between gen-
eration and watermark detection (e.g., JPEG compressed or
cropped), a common scenario in practice. While RCC may
not be crucial for model performance, it is important for
achieving strong and robust generation-time watermarking.

To mitigate this, we adopt two main strategies, shown
in Fig. 1. We introduce a lightweight finetuning procedure
that optimizes the detokenizer and tokenizer to be more
reverse cycle-consistent, improving watermark power and
robustness to valuemetric transformations (e.g., JPEG) and
attacks such as diffusion purification (Nie et al., 2022) and
neural compression (Ballé et al., 2018; Cheng et al., 2020;
Esser et al., 2021; Rombach et al., 2022). To then improve
robustness to geometric transformations (e.g., flips), we in-
troduce a complementary post-hoc watermark synchroniza-
tion step, repurposing localized watermarking (San Roman
et al., 2024) to detect and revert geometric transformations
and recover original tokens. As our experiments show, this
results in a watermark that is quality-preserving, effective,
and robust. To inspire future work, in Sec. 5 we take first
steps to extend our approach to audio, another modality
where autoregressive generation via tokenization is popu-
lar (Borsos et al., 2022; Copet et al., 2024; Défossez et al.,
2024; Nguyen et al., 2025).

Contributions. We make the following key contributions:

• We conduct the first study of watermarking for outputs
of autoregressive image generation models, adapting
LLM watermarks to obtain theoretically-principled p-
values. We notably identify a key technical challenge,
the lack of reverse cycle-consistency (RCC) (Sec. 3).

• We propose a finetuning procedure for image tokeniza-
tion that improves RCC and significantly increases
watermark power and robustness (Sec. 3.1).

• We introduce a post-hoc watermark synchronization
step, which achieves geometric robustness by leverag-
ing off-the-shelf localized watermarking (Sec. 3.2).

• In our thorough experimental evaluation across several
settings, we show that our watermark is strong, quality-
preserving, and persistent under a range of valuemetric
and geometric transformations and attacks including
diffusion purification and neural compression (Sec. 4).

2 Background and Related Work
Autoregressive image models. A long-studied approach
to image generation, and the focus of our work, is to first
learn an image tokenizer and then train a (conditioned) au-
toregressive model M such as a transformer, to create im-
ages by generating corresponding token sequences. Notable
examples of such models include DALL-E (Ramesh et al.,
2021), Parti (Yu et al., 2022), VAR (Tian et al., 2024b),
and others (Sun et al., 2024; Tschannen et al., 2024; Wang
et al., 2024; Yu et al., 2024). This approach is central to
models for interleaved multimodal generation (Chern et al.,
2024; Ge et al., 2023; Lin et al., 2024; Liu et al., 2024a;
Tian et al., 2024a), such as Chameleon (Chameleon Team,
2024), AnyGPT (Zhan et al., 2024), or Janus (Wu et al.,
2024). In this work, we do not consider other models that
use continuous representations or combine diffusion with
autoregressive mechanisms (Fan et al., 2024; Li et al., 2024;
Ma et al., 2024; Xie et al., 2024; Zhou et al., 2024).

Tokenization. Formally, for a target modality m (in this
work primarily text or image, but also audio in Sec. 5), a
tokenizer Tm maps each data sample x to a sequence of
integer tokens s = (s1, . . . , sT) ∈ V T , where V is the
predefined vocabulary. The detokenizer Dm attempts to
reverse this process. Most text tokenizers are based on
byte-pair encoding (BPE) (Gage, 1994). While alternative
approaches have been explored (Li et al., 2024; Tian et al.,
2024b), the tokenization of images overwhelmingly relies on
vector quantization (VQ) (Gray, 1984; Li et al., 2024). Most
models use VQ-VAE (Razavi et al., 2019; Van Den Oord
et al., 2017) or its variants VQGAN (Esser et al., 2021),
ImprovedVQGAN (Yu et al., 2021), and FSQ (Mentzer
et al., 2023). VQ tokenizers generally consist of an encoder
network E and a quantizer QC . E maps x to a sequence

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Watermarking Autoregressive Image Generation

Unwatermarked Generation Tokens (p = 0.73) Watermarked Generation Tokens (p = 10−11)

Figure 2: Example of our watermark on an autoregressively generated image. We generate the upper half of the image without the
watermark. We then complete the bottom half in the same way (left) or with the watermark (right). The overlay indicates generated image
tokens detected as green (), red (), or ignored as a duplicate (). The watermark only alters semantics and could be detected even when
applied only partially as in this case.

of soft latents z = E(x) ∈ RT×d. Then, QC replaces
each zi with the index of the nearest entry in a codebook
C ∈ R|V |×d to obtain discrete tokens s ∈ V T :

si = QC(zi) = argmin
j∈{1,...,k}

∥zi − Cj∥22. (1)

The detokenizer Dm replaces each si with the correspond-
ing ẑi = Csi (hard latents), and then applies a decoder
network D to obtain the detokenized sample x̂ = D(ẑ).
All components (E, C, and D) are typically trained jointly,
primarily with the reconstruction objective.

Watermarking AI-generated outputs. Generation-time
methods directly alter generations to embed statistically
detectable patterns, and are the standard for LLM water-
marking (Aaronson & Kirchner, 2023; Christ et al., 2023;
Kirchenbauer et al., 2023; Kuditipudi et al., 2023). Similar
approaches also exist for diffusion models (Fernandez et al.,
2023b; Wen et al., 2023; Yang et al., 2024). In contrast, post-
hoc watermarks modify previously generated outputs in a
modular model-agnostic way, by paraphrasing text (Bahri &
Wieting, 2025; Chang et al., 2024; Zhang et al., 2024a) or al-
tering image pixels (Bui et al., 2023a;b; Jia et al., 2021; Luo
et al., 2020; Ma et al., 2022; Tancik et al., 2020; Zhu et al.,
2018). Multi-bit methods embed messages into data, some-
times in a localized way (San Roman et al., 2024; Sander
et al., 2025), e.g., a message can be extracted from each
pixel. While post-hoc watermarks have broad applicability,
generation-time approaches that introduce semantic changes
to the content often offer superior robustness to attacks such
as diffusion purification (Saberi et al., 2024) and provide
provable, key-based guarantees on false positive rates (un-
like neural methods, where recovered bits may be biased or
correlated (Fernandez et al., 2023b, App. B.5)). To the best
of our knowledge, no prior work targets generation-time
watermarking for autoregressive image models.

LLM watermarking. We focus on the KGW watermark-
ing scheme (Kirchenbauer et al., 2023) (green/red water-

marking). At each step i of generation, this method uses
a secret key ξ, and previous h tokens of context si−h:i to
pseudorandomly partition the vocabulary V of the tokenizer
into γ|V | green tokens Gi and other red tokens Ri. The
logits corresponding to Gi are then increased by δ, the water-
mark strength. The watermark detector computes the score
S =

∑T
i=h+1 1(si ∈ Gi) as the number of green tokens in

the given sequence of T tokens. Under the null hypothesis
H0 (no watermark), S follows a binomial distribution with
parameters T − h and γ. The p-value is calculated as:

pval(S, T, h, γ) = P (X ≥ S | X ∼ B(T − h, γ)) , (2)

where B(·, ·) denotes the binomial distribution. A low p-
value proves that the content was generated with M. More
details are provided in App. B.

3 Watermarking Autoregressive Image
Generation

In this section, we present our approach to watermarking
autoregressive image models. We identify and address the
key challenge of low reverse cycle-consistency (RCC) via
tokenization finetuning (Sec. 3.1) and watermark synchro-
nization (Sec. 3.2). As our experiments in Sec. 4 demon-
strate, this leads to a strong and robust watermark that does
not affect generation quality.

Setting. A model provider (Alice) deploys an autoregres-
sive model M that may generate arbitrarily interleaved text
and images, using a tokenizer Tm and detokenizer Dm for
each modality m ∈ {text, image}. In line with the most
prominent choices, we assume BPE for text (Gage, 1994)
and VQ for images (Esser et al., 2021; Van Den Oord et al.,
2017). Alice’s goal is out-of-model, generation-time, zero-
bit watermarking (see Sec. 2), i.e., embedding a later de-
tectable watermark in all outputs of M, without modifying
the model’s weights. We assume that Bob has only black-
box access to M, and no access to any Tm or Dm.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Watermarking Autoregressive Image Generation

Table 1: Average token match between 1000 image token sequences generated with TAMING (see Sec. 4) and their re-tokenized versions,
which may also undergo image transformations before re-tokenization.

Original Blur ksz = 9 Noise σ = 0.1 JPEG Q = 25 Brighten 2× Rotate 10◦ Flip ↔ Crop 0.75

0.66 0.26 0.17 0.31 0.11 0.02 0.01 0.01

Adapting LLM watermarking. When M generates text,
we directly apply KGW (Sec. 2) with h = 1. For images,
using a fixed split (h = 0), known to make watermarks
insecure for text, i.e., easy to reverse-engineer (Jovanović
et al., 2024; Kirchenbauer et al., 2024; Zhang et al., 2024c),
may in our case be a more viable choice due to the opacity
of the VQ tokenizers. We thus explore h ∈ {0, 1} in Sec. 4,
with more variants in App. F. Another degree of freedom is
the choice of watermark context—we did not find exploiting
the 2D structure of images to be beneficial, despite the
intuition that spatially close contexts benefit robustness.

Detection. Given samples x(i) of varying modalities that
Alice suspects were generated by M (e.g., a post on a breed
of hen as in Fig. 1), she can apply Eq. (2) in a unified way.
We first tokenize each x(i) to s(i) of length T (i) tokens,
and score it using the corresponding h(i) to obtain a score
S(i). We next sum all S(i), T (i), and h(i), and deduplicate
scored (context, token) pairs across all samples to preserve
statistical soundness (Fernandez et al., 2023a; Jovanović
et al., 2025; Kirchenbauer et al., 2023; Sander et al., 2024).
Then, we apply Eq. (2) to obtain a single p-value. Notably,
the same γ must be used across all modalities. Alice may
reject H0 (flag content as watermarked) if the p-value is
below the desired false positive rate (FPR). In Sec. 4.3 we
investigate the benefits of jointly watermarking multiple
modalities, and discuss the involved tradeoffs.

In Fig. 2, we visualize the watermark on an image generated
with TAMING (Esser et al., 2021), by applying it only on
the second half of generated tokens. As we later confirm in
Sec. 4, our watermark has high power (low p-value), while
imperceptibly modifying images by altering semantics.

Challenge: reverse cycle-consistency (RCC). The to-
kens s shown in Fig. 2 as input to the detector are those
generated by the autoregressive model, which is not realis-
tic. In practice, to apply the detector to a sample x′, Alice
must first tokenize it as s′ = Tm(x′). If tokens s′ signifi-
cantly differ from s, the watermark may be lost. To quantify
this, we define the token match as:

TM(s, s′) =
1

T

T∑
i=1

1(si = s′i), (3)

where s′ = Tm(Dm(s)). We say that reverse cycle-
consistency (RCC) holds if TM(s, s′) ≈ 1.

RCC is not guaranteed even in text, despite BPE tok-
enizers ensuring forward cycle-consistency (FCC), i.e.,

Dtext(Ttext(x)) = x. Namely, two tokens may be merged if
the resulting token also exists in the vocabulary (see App. C
for details and examples). Still, RCC largely holds in prac-
tice, evidenced by no prior LLM watermarking citing related
challenges. We confirm this experimentally: across 1000
completions from LLAMA3.1-8B-INSTRUCT, average to-
ken match was 0.995.

RCC in image generation. We repeat this experiment on
image models, presenting the results in Table 1 (full details
in App. E). We also consider the case where images undergo
transformations (x → a(x)) before re-tokenization. With-
out transformations (Original), RCC is already weaker than
expected with TM = 0.66. As Sec. 4 will show, this often
suffices under ideal conditions (e.g., our example in Fig. 2
has a p-value of 10−9 after re-tokenization). However,
common valuemetric transformations (blur, noise, JPEG,
brighten) lower TM (e.g., to 0.31 for JPEG with Q = 25),
and geometric ones (rotate, flip, crop) cause a further drop
to almost 0. Two key factors explain this behavior. First,
neural image tokenizers are trained for FCC, not RCC. Their
training data does not include detokenized samples, which
often lie off-manifold. Second, spatial sensitivity of the
tokenizer allows semantic-preserving edits to easily alter
most tokens. We next show how to mitigate this.

3.1 Finetuning for Reverse Cycle-consistency

We propose a finetuning procedure (illustrated in Fig. 3)
that improves RCC in image tokenizers. Recall the VQ
components (Sec. 2): encoder E, quantizer QC with code-
book C, and decoder D. Let D0, E0 be the original weights
of D and E. To avoid costly retraining of M, we must
keep (E,QC , C) fixed; otherwise, we risk modifying the
codebook semantics (directly or by changing how images
are encoded by E), which harms the autoregressive model.
Thus, we propose to only finetune D and an encoder replica
E′ (initialized to E0). E′ is used only for watermark detec-
tion, while the original E may be used to condition M on
images. Unlike usual VQ training that promotes FCC, we
optimize RCC: we aim to learn a decoder D whose outputs
E′ can reliably invert.

Finetuning objectives. We first precompute tokenizations
s from a set of images, which we use as our training data.
We encourage RCC by minimizing the following loss:

LRCC(s) = E
a∼A

∥ẑ − E′(a(D(ẑ)))∥22. (4)

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Watermarking Autoregressive Image Generation

1 42 3 3

94 60 22 57

33 4 18 21

1 53 94 15

Augment

Quantize Fixed

Finetuned

1 42 3 3

94 60 22 57

33 4 18 21

1 53 94 15

Figure 3: A replica E′ of the encoder and the decoder D are jointly trained to improve reverse-cycle consistency, i.e., make E′(D(ẑ))
close to ẑ for most generations of the autoregressive model M, even under transformations.

p-value: 5 x 10-38p-value: 2 x 10-52

Flip

Consistent Tokens

Invert

Em
bedder

00..00

11..0011..11

00..11 Synchronization
Signal

E’
Extractor

Watermarked
Generated
Image Flip Detected

Watermarked!
p-value: 5 x 10-38

Extracted Signal

p-value: 0.66

Figure 4: Watermark synchronization. Localized messages are embedded into a generated watermarked image and later used to discover
the unknown transformation and revert it, which recovers the original watermark.

Its goal is to match the original hard latents ẑ = Cs to soft
latents obtained after detokenization and encoding using E′.
To ensure RCC holds robustly even under transformations,
we uniformly sample an augmentation a ∼ A with preset
probability paug in each training step, or set it to identity
otherwise. Our augmentations set A includes valuemetric
(brighten, contrast, JPEG) and weak geometric transfor-
mations (e.g. ±1◦ rotation), with strength ramped up over
training (see App. E).

To retain decoder quality we introduce a regularization that
keeps D close to D0 via a mixture of MSE and LPIPS
perceptual loss (Zhang et al., 2018):

Lreg(s) = ∥D(ẑ)−D0(ẑ)∥22 + LLPIPS(D(ẑ), D0(ẑ)).
(5)

We found this sufficient as a quality constraint and easier
to train compared to targeting the original images or using
adversarial discriminators. With tradeoff parameter λ, we
jointly train D and E′ to minimize:

L(s) = LRCC(s) + λ · Lreg(s). (6)

In Sec. 4 we show that this greatly boosts RCC and wa-
termark robustness, especially against valuemetric attacks,
neural compression, and diffusion purification.

3.2 Post-hoc Watermark Synchronization

Semantic-preserving transformations such as flips easily
change image tokenization as each token loosely corre-
sponds to a local image patch. Therefore, RCC finetuning
alone cannot recover the watermark. One could run the wa-
termark detector on multiple transformed images (rescaled,
rotated, etc.), but this is costly and significantly inflates false
positives as noted in prior work (Kirchenbauer et al., 2023).

