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Abstract

Recently, generative graph models have shown promising results in learning graph1

representations through self-supervised methods. However, most existing gener-2

ative graph representation learning (GRL) approaches rely on random masking3

across the entire graph, which overlooks the entanglement of learned representa-4

tions. This oversight results in non-robustness and a lack of explainability. Fur-5

thermore, disentangling the learned representations remains a significant challenge6

and has not been sufficiently explored in GRL research. Based on these insights,7

this paper introduces DiGGR (Disentangled Generative Graph Representation8

Learning), a self-supervised learning framework. DiGGR aims to learn latent9

disentangled factors and utilizes them to guide graph mask modeling, thereby10

enhancing the disentanglement of learned representations and enabling end-to-end11

joint learning. Extensive experiments on 11 public datasets for two different graph12

learning tasks demonstrate that DiGGR consistently outperforms many previous13

self-supervised methods, verifying the effectiveness of the proposed approach.14

1 Introduction15

Self-supervised learning (SSL) has received much attention due to its appealing capacity for learning16

data representation without label supervision. While contrastive SSL approaches are becoming17

increasingly utilized on images [Chen et al., 2020] and graphs [You et al., 2020], generative SSL has18

been gaining significance, driven by groundbreaking practices such as BERT for language [Devlin19

et al., 2018], BEiT [Bao et al., 2021], and MAE [He et al., 2022a] for images. Along this line, there is20

a growing interest in constructing generative SSL models for other modalities, such as graph masked21

autoencoders (GMAE). Generally, the fundamental concept of GMAE [Tan et al., 2022] is to utilize22

an autoencoder architecture to reconstruct input node features, structures, or both, which are randomly23

masked before the encoding step. Recently, various well-designed GMAEs have emerged , achieving24

remarkable results in both node classification and graph classification [Hou et al., 2022, Tu et al.,25

2023, Tian et al., 2023].26

Despite their significant achievements, most GMAE approaches typically treat the entire graph as27

holistic, ignoring the graph’s latent structure. As a result, the representation learned for a node tends28

to encapsulate the node’s neighborhood as a perceptual whole, disregarding the nuanced distinctions29

between different parts of the neighborhood [Ma et al., 2019, Li et al., 2021, Mo et al., 2023].30

For example, in a social network G, individual n is a member of both a mathematics group and31

several sports interest groups. Due to the diversity of these different communities, she may exhibit32

different characteristics when interacting with members from various communities. Specifically,33

the information about the mathematics group may be related to her professional research, while the34

information about sports clubs may be associated with her hobbies. However, the existing approach35

overlooks the heterogeneous factors of node n, failing to identify and disentangle these pieces of36
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Figure 1: The number of latent factors is set to 4. In Fig. 1(a), the probabilities of nodes belonging
to different latent groups are similar, resulting in nodes of the same type being incorrectly assigned to
different factors. In contrast, Fig. 1(b) shows that the probabilities of node-factor affiliation are more
discriminative, correctly categorizing nodes of the same type into the same latent group.

information effectively [Hou et al., 2022]. Consequently, the learned features may be easily influenced37

by irrelevant factors, resulting in poor robustness and difficulty in interpretation.38

To alleviate the challenge described above, there is an increasing interest in disentangled graph39

representation learning [Bengio et al., 2013, Li et al., 2021, Ma et al., 2019, Mo et al., 2023, Xiao40

et al., 2022], which aims at acquiring representations that can disentangle the underlying explanatory41

factors of variation in the graph. Specifically, many of these methods rely on a latent factor detection42

module, which learns the latent factors of each node by comparing node representations with various43

latent factor prototypes. By leveraging these acquired latent factors, these models adeptly capture44

factor-wise graph representations, effectively encapsulating the latent structure of the graph. Despite45

significant progress, few studies have endeavored to adapt these methods to to generative graph46

representation learning methods, such as GMAE. This primary challenge arises from the difficulty of47

achieving convergence in the latent factor detection module under the generative training target, thus48

presenting obstacles in practical implementation. As shown in Fig.1(a), directly applying the previous49

factor learning method to GMAE would make the factor learning module difficult to converge,50

resulting in undistinguished probabilities and misallocation of similar nodes to different latent factor51

groups.52

To address these challenges, we introduce Disentangled Generative Graph Representation Learning53