Localization as synchronization. To address this in a
more practical way, we repurpose localized watermarks (see
Sec. 2) as a synchronization signal. More precisely, we
locally embed a fixed set of messages whose detection es-
timates the applied transform, which we then aim to invert
before applying the original watermark detector. Detecting
this signal could in principle be taken as evidence that the
image is watermarked, as in some of the prior post-hoc wa-
termarking schemes that explore synchronization (Guo et al.,
2023; Luo et al., 2022). However, applying the original
watermark detector is still necessary to obtain theoretically-
grounded p-values that can be combined with other samples
across modalities as described above. Moreover, as we will
see in Sec. 4, post-hoc watermarks are generally much more
brittle to adversarial purification compared to the approach
we propose. To not degrade original performance, our water-
mark should be robust to the addition of this signal, which
we verify in Sec. 4.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Watermarking Autoregressive Image Generation

0.0 0.2 0.4 0.6 0.8 1.0
Token Match

0.00

0.05

0.10

0.15

0.20

0.25

R
el

at
iv

e
F

re
qu

en
cy Base

FT

FT+Augs

FT+Augs+Sync

10−50 10−34 10−18 10−2

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Figure 5: Left: Finetuning improves token match (Eq. (3)) between original and re-tokenized image tokens. Right: All variants achieve
TPR ≈1 at FPR of 1%. Finetuning further boosts detection in low-FPR settings.

Reverting transformations. In Fig. 4, we show four 32-
bit synchronization messages {032, 016116, 116016, 132}
embedded via the method of Sander et al. (2025) into the
four image quadrants. We observe that adding the synchro-
nization signal does not significantly degrade the original
watermark (p = 5 · 10−38). However, a horizontal flip
shuffles tokens and breaks detection (p = 0.66). To iden-
tify this, we apply an algorithm that searches over a grid
of rotation angles, and for each fits the best axis-aligned
pair of orthogonal lines that separate the four messages.
In our example, this detects that a flip was applied and re-
stores p = 5 · 10−38. Note that we consider crops that are
followed by upscaling to the respective model’s original
generation size—our synchronization reverts this by apply-
ing downscaling and padding. A more detailed description
and additional examples are deferred to App. D.

Next, we empirically show that synchronization enhances
geometric robustness, complementing RCC finetuning. This
step is further aided by the use of small geometric augmenta-
tions during RCC finetuning, as they effectively compensate
for error in our transformation estimates.

4 Experimental Evaluation
In Sec. 4.1, we measure the effect of finetuning (Sec. 3.1)
and synchronization (Sec. 3.2) on RCC, quality, and the
power of our watermark. Sec. 4.2 studies robustness, while
Sec. 4.3 explores joint watermarking of text and images. Ad-
ditional details and results are given in App. E and App. F.

Setup. We use the class-conditional ImageNet transformer
from Esser et al. (2021) at resolution 256× 256 with a VQ-
GAN tokenizer with |V | = 16384 and f = 16 (TAMING)
and the 7B mixed-modal CHAMELEON (Chameleon Team,
2024) that can generate interleaved text and 512 × 512
images. We always generate 1000 samples (10 Ima-
geNet classes for TAMING, 1000 COCO prompts for
CHAMELEON), and evaluate 4 variants of our method:
BASE, which uses original models and tokenizers, FT and
FT+AUGS, which apply the same watermark after RCC
finetuning (Sec. 3.1) without and with augmentations in

training, respectively, and FT+AUGS+SYNC, which also
uses our watermark synchronization (Sec. 3.2). We use
δ = 2, γ = 0.25 in all experiments, h = 1 for TAMING
and CHAMELEON on text, and h = 0 for CHAMELEON on
images. We finetune models on tokens derived from 50,000
ImageNet training samples for 10 epochs (2h on 16 V100
for TAMING and 2.5h on 8 H200 for CHAMELEON).

4.1 RCC, Watermark Power and Quality

The key question raised in Sec. 3 is if finetuning can alle-
viate the lack of reverse cycle-consistency (RCC) in image
tokenizers, and in turn improve watermark power.

Finetuning improves RCC. We generate 1000 class-
conditioned ImageNet samples with TAMING using each of
our four variants, and measure token match (TM, Eq. (3))
between the generated tokens and those obtained by re-
tokenizing the image. In our results in Fig. 5 (left), we
observe that TM is consistently below 0.8, while for all fine-
tuned variants it is generally above 0.8. This demonstrates
that finetuning is successful in improving RCC. AUGS and
SYNC slightly reduce TM on unmodified images, but signif-
icantly increase robustness (see Sec. 4.2).

Finetuning improves watermark power. In Fig. 5 (right),
we report the true positive rate (TPR) of the watermark
detector for different false positive rates (FPR). The BASE
variant already has practically viable power, with TPR of ≈1
at FPR of 10−2 (dashed line), the setting considered in prior
work (Ci et al., 2024; Dathathri et al., 2024; Wen et al., 2023;
Zhao et al., 2023). However, RCC gains directly translate
to improvements in watermark power: for all 3 variants, the
TPR at lower FPR settings is significantly higher.

Watermarking does not harm generation quality. To
measure quality, we compute FID (Heusel et al., 2017) on
50,000 generated samples (50 per ImageNet-1K class) for
all variants. We find that none of BASE, FT, and FT+AUGS
have FID above 16.7, the FID of unwatermarked BASE.
This confirms that our finetuning preserves generation qual-
ity. The FID of FT+AUGS+SYNC is 17.3, a minor increase
inherited from the localized watermark used for synchro-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Watermarking Autoregressive Image Generation

1 4 7 10 13 16 19
Gaussian Blur [kernel size]

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

0.00 0.05 0.10 0.15 0.20
Gaussian Noise [stddev]

90 70 50 30 10
JPEG Compression [quality]

1.0 1.5 2.0 2.5 3.0
Brighten [factor]

20100−10−20
Rotation [angle]

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

0 1
Horizontal Flip [is flipped]

100 90 80 70 60 50
Crop [percent kept]

0.0 0.1 0.2 0.3
DiffPure [timestep]

2.0 1.5 1.0 0.5 0.0
Neural Compression [bpp]

FLUX VAE

SD VAE (ft-EMA)

SDXL VAE (fp16)

DC-AE

MBT18

MBT18 (Scale)

CSTK20 (Anchor)

CSTK20 (Attention)

BMSHJ18 (Factorized)

BMSHJ18 (Hyperprior)

Base FT FT+Augs FT+Augs+Sync

Figure 6: Top: RCC finetuning improves robustness to valuemetric transformations. Bottom Left: Watermark synchronization
unlocks robustness to geometric transformations. Bottom Right: Our watermark is also fairly robust to realistic strengths of diffusion
purification (Nie et al., 2022; Saberi et al., 2024) and neural compression (Ballé et al., 2018; Chen et al., 2024; Cheng et al., 2020; Labs,
2024; Minnen et al., 2018; Podell et al., 2024; Rombach et al., 2022).

nization. We complement this with qualitative samples in
App. G. Repeating this on CHAMELEON (App. F) leads to
the same conclusion.

4.2 Watermark Robustness

An important requirement for a generative model watermark
is robustness to common domain-specific transformations,
as well as to removal attacks, which have shown to be effec-
tive against other watermarks (An et al., 2024; Fernandez
et al., 2023b; Saberi et al., 2024). To evaluate this, in Fig. 6
we report the watermark TPR for a fixed FPR of 1% on a
range of transformations of different strength, in the same
setting as in Fig. 5, using TAMING. We summarize these and
corresponding results for CHAMELEON in Table 2, where,
as in prior work (Wen et al., 2023), we average TPR over a
set of (transformation, parameter) pairs, detailed in App. E.

Finetuning enables valuemetric and attack robustness.
In Fig. 6, we see that the watermark is fragile to valuemetric
and geometric transformations when used on BASE. When
we use it on FT+AUGS, robustness to valuemetric transfor-
mations greatly improves, validating our focus on RCC fine-
tuning. Surprisingly, finetuning also improves robustness
to (i) neural compressors (Ballé et al., 2018; Cheng et al.,
2020; Minnen et al., 2018) of different strengths (see de-
tails in App. E), including FLUX and SD VAEs (Chen et al.,
2024; Labs, 2024; Podell et al., 2024; Rombach et al., 2022),
and (ii) the challenging diffusion purification attack (Nie
et al., 2022). We remark that high values such as t = 0.3
were found to excessively alter images, making this regime
less relevant (Saberi et al., 2024). This effect is less pro-
nounced for CHAMELEON in Table 2, where our watermark
is already robust to these attacks even without RCC finetun-

ing, likely due to the detector scoring more tokens for larger
images.

Synchronization enables geometric robustness. Geo-
metric robustness (bottom left in Fig. 6) remains extremely
low for both models, even for FT+AUGS. This is expected,
as the design of autoregressive models makes it impossi-
ble to preserve token sequences under semantic changes
such as flips. This motivated our synchronization layer
(Sec. 3.2), which we observe significantly improves geomet-
ric robustness, for a minor drop in valuemetric robustness.
This drop is the most pronounced for moderate transforma-
tion strengths, when a wrong estimate corrupts the tokens—
fully preserving (for low strengths) or destroying (for high
strengths) the synchronization signal does not impact results.
Importantly, watermark power without transformations re-
mains close to 1 even after synchronization. In Sec. 6, we
propose several ways to improve this tradeoff in future work.

Comparison to post-hoc methods. As we noted in Sec. 1,
no prior work targets watermarking of autoregressive mod-
els for images. Thus, in Table 2 we compare to several
post-hoc methods (Bui et al., 2023a; Jia et al., 2021; Ma
et al., 2022; Sander et al., 2025) applied on top of generated
images (with the default sampling). While they are com-
parably or more robust than our watermark on valuemetric
transformations, each post-hoc watermark is either fully
removed by geometric ones or not highly robust to attacks
(adversarial purification and neural compressors). More
importantly, our watermark yields p-values grounded in the
randomness of the detection process, with theoretical guar-
antees inherited from LLM watermarking (Fernandez et al.,
2023a; Kirchenbauer et al., 2024; Zhao et al., 2023) and em-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Watermarking Autoregressive Image Generation

Table 2: TPR at 1% FPR of our watermark and post-hoc baselines, under valuemetric (Val.) and geometric (Geo.) transformations,
adversarial purification attacks (Adv.) and neural compression (NC). Scores (explained in App. E) below 0.6 are marked red. Finetuning
and synchronization lead to a strong and robust watermark.

TAMING (256× 256) CHAMELEON (512× 512)

None Val. Geo. Adv. NC None Val. Geo. Adv. NC

Ours

BASE 0.99 0.26 0.01 0.43 0.48 0.98 0.50 0.02 0.80 0.82
FT 1.00 0.45 0.01 0.70 0.71 0.99 0.53 0.03 0.85 0.87
FT+AUGS 1.00 0.92 0.01 0.70 0.79 0.99 0.89 0.02 0.82 0.88
FT+AUGS+SYNC 0.98 0.83 0.82 0.69 0.80 0.97 0.76 0.64 0.81 0.86

Post-hoc

CIN 1.00 0.96 0.00 0.03 0.02 1.00 0.99 0.00 0.14 0.16
MBRS 1.00 0.98 0.02 0.36 0.31 1.00 0.99 0.02 0.27 0.56
TRUSTMARK 1.00 0.98 0.75 0.40 0.86 1.00 0.97 0.74 0.64 0.99
WAM 1.00 0.89 0.98 0.06 0.02 1.00 0.97 0.95 0.26 0.48

0 10 20 30 40 50 60
% of Corrupted Text Tokens

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

Text-only

Unified (Clean)

Unified (Weak Noise)

Unified (Strong Noise)

Figure 7: Joint watermark detection on text and image generations.

pirically validated in App. F. In contrast, post-hoc methods
rely on neural extractors to recover message bits and may
introduce bias in their theoretical p-value estimators (Fer-
nandez et al., 2023b, App. B.5) and (San Roman et al., 2024,
App. B). Finally, as a token-level generation-time method,
our watermark is the only one able to watermark content via
semantic modifications (see Fig. 2). In App. F we provide
a comparison to generation-time watermarks for diffusion
models, despite their inapplicability to our target models.

4.3 Joint Watermarking of Interleaved Modalities

Finally, we explore joint watermarking of multiple modal-
ities generated by the same autoregressive model. Eq. (2)
shows that scoring more equally watermarked tokens im-
proves power. However, acquiring more tokens is not al-
ways possible—in such cases, jointly watermarking multiple
modalities may be necessary to reliably detect the water-
mark. For example, consider that Alice aims to prove if
an online article was generated by her model M. To simu-
late this, we run CHAMELEON (FT+AUGS) in interleaved
mode on 1000 prompts to produce text and an image, and
we model attempts to conceal the use of M by randomly
changing text tokens (a proxy for paraphrasing).

Benefits of joint detection. The orange line in Fig. 7
shows TPR at 1% FPR when only text is watermarked,
quickly degrading with text corruption. As all suspect text
is used, it is hard for Alice to improve detection in this sce-
nario. However, if both text and the image were originally
watermarked with our method, detection on combined to-
kens as described in Sec. 3 significantly boosts power (top
purple, Clean). At 10% corruption TPR improves from
≈0.9 to 1.0, and stays above 0.94 even in the hardest case,
where text-only TPR drops to ≈0. Alice gets a rigorous
p-value, which would be hard if modalities were water-
marked separately. As our method is robust to moderate
image transformations, a similar trend holds when adding
Gaussian noise with σ = 0.1 (middle purple, Weak Noise).

Importantly, there is a tradeoff—integrating a weak wa-
termarking signal can degrade detection. We see this for
σ = 0.3 (bottom purple, Strong Noise), where TPR drops
below 0.6 at 10% corruption, i.e., text-only detection is
preferable. In App. H we discuss further and show extended
results. Inspired by this, in the following section we explore
the extension of our method to additional modalities.

5 Extension to Additional Modalities: Audio
Case Study

We here ask: Can our approach be extended to other modal-
ities? We give a preliminary study on autoregressive audio
generation (Borsos et al., 2022; Copet et al., 2024; Défossez
et al., 2024; Nguyen et al., 2025; Zhang et al., 2023a; 2024b)
focusing on MOSHI (Défossez et al., 2024), a transformer-
based speech-text foundation model. We observe similar
challenges and main results as for images, while noting sev-
eral important differences. Complete details and full results
are given in App. E and F.

Audio tokenizer. MOSHI’s tokenizer (MIMI) relies on
residual vector quantization (RVQ) (Défossez et al., 2022;
Kumar et al., 2023; Lee et al., 2022; Zeghidour et al., 2022).

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Watermarking Autoregressive Image Generation

Table 3: TPR at 1% FPR and MOSNet (Lo et al., 2019) on 1000
audio samples generated with MOSHI with our watermark, under
valuemetric (Val.) and time-frequency (Time) transformations,
and neural compression (NC). MOSNet is 3.80 for unwatermarked
generation.

None Val. Time NC MOSNet

Ours
BASE 0.97 0.62 0.24 0.80 3.82
FT 0.99 0.64 0.14 0.84 3.83
FT+AUGS 0.99 0.80 0.24 0.86 3.73

Post-hoc AUDIOSEAL 1.00 0.84 0.55 0.85 3.78

RVQ iteratively quantizes the residuals of the previous quan-
tizer, such that si = (s1i , .., s

K
i) for K different codebooks

C1, .., CK (K streams) Each token here represents ≈80 ms.

RCC in audio. Défossez et al. (2024, Sec. 6.4) observe
that the first stream is somewhat cycle-consistent, while this
degrades for later ones. We obtain similar results and show
that TM further worsens under transformations (highpass,
speedup). For instance, we measure TM = 0.36 (origi-
nal), 0.21 (highpass 500 Hz), 0.16 (1.1× speedup), aver-
aged over all streams on 1000 generated sequences. This
motivates adapting RCC finetuning (Sec. 3.1) and synchro-
nization (Sec. 3.2) to audio.

RCC finetuning. To instantiate the finetuning procedure
from Sec. 3.1 we make the following changes to Eqs. (4)
and (5). We use the pre-projection soft latents as target
since the quantization is done in a projected space (Kumar
et al., 2023). We replace LPIPS with multi-resolution STFT
loss (Yamamoto et al., 2020). Finally, during training we ap-
ply augmentations from a set A that includes audio-specific
valuemetric edits (high/low/bandpass, gaussian/pink noise,
etc.) as well as small (1-10ms) time-frequency shifts.

Synchronization. In contrast to images, no localized
audio embedder proved robust: the localization property
of San Roman et al. (2024) is not precise enough under
mild time-frequency edits. Future work on audio-specific
localized watermarking could possibly help; our experiment
here focuses on the influence of RCC finetuning.

Watermarking multiple streams. Early RVQ streams
are more reverse cycle-consistent and thus more likely to
preserve the watermark signal. However, limiting water-
marking to one stream provides too few tokens for reliable
statistical testing, significantly increasing p-values. On the
other hand, watermarking all streams introduces noise due
to the lack of RCC in later codes. Empirically, we find that
watermarking the first four streams achieves a good balance.

Experimental setting. We train FT and FT+AUGS on
VoxPopuli (Wang et al., 2021) such that final PESQ (Rix
et al., 2001) is 4.3 w.r.t. BASE samples. We generate 12s
watermarked audio samples with MOSHI using 1000 text

prompts generated by LLAMA3.1-8B-INSTRUCT and syn-
thesized to audio with SEAMLESSV2 (Barrault et al., 2023).
We use h = 0, δ = 2 and watermark the first four audio
streams. As in Sec. 4, we evaluate TPR at 1% FPR and
quality, for which we use MOSNet (Défossez et al., 2024).

Results. We present the results in Table 3. As for im-
ages, we do not observe notable quality degradation due to
watermarking. We find that BASE already has nonzero time-
frequency robustness, likely due to non-semantic streams
being used to carry the watermark. Finetuning in this case
boosts valuemetric robustness, but, interestingly, impairs
time-frequency RCC, which is recovered by FT+AUGS.
We hypothesize that this drop is due to catastrophic forget-
ting (Kirkpatrick et al., 2017) as the model learns to detok-
enize the audio in a way that is not robust to time-frequency
transformations. This suggests that augmentations are a key
component of finetuning, matching our results on images.
While we are not aware of audio equivalents of diffusion
purification used in Sec. 4, we note robustness to neural
compression (we use DAC (Kumar et al., 2023) and En-
Codec (Défossez et al., 2022)) comparable to post-hoc AU-
DIOSEAL (San Roman et al., 2024), even though in contrast
to AUDIOSEAL we do not explicitly train against EnCodec.

6 Conclusion and Limitations
Our work successfully applies watermarking to the previ-
ously unexplored setting of autoregressive image generation,
addressing low reverse cycle-consistency (RCC) through a
custom finetuning stage and a synchronization layer. Experi-
ments demonstrate the power, robustness, and practicality of
our watermark across a range of settings. By broadening the
scope of watermarking, we believe this work takes an im-
portant step towards more reliable content provenance. We
further discuss societal and environmental impact in App. A.

Limitations. Our method’s scope could be extended fur-
ther. As noted in Sec. 2, we target the most prominent
models that tokenize images via VQ. Our method does not
apply to models using continuous representations or hybrids
like autoregressive-diffusion models (Fan et al., 2024; Li
et al., 2024; Ma et al., 2024; Zhou et al., 2024). Another
dimension is modality: we present initial audio experiments
in Sec. 5, but this could be extended further. Next, our syn-
chronization relies on off-the-shelf localized watermarks,
which are suboptimal as they embed arbitrary patterns. A
more principled approach would be to train a bespoke syn-
chronization layer for embedding a fixed pattern, integrated
with RCC finetuning for added robustness. Finally, our
method is not robust to combined removal attacks (to dis-
rupt synchronization) and geometric attacks (to decrease
token match)—to the best of our knowledge, this attack
would also break most other contemporary watermarks. We
leave this question open for future work.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Watermarking Autoregressive Image Generation

References
Aaronson, S. and Kirchner, H. Watermarking gpt outputs,

2023. URL https://www.scottaaronson.com/
talks/watermark.ppt.

Aghajanyan, A., Yu, L., Conneau, A., Hsu, W.-N., Ham-
bardzumyan, K., Zhang, S., Roller, S., Goyal, N., Levy,
O., and Zettlemoyer, L. Scaling laws for generative
mixed-modal language models. In ICML, 2023.

An, B., Ding, M., Rabbani, T., Agrawal, A., Xu, Y., Deng,
C., Zhu, S., Mohamed, A., Wen, Y., Goldstein, T., et al.
Waves: Benchmarking the robustness of image water-
marks. In ICML. PMLR, 2024.

Bahri, D. and Wieting, J. A watermark for black-box lan-
guage models. arXiv preprint arXiv:2410.02099, 2025.

Ballé, J., Minnen, D., Singh, S., Hwang, S. J., and Johnston,
N. Variational image compression with a scale hyperprior.
In ICLR, 2018.

Barrault, L., Chung, Y.-A., Meglioli, M. C., Dale, D., Dong,
N., Duquenne, P.-A., Elsahar, H., Gong, H., Heffernan,
K., Hoffman, J., et al. Seamlessm4t-massively multilin-
gual & multimodal machine translation. arXiv preprint
arXiv:2308.11596, 2023.

Bégaint, J., Racapé, F., Feltman, S., and Pushparaja, A.
Compressai: a pytorch library and evaluation platform
for end-to-end compression research. arXiv preprint
arXiv:2011.03029, 2020.

Borsos, Z., Marinier, R., Vincent, D., Kharitonov, E.,
Pietquin, O., Sharifi, M., Roblek, D., Teboul, O., Grang-
ier, D., Tagliasacchi, M., and Zeghidour, N. Audi-
olm: A language modeling approach to audio genera-
tion. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 2022.

Bui, T., Agarwal, S., and Collomosse, J. Trustmark: Univer-
sal watermarking for arbitrary resolution images. arXiv
preprint arXiv:2311.18297, 2023a.

Bui, T., Agarwal, S., Yu, N., and Collomosse, J. Rosteals:
Robust steganography using autoencoder latent space. In
CVPR, 2023b.

Chameleon Team. Chameleon: Mixed-modal early-fusion
foundation models. arXiv preprint arXiv:2405.09818,
2024.

Chang, Y., Krishna, K., Houmansadr, A., Wieting, J., and
Iyyer, M. Postmark: A robust blackbox watermark for
large language models. In EMNLP, 2024.

Chen, J., Cai, H., Chen, J., Xie, E., Yang, S., Tang, H., Li,
M., Lu, Y., and Han, S. Deep compression autoencoder
for efficient high-resolution diffusion models. arXiv,
2024.

Cheng, Z., Sun, H., Takeuchi, M., and Katto, J. Learned
image compression with discretized gaussian mixture
likelihoods and attention modules. In CVPR, 2020.

Chern, E., Su, J., Ma, Y., and Liu, P. Anole: An open, autore-
gressive, native large multimodal models for interleaved
image-text generation. arXiv preprint arXiv:2407.06135,
2024.

Christ, M., Gunn, S., and Zamir, O. Undetectable water-
marks for language models. Cryptology ePrint Archive,
2023.

Ci, H., Yang, P., Song, Y., and Shou, M. Z. Ringid: Re-
thinking tree-ring watermarking for enhanced multi-key
identification. arXiv preprint arXiv:2404.14055, 2024.

Copet, J., Kreuk, F., Gat, I., Remez, T., Kant, D., Synnaeve,
G., Adi, Y., and Défossez, A. Simple and controllable
music generation. NeurIPS, 2024.

Csurka, G., Deguillaume, F., Ruanaidh, J. Ó., and Pun, T.
A bayesian approach to affine transformation resistant
image and video watermarking. In Information Hiding,
1999.

Dathathri, S., See, A., Ghaisas, S., Huang, P.-S., McAdam,
R., Welbl, J., Bachani, V., Kaskasoli, A., Stanforth, R.,
Matejovicova, T., Hayes, J., Vyas, N., Merey, M. A.,
Brown-Cohen, J., Bunel, R., Balle, B., Cemgil, T.,
Ahmed, Z., Stacpoole, K., Shumailov, I., Baetu, C.,
Gowal, S., Hassabis, D., and Kohli, P. Scalable wa-
termarking for identifying large language model outputs.
Nature, 2024.

DeepMind. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023a.

DeepMind, G. Identifying ai-generated im-
ages with synthid, 2023b. URL https:
//deepmind.google/discover/blog/
identifying-ai-generated-images-with-synthid/.
Accessed on May 15, 2025.

Défossez, A., Copet, J., Synnaeve, G., and Adi, Y.
High fidelity neural audio compression. arXiv preprint
arXiv:2210.13438, 2022.

Défossez, A., Mazaré, L., Orsini, M., Royer, A., Pérez,
P., Jégou, H., Grave, E., and Zeghidour, N. Moshi:
a speech-text foundation model for real-time dialogue.
arXiv preprint arXiv:2410.00037, 2024.

10

https://www.scottaaronson.com/talks/watermark.ppt
https://www.scottaaronson.com/talks/watermark.ppt
https://deepmind.google/discover/blog/identifying-ai-generated-images-with-synthid/
https://deepmind.google/discover/blog/identifying-ai-generated-images-with-synthid/
https://deepmind.google/discover/blog/identifying-ai-generated-images-with-synthid/

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Watermarking Autoregressive Image Generation

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In CVPR, 2021.

Fan, L., Li, T., Qin, S., Li, Y., Sun, C., Rubinstein, M., Sun,
D., He, K., and Tian, Y. Fluid: Scaling autoregressive
text-to-image generative models with continuous tokens.
arXiv preprint arXiv:2410.13863, 2024.

Fernandez, P., Chaffin, A., Tit, K., Chappelier, V., and Furon,
T. Three bricks to consolidate watermarks for large lan-
guage models. In International Workshop on Information
Forensics and Security (WIFS), 2023a.

Fernandez, P., Couairon, G., Jégou, H., Douze, M., and
Furon, T. The stable signature: Rooting watermarks in
latent diffusion models. In ICCV, 2023b.

Fernandez, P., Elsahar, H., Yalniz, I. Z., and Mourachko,
A. Video seal: Open and efficient video watermarking.
arXiv preprint arXiv:2412.09492, 2024.

Gage, P. A new algorithm for data compression. C Users J.,
1994.

Ge, Y., Zhao, S., Zeng, Z., Ge, Y., Li, C., Wang, X., and
Shan, Y. Making llama see and draw with seed tokenizer.
arXiv preprint arXiv:2310.01218, 2023.

Gray, R. Vector quantization. IEEE Assp Magazine, 1(2):
4–29, 1984.

Guo, H., Zhang, Q., Luo, J., Guo, F., Zhang, W., Su, X.,
and Li, M. Practical deep dispersed watermarking with
synchronization and fusion. In Proceedings of the 31st
ACM international conference on multimedia, 2023.

Hartung, F., Su, J., and Girod, B. Spread spectrum water-
marking: Malicious attacks and counterattacks. Security
and Watermarking of Multimedia Contents, 2000.

Henighan, T., Kaplan, J., Katz, M., Chen, M., Hesse, C.,
Jackson, J., Jun, H., Brown, T. B., Dhariwal, P., Gray, S.,
et al. Scaling laws for autoregressive generative modeling.
arXiv preprint arXiv:2010.14701, 2020.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NIPS, 2017.

Hou, A. B., Zhang, J., He, T., Wang, Y., Chuang, Y.-S.,
Wang, H., Shen, L., Van Durme, B., Khashabi, D., and
Tsvetkov, Y. Semstamp: A semantic watermark with
paraphrastic robustness for text generation. arXiv preprint
arXiv:2310.03991, 2023.

Hsu, C., Verkuil, R., Liu, J., Lin, Z., Hie, B., Sercu, T.,
Lerer, A., and Rives, A. Learning inverse folding from
millions of predicted structures. In ICML. PMLR, 2022.

Huang, Y., Zhu, W., Xiong, D., Zhang, Y., Hu, C., and
Xu, F. Cycle-consistent adversarial autoencoders for
unsupervised text style transfer. In COLING, 2020a.

Huang, Y., Zhu, W., Xiong, D., Zhang, Y., Hu, C., and Xu,
F. Cycle-consistent adversarial autoencoders for unsuper-
vised text style transfer. arXiv preprint arXiv:2010.00735,
2020b.

Jia, Z., Fang, H., and Zhang, W. MBRS: enhancing robust-
ness of dnn-based watermarking by mini-batch of real
and simulated JPEG compression. In ACM Multimedia,
2021.

Jovanović, N., Staab, R., and Vechev, M. Watermark steal-
ing in large language models. In ICML, 2024.

Jovanović, N., Staab, R., Baader, M., and Vechev, M. Ward:
Provable rag dataset inference via llm watermarks. In
ICLR, 2025.

Kim, J.-H., Jang, S., Choi, J.-H., and Lee, J.-S. Instability
of successive deep image compression. In Proceedings of
the 28th ACM International Conference on Multimedia,
2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kirchenbauer, J., Geiping, J., Wen, Y., Katz, J., Miers, I.,
and Goldstein, T. A watermark for large language models.
ICML, 2023.

Kirchenbauer, J., Geiping, J., Wen, Y., Shu, M., Saifullah,
K., Kong, K., Fernando, K., Saha, A., Goldblum, M.,
and Goldstein, T. On the reliability of watermarks for
large language models. In ICLR, 2024. URL https:
//openreview.net/forum?id=DEJIDCmWOz.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 2017.

Köpf, A., Kilcher, Y., Von Rütte, D., Anagnostidis, S.,
Tam, Z. R., Stevens, K., Barhoum, A., Nguyen, D., Stan-
ley, O., Nagyfi, R., et al. Openassistant conversations-
democratizing large language model alignment. Advances
in Neural Information Processing Systems, 36:47669–
47681, 2023.

Kuditipudi, R., Thickstun, J., Hashimoto, T., and Liang, P.
Robust distortion-free watermarks for language models.
arXiv preprint arXiv:2307.15593, 2023.

Kumar, R., Seetharaman, P., Luebs, A., Kumar, I., and Ku-
mar, K. High-fidelity audio compression with improved
rvqgan. NeurIPS, 2023.

11

https://openreview.net/forum?id=DEJIDCmWOz
https://openreview.net/forum?id=DEJIDCmWOz

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Watermarking Autoregressive Image Generation

Labs, B. F. Flux. https://github.com/
black-forest-labs/flux, 2024.

Lacoste, A., Luccioni, A., Schmidt, V., and Dandres, T.
Quantifying the carbon emissions of machine learning.
arXiv preprint arXiv:1910.09700, 2019.

Lee, D., Kim, C., Kim, S., Cho, M., and Han, W. Autore-
gressive image generation using residual quantization. In
CVPR, 2022.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregressive
image generation without vector quantization. NeurIPS,
2024.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision. Springer, 2014.

Lin, X. V., Shrivastava, A., Luo, L., Iyer, S., Lewis,
M., Ghosh, G., Zettlemoyer, L., and Aghajanyan,
A. Moma: Efficient early-fusion pre-training with
mixture of modality-aware experts. arXiv preprint
arXiv:2407.21770, 2024.

Liu, H., Yan, W., Zaharia, M., and Abbeel, P. World model
on million-length video and language with blockwise
ringattention. arXiv preprint arXiv:2402.08268, 2024a.

Liu, W., Guo, Z., Xu, J., Lv, Y., Chu, Y., Zhao, Z., and Lin, J.
Analyzing and mitigating inconsistency in discrete audio
tokens for neural codec language models. arXiv preprint
arXiv:2409.19283, 2024b.

Lo, C.-C., Fu, S.-W., Huang, W.-C., Wang, X., Yamagishi,
J., Tsao, Y., and Wang, H.-M. Mosnet: Deep learning
based objective assessment for voice conversion. In Proc.
Interspeech 2019, 2019.

Luo, X., Zhan, R., Chang, H., Yang, F., and Milanfar, P.
Distortion agnostic deep watermarking. In CVPR, 2020.