(DiGGR), a self-supervised graph generation representation learning framework. Generally speaking,54

DiGGR learns how to generate graph structures from latent disentangle factors z and leverages this to55

guide graph mask reconstruction, while enabling end-to-end joint learning. Specifically, i) To capture56

the heterogeneous factors in the nodes, we introduce the latent factor learning module. This module57

models how edges and nodes are generated from latent factors, allowing graphs to be factorized into58

multiple disentangled subgraphs. ii) To learn a deeper disentangled graph representation, we design a59

factor-wise self-supervised graph representation learning framework. For each subgraph, we employ60

a distinct masking strategy to learn an improved factor-specific graph representation. Evaluation61

shows that the proposed framework can achieve significant performance enhancement on various62

node and graph classification benchmarks.63

The main contributions of this paper can be summarized as follows:64

• We utilized the latent disentangled factor to guide mask modeling. A probabilistic graph65

generation model is employed to identify the latent factors within a graph, and it can be66

jointly trained with GMAE through variational inference.67

• Introducing DiGGR (Disentangled Generative Graph Representation Learning) to further68

capture the disentangled information in the latent factors, enhancing the disentanglement of69

the learned node representations.70

• Empirical results show that the proposed DiGGR outperforms many previous self-supervised71

methods in various node- and graph-level classification tasks.72

2 Related works73

Graph Self-Supervised Learning: Graph SSL has achieved remarkable success in addressing label74

scarcity in real-world network data, mainly consisting of contrastive and generative methods. Con-75
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trastive methods, includes feature-oriented approaches[Hu et al., 2019, Zhu et al., 2020, Veličković76

et al., 2018], proximity-oriented techniques [Hassani and Khasahmadi, 2020, You et al., 2020], and77

graph-sampling-based methods [Qiu et al., 2020]. A common limitation across these approaches78

is their heavy reliance on the design of pretext tasks and augmentation techniques. Compared to79

contrastive methods, generative methods are generally simpler to implement. Recently, to tackle the80

challenge of overemphasizing neighborhood information at the expense of structural information81

[Hassani and Khasahmadi, 2020, Veličković et al., 2018], the Graph Masked Autoencoder (GMAE)82

has been proposed. It applies a masking strategy to graph structure [Li et al., 2023a], node attributes83

[Hou et al., 2022], or both [Tian et al., 2023] for representation learning. Unlike most GMAEs, which84

employ random mask strategies, this paper builds disentangled mask strategies.85

Disentangled Graph Learning: Disentangled representation learning aims to discover and isolate86

the fundamental explanatory factors inherent in the data [Bengio et al., 2013]. Existing efforts in87

disentangled representation learning have primarily focused on computer vision [Higgins et al.,88

2017, Jiang et al., 2020]. Recently, there has been a surge of interest in applying these techniques89

to graph-structured data [Li et al., 2021, Ma et al., 2019, Mercatali et al., 2022, Mo et al., 2023].90

For example, DisenGCN [Ma et al., 2019] utilizes an attention-based methodology to discriminate91

between distinct latent factors, enhancing the representation of each node to more accurately reflect92

its features across multiple dimensions. DGCL [Li et al., 2021] suggests learning disentangled93

graph-level representations through self-supervision, ensuring that the factorized representations94

independently capture expressive information from various latent factors. Despite the excellent results95

achieved by the aforementioned methods on various tasks, these methods are difficult to converge96

in generative graph SSL, as we demonstrated in the experiment of Table.3. Therefore, this paper97

proposes a disentangled-guided framework for generative graph representation learning, capable of98

learning disentangled representations in an end-to-end self-supervised manner.99

3 Proposed Method100

In this section, we propose DiGGR (Disentangled Generative Graph Representation Learning) for101

self-supervised graph representation learning with mask modeling. The framework was depicted102

in Figure 2, comprises three primary components: Latent Factor Learning (Section 3.2), Graph103