Luo, X., Goebel, M., Barshan, E., and Yang, F. Leca: A
learned approach for efficient cover-agnostic watermark-
ing. arXiv preprint arXiv:2206.10813, 2022.

Ma, R., Guo, M., Hou, Y., Yang, F., Li, Y., Jia, H., and Xie,
X. Towards blind watermarking: Combining invertible
and non-invertible mechanisms. In ACM Multimedia,
2022.

Ma, Y., Liu, X., Chen, X., Liu, W., Wu, C., Wu, Z., Pan,
Z., Xie, Z., Zhang, H., Zhao, L., et al. Janusflow: Har-
monizing autoregression and rectified flow for unified

multimodal understanding and generation. arXiv preprint
arXiv:2411.07975, 2024.

Mentzer, F., Minnen, D., Agustsson, E., and Tschannen, M.
Finite scalar quantization: Vq-vae made simple. arXiv
preprint arXiv:2309.15505, 2023.

Meta, A. The llama 4 herd: The beginning of a new era
of natively multimodal ai innovation. https://ai. meta.
com/blog/llama-4-multimodal-intelligence/, 2025.

Minnen, D., Ballé, J., and Toderici, G. Joint autoregressive
and hierarchical priors for learned image compression. In
NeurIPS, 2018.

Nguyen, T. A., Muller, B., Yu, B., Costa-Jussa, M. R., El-
bayad, M., Popuri, S., Ropers, C., Duquenne, P.-A., Al-
gayres, R., Mavlyutov, R., et al. Spirit-lm: Interleaved
spoken and written language model. Transactions of the
Association for Computational Linguistics, 2025.

Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., and
Anandkumar, A. Diffusion models for adversarial purifi-
cation. arXiv preprint arXiv:2205.07460, 2022.

OpenAI. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

O’Reilly, P., Seetharaman, P., Su, J., Jin, Z., and Pardo,
B. Code drift: Towards idempotent neural audio codecs.
In ICASSP 2025-2025 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2025.

Pereira, S., Ruanaidh, J. Ó., and Pun, T. Secure robust digi-
tal watermarking using the lapped orthogonal transform.
In Security and Watermarking of Multimedia Contents,
1999.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn,
T., Müller, J., Penna, J., and Rombach, R. SDXL: im-
proving latent diffusion models for high-resolution image
synthesis. In ICLR, 2024.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Rad-
ford, A., Chen, M., and Sutskever, I. Zero-shot text-to-
image generation. In ICML. Pmlr, 2021.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents. arXiv preprint arXiv:2204.06125, 2022.

Razavi, A., Van den Oord, A., and Vinyals, O. Generating
diverse high-fidelity images with vq-vae-2. NeurIPS,
2019.

Rix, A. W., Beerends, J. G., Hollier, M. P., and Hekstra,
A. P. Perceptual evaluation of speech quality (pesq)-a new

12

https://github.com/black-forest-labs/flux
https://github.com/black-forest-labs/flux

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Watermarking Autoregressive Image Generation

method for speech quality assessment of telephone net-
works and codecs. In 2001 IEEE international conference
on acoustics, speech, and signal processing. Proceedings
(Cat. No. 01CH37221). IEEE, 2001.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In CVPR, 2022.

Saberi, M., Sadasivan, V. S., Rezaei, K., Kumar, A., Chegini,
A., Wang, W., and Feizi, S. Robustness of ai-image
detectors: Fundamental limits and practical attacks. ICLR,
2024.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E., Ghasemipour, S. K. S., Ayan, B. K., Mahdavi, S. S.,
Lopes, R. G., et al. Photorealistic text-to-image diffusion
models with deep language understanding. arXiv preprint
arXiv:2205.11487, 2022.

San Roman, R., Fernandez, P., Elsahar, H., D´efossez, A.,
Furon, T., and Tran, T. Proactive detection of voice
cloning with localized watermarking. In ICML, 2024.

Sander, T., Fernandez, P., Durmus, A., Douze, M., and
Furon, T. Watermarking makes language models radioac-
tive. In NeurIPS, 2024.

Sander, T., Fernandez, P., Durmus, A., Furon, T., and Douze,
M. Watermark anything with localized messages. ICLR,
2025.

Shukor, M., Fini, E., da Costa, V. G. T., Cord, M., Susskind,
J., and El-Nouby, A. Scaling laws for native multimodal
models scaling laws for native multimodal models. arXiv
preprint arXiv:2504.07951, 2025.

Sun, K., Qi, P., Zhang, Y., Liu, L., Wang, W. Y., and Huang,
Z. Tokenization consistency matters for generative mod-
els on extractive NLP tasks. In EMNLP (Findings), 2023.

Sun, P., Jiang, Y., Chen, S., Zhang, S., Peng, B., Luo,
P., and Yuan, Z. Autoregressive model beats diffusion:
Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Taal, C. H., Hendriks, R. C., Heusdens, R., and Jensen, J.
A short-time objective intelligibility measure for time-
frequency weighted noisy speech. In 2010 IEEE inter-
national conference on acoustics, speech and signal pro-
cessing. IEEE, 2010.

Tancik, M., Mildenhall, B., and Ng, R. Stegastamp: In-
visible hyperlinks in physical photographs. In CVPR,
2020.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford
Alpaca: An instruction-following Llama model, 2023.

Teng, Y. and Choromanska, A. Invertible autoencoder for
domain adaptation. Comput., (2), 2019.

Tian, C., Zhu, X., Xiong, Y., Wang, W., Chen, Z., Wang,
W., Chen, Y., Lu, L., Lu, T., Zhou, J., et al. Mm-
interleaved: Interleaved image-text generative modeling
via multi-modal feature synchronizer. arXiv preprint
arXiv:2401.10208, 2024a.

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual
autoregressive modeling: Scalable image generation via
next-scale prediction. NeurIPS, 2024b.

Tirkel, A. Z., Osborne, C. F., and Hall, T. E. Image and
watermark registration. Signal Process., (3), 1998.

Tschannen, M., Eastwood, C., and Mentzer, F. Givt: Gen-
erative infinite-vocabulary transformers. In European
Conference on Computer Vision. Springer, 2024.

Van Den Oord, A., Vinyals, O., et al. Neural discrete repre-
sentation learning. NeurIPS, 2017.

von Platen, P., Patil, S., Lozhkov, A., Cuenca, P., Lam-
bert, N., Rasul, K., Davaadorj, M., Nair, D., Paul, S.,
Berman, W., Xu, Y., Liu, S., and Wolf, T. Diffusers:
State-of-the-art diffusion models. https://github.
com/huggingface/diffusers, 2022.

Wang, C., Riviere, M., Lee, A., Wu, A., Talnikar, C., Haziza,
D., Williamson, M., Pino, J., and Dupoux, E. Voxpopuli:
A large-scale multilingual speech corpus for representa-
tion learning, semi-supervised learning and interpretation.
arXiv preprint arXiv:2101.00390, 2021.

Wang, X., Zhang, X., Luo, Z., Sun, Q., Cui, Y., Wang,
J., Zhang, F., Wang, Y., Li, Z., Yu, Q., et al. Emu3:
Next-token prediction is all you need. arXiv preprint
arXiv:2409.18869, 2024.

Wen, Y., Kirchenbauer, J., Geiping, J., and Goldstein, T.
Tree-ring watermarks: Fingerprints for diffusion images
that are invisible and robust. NeurIPS, 2023.

Wu, C., Chen, X., Wu, Z., Ma, Y., Liu, X., Pan, Z., Liu,
W., Xie, Z., Yu, X., Ruan, C., et al. Janus: Decoupling
visual encoding for unified multimodal understanding and
generation. arXiv preprint arXiv:2410.13848, 2024.

Xie, J., Mao, W., Bai, Z., Zhang, D. J., Wang, W., Lin, K. Q.,
Gu, Y., Chen, Z., Yang, Z., and Shou, M. Z. Show-o: One
single transformer to unify multimodal understanding and
generation. arXiv preprint arXiv:2408.12528, 2024.

Yamamoto, R., Song, E., and Kim, J.-M. Parallel wavegan:
A fast waveform generation model based on generative
adversarial networks with multi-resolution spectrogram.
In ICASSP. IEEE, 2020.

13

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Watermarking Autoregressive Image Generation

Yang, Z., Zeng, K., Chen, K., Fang, H., Zhang, W., and
Yu, N. Gaussian shading: Provable performance-lossless
image watermarking for diffusion models. In CVPR,
2024.

Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., and Xin,
J. Understanding straight-through estimator in train-
ing activation quantized neural nets. arXiv preprint
arXiv:1903.05662, 2019.

Yu, J., Li, X., Koh, J. Y., Zhang, H., Pang, R., Qin, J., Ku,
A., Xu, Y., Baldridge, J., and Wu, Y. Vector-quantized
image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z.,
Vasudevan, V., Ku, A., Yang, Y., Ayan, B. K., et al. Scal-
ing autoregressive models for content-rich text-to-image
generation. arXiv preprint arXiv:2206.10789, 2022.

Yu, Q., He, J., Deng, X., Shen, X., and Chen, L.-C. Ran-
domized autoregressive visual generation. arXiv preprint
arXiv:2411.00776, 2024.

Zeghidour, N., Luebs, A., Omran, A., Skoglund, J., and
Tagliasacchi, M. Soundstream: An end-to-end neural
audio codec. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 2022. doi: 10.1109/TASLP.
2021.3129994.

Zhan, J., Dai, J., Ye, J., Zhou, Y., Zhang, D., Liu, Z., Zhang,
X., Yuan, R., Zhang, G., Li, L., et al. Anygpt: Unified
multimodal llm with discrete sequence modeling. arXiv
preprint arXiv:2402.12226, 2024.

Zhang, C., Karjauv, A., Benz, P., and Kweon, I. S. Towards
robust deep hiding under non-differentiable distortions for
practical blind watermarking. In Proceedings of the 29th
ACM International Conference on Multimedia, 2021.

Zhang, D., Li, S., Zhang, X., Zhan, J., Wang, P., Zhou,
Y., and Qiu, X. Speechgpt: Empowering large language
models with intrinsic cross-modal conversational abilities.
In EMNLP, 2023a.

Zhang, Q., Xu, T., Li, Y., and Wang, Y. Evaluating strong
idempotence of image codec. arXiv, 2023b.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as a
perceptual metric. In CVPR, 2018.

Zhang, R., Hussain, S. S., Neekhara, P., and Koushanfar,
F. REMARK-LLM: A robust and efficient watermark-
ing framework for generative large language models. In
USENIX Security Symposium, 2024a.

Zhang, Z., Chen, S., Zhou, L., Wu, Y., Ren, S., Liu, S.,
Yao, Z., Gong, X., Dai, L., Li, J., et al. Speechlm: En-
hanced speech pre-training with unpaired textual data.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 2024b.

Zhang, Z., Zhang, X., Zhang, Y., Zhang, L. Y., Chen, C., Hu,
S., Gill, A., and Pan, S. Large language model watermark
stealing with mixed integer programming. arXiv, 2024c.

Zhao, X., Ananth, P., Li, L., and Wang, Y.-X. Provable
robust watermarking for ai-generated text. arXiv, 2023.

Zhou, C., Yu, L., Babu, A., Tirumala, K., Yasunaga, M.,
Shamis, L., Kahn, J., Ma, X., Zettlemoyer, L., and
Levy, O. Transfusion: Predict the next token and dif-
fuse images with one multi-modal model. arXiv preprint
arXiv:2408.11039, 2024.

Zhu, J., Kaplan, R., Johnson, J., and Fei-Fei, L. Hidden:
Hiding data with deep networks. In ECCV, 2018.

Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks. In Proceedings of the IEEE ICCV, 2017.

Zhu, L., Wei, F., Lu, Y., and Chen, D. Scaling the codebook
size of VQ-GAN to 100,000 with a utilization rate of
99%. In NeurIPS, 2024.

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Watermarking Autoregressive Image Generation

Appendix
A Ethical Statement

A.1 Societal Impact

Watermarking in general improves the traceability of content, be it AI-generated or not. It can have positive consequences,
for example when it is used to trace the origin of fake news or to protect intellectual property. This traceability can also have
negative consequences, for example when it is used to trace political opponents in authoritarian regimes or whistleblowers
in secretive companies. Besides, it is not clear how to disclose watermark detection results, which may foster a closed
ecosystem of detection tools. It may also exacerbate misinformation by placing undue emphasis on content that is either
not detected, generated by unknown models, or authentic but used out of context. We however believe that the benefits of
watermarking outweigh the risks, and that the development of robust watermarking methods is a positive step for our society.

A.2 Environmental impact

The cost of the experiments and of model training is high, though order of magnitude less than training the generative
models themselves. Finetuning the image tokenizer as done in the paper takes ≤ 32 GPU-hours. We also roughly estimate
that the number of GPU-days used for running all our experiments is around 500, i.e., 12k GPU-hours. This amounts to
total emissions in the order of 1 ton of CO2eq1. Estimations are conducted using the Machine Learning Impact Calculator
presented by Lacoste et al. (2019). We do not consider in this approximation: memory storage, CPU-hours, production cost
of GPUs/ CPUs, etc.

B Technical Details of LLM Watermarking
We here more thoroughly introduce LLM watermarking, following the notation in Sec. 2.

Generation. We consider an autoregressive model M generating a sequence of tokens s = (s1, s2, . . . , sT), where
each token st is sampled from a probability distribution conditioned on the previous tokens p(st|s<t). In practice, the
model outputs a vector of logits ℓ ∈ R|V |, where V is the vocabulary (which we can assume in the most general case can
contain text, audio or image tokens), which is transformed into a probability distribution p = softmax(ℓ/τ), with τ being a
temperature parameter.

The watermark embedding modifies the token selection process using a secret key ξ. A cryptographic hash function takes as
input h previous tokens (st−h, . . . , st−1) (the context window) and the secret key ξ, producing a seed for a random number
generator (RNG) that influences the selection of the next token st.

Two prominent watermarking approaches are:

• Kirchenbauer et al. (2023)’s method (KGW) uses RNG to randomly partition the vocabulary V into a greenlist Gt and
a redlist Rt, where Gt contains a proportion γ of the vocabulary. The logit of each token in the greenlist is increased by
δ > 0, effectively boosting the probability of selecting tokens from the greenlist.

• Aaronson & Kirchner (2023)’s method uses a different approach based on the RNG to sample secret values for each
token. Although we do not present it in this work for simplicity, it could have been adapted in the same way to
watermark autoregressive models.

Detection. For the KGW method that we focus on, the watermark detection process analyzes a token sequence s and
computes a score S based on the count of green tokens:

S =

T∑
t=h+1

1(st ∈ Gt), (7)

where Gt is the greenlist for position t, which depends on the h preceding tokens and the secret key ξ.

1Using a default grid, we compute 250W × 12000h = 3000 kWh × 0.3 kg eq. CO2/kWh = 900 kg eq. CO2

15

https://mlco2.github.io/impact#compute

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Watermarking Autoregressive Image Generation

Statistical hypothesis testing. Detection uses a statistical hypothesis test distinguishing between H0: “the sequence is not
watermarked with secret key ξ” and the alternative H1: “the sequence was generated with a watermark with secret key ξ.”
Previous approaches, such as those by Kirchenbauer et al. (2023) and Aaronson & Kirchner (2023), relied on a Z-test to
compare the count of green tokens S to its expected value under the null hypothesis H0. In this work we instead adopt an
exact test (Fernandez et al., 2023a), which is more accurate, especially for short sequences.

Under H0, S follows a binomial distribution B with parameters (T − h) and γ, where γ is the expected proportion of green
tokens, T is the total number of tokens, and h is the size of the watermark context window. The p-value determines the
likelihood of observing a score as extreme as S under H0, and is calculated as:

p-value(S, T, h, γ) = Prob (X ≥ S | X ∼ B(T − h, γ)) = Iγ(S, T − h− S + 1), (8)

where Ix(a, b) is the regularized incomplete Beta function.