Factorization (Section 3.2) and Disentangled Graph Masked autoencder (Section 3.3). Before104

elaborating on them, we first show some notations.105

3.1 Preliminaries106

A graph G can be represented as a multi-tuple G = {V,A,X} with N nodes and M edges, where107

|V | = N is the node set, |A| = M is the edge set, and X ∈ RN×L is the feature matrix for N108

nodes with L dimensional feature vector. The topology structure of graph G can be found in its109

adjacency matrix A ∈ RN×N . z ∈ RN×K is the latent disentangled factor matrix, and K is the110

predefined factor number. Since we aim to obtain the z to guide the mask modeling, we first utilize a111

probabilistic graph generation model to factorize the graph before employing the mask mechanism.112

Given the graph G, it is factorized into {G1, G2, ..., GK}, and each factor-specific graph Gk consists113

of its factor-specific edges A(k), node set V (k) and node feature matrix X(k). Other notations will be114

elucidated as they are employed.115

3.2 Latent Factor Learning116

In this subsection, we describe the latent factor learning method. In this phase, our objective is to117

derive factor-specific node sets {V (1), V (2), ..., V (K)} and adjacency matrices {A(1), A(2), ..., A(K)},118

serving as basic unit of the graph to guide the subsequent masking. The specific approach involves119

modeling the distribution of nodes and edges, utilizing the generative process developed in EPM120

[Zhou, 2015]. The generative process of EPM under the Bernoulli-Poisson link [Zhou, 2015] can be121

described as:122

Muv ∼ Poisson(
∑K

k=1
γkzukzvk), zuk ∼ Gamma (α, β) , u, v ∈ [1, N ] (1)

where K is the predefined number of latent factors, and u and v are the indexes of the nodes. Here,123

Muv is the latent count variable between node u and v; γk is a positive factor activation level indicator,124

which measures the node interaction frequency via factor k; zuk is a positive latent variable for node125
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Figure 2: The overview of proposed DiGGR’s computation graph. The input data successively passes
three modules described in Sections 3.2 and 3.3: Latent Factor Learning, Graph Factorization, and
Disentangled Graph Mask Autoencoder. Graph information will be first processed through Latent
Factor Learning and Graph Factorization, the former processed the input graph to get the latent factor
z; the latter performs graph factorization via z, such that in each factorized subgraph, nodes exchange
more information with intensively interacted neighbors. Hence, during the disentangled graph
masking phase, we will individually mask each factorized subgraph to enhance the disentanglement
of the obtained node representations.

u, which measures how strongly node u is affiliated with factor k. The prior distribution of latent126

factor variable zuk is set to Gamma distribution, where α and β are normally set to 1. Therefore, the127

intuitive explanation for this generative process is that, with zuk and zvk measuring how strongly128

node u and v are affiliated with the k-th factor, respectively, the product γkzukzvk measures how129

strongly nodes u and v are connected due to their affiliations with the k-th factor.130

Node Factorization: Equation 1 can be further augmented as follows:131

Muv =
∑K

k
Mukv, Mukv ∼ Poisson (γkzukzvk) (2)

where Mukv represents how often nodes u and v interact due to their affiliations with the k-th factor.132

To represent how often node u is affiliated with the k-th factor, we further introduce the latent count133

Muk· =
∑

v ̸=u Mukv. Then, we can soft assign node u to multiple factors in {k : Muk·} ≥ 1, or134

hard assign node u to a single factor using argmax
k

(Muk·). However, our experiments show that135

soft assignment method results in significant overlap among node sets from different factor group,136

diminishing the distinctiveness. Note that previous study addressed a similar issue by selecting the137

top-k most attended regions [Kakogeorgiou et al., 2022]. Thus, we choose the hard assign strategy to138

factorize the graph node set V graph into factor-specific node sets {V (1), V (2), · · · , V (K)}.139

Edge Factorization: To create factor-specific edges A(k) for a factor-specific node set V (k), a140

straightforward method involves removing all external nodes connected to other factor groups. This141

can be defined as:142

A(k)
uv =

{
Auv, ∀ u, v ∈ V (k); u, v ∈ [1, N ] ;

0, ∃ u, v /∈ V (k); u, v ∈ [1, N ] .
(3)

Besides, the global graph edge A can also be factorized into positive-weighted edges [He et al.,143