Sequences are flagged as watermarked if the p-value falls below the desired false positive rate.

Main parameters. The main parameters of the watermarking method are the context window size h, the watermark
strength factor δ and the proportion of green tokens γ.

The context window size h determines how many previous tokens determine the greenlist. A smaller h increases robustness
against text modifications but may bias generation as the same hash is used more frequently. It typically reduces security
since recurring greenlists make the watermark easier to spoof (Jovanović et al., 2024; Zhang et al., 2024c). When h = 0,
the RNG seed depends solely on the secret key ξ, creating fixed green/red lists for all tokens. For non-text tokens, we
hypothesize that h = 0 maintains security since tokenizer access is restricted and image tokenizers have more degrees of
freedom than text ones.

The watermark strength factor δ determines the amount by which the logits of green tokens are boosted. A higher δ increases
the robustness of the watermark, but also increases the risk of generating low-quality text/images. It is tuned for every model
and application.

The proportion of green tokens γ affects both detection sensitivity and generation quality. With low δ, a smaller γ reduces
green token selection during generation, resulting in lower watermark power. With high δ, it restricts token choice and may
lower output quality. During detection, lower γ values yield more significant p-values since green tokens are less likely
to appear by chance (Kirchenbauer et al., 2023). At fixed watermark power, higher γ distributes the watermark evenly,
while lower values concentrate it on fewer tokens. We set γ to 0.25 in our experiments, as it is a common choice in the
literature (Aaronson & Kirchner, 2023; Kirchenbauer et al., 2023) and consistently yields good results in our experiments.

C More on Reverse Cycle-consistency
In this section, we elaborate on the case of text tokenizers not being perfectly reverse cycle-consistent (RCC), discuss audio
tokenizers and our experiment measuring RCC in this setting, expanding on Sec. 5, and discuss related topics studied in
prior work.

C.1 RCC in Text Tokenizers

In BPE tokenizers, the vocabulary is initialized with all characters in the training set, and common character pairs are
iteratively merged and added to the vocabulary until the predefined size is reached. Tokenization is performed greedily from
left to right, by always selecting the longest possible token from V . Detokenization is simply performed by a lookup into V .

RCC can be violated. Text tokenizers are not immune to the RCC issue. For example, consider the following subset
of the GPT-4O tokenizer: {cons : 9673,istent : 20908,consistent : 173878}. Due to the greedy property of BPE
tokenizers, Dtext is guaranteed to always invert Ttext, e.g., Dtext(Ttext(consistent)) = Dtext([173878]) = consistent,
guaranteeing forward cycle-consistency (FCC). In contrast, reverse cycle-consistency (RCC), necessary for a strong
watermark, may be violated, e.g., Ttext(Dtext([9673, 20908])) = Ttext(consistent) = [173878]. RCC approximately
holds for text tokenizers in practice: while it is also a prerequisite for successful watermarking in text, no prior art has
highlighted this as a hurdle. Some works have even shown that adversaries learning about the watermark can still be
successful even if they use a different tokenizer (Jovanović et al., 2024), which is only possible if the tokens match across
tokenizers.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Watermarking Autoregressive Image Generation

Table 4: Token Match (TM) across different streams for 1k sequences, where audios are subject to various transformations before
re-tokenization. Sequences of tokens are generated either as reconstructions of 10-seconds VoxPopuli audios with the MIMI tokenizer, or
by the MOSHI model with audio prompts (described in App. E.3).

MIMI tokenizer MOSHI

1 2 3 4 5 6 7 8 Avg. 1 2 3 4 5 6 7 8 Avg.

Identity 0.56 0.31 0.21 0.22 0.18 0.20 0.18 0.16 0.25 0.60 0.55 0.38 0.28 0.26 0.26 0.24 0.25 0.35

Transformations
Lowpass 3 kHz 0.38 0.15 0.15 0.17 0.14 0.16 0.15 0.12 0.18 0.50 0.39 0.30 0.21 0.19 0.21 0.20 0.21 0.28
Noise 0.001 0.50 0.33 0.19 0.20 0.17 0.18 0.17 0.14 0.24 0.51 0.34 0.19 0.18 0.17 0.18 0.18 0.13 0.23
MP3 16 kbps 0.44 0.19 0.16 0.18 0.15 0.17 0.16 0.13 0.20 0.54 0.41 0.29 0.20 0.18 0.20 0.20 0.21 0.28
Encodec 0.24 0.13 0.10 0.10 0.07 0.07 0.05 0.04 0.10 0.28 0.38 0.24 0.16 0.14 0.15 0.11 0.15 0.20
Speed ×1.25 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.11 0.08 0.05 0.05 0.06 0.04 0.07 0.06
Crop (90% kept) 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.08 0.15 0.11 0.07 0.07 0.08 0.05 0.09 0.09

Experiment. As discussed in the main text, we confirmed this experimentally. We used LLAMA3.1-8B-INSTRUCT to
generate 1000 answers to prompts from the Open Assistant dataset (Köpf et al., 2023). We then compared the generated
sequences of tokens with the re-tokenized sequences. Specifically, we took the token IDs from the model’s generation,
detokenized them to text, then re-tokenized this text and computed the Levenshtein distance between the original and the
new token sequence. Our results showed that the average token match is 99.5%, confirming that text tokenizers exhibit very
high reverse cycle-consistency in practice.

C.2 RCC in Audio Tokenizers

A study of the RCC issue in MOSHI’s tokenizer is already given by the authors (Défossez et al., 2024) (called idempotence
in their paper). We however observe some differences in our study, as well as other key findings, such as the effect of
augmentations, that we summarized in Sec. 5, and that we discuss in more detail in the following.

RVQ tokenizer. As a reminder, MOSHI’s tokenizer (MIMI) utilizes residual vector quantization (RVQ) (Défossez et al.,
2022; Kumar et al., 2023; Lee et al., 2022; Zeghidour et al., 2022). In RVQ, the quantization process happens iteratively,
where each step quantizes the residual error from the previous quantization. Formally, for each step i, representing an audio
frame of 1920 samples, the tokenization results in a sequence of tokens (s1i , .., s

K
i) corresponding to K different codebooks

C1, .., CK (referred to as K streams). Each token represents approximately 80 ms of audio. The first token (or stream) is
referred to as semantic, because there is a distillation loss during training with a non-causal model that encourages this first
codebook to capture the most semantically relevant information. Défossez et al. (2024) note that this semantic token exhibits
higher cycle-consistency compared to later streams, which are assumed to progressively capture more fine-grained details,
and to be less consistent.

Experimental setup. We measure Token Match (TM) for sequences either (a) generated as reconstructions of 10-seconds
audios from VoxPopuli with the MIMI tokenizer, or (b) generated by the MOSHI model, as described in App. E.3. This
corresponds to ≈125 time-steps for both cases, so ≈1,000 audio tokens (counting all the streams). The audio is subjected to
various transformations before re-tokenization, which include the three categories: valuemetric (lowpass filtering at 3kHz,
addition of strong Gaussian noise at 0.01 amplitude), temporal-frequency (speed modification by 1.25x, cropping 90% of
the original audio), and compression-based (MP3 compression at 16kbps, EnCodec compression).

Results. Table 4 presents the results that supplements the study by Défossez et al. (2024). Notably, their study only
focuses on pre-existing audio sequences, while we also include the case of generated sequences, which behave differently.
For instance, the second stream sometimes shows higher consistency than other streams contradicting the expectation that
only the first (semantic) stream could maintain high consistency. Different augmentations affect streams differently: e.g.,
lowpass has less impact on streams 2 and 3 compared to strong noise addition, while EnCodec strongly decreases TM of the
first stream. Importantly, temporal-frequency augmentations (speed, cropping) reduce TM less dramatically for MOSHI
(0.04-0.15) than would be expected given our image watermarking results where such transformations typically yield
near-zero consistency. This multi-stream aspect presents challenges and opportunities for watermarking: while complicating
consistency analysis, it enables potential development of more sophisticated techniques leveraging complementary properties
across streams.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Watermarking Autoregressive Image Generation

C.3 Related Concepts

There are several concepts related to RCC that were studied in prior work.

Codec idempotence. In the context of codecs a relevant property is codec idempotence (Kim et al., 2020; O’Reilly et al.,
2025; Zhang et al., 2023b). Directly applying the mathematical definition of idempotence to our case, we let f(·) denote the
encoder-decoder pair (e.g., f compresses an image to a JPEG file and then decompresses it back to pixels), and say that a
codec is idempotent if it satisfies:

f(f(x)) = f(x). (9)

This property is naturally of interest to codecs. While we assume that JPEG compressing an image is lossy (i.e., we do not
expect f(x) = x), we want our codec to not further degrade image quality on successive applications, which can commonly
occur in practice (i.e., f(f(x)) = f(x)). This is in stark contrast with the notion of RCC relevant to our work. In our
case, x are the tokens, while f(·) is the detokenization followed by the tokenization. The first application of f(·) is crucial
for us: as explained above, we require f(x) ≈ x as otherwise the watermark that was present in the tokens of x is lost.
f(f(x)), i.e., re-tokenizing the image several times successively, on the other hand is not of particular interest in this case,
thus idempotence is not an important concern.

Consistency of tokenizers. Another related concern is the consistency of tokenizers (Liu et al., 2024b; Sun et al., 2023).
Intuitively a tokenizer is consistent if the tokenization of a particular string (assuming the text domain) does not change
depending on the surrounding context. While the cited works show that this is a desirable property, it is not as relevant to
our motivation of preserving the watermark as RCC. In particular, for generated token sequence x, if RCC is satisfied the
watermark will be entirely preserved, even if the tokenization was context-dependent. This may be a concern in the context
of various attacks: for example, infilling a part of the image before re-tokenization should ideally change only the tokens
corresponding to the infilled part, and not the entire image, which may happen depending on the setup of the convolutions in
the tokenizer. We do not explore this angle as part of this work.

Cycle-consistency in other contexts. Finally, a line of works studies cycle-consistency in various generative mod-
els (Huang et al., 2020a; Zhu et al., 2017), most commonly in the context of style transfer: a single cycle is the translation
from a style A to a style B and back to A, and cycle-consistency can in this case be beneficial as a constraint for the model.
Finally, Teng & Choromanska (2019) explicitly parametrize encoder-decoder pairs to be inverses of each other and Huang
et al. (2020b) study cycle-consistency in the context of disentangled representations.

D More on Watermark Synchronization
In App. D.1 we provide a more detailed description of our watermark synchronization layer (Sec. 3.2), and show additional
examples. In App. D.2 we describe our attempt to use AudioSeal (San Roman et al., 2024) for synchronization in audio.

D.1 Image Synchronization Details

We remark that the problem of watermark synchronization was studied in the past, before the advent of generative models,
in the context of digital watermarking. These works suggest approaches such as multiple testing with a carefully controlled
number of tests to avoid the false positive rate increase we mentioned in Sec. 3.2 (Hartung et al., 2000), or similarly to us,
embedding a synchronization pattern in addition to the original watermarking pattern to revert the transformation (Csurka
et al., 1999; Pereira et al., 1999; Tirkel et al., 1998). As noted above, we are aware of two works that study this in the context
of post-hoc generative model watermarks (Guo et al., 2023; Luo et al., 2022), however their code is not publicly available.

Full algorithm description. Our algorithm consists of two main procedures: embedding a synchronization pattern into the
generated and decoded image, and estimating the transformation from an incoming image where previously the watermark
and the synchronization pattern were embedded. We assume access to a localized watermark module L that can embed a
different message in every pixel of an image, and recover the probability that each pixel has the watermark along with the
most probable message in it. As noted above, we instantiate this using Sander et al. (2025).

To embed the synchronization pattern, we use four 32-bit messages {m1 = 032, m2 = 016116, m3 = 116016, m4 = 132}.
For each message, the corresponding mask is one of the quadrants (as in Fig. 4), where given parameter µ, we keep a
horizontal and a vertical strip of width µ pixels in the middle of the image free of messages (we use µ = 18 for TAMING and
µ = 36 for CHAMELEON as we work with images of twice the resolution). Using this mask, we embed the pattern using L.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Watermarking Autoregressive Image Generation

Figure 8: Visualization of our synchronization step (Sec. 3.2) on a real example from our experiments. In the four middle rows we see
that the watermark detection would have failed on original geometrically transformed images, but has eventually succeeded after the
synchronization signal was detected and reverted. In the bottom row we see that a valuemetric transformation can disrupt the signal—in
this case a JPEG compression. While this did not hamper detection in this example, it can be problematic in practice as evidenced by the
drop in valuemetric robustness with synchronization shown in Table 2.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Watermarking Autoregressive Image Generation

Original Waveform

AudioSeal’s Watermark

(a) Visualization of the synchronization
mask pattern

0 100000 200000
Sample Index

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
ti

on
S

co
re

Detection Results

Fitted Template

(b) Example of successful detection after a
small temporal crop

0 100000 200000
Sample Index

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
ti

on
S

co
re

(c) Example of unsuccessful detection after
1.05× speedup

Figure 9: The audio watermark synchronization method we attempted to incorporate. (a) how we embed the watermark periodically in the
audio; (b) successful case with a clear periodic pattern detected when the audio is cropped for the first 0.84 seconds; (c) a 1.05× speedup
creates a detection signal too noisy to reliably extract the synchronization pattern.

Given an incoming image, we first obtain and postprocess the predictions of L. Namely, for each pixel, we take the closest
message in Hamming distance from the four fixed messages above, as long as the Hamming distance is below 6 bits and
the probability of the pixel being watermarked as predicted by L is above 0.5. Then, as a heuristic, we proceed only if we
found at least one pixel for each of the 4 messages, and if the total area of the pixels with messages is at least 70% of the
image—attempting to estimate the transformation otherwise proved too unreliable.

To estimate the transformation, we sweep over rotations in [−20, 20] degrees, for each rotation rotate the grid of extracted
messages back by the inverse rotation, and attempt to find the best-fitting pair (i, j) such that the row i of the rotated
message grid best separates pixels with messages (m1,m3) as well as (m2,m4), and the column j of the rotated message
grid best separates pixels with messages (m1,m2) as well as (m3,m4). For example, to find j that best separates (m1,m2),
we compute the cost of each candidate j′ as the number of wrongly positioned pixels, i.e., pixels with message m1 that
are to the right of j′ and pixels with message m2 that are to the left of j′. We repeat the same cost computation for the
horizontally flipped message grid: if we find that this leads to a lower cost, we estimate that the image was flipped. The
lowest-cost estimate for j and the estimate if the image was flipped or not are then aggregated over (m1,m2) and (m3,m4)
proportionally to the number of pixels with these messages in the image. The process for i is analogous, with the final result
for the fixed suspect rotation being the tuple (i, j, isF lipped, cost).

We finally take such tuple with the minimal cost, returning the corresponding rotation and (i, j, isF lipped) as our final
estimate that we later revert.

Examples. Complementing Fig. 4, in Fig. 8 we show real examples of recovered synchronization patterns and estimated
transformations for horizontal flip, positive and negative rotation, crop, as well as Gaussian noise, that we found to be the
most challenging valuemetric transformation in terms of disturbing the synchronization signal.

D.2 Audio Synchronization with Localized Audio Watermarking

As explained in Sec. 5, we attempted to use the localization property of AudioSeal (San Roman et al., 2024) for synchro-
nization similar to Sec. 3.2, but this approach proved less successful than with images. We describe below the method and
experiments supporting this claim and summarize the results in Fig. 9.

Synchronization approach and transformation detection. We use AudioSeal’s watermark embedder to embed water-
marks with a periodic mask pattern across the audio signal. This enables detection of transformations like time-stretching
and phase shifts through cross-correlation analysis. We applied a square wave template with periods of 6 frames, each frame
being 1920 samples at 24kHz, as in MIMI.