2022b] for each latent factor as:144

A(k)
uv = Auv ·

exp (γkzukzvk)∑
k′ exp (γk′zuk′zvk′)

; k ∈ [1,K] , u, v ∈ [1, N ] . (4)

Applying Equation 4 to all pairs of nodes yields weighted adjacency matrices {A(k)}kk=1, with A(k)145

corresponding to latent factor zk. Note that A(k) has the same dimension as A and Equation 4146
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presents a trainable weight for each edge, which can be jointly optimized through network training,147

showcasing an advantage over Equation 3 in this aspect. Therefore, we apply Equation 4 for edge148

factorization.149

Variational Inference: The latent factor variable z determines the quality of node and edge factor-150

ization, so we need to approximate its posterior distribution. Denoting zu = (zu1, ..., zuK), zu ∈ RK
+ ,151

which measures how strongly node u is affiliated with all the K latent factors, we adopt a Weibull152

variational graph encoder [Zhang et al., 2018, He et al., 2022b]:153

q(zu | A,X) = Weibull(ku, λu), (ku, λu) = GNNEPM(A,X), u ∈ [1, N ] (5)

where GNNEPM(·) stands for graph neural networks, and we select a two-layer Graph Convolution154

Networks (i.e., GCN [Kipf and Welling, 2016a]) for our models; ku, λu ∈ RK
+ are the shape and155

scale parameters of the variational Weibull distribution, respectively. The latent variable zu can be156

conveniently reparameterized as:157

zu = λu(− ln(1− ε))1/ku , ε ∼ Uniform(0, 1). (6)

The optimization objective of latent factor learning phase can be achieved by maximizing the evidence158

lower bound (ELBO) of the log marginal likelihood of edge log p(A), which can be computed as:159

Lz = Eq(Z |A,X) [ln p (A |Z)]−
N∑

u=1

Eq(zu |A,X)

[
ln

q(zu |A,X)

p(zu)

]
(7)

where the first term is the expected log-likelihood or reconstruction error of edge, and the second160
term is the Kullback–Leibler (KL) divergence that constrains q(zu) to be close to its prior p(zu). The161

analytical expression for the KL divergence and the straightforward reparameterization of the Weibull162

distribution simplify the gradient estimation of the ELBO concerning the decoder parameters and163

other parameters in the inference network.164

3.3 Disentangled Grpah Masked Autoencoder165

With the latent factor learning phase discussed in 3.2, the graph can be factorized into a series of166

factor-specific subgraphs {G1, G2, ..., GK} via the latent factor z. To incorporate the disentangled167

information encapsulated in z into the graph masked autoencoder, we proposed Disentangled Graph168

Masked Autoencoder in this section. Specifically, this section will first introduce the latent factor-wise169

GMAE and the graph-level GMAE.170

3.3.1 Latent Factor-wise Grpah Masked Autoencoder171

To capture disentangled patterns within the latent factor z , for each latent subgraph172

Gk = (V (k), A(k), X(k)), the latent factor-wise GMAE can be described as:173

H
(k)
d = GNNenc(A

(k), X̄(k)), X̃d = GNNdec(A,Hd). (8)

where X̄(k) is the masked node feature matrix for the k-th latent factor, and X̃d denotes the recon-174

structed node features. GNNenc(.) and GNNdec(.) are the graph encoder and decoder, respectively;175

H
(k)
d ∈ RN×D are factor-wise hidden representations, and Hd = H

(1)
d ⊕H

(2)
d · · · ⊕H

(K)
d . After the176

concatenation operation ⊕ in feature dimension, the multi factor-wise hidden representation becomes177

Hd ∈ RN×(K·D), which is used as the input of GNNdec(.).178

Regarding the mask opeartion, we uniformly random sample a subset of nodes V̄ (k) ∈ V (k) and179

mask each of their features with a mask token, such as a learnable vector X[M ] ∈ Rd. Thus, the node180

feature in the masked feature matrix can be defined as:181

X̄
(k)
i =

{
X[M ]; vi ∈ V̄ (k) ;

Xi ; vi /∈ V̄ (k).
(9)

The objective of latent factor-wise GMAE is to reconstruct the masked features of nodes in V̄ (k)182

given the partially observed node signals X̄(k) and the input adjacency matrix A(k). Another crucial183

component of the GMAE is the feature reconstruction criterion, often used in language as cross-184

entropy error [Devlin et al., 2018] and in the image as mean square error [He et al., 2022a]. However,185

5



texts and images typically involve tokenized input features, whereas graph autoencoders (GAE) do186

not have a universal tokenizer. We adopt the scored cosine error of GraphMAE [Hou et al., 2022] as187

the loss function. Generally, given the original feature X(k) and reconstructed node feature X̃(k), the188

defined SCE is:189

LD =
1

|V̄ |
∑
i∈V̄

(
1− XT

i X̃
d
i

∥Xi∥ · ∥X̃d
i ∥

)γ

, γ ≥ 1 (10)

where V̄ = V̄ (1) ∪ V̄ (2)... ∪ V̄ (K) and Equation 10 are averaged over all masked nodes.The scaling190

factor γ is a hyper-parameter adjustable over different datasets. This scaling technique could also191

be viewed as adaptive sample reweighting, and the weight of each sample is adjusted with the192

reconstruction error. This error is also famous in the field of supervised object detection as the focal193

loss [Lin et al., 2017].194

Graph-level Graph Mask Autoencoder: For the node classification task, we have integrated195

graph-level GMAE into DiGGR. We provide a detailed experimental analysis and explanation for196

this difference in Appendix A.1.2. The graph-level masked graph autoencoder is designed with the197

aim of further capturing the global patterns, which can be designed as:198

Hg = GNNenc(A, X̄), X̃g = GNNdec(A,Hg). (11)

X̄ is the masked node feature matrix, whose mask can be generated by uniformly random sampling199

a subset of nodes Ṽ ∈ V , or obtained by concatenating the masks of all factor-specific groups200

Ṽ = V̄ (1) ∪ V̄ (2)...∪ V̄ (K). The global hidden representation encoded by GNNenc(.) is Hg , which is201

then passed to the decoder. Similar to Equation 10, we can define the graph-level reconstruct loss as:202

LG =
1

|Ṽ |

∑
i∈Ṽ

(1− XT
i X̃

g
i

∥Xi∥ · ∥X̃g
i ∥

)γ , γ ≥ 1. (12)

which is averaged over all masked nodes.203

3.4 Joint Training and Inference204

Benefiting from the effective variational inference method, the proposed latent factor learning and205

dsientangled graph masked autoencoder can be jointly trained in one framework. We combine the206

aforementioned losses with three mixing coefficient λd, λg and λz during training, and the loss for207

joint training can be written as208

L = λd · LD + λg · LG + λz · Lz. (13)

Since Weibull distributions have easy reparameterization functions, these parameters can be jointly209

trained by stochastic gradient descent with low-variance gradient estimation. We summarize the210

training algorithm at Algorithm 1 in Appendix A.4. For downstream applications, the encoder is211

applied to the input graph without any masking in the inference stage. The generated factor-wise212

node embeddings Hd and graph-level embeddings Hg can either be concatenated in the feature213

dimensions or used separately. The resulting final representation H can be employed for various214

graph learning tasks, such as node classification and graph classification. For graph-level tasks, we215

use a non-parameterized graph pooling (readout) function, e.g., MaxPooling and MeanPooling to216

obtain the graph-level representation.217

Time and space complexity: Let’s recall that in our context, N , M , and K represent the number of218

nodes, edges, and latent factors in the graph, respectively. The feature dimension is denoted by F ,219

while L1, L2, L3, and L4 represent the number of layers in the latent factor learning encoder, the220

latent factor-wise GMAE’s encoder, the graph-level GMAE’s encoder, and the decoder respectively.221

In DiGGR, we constrain the hidden dimension size in latent factor-wise GMAE’s encoder to be222

1/K of the typical baseline dimensions. Consequently, the time complexity for training DiGGR can223

be expressed as O((L1 + L2 + L3)MF + (L1 + L2/K + L3)NF 2 + N2F + L4NF 2), and the224

space complexity is O((L1 + L2 + L3 + L4)NF + KM + (L1 + L2/K + L3 + L4)F
2), with225

O((L1+L2/K+L3+L4)F
2) attributed to model parameters. We utilize the Bayesian factor model226

in our approach to reconstruct edges. Its time complexity aligns with that of variational inference227

in SeeGera Li et al. [2023b], predominantly at O(N2F ); Therefore, the complexity of DiGGR is228

comparable to previous works.229
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Table 1: Experiment results for node classification. Micro-F1 score is reported for PPI, and accuracy
for other datasets. The best unsupervised method scores in each dataset are highlighted in bold.