When audio undergoes transformations, the periodic pattern distorts predictably. Through cross-correlation between the
detection signal and template patterns, we can estimate the speedup factor (identified by the period maximizing cross-
correlation) and phase shift (located by finding optimal alignment). Once estimated, we can invert the transformation
by resampling to original speed and applying phase correction. More specifically, in our implementation, the detection
results are first downsampled by a factor of 8 and we sweep the template period from 0.5× to 1.5× the nominal half-period

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Watermarking Autoregressive Image Generation

(6 frames = 0.48s) in coarse steps of 10 samples, then refine over ±10 samples around the best match; this two-stage
cross-correlation yields precise estimates of speedup (from the best period) and phase shift, which are used to resample back
to 24kHz and correct the alignment.

Challenges and limitations. As shown in Fig. 9(c), the detection signal extracted from AudioSeal is not yet robust enough
for general use, as it fails to detect the watermark reliably after a speedup of 1.05×. Future work could explore more
sophisticated synchronization methods.

E Experimental Details

E.1 Omitted Details of Image RCC Evaluation and Finetuning

Here we provide more details on our RCC evaluation experiments shown above in Table 1 and details related to RCC
finetuning introduced in Sec. 3.1.

RCC evaluation. For Table 1, for simplicity, we re-use the watermarked BASE model of TAMING from our main
experiments. We confirmed that running the non-watermarked version results in very similar values. We use the full set of
valuemetric and geometric transformations as in the main experiments, and for each transformation use the same parameter
that was chosen for summarized scores in Table 2, as detailed below.

RCC finetuning. To complete our RCC finetuning description from Sec. 3.1 we provide the omitted details. The finetuning
is done for 10 epochs with distributed data parallel training on 16 V100 GPUs (TAMING, training takes 2h) and 8 H200
GPUs (CHAMELEON, training takes 2.5h). We use the Adam optimizer (Kingma & Ba, 2015) with a learning rate of
10−4, multiplied by a factor of 0.9 each epoch (StepLR). We use a total batch size across all GPUs of 64 (4 per gpu
for TAMING and 8 per gpu for CHAMELEON), and always set λ = 1. As noted above, we use a set of augmentations
A to improve robustness of our watermark to transformations and attacks. JPEG is not differentiable, therefore we
backpropagate only through the difference between the uncompressed and compressed images (straight-through estimator):
x′ = xaug + nograd(xaug,JPEG − xaug) (Yin et al., 2019; Zhang et al., 2021). We define three progressively harder sets:
A1, A2, A3, and use no augmentations for 1 epoch, then A1 for 1 epochs, then A2 for 4 epochs, and finally A3 for the last
4 epochs.

A1 consists of JPEG compression with qualities {90, 80, 70}, Gaussian blur with kernel sizes {1, 3}, Gaussian noise
with standard deviations {0.005, 0.01, 0.015, 0.02}, Brigthening with factors {1.0, 1.1, 1.2}, Rotation with angles {−1, 1}
degrees, and Cropping with percent kept from {80, 90}. A2 uses JPEG with qualities {80, 60, 40}, Gaussian blur with
kernel sizes {3, 5}, Gaussian noise with standard deviations {0.02, 0.04, 0.06}, Brigthening with factors {1.2, 1.3, 1.4},
Rotation with angles {−3,−2,−1, 1, 2, 3} degrees, and Cropping with percent kept from {50, 60, 70, 80, 90}. Finally, A3

uses JPEG with qualities {40, 30, 20}, Gaussian blur with kernel sizes {5, 7, 9}, Gaussian noise with standard deviations
{0.06, 0.08, 0.1}, Brigthening with factors {1.4, 1.7, 2.0}, and the same geometric augmentations as in A2.

E.2 Details of Main Experiments

We provide full details of our main experiments (Sec. 4.1 and Sec. 4.2), expanding on the information provided in the main
paper.

Models. For TAMING, we use the VQGAN IMAGENET (F=16), 16384 version available in the authors’ repository. For
CHAMELEON, we use the 7B model. Since the open-weight version does not include image generation capabilities (as
noted in the original paper), we obtained the necessary weights directly from the authors. Alternatively, image generation
with CHAMELEON can be approximated using the Anole model and its associated repository: https://github.com/
GAIR-NLP/anole, though we note that its output quality is somewhat lower.

Parameters. The results in Fig. 5, Fig. 6 and Table 2 are obtained from the same experiment, repeated on TAMING
and CHAMELEON. For TAMING we set δ = 2, γ = 0.25, h = 1 and evaluate (for each transformation/attack) on 1000
generations, 100 per each of the following ImageNet class indices: [1, 9, 232, 340, 568, 656, 703, 814, 937, 975]. For
CHAMELEON we set δ = 2, γ = 0.25, h = 0. We again use 1000 generations, conditioning the model on a text prompt
each time. Following the standard protocol in the literature (Ramesh et al., 2021; 2022; Rombach et al., 2022; Saharia
et al., 2022) we use the prompts from the validation set of MS-COCO (Lin et al., 2014). To do so, we first retrieve all the
captions from the validation set, keep only the first one for each image, and select the first 1000 (or 5000 when computing
FID for CHAMELEON). While we did not benchmark this in detail, the computational overhead of our watermark matches

21

https://github.com/GAIR-NLP/anole
https://github.com/GAIR-NLP/anole

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Watermarking Autoregressive Image Generation

that of the LLM watermarking scheme we inherit from and the localized watermark we use as the synchronization signal.
As discussed in Sec. 6 more thoroughly integrating these two components could also make our watermark more efficient.
A single run (e.g., BASE with all (augmentation, parameter) pairs detailed below on 1000 generations) with TAMING
was executed on 25 V100 GPUs, lasting ≈30 minutes for BASE, FT, FT+AUGS and ≈1.5h for FT+AUGS+SYNC. For
CHAMELEON, we use 10 H200 GPUs (50 for FT+AUGS+SYNC), taking similar time as for TAMING.

0 0.25 0.5
Green% of Alive Codes

0.00

0.25

0.50

0.75

1.00

P
ro

ba
bi

lit
y

Stratified

Not Stratified

Figure 10: When the number of alive codes nalive is
much smaller than the codebook size |V |, green/red
splits may not correspond to the expected ratio of γ. In
this figure, nalive = 12, |V | = 192, γ = 0.25. Stratifi-
cation, i.e., separate splitting of red and green tokens,
resolves this issue.

Split stratification. As noted in the literature (Esser et al., 2021;
Yu et al., 2021), trained VQGANs often suffer from low codebook
utilization, meaning that a certain percentage of the codebook is
effectively not used and those codes (dead codes) are in practice
never emitted by the transformer nor used when tokenizing images.
While later work addresses this issue (Zhu et al., 2024), the VQGAN
used in TAMING and in our experiments suffers from this issue and
has only 971 alive codes, despite the codebook size of 16384.

This can affect the soundness of the watermark. Namely, the null
hypothesis assumes that the ratio of green tokens in content produced
without the use of the model M is γ. However, if the number of alive
codes nalive is much smaller than the codebook size |V |, there is a non-
negligible chance that choosing the set of green tokens as a uniformly
random subset of |V | of size γ|V | results in significantly more or less
than γnalive alive green tokens. As these are the only tokens emitted
by the tokenizer in practice, the green ratio under the null hypothesis
can thus be significantly different from γ, making Eq. (2) inaccurate.
While for h > 0 we can hope that this effect averages out across
different contexts (as the expected alive green ratio is still γ), for h = 0 (fixed red/green split) this can introduce a constant
bias.

In particular, assume for simplicity that γ|V | and γnalive are both integers. The probability Pg that a uniformly random
split of |V | into γ|V | green and |V | − γ|V | red tokens results in exactly g green tokens among alive ones is not given by a
binomial distribution but by a hypergeometric distribution:

Pg(|V |, nalive, γ) =

(
γ|V |
g

)
·
(|V |−γ|V |

nalive−g

)(|V |
nalive

) . (10)

In Fig. 10 we plot the distribution of actual green ratios of green tokens, i.e., compute Pg(|V |, nalive, γ)/nalive for different
values of g, for |V | = 192, nalive = 12, γ = 0.25 (corresponding roughly to the ratio nalive/|V | of the VQGAN we use in
our experiments). We see (in red) that there is in fact only ≈25% chance that the green ratio among alive tokens is correctly
set to γ. To resolve this, for TAMING we use a stratified split, i.e., we separately sample a red/green split on alive and dead
codes, ensuring that the green ratio of alive tokens is exactly γ (green in Fig. 10).

An interesting question, to the best of our knowledge not explored before, is if similar effects can be observed in LLM
watermarking. For example, a uniformly random split of a large multilingual vocabulary may introduce a particularly biased
split on e.g., Cyrillic tokens, which are effectively the majority of the alive ones when the LLM is prompted to write in a
language that uses the Cyrillic script. Especially for h = 0, this may point at unfairness towards certain subdomains, where
for a particular subdomain the watermark is overly conservative or more importantly has a much higher FPR than stated
theoretically.

Image transformations. We next list all image transformations and their parameters used in our main experiments. We
evaluate 90 variants (the original image and 89 transformations described below) for each image, i.e., 90,000 images in total
per evaluation. For valuemetric transformations we use:

• Gaussian Blur: kernel sizes [0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19].

• Gaussian Noise: standard deviations [0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2].

• JPEG Compression: quality factors [100, 95, 85, 75, 65, 55, 45, 35, 25, 15, 5].

• Brighten: factors [1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3].

22

https://en.wikipedia.org/wiki/Hypergeometric_distribution

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Watermarking Autoregressive Image Generation

Original Gaussian Blur 9 Gaussian Noise 0.1 JPEG 25 Brighten 2

Rotation 10 HFlip 1 Crop 0.75 DiffPure 0.1 NC bmshj2018-factorized-q=3

Figure 11: Examples of transformations with parameters used to compute the scores in Table 2.

For geometric transformations we use:

• Rotation: angles [−20,−15,−10,−5, 0, 5, 10, 15, 20].

• Horizontal Flip: parameters [0, 1], where 1 indicates that a flip was performed.

• Crop: percent of the image kept [1.0, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5], where we crop from the top-left
corner of the image and then resize it back to the original size.

Finally, we use the following attacks:

• DiffPure: timesteps [0.01, 0.05, 0.1, 0.2, 0.3] with the 256× 256 ImageNet diffusion model used in the original attack
of Nie et al. (2022).

• Neural Compression: a range of 22 models with different quality factors; see details below.

The underlined values above correspond to transformations that do not change the image (showing the maximum of
robustness in each subplot of Fig. 6). The bold values are used to, following prior work (Wen et al., 2023), summarize
the results to a single score per transformation/attack type in Table 2, where we average the 4 valuemetric scores and 3
geometric scores independently. For neural compression we describe how we compute the score below. Visual examples of
each bold transformation/attack are shown on a real TAMING generation in Fig. 11.

Neural compression. For neural compression we use the following models from the CompressAI (Bégaint et al., 2020)
library:

• BMSHJ18 (FACTORIZED) (Ballé et al., 2018) with quality factors q ∈ {1, 3, 6}.

• BMSHJ18 (HYPERPRIOR) (Ballé et al., 2018) with quality factors q ∈ {1, 3, 6}.

• CSTK20 (ANCHOR) (Cheng et al., 2020) with quality factors q ∈ {1, 3, 6}.

• CSTK20 (ATTENTION) (Cheng et al., 2020) with quality factors q ∈ {1, 3, 6}.

• MBT18 (Minnen et al., 2018) with quality factors q ∈ {1, 3, 6}.

• MBT18 (SCALE) (Minnen et al., 2018) with quality factors q ∈ {1, 3, 6}.

To sort these by compression strength we compute bpp (bits per pixel) as done in the library:∑
i logLi

− ln 2 · npix
, (11)

where L is the likelihood vector and npix is the number of pixels in the image. Empirically we observe bpp of around 0.1
(q = 1), 0.3 (q = 3), and 1.0 (q = 6). When reporting a single score for neural compression we average the six scores with
q = 3. Additionally, we evaluate the following four autoencoders from the diffusers (von Platen et al., 2022) library for
which we compute bpp manually by considering the downscaling factor in the latent space, the latents size, and 16-bit/32-bit
floating precision. We see that our calculations are consistent with the results of neural compressors from CompressAI:

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Watermarking Autoregressive Image Generation

• The Stable Diffusion VAE (Rombach et al., 2022) (stabilityai/sd-vae-ft-ema; SD VAE (FT-EMA)), with
bpp 2.

• The Stable Diffusion XL VAE in half precision (Podell et al., 2024) (madebyollin/sdxl-vae-fp16-fix; SDXL
VAE (FP16)), with bpp 1.

• The Deep Compression AE (Chen et al., 2024) (mit-han-lab/dc-ae-f64c128-in-1.0-diffusers; DC-
AE), with bpp 1.

• The VAE of Flux (Labs, 2024) (from the black-forest-labs/FLUX.1-schnell pipeline; FLUX VAE), with
bpp 1.

E.3 Details of Audio Experiments

Audio prompt generation. We observed that MOSHI frequently generates brief responses and typically expects human
interaction to continue the conversation. When using conventional text prompts such as those from Alpaca (Taori et al.,
2023) or Open Assistant Conversations (Köpf et al., 2023) datasets, the model rarely produced audio outputs of sufficient
length (e.g., 10 seconds). We therefore synthesized specialized prompts designed for this particular use case. These prompts
are used when prompting the MOSHI model to generate (possibly watermarked) audio, such as in the experiments described
in Sec. 5 and App. C and F.7.

To create a diverse collection of audio monologue topics, we leveraged LLAMA 3.1-8B-INSTRUCT to generate 1000
unique text prompts. We guided the model using a system+user template to produce concise single-sentence requests
(each beginning with action verbs like “Describe”, “Talk about”, etc.) covering distinct subjects. We then filtered out
near-duplicates by calculating pairwise Rouge-L scores (Lin, 2004) (using a threshold of 0.7) and eliminated texts that
fell outside our desired length parameters. Representative examples include: “Describe the life cycle of a butterfly and the
symbolic meanings associated with it.”, “Explain the process of photosynthesis in plants and its importance to ecosystems.”,
or “Discuss the cultural significance of traditional Japanese tea ceremonies.”. Finally, we converted these text prompts
into audio using the SEAMLESSV2 (Barrault et al., 2023) (large) model, saving each resulting waveform alongside its
corresponding source prompt. The resulting audio prompts average approximately 4 seconds in length.

Audio transformations. We evaluate robustness to a set of audio edits grouped into valuemetric, time-frequency, and
neural compression transformations. When evaluating (e.g., in Table 3), each is applied with the following fixed strengths:

• Valuemetric:

– Bandpass Filter: (300,3000), (500,5000), (1000,8000) Hz.
– Highpass Filter: 100, 500, 1000 Hz.
– Lowpass Filter: 1000, 3000, 8000 Hz.
– Noise Injection (white): std = 0.001, 0.01, 0.05.
– Pink Noise: std = 0.01, 0.05, 0.1.
– Echo: (delay = 0.1 s, vol = 0.2), (0.3 s, 0.5), (0.5 s, 0.7).
– Smooth: window fraction = 0.001, 0.005, 0.01.
– Boost Audio: +50 %, +90 %.
– Duck Audio: −50 %, −90 %.
– MP3 Compression: bitrate = 16, 64, 128 kbps.

• Time-frequency:

– Speed: factor = 0.75, 0.9, 1.0, 1.1, 1.25.
– Temporal Crop: keep 50 %, 70 %, 90 % of duration.
– Time Shift: shift = 10 ms, 20 ms, 40 ms.
– Up/Down Resample: intermediate = 24 kHz, 36 kHz, 48 kHz.

• Neural Compression:

– DAC Compression (24 kHz): full model pass.
– EnCodec Compression (24 kHz): full model pass.