Methods Cora Citeseer Pubmed PPI

GCN [Kipf and Welling, 2016a] 81.50 70.30 79.00 75.70 ± 0.10
GAT [Velickovic et al., 2017] 83.00 ± 0.70 72.50 ± 0.70 79.00 ± 0.30 97.30 ± 0.20
DisenGCN[Ma et al., 2019] 83.7 73.4 80.5 -
VEPM[He et al., 2022b] 84.3 ± 0.1 72.5 ± 0.1 82.4 ± 0.2 -

MVGRL [Hassani and Khasahmadi, 2020] 83.50 ± 0.40 73.30 ± 0.50 80.10 ± 0.70 -
InfoGCL [Xu et al., 2021] 83.50 ± 0.30 73.50 ± 0.40 79.10 ± 0.20 -
DGI [Veličković et al., 2018] 82.30 ± 0.60 71.80 ± 0.70 76.80 ± 0.60 63.80 ± 0.20
GRACE [Zhu et al., 2020] 81.90 ± 0.40 71.20 ± 0.50 80.60 ± 0.40 69.71 ± 0.17
BGRL [Thakoor et al., 2021] 82.70 ± 0.60 71.10 ± 0.80 79.60 ± 0.50 73.63 ± 0.16
CCA-SSG [Zhang et al., 2021] 84.20 ± 0.40 73.10 ± 0.30 81.00 ± 0.40 73.34 ± 0.17

GAE [Kipf and Welling, 2016b] 71.50 ± 0.40 65.80 ± 0.40 72.10 ± 0.50 -
VGAE [Kipf and Welling, 2016b] 76.30 ± 0.20 66.80 ± 0.20 75.80 ± 0.40 -
Bandana [Zhao et al., 2024] 84.62 ± 0.37 73.60 ± 0.16 83.53 ± 0.51 -
GiGaMAE[Shi et al., 2023] 84.72 ± 0.47 72.31 ± 0.50 - -
SEEGERA [Shi et al., 2023] 84.30 ± 0.40 73.00 ± 0.80 80.40 ± 0.40 -
GraphMAE [Hou et al., 2022] 84.20 ± 0.40 73.40 ± 0.40 81.10 ± 0.40 74.50 ± 0.29
GraphMAE2[Hou et al., 2023] 84.50 ± 0.60 73.40 ± 0.30 81.40 ± 0.50 -

DiGGR 84.96 ± 0.32 73.98 ± 0.27 81.30 ± 0.26 78.30 ± 0.71

4 Experiments230

We compare the proposed self-supervised framework DiGGR against related baselines on two funda-231

mental tasks: unsupervised representation learning on node classification and graph classification.232

We evaluate DiGGR on 11 benchmarks. For node classification, we use 3 citation networks (Cora,233

Citeseer, Pubmed [Yang et al., 2016]), and protein-protein interaction networks (PPI) [Hamilton et al.,234

2017]. For graph classification, we use 3 bioinformatics datasets (MUTAG, NCI1, PROTEINS) and 4235

social network datasets (IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and COLLAB). The236

specific information of the dataset and the hyperparameters used by the network are listed in the237

Appendix A.2 in table 5 and 6. We also provide the detailed experiment setup in Appendix A.2 for238

node classification (4.1) and graph classification (4.2)239

4.1 Node Classification240

The baseline models for node classification can be divided into three categories: i) supervised methods,241

including GCN [Kipf and Welling, 2016a] , DisenGCN[Ma et al., 2019], VEPM[He et al., 2022b]242

and GAT [Velickovic et al., 2017]; ii) contrastive learning methods, including MVGRL [Hassani and243

Khasahmadi, 2020], InfoGCL [Xu et al., 2021], DGI [Veličković et al., 2018], GRACE [Zhu et al.,244

2020], BGRL [Thakoor et al., 2021] and CCA-SSG [Zhang et al., 2021]; iii) generative learning245

methods, including GraphMAE [Hou et al., 2022], GraphMAE2[Hou et al., 2023], Bandana[Zhao246

et al., 2024], GiGaMAE[Shi et al., 2023], SeeGera[Li et al., 2023b], GAE and VGAE [Kipf and247

Welling, 2016b]. The node classification results were listed in Table 1. DiGGR demonstrates248

competitive results on the provided dataset, achieving results comparable to those of supervised249

methods.250

4.2 Graph Classification251

Baseline Models We categorized the baseline models into four groups: i) supervised methods,252

including GIN [Xu et al., 2018], DiffPool[Ying et al., 2018] and VEPM[He et al., 2022b]; ii) classical253

graph kernel methods: Weisfeiler-Lehman sub-tree kernel (WL) [Shervashidze et al., 2011] and254

deep graph kernel (DGK) [Yanardag and Vishwanathan, 2015]; iii) contrastive learning methods,255

including GCC [Qiu et al., 2020], graph2vec [Narayanan et al., 2017], Infograph [Sun et al., 2019],256

GraphCL [You et al., 2020], JOAO [You et al., 2021], MVGRL [Hassani and Khasahmadi, 2020],257

and InfoGCL [Xu et al., 2021]; 4) generative learning methods, including graph2vec [Narayanan258

et al., 2017], sub2vec [Adhikari et al., 2018], node2vec [Grover and Leskovec, 2016], GraphMAE259

[Hou et al., 2022], GraphMAE2[Hou et al., 2023], GAE and VGAE [Kipf and Welling, 2016b]. Per260

graph classification research tradition, we report results from previous papers if available.261
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Table 2: Experiment results in unsupervised representation learning for graph classification. We report
accuracy (%) for all datasets. The optimal outcomes for methods, excluding supervised approaches
(GIN and DiffPool), on each dataset are emphasized in bold.

Methods IMDB-B IMDB-M MUTAG NCI1 REDDIT-B PROTEINS COLLAB

GIN 75.1± 5.1 52.3 ± 2.8 89.4 ± 5.6 82.7 ± 1.7 92.4 ± 2.5 76.2 ± 2.8 80.2 ± 1.9
DiffPool 72.6 ± 3.9 - 85.0 ± 10.3 - 92.1 ± 2.6 75.1 ± 3.5 78.9 ± 2.3
VEPM 76.7 ± 3.1 54.1 ± 2.1 93.6 ± 3.4 83.9 ± 1.8 90.5 ± 1.8 80.5 ± 2.8 -

WL 72.30 ± 3.44 46.95 ± 0.46 80.72 ± 3.00 80.31 ± 0.46 68.82 ± 0.41 72.92 ± 0.56 -
DGK 66.96 ± 0.56 44.55 ± 0.52 87.44 ± 2.72 80.31 ± 0.46 78.04 ± 0.39 73.30 ± 0.82 73.09 ± 0.25

Infograph 73.03 ± 0.87 49.69 ± 0.53 89.01 ± 1.13 76.20 ± 1.06 82.50 ± 1.42 74.44 ± 0.31 70.65 ± 1.13
GraphCL 71.14 ± 0.44 48.58 ± 0.67 86.80 ± 1.34 77.87 ± 0.41 89.53 ± 0.84 74.39 ± 0.45 71.36 ± 1.15

JOAO 70.21 ± 3.08 49.20 ± 0.77 87.35 ± 1.02 78.07 ± 0.47 85.29 ± 1.35 74.55 ± 0.41 69.50 ± 0.36
GCC 72.0 49.4 - - 89.9 - 78.9