We use the same implementation as in AudioSeal (San Roman et al., 2024) when the augmentations are available. For
DAC (Kumar et al., 2023) and EnCodec (Défossez et al., 2022) we use the official models at 24 kHz. We also provide
examples of such augmentations in the supplementary material.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Watermarking Autoregressive Image Generation

RCC finetuning. We perform fine-tuning for 200 epochs with 1000 steps per epoch on batches of 64 audio clips of
10-seconds from VoxPopuli (Wang et al., 2021), using 2 H200 GPUs for 1 day. We use the AdamW optimizer (Kingma &
Ba, 2015) with a base learning rate of 2× 10−5, linear warmup over 5 epochs, and cosine annealing down to 2× 10−7. We
set λ to 0.01 for the regularization loss in the FT+AUGS model (with transformations), while using 0.001 in the FT model
(without transformations). This regularization loss is the Multi-Resolution STFT loss between the audios reconstructed
either with the original decoder D0 or the finetuned decoder D. Following notations from Sec. 3.1, the RCC-loss is the
MSE loss between z, the soft latents before the projection and quantization step, and z′, the soft latents generated by the
encoder replica E′. To improve robustness for the FT+AUGS model, we apply augmentations A from the start, sampling one
augmentation per batch. The augmentations are chosen randomly at each step, and the parameters are sampled uniformly
from the ranges below:

• Lowpass filter: cutoff 2000-6000 Hz
• Highpass filter: cutoff 200-600 Hz
• White noise injection: std 0.001-0.01
• Pink noise: std 0.001-0.01
• Smooth: window fraction 0.001-0.005
• Time shift: 0.3-10 ms

F Additional Experimental Results
In this section, we present additional experimental results: ablations of RCC fine-tuning (App. F.1), investigations of
different watermarking parameters (App. F.2), additional results for CHAMELEON on token match, watermark power, quality,
and robustness (App. F.3), evaluation of decoder quality via PSNR comparisons (App. F.4), validation of statistical test
correctness (App. F.5), comparison to generation-time watermarks (App. F.6), and omitted audio results (App. F.7).

F.1 Finetuning Ablations

We train five more finetunes of TAMING to test the influence of different parameters:

• λ = 10 uses a higher regularization weight, i.e., puts less weight on the RCC loss.

• λ = 0.1 uses a lower regularization weight, i.e., puts more weight on the RCC loss.

• lr = 10−5 uses a lower learning rate.

• lr = 10−3 uses a higher learning rate.

• FT+AUGS_ALL finetunes all components of the VQGAN, including the codebook.

The results are presented in Table 5 and visual examples in Fig. 12 where the first row shows a detokenized output and the
second row zooms in on the top-left 64× 64 pixel region. Our baseline here is our FT+AUGS variant (we do not consider
synchronization in this experiment). We see that increasing λ to 10 slightly degrades the results (likely within the level of
experimental noise) and reducing the learning rate reduces robustness. We also experimented with training for more epochs
with a lower learning rate, but this did not lead to better results than our best variant.

Table 5: TPR at 1% FPR of finetuning ablations on TAMING in the setting of Table 2. The ablations are described in App. F.1. Three of
the variants improve the results; however, Fig. 12 shows that they also lead to significant degradation in image quality.

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression

BASE 0.99 0.26 0.01 0.43 0.48
FT+AUGS 1.00 0.92 0.01 0.70 0.79

λ = 10 1.00 0.91 0.01 0.68 0.77
λ = 0.1 1.00 0.98 0.01 0.85 0.96
lr = 10−5 0.99 0.75 0.01 0.63 0.76
lr = 10−3 0.98 0.98 0.01 0.81 0.78
FT+AUGS_ALL 1.00 1.00 0.02 0.85 0.98

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Watermarking Autoregressive Image Generation

FT+Augs λ = 10 λ = 0.1 lr = 10−5 lr = 10−3 FT+Augs All

Figure 12: Visual examples of images produced by finetuning ablations introduced in App. F.1. The first row shows a detokenized image
(based on the same token sequence as we fix the seed) and the second row zooms in on the top-left 64× 64 pixel region to more clearly
show artifacts. We see that the λ = 0.1, α = 10−3, and FT+AUGS_ALL variants lead to significant degradation in image quality.

We also see that λ = 0.1, α = 10−3, and FT+AUGS_ALL lead to much better results. However, the visual results in Fig. 12
show that all three of these variants lead to degradation in image quality. For FT+AUGS_ALL this is the most evident, which
motivates our discussion above regarding the importance of carefully choosing which modules to finetune. The artifacts in
α = 10−3 clearly show that the learning rate is too high for stable training. For λ = 0.1 the artifacts are clearly visible in
the second row of the figure, showing that this setting puts too much weight on the RCC loss.

Training on transformer-generated tokens. Finally, we hypothesized that using token sequences generated by the
transformer as the training set instead of tokenizations of ImageNet images would improve finetuning, as the former more
closely matches the distribution of inputs that the detokenizer sees at evaluation time. Another experiment we tried was
using a mixture of these two token sequences. We did not observe any benefits of this approach.

F.2 Watermark Parameters

We summarize our takeaways from explorations of the main watermarking parameters: context size h, strength δ, green
ratio γ, the choice of watermark context, and the partitioning strategy.

For the context size h, we observed that h > 1 generally led to non-robust watermarks: we experimented with both h = 2
and h = 3 and both the standard choice of watermark context (preceding h tokens) and the image-specific one (the h
tokens spatially close, e.g., for h = 3 the tokens above the current token, to the left of it, and top-left of it in the image).
Even after RCC finetuning these variants had lower robustness than h ∈ {0, 1} even on BASE. This is in line with the
intuitive understanding of this parameter pointed out in prior work (Kirchenbauer et al., 2023; Zhao et al., 2023): large h
makes watermark removal easier, as changing any of the preceding h tokens changes the red/green split at the following
token. On the other hand, low h makes the watermark less secure, i.e., easier to forge. As noted above, we hypothesize that
h = 0 is a more viable choice for images, as reverse-engineering of the watermark rules (as successfully done for h = 0 in
text (Jovanović et al., 2024; Zhang et al., 2024c)) is likely much more difficult due to the complex image tokenizer being
hidden.

Increasing watermark strength δ led to either an increase in FID or visible artifacts, while reducing it sacrificed watermark
power. We found that δ = 2 is for both our models the strongest watermark that does not degrade quality. Our experiments
with δ = 4 increased FID by more than 2 points, while using δ = 1 significantly reduced watermark power. We found that
γ = 0.25 leads to slightly better tradeoffs than γ = 0.5.

Finally, we briefly experimented with a semantic partitioning strategy, related to similar attempts for LLMs (Hou et al.,
2023). In particular, instead of choosing green tokens G uniformly at random from the vocabulary at each partitioning step,
we use k-means clustering to partition the hard embeddings of each token in the vocabulary into k = 100 clusters and assign
colors such that all tokens in the same cluster have the same color, while keeping the overall green ratio at γ. In theory, this
should make the watermark more robust to modifications that do not change the semantics, as the resulting change in the
token would hopefully not leave the k-means cluster and thus remain green. On the other hand, it might make it harder for

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Watermarking Autoregressive Image Generation

0.0 0.2 0.4 0.6 0.8 1.0
Token Match

0.00

0.05

0.10

0.15

0.20

0.25

R
el

at
iv

e
F

re
qu

en
cy Base

FT

FT+Augs

FT+Augs+Sync

10−50 10−34 10−18 10−2

False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
it

iv
e

R
at

e

Figure 13: Token match and watermark power results for CHAMELEON. Left: Finetuning improves token match (Eq. (3)) between
original and re-tokenized image tokens. Right: All variants achieve TPR ≈1 at FPR of 1%. Finetuning further boosts detection in
low-FPR settings.

1 4 7 10 13 16 19
Gaussian Blur [kernel size]

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

0.00 0.05 0.10 0.15 0.20
Gaussian Noise [stddev]

90 70 50 30 10
JPEG Compression [quality]

1.0 1.5 2.0 2.5 3.0
Brighten [factor]

20100−10−20
Rotation [angle]

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

0 1
Horizontal Flip [is flipped]

100 90 80 70 60 50
Crop [percent kept]

0.0 0.1 0.2 0.3
DiffPure [timestep]

2.0 1.5 1.0 0.5 0.0
Neural Compression [bpp]

FLUX VAE

SD VAE (ft-EMA)

SDXL VAE (fp16)

DC-AE

MBT18

MBT18 (Scale)

CSTK20 (Anchor)

CSTK20 (Attention)

BMSHJ18 (Factorized)

BMSHJ18 (Hyperprior)

Base FT FT+Augs FT+Augs+Sync

Figure 14: Robustness results for CHAMELEON, analogous to Fig. 6. Top: RCC finetuning improves robustness to valuemetric
transformations. Bottom Left: Watermark synchronization unlocks robustness to geometric transformations. Bottom Right: Our
watermark is also fairly robust to realistic strengths of diffusion purification and neural compression.

the decoding-time watermark to replace a green token with a red one, as all tokens from the same k-means cluster, which
may be good alternatives, are also red. In practice, we consistently observed higher robustness but at the cost of significant
quality degradation. More work is needed to understand how to find a good tradeoff with this approach.

F.3 Extended Results for CHAMELEON

In Fig. 13 we present token match and watermark power results for CHAMELEON, complementing the TAMING results
presented above in Fig. 5. Similarly, in Fig. 14 we present robustness results for CHAMELEON, similar to those in Fig. 6.

Additionally, we report FID results on CHAMELEON using 50,000 images as for TAMING, this time 10 independent
generations per each of the 5000 COCO validation prompts (see App. E.2). As for TAMING we find that none of BASE, FT,
or FT+AUGS exceed the unwatermarked FID of 19.7, which in this case also holds for FT+AUGS+SYNC2.

F.4 Evaluation of the Decoder’s Quality

While FID assesses the quality of the generative model by comparing distributions of generated and real images, it does
not allow direct comparison between individual images. In our case, however, we have access to both the original and
fine-tuned decoders, enabling a more targeted evaluation of how fine-tuning affects the decoded outputs. To this end, we
compute the average PSNR over 1000 image pairs as a direct measure of image-level similarity. In each pair, one image is
decoded using the decoder from BASE, and the other using the decoder from FT or FT+AUGS, or using both the decoder

2For both models, we also visually confirm the quality of the generated images and the intensity of the diffs induced by the
watermark—see App. G for examples.

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Watermarking Autoregressive Image Generation

0.0 0.5 1.0
Total Image Tokens [Millions]

0.00

0.25

0.50

0.75

1.00

p-
va

lu
e

0.0 0.5 1.0
Total Image Tokens [Millions]

0.00

0.25

0.50

0.75

1.00

p-
va

lu
e

Figure 16: Left: On extremely long token sequences, the p-values on unwatermarked data increase as the real expected green ratio
γ′ = 242/971 is slightly below γ = 0.25 used in the test, making the test sound but overly conservative. Right: Using γ′ in the test
rectifies this, and p-values behave as expected.

and synchronization step from FT+AUGS+SYNC. For TAMING, we obtain an average PSNR of 52.5 for FT, 49.7 for
FT+AUGS, and 37.6 for FT+AUGS+SYNC. For CHAMELEON, the average PSNR is 56.1 for FT, 48.0 for FT+AUGS, and
39.5 for FT+AUGS+SYNC.

F.5 Empirical Validation of Statistical Test Correctness

0.00 0.25 0.50 0.75 1.00
p-value

0.00

0.02

0.04

0.06

R
el

at
iv

e
F

re
qu

en
cy

Figure 15: The distribution of p-values on unwater-
marked images.

We empirically validate the correctness of our statistical test by com-
puting p-values of our watermark detector on unwatermarked images.
In Fig. 15 we show the distribution of such p-values on 50,000 unwa-
termarked images generated with the base model of TAMING, using
the corresponding watermark (γ = 0.25, h = 1) across 10 different
random seeds for the watermark. We observe that the distribution is
roughly uniform; this holds also for each individual seed.

We push this investigation further by running our watermark detector
on huge token sequences, as in Sander et al. (2024), despite those not
being crucial to our usecase. Namely, for 10 random seeds, we 10
times independently concatenate 50,00 images to obtain a sequence
of above 1M tokens, and compute the p-value on prefixes of this sequence of increasing length. We show the results in
Fig. 16 (left, mean and standard deviation over 100 runs described above). Interestingly, while we would expect convergence
around 0.5, the p-values of extremely long token sequences become as high as 0.8.

The reason for this is the relationship between the effective vocabulary size (i.e., the set of alive codes, see App. E)
nalive = 971 and the watermark parameter γ = 0.25. Specifically, as the number of green tokens γ · nalive = 242.75 in the
vocabulary assumed by our test (Eq. (2)) is not an integer (which is never an issue for common values of |V | and γ in the
literature), we chose to conservatively select 242 green tokens. This keeps the statistical test sound as the real expected
green ratio γ′ = 242/971 ≈ 0.2492 is smaller than γ = 0.25, but may sacrifice some power. To further confirm that this
is the main cause for the observed behavior, we repeat the experiment using γ′ instead of γ in Eq. (2) and present the
results in Fig. 16 (right). We observe that the p-values now converge to slightly below 0.5, which matches results in prior
work (Sander et al., 2024).

F.6 Comparison to Generation-time Watermarks

In Table 6 we present results on generation-time watermarks for image models. As no prior
work studies autoregressive models, we show results for diffusion models. In particular, we study
stabilityai/stable-diffusion-2-1-base (Rombach et al., 2022). For TREE-RING (Wen et al., 2023) we
use the official implementation and set the watermark pattern to ring, w_channels to 3 and use 50 inference steps
for generation and testing. For STABLE SIGNATURE (Fernandez et al., 2023b) we use the official implementation and
set unconditional_guidance_scale to 9, steps to 50, and use PLMSSampler with ddim_eta set to 0. For
GAUSSIAN SHADING (Yang et al., 2024) we use the official implementation, enable chacha_encryption, set the

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

Watermarking Autoregressive Image Generation

Table 6: TPR at 1% FPR of different generation-time baselines. As these methods are not applicable to autoregressive image generation
models, we show results on the stabilityai/stable-diffusion-2-1-base diffusion model. The transformations and attacks
are the same as in Table 2

None Valuemetric Geometric
Adversarial
Purification

Neural
Compression

STABLE SIGNATURE (FERNANDEZ ET AL., 2023B) 1.00 0.71 0.71 0.39 0.54
TREE-RING (WEN ET AL., 2023) 1.00 0.89 0.36 0.81 0.85
GAUSSIAN SHADING (YANG ET AL., 2024) 1.00 1.00 0.01 1.00 1.00

number of inference steps for generation and inversion to 50 and the number of bits to 256 with channel_copy set to 1
and hw_copy to 8.

We observe that each watermark is either fragile to geometric transformations or to adversarial purification and neural
compression.

F.7 Omitted Audio Results

RCC finetuning. We presented in App. E.3 the details of our finetuning approach. Here we discuss the validation metrics
and demonstrate how finetuning influences RCC and token match. We first evaluate the perceived audio quality of the
generated samples using the PESQ and STOI metrics. After finetuning, we achieve a PESQ (Rix et al., 2001) score of 4.3
for both FT and FT+AUGS when compared to BASE samples. STOI (Taal et al., 2010) scores reach 0.98 for FT and 0.99
for FT+AUGS (we fixed the audio regularization loss weight to maintain approximately similar values for both approaches).
The resulting audio is very hard to discriminate from the original, although we observe that it sometimes lead to light
humming artifacts (see the audios in the supplementary material).

RCC and TM results are presented in Fig. 17. We observe significant token match improvements after finetuning when
considering sequences of tokens generated by reconstructing 10-seconds VoxPopuli audios with the MIMI tokenizer.
However, the finetuning process does not substantially improve token match for sequences generated by the MOSHI model
with audio prompts. This may explain why finetuning does not significantly enhance watermark power for the MOSHI model,
as observed in Table 3 of Sec. 5. A potential approach for improving watermark TPR would be to specifically finetune the
model on generated sequences, which we leave for future work. (We attempted this approach for images but did not observe
significant improvements, see App. F.1 for details.)

Detailed robustness results. In Table 3 of the main paper, we report the average TPR at 1% FPR over multiple audio-
specific augmentations. Table 7 provides the TPR for each individual augmentation that contributes to these averages,
with a detailed view of how each transformation impacts watermark robustness. Table 7 also reports TPRs for different δ
values. For instance, increasing δ to 4.0 pushes TPR above 0.9 across most augmentations, but the resulting audio quality
deteriorates noticeably compared to lower-strength settings (see the audios in the supplementary material).

Qualitative results. We provide in the supplementary material some audios corresponding to the prompts that were used
for MOSHI, as well as MOSHI’s completions when using BASE, FT, FT+AUGS, and for different values of δ.

0.2 0.4 0.6
Token Match (Mimi-generated Sequences)

0.00

0.05

0.10

0.15

R
el

at
iv

e
F

re
qu

en
cy

0.2 0.4 0.6
Token Match (Moshi-generated Sequences)

0.00

0.05

0.10

0.15

R
el

at
iv

e
F

re
qu

en
cy

Base

FT

FT+Augs

Figure 17: Token match histograms for sequences generated with MIMI (left) and MOSHI (right). We observe substantial consistency
gains for MIMI-generated sequences and minimal change for MOSHI-generated ones.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

Watermarking Autoregressive Image Generation

Table 7: TPR at 1% FPR for the different tokenizer models, watermarking at different values for δ and different augmentation strengths.
Audios are generated with MOSHI using the prompts described in App. E.3.

δ = 0.5 δ = 2.0 δ = 4.0

Transformation BASE FT
FT+

AUGS BASE FT
FT+

AUGS BASE FT
FT+

AUGS

Identity
Identity 0.0 0.31 0.57 0.46 0.98 0.99 0.99 0.99 0.99 0.99

Time-frequency
Speed 0.75 0.06 0.04 0.05 0.09 0.03 0.08 0.19 0.07 0.17
Speed 0.9 0.07 0.07 0.08 0.27 0.20 0.30 0.63 0.49 0.70
Speed 1.1 0.04 0.03 0.04 0.21 0.06 0.20 0.59 0.14 0.55
Speed 1.25 0.02 0.01 0.02 0.09 0.02 0.07 0.26 0.04 0.19
Crop 0.5 0.06 0.04 0.06 0.24 0.15 0.23 0.49 0.28 0.46
Crop 0.7 0.06 0.05 0.07 0.30 0.19 0.33 0.59 0.35 0.54
Crop 0.9 0.07 0.05 0.08 0.37 0.21 0.36 0.69 0.40 0.63
Shift 10.0 0.09 0.09 0.14 0.56 0.33 0.80 0.91 0.68 0.97
Shift 20.0 0.06 0.04 0.03 0.26 0.12 0.11 0.65 0.32 0.30
Shift 40.0 0.06 0.08 0.03 0.17 0.24 0.12 0.48 0.64 0.39

Valuemetric
Bandpass (1000, 8000) 0.03 0.04 0.16 0.10 0.15 0.45 0.28 0.38 0.85
Bandpass (300, 3000) 0.15 0.15 0.18 0.66 0.69 0.95 0.92 0.92 0.98
Bandpass (500, 5000) 0.10 0.17 0.18 0.45 0.53 0.94 0.83 0.85 0.98
Boost 50 0.37 0.27 0.22 0.98 0.98 0.97 0.98 0.99 0.98
Boost 90 0.21 0.19 0.14 0.96 0.93 0.88 0.98 0.98 0.98
Duck 50 0.14 0.15 0.12 0.81 0.84 0.81 0.98 0.98 0.97
Duck 90 0.11 0.09 0.14 0.48 0.30 0.58 0.83 0.63 0.90
Echo (0.1, 0.2) 0.12 0.20 0.13 0.87 0.97 0.93 0.98 0.99 0.98
Echo (0.3, 0.5) 0.05 0.09 0.07 0.55 0.79 0.60 0.89 0.97 0.93
Echo (0.5, 0.7) 0.04 0.05 0.04 0.38 0.56 0.40 0.77 0.91 0.79
Highpass 100 0.27 0.49 0.40 0.98 0.99 0.99 0.98 0.99 0.99
Highpass 1000 0.02 0.07 0.11 0.09 0.44 0.42 0.23 0.80 0.81
Highpass 500 0.04 0.16 0.19 0.32 0.81 0.95 0.80 0.98 0.98
Lowpass 1000 0.00 0.01 0.01 0.07 0.07 0.06 0.27 0.23 0.22
Lowpass 3000 0.33 0.34 0.39 0.97 0.98 0.98 0.99 0.98 0.99
Lowpass 8000 0.31 0.40 0.46 0.98 0.99 0.99 0.99 0.99 0.99
MP3 128 0.28 0.48 0.44 0.97 0.99 0.98 0.99 0.99 0.99
MP3 16 0.30 0.32 0.25 0.97 0.98 0.98 0.99 0.99 0.99
MP3 64 0.27 0.43 0.43 0.97 0.99 0.99 0.98 0.99 0.99
Noise 0.001 0.24 0.04 0.47 0.97 0.38 0.99 0.98 0.72 0.99
Noise 0.01 0.03 0.01 0.31 0.50 0.01 0.98 0.86 0.01 0.98
Noise 0.05 0.05 0.00 0.04 0.17 0.00 0.29 0.39 0.00 0.63
Pink 0.01 0.24 0.49 0.43 0.97 0.98 0.99 0.98 0.98 0.99
Pink 0.05 0.17 0.18 0.32 0.97 0.97 0.98 0.98 0.98 0.98
Pink 0.1 0.07 0.06 0.14 0.93 0.80 0.96 0.97 0.96 0.97
Smooth 0.001 0.06 0.04 0.10 0.44 0.24 0.79 0.83 0.52 0.96
Smooth 0.005 0.01 0.00 0.10 0.02 0.01 0.58 0.07 0.01 0.90
Smooth 0.01 0.01 0.01 0.07 0.02 0.02 0.38 0.04 0.03 0.76
UpDown Res. 24000 0.31 0.57 0.46 0.98 0.99 0.99 0.99 0.99 0.99
UpDown Res. 36000 0.30 0.52 0.46 0.98 0.99 0.99 0.99 1.00 0.99
UpDown Res. 48000 0.31 0.52 0.46 0.98 0.99 0.99 0.99 1.00 0.99

Neural Compression
DAC 0.0 0.24 0.17 0.38 0.97 0.96 0.99 0.98 0.98 0.99
EnCodec 0.0 0.07 0.06 0.09 0.62 0.55 0.69 0.91 0.91 0.94

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

Watermarking Autoregressive Image Generation

G Qualitative Examples
In Fig. 18 and Fig. 19 we show qualitative examples of our watermark on images generated by TAMING (resp. CHAMELEON)
and the post-hoc baselines previously evaluated in Sec. 4.2.

Border Collie Goldfish Lakeside

BASE

FT

FT+AUGS

FT+AUGS+SYNC

Original

CIN

MBRS

TRUSTMARK

WAM

Figure 18: Qualitative results on TAMING with samples from 3 of the ImageNet-1k classes. The left column shows the images and the
right column the diffs. For variants of our watermark (top) the diff is computed w.r.t. the BASE decoder (as there is no notion of an original
unwatermarked image). For post-hoc baselines (bottom) the diff is computed w.r.t. the original image. All diffs are displayed with the
same postprocessing applied for visibility, namely clip(|a− b| · 30, 0, 255), where a and b are pixel values of the two images in [0, 255].

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

Watermarking Autoregressive Image Generation

This large pizza has a lot
of cheese and tomato sauce

A vase filled with
yellow and white flowers

The elephant is standing alone
outside by the trees

BASE

FT

FT+AUGS

FT+AUGS+SYNC

Original

CIN

MBRS

TRUSTMARK

WAM

Figure 19: Qualitative results on CHAMELEON with 3 COCO validation prompts. The left column shows the images and the right
column the diffs. For variants of our watermark (top) the diff is computed w.r.t. the BASE decoder (as there is no notion of an original
unwatermarked image). For post-hoc baselines (bottom) the diff is computed w.r.t. the original image. All diffs are displayed with the
same postprocessing applied for visibility, namely clip(|a− b| · 30, 0, 255), where a and b are pixel values of the two images in [0, 255].

H On Joint Watermarking of Interleaved Modalities
In this section, we extend our discussion on joint watermarking of interleaved modalities from Sec. 4.3, provide omitted
experimental details, and present extended experimental results.

Experimental details. We query CHAMELEON with 1000 prompts, each generated from one of ImageNet-1K classes,
asking the model to teach the user about the notion represented by the class label and illustrate it. We use γ = 0.25 and set
h = 0 for images and h = 1 for text. Two example interactions are shown in App. H.1. For text corruption we explore
percentages in [0, 60]. For Gaussian noise corruption of images, we use σ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}.

Full experimental results. Extended results are shown in Fig. 20. We observe that for high-quality images where the
watermark signal is preserved, joint detection is always beneficial, while for highly corrupted images, it almost never is.
Between these two, joint detection becomes beneficial starting from some text corruption level. The intuitive understanding
is that joint detection that integrates a better quality signal is always beneficial. Perhaps unexpectedly, it can be also
beneficial when signal is of slightly lower quality if it sufficiently increases the number of tokens. This is important as a
single image consists of a large number of tokens, in particular 1024 for CHAMELEON, while the average text length in our
experiment is ≈227.

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

Watermarking Autoregressive Image Generation

0 1 2 3 4 5 6 7 8 9
Number of Tokens [thousands]

0.00

0.02

0.04

0.06

0.08

0.10

p-
va

lu
e

30% Green

29% Green

28% Green

27% Green

26% Green

262830
%Green in Text

0.0

0.1

0.2

0.3

0.4

0.5

p-
va

lu
e

Text-only

Joint (Image 28% Green)

Joint (Image 27% Green)

Joint (Image 26% Green)

Joint (Image 25% Green)

Figure 21: Left: Using more tokens at the same green token ratio reduces the p-value. As two orange crosses show, using 5× more tokens
(500 → 2500) can improve the p-value even if the green ratio drops (28% → 27%). Right: Simulated results similar to those in Fig. 7.
Both axes are flipped to match Fig. 7: moving on the x-axis reduces the % of green tokens in text (weaker signal) and moving on the
y-axis reduces the p-value (stronger detection). As images carry many tokens, merging e.g., text with 28% green tokens with an image
with 26% green tokens still improves detection.

0 10 20 30 40 50 60
% of Corrupted Text Tokens

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R
@

1%

Text-only

Joint (σ = 0)

Joint (σ = 0.05)

Joint (σ = 0.1)

Joint (σ = 0.15)

Joint (σ = 0.2)

Joint (σ = 0.25)

Joint (σ = 0.3)

Figure 20: Full results on joint watermark
detection, extending the results in Fig. 7.

When is joint detection beneficial? First, to elaborate on our claim from the
main paper that scoring more equally watermarked tokens improves power, we
plot the p-value of the watermark detection as a function of token length for a
fixed green ratio S/(T − h) (Fig. 21, left). For each line, increasing the number
of tokens can rapidly improve the detection p-value. To illustrate the point made
above that increasing the number of tokens can be beneficial even if the green
ratio drops, note the two orange crosses. Increasing the number of tokens fivefold
(500 → 2500) while reducing the green ratio from 28% to 27% has still dropped
the p-value from around 0.06 to almost 0.01 which for FPR of 1% is the passing
threshold.

Rounding the average text length in our experiment to 256, the fivefold increase is
exactly the average case that we observed (256 → 1024 + 256). We simulate this
case (a join of 256 text and 1024 image tokens) while fixing the green ratio for
both modalities. Our results in Fig. 21 (right) show a similar trend as in our above
experiment on real data. For example, merging text with 28% green tokens with an image with only 26% green tokens still
improves the p-value.

These results illustrate the benefits of watermarking modalities jointly. In contrast, if text and images were watermarked
separately, to reject the null hypothesis of this article was not generated by my model M in a statistically sound way, we
would need to take the maximum of the p-values of the two individual tests, i.e., the improvements seen above would not be
possible.

Outlook. We hope this preliminary investigation opens the door to more detailed studies of cross-modal watermarking in
future work. Other interesting questions include the comparison of the impact of different transformations/attacks on the
watermark across modalities, or the relationship between using more tokens from the same modality (when possible)and
from a new modality. Intuitively, as modality-specific vocabularies are disjoint, for already long sequences the former (same
modality) may have a higher chance of introducing many duplicate tokens, which do not affect the p-value. On the other
hand, the probability of duplicates within a sample may be higher for some modalities: in the first example in App. H.1, the
image mostly consists of duplicate white tokens.

H.1 Example Interactions

We show two interactions with CHAMELEON from our joint watermark experiment (Sec. 4.3), along with the corresponding
watermark detection results. In the detector view, for both modalities, denotes tokens scored green, denotes tokens
scored red, and those ignored due to duplication (e.g., white visual tokens in the first example, we use gray for visibility).

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

Watermarking Autoregressive Image Generation

User Prompt

I am wondering about the following: acoustic guitar. Can you teach me something about it in a way that is easy to understand and also
generate a picture of it?

Chameleon

Certainly, I’d be happy to help!

The acoustic guitar, as shown in the image below, is a popular instrument for playing music. It is made of a wooden body, a neck, and
strings that are plucked or strummed to produce sound. The sound of an acoustic guitar is created by the vibrations of the strings, which
are then amplified by the body of the guitar.

Watermark Detector (p = 1.7 · 10−16)

Certainly, I’d be happy to help!

The acoustic guitar, as shown in the image below, is a popular instrument for playing music. It is made of a wooden body, a neck, and
strings that are plucked or strummed to produce sound. The sound of an acoustic guitar is created by the vibrations of the strings, which
are then amplified by the body of the guitar.

34

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

Watermarking Autoregressive Image Generation

User Prompt

I am wondering about the following: thatch. Can you teach me something about it in a way that is easy to understand and also generate a
picture of it?

Chameleon

Sure! Thatch refers to the plant material used to cover roofs and walls in traditional or indigenous architecture. It is made from various types
of grasses, leaves, or other vegetation. Here is an image of an example of thatch, used as roofing material in the construction of this house

.Thatch is often made from locally available resources, such as reeds, rushes, or grasses, and is often woven or tied together to create a
durable and effective roofing material. It requires regular maintenance to keep it in good condition and can last for many years with proper
care. In some areas, thatch is still used today as a traditional building material, while in others, it has been largely replaced by modern
roofing systems.

Watermark Detector (p = 1.2 · 10−34)

Sure! Thatch refers to the plant material used to cover roofs and walls in traditional or indigenous architecture. It is made from various types
of grasses, leaves, or other vegetation. Here is an image of an example of thatch, used as roofing material in the construction of this house

.Thatch is often made from locally available resources, such as reeds, rushes, or grasses, and is often woven or tied together to create a
durable and effective roofing material. It requires regular maintenance to keep it in good condition and can last for many years with proper
care. In some areas, thatch is still used today as a traditional building material, while in others, it has been largely replaced by modern roof
ing systems.

35

	Introduction
	Background and Related Work
	Watermarking Autoregressive Image Generation
	Finetuning for Reverse Cycle-consistency
	Post-hoc Watermark Synchronization

	Experimental Evaluation
	RCC, Watermark Power and Quality
	Watermark Robustness
	Joint Watermarking of Interleaved Modalities

	Extension to Additional Modalities: Audio Case Study
	Conclusion and Limitations
	Ethical Statement
	Societal Impact
	Environmental impact

	Technical Details of LLM Watermarking
	More on Reverse Cycle-consistency
	RCC in Text Tokenizers
	RCC in Audio Tokenizers
	Related Concepts

	More on Watermark Synchronization
	Image Synchronization Details
	Audio Synchronization with Localized Audio Watermarking

	Experimental Details
	Omitted Details of Image RCC Evaluation and Finetuning
	Details of Main Experiments
	Details of Audio Experiments

	Additional Experimental Results
	Finetuning Ablations
	Watermark Parameters
	Extended Results for Chameleon
	Evaluation of the Decoder's Quality
	Empirical Validation of Statistical Test Correctness
	Comparison to Generation-time Watermarks
	Omitted Audio Results

	Qualitative Examples
	On Joint Watermarking of Interleaved Modalities
	Example Interactions