MVGRL 74.20 ± 0.70 51.20 ± 0.50 89.70 ± 1.10 - 84.50 ± 0.60 - -
InfoGCL 75.10 ± 0.90 51.40 ± 0.80 91.20 ± 1.30 80.20 ± 0.60 - - 80.00 ± 1.30

graph2vec 71.10 ± 0.54 50.44 ± 0.87 83.15 ± 9.25 73.22 ± 1.81 75.78 ± 1.03 73.30 ± 2.05 -
sub2vec 55.3 ± 1.5 36.7 ± 0.8 61.1 ± 15.8 52.8 ± 1.5 71.5 ± 0.4 53.0 ± 5.6 -

node2vec - - 72.6 ± 10.2 54.9 ± 1.6 - 57.5 ± 3.6 -
GAE 52.1 ± 0.2 - 84.0 ± 0.6 73.3 ± 0.6 74.8± 0.2 74.1 ± 0.5 -

VGAE 52.1 ± 0.2 - 84.4 ± 0.6 73.7 ± 0.3 74.8 ± 0.2 74.8 ± 0.2 -
GraphMAE 75.52 ± 0.66 51.63 ± 0.52 88.19 ± 1.26 80.40 ± 0.30 88.01± 0.19 75.30 ± 0.39 80.32 ± 0.46
GraphMAE2 73.88 ± 0.53 51.80 ± 0.60 86.63 ± 1.33 78.56 ± 0.26 76.84 ± 0.21 74.86 ± 0.34 77.59 ± 0.22

DiGGR 77.68 ± 0.48 54.77 ± 2.63 88.72 ± 1.03 81.23 ± 0.40 88.19 ± 0.28 77.40 ± 0.05 83.76 ± 3.70

Performance Comparison The graph classification results are presented in Table 2. In general, we262

find that DiGGR gained the best performance among other baselines on five out of seven datasets,263

while achieving competitive results on the other two datasets. The performance of DiGGR is264

comparable to that of supervised learning methods. For instance, the accuracy on IMDB-B and265

IMDB-M surpasses that of GIN and DiffPool. Moreover, within the reported datasets, our method266

demonstrates improved performance compared to random mask methods like GraphMAE, particularly267

on the IMDB-M, COLLAB, and PROTEINS datasets. This underscores the effectiveness of the268

proposed method.269

4.3 Exploratory Studies270

Visualizing latent representations To examine the influence of the learned latent factor on classifi-271

cation results, we visualized the latent disentangled factor z, which reflects the node-factor affiliation,272

and the hidden representation H used for classification. MUTAG is selected as the representative273

for classification benchmarks. We encodes the representations into 2-D space via t-SNE [Van der274

Maaten and Hinton, 2008]. The result is shown in Figure 3(a), where each node is colored according275

to its node labels. The clusters in Figure 3(a) still exhibit differentiation in the absence of label276

supervision, suggesting that z obtained through unsupervised learning can enhance node information277

and offer a guidance for the mask modeling. We then visualize the hidden representation used for278

classification tasks, and color each node according to the latent factor to which it belongs. The results279

are depicted in Figure 3(b), showcasing separability among different color clusters. This illustrates280

the model’s ability to extract information from the latent factor, thereby enhancing the quality of the281

learned representations.282

Task-relevant factors To assess the statistical correlation between the learned latent factor and the283

task, we follow the approach in [He et al., 2022b] and compute the Normalized Mutual Information284

(NMI) between the nodes in the factor label and the actual node labels. NMI is a metric that ranges285

from 0 to 1, where higher values signify more robust statistical dependencies between two random286

variables. In the experiment, we utilized the MUTAG dataset, comprising 7 distinct node types,287

and the NMI value we obtained was 0.5458. These results highlight that the latent factors obtained288

through self-supervised training are meaningful for the task, enhancing the correlation between the289

inferred latent factors and the task.290

Disentangled representations To assess DiGGR’s capability to disentangle the learned represen-291

tation for downstream task, we provide a qualitative evaluation by plotting the correlation of the292
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Figure 3: T-SNE visualization of MUTAG
dataset, where z is the latent factor, H is the
learned node representation used for down-
stream tasks.

(a) GraphMAE (b) DiGGR

Figure 4: representation correlation matrix on
Cora with number of factors K = 4. 4(a)
depicts the representation of entanglement,
while 4(b) illustrates disentanglement.

Table 3: The NMI between the latent factors extracted by DiGGR and Non-probabilistic factor
learning method across various datasets, and its performance improvement compared to GraphMAE,
are examined. A lower NMI indicates a more pronounced disentanglement between factor-specific
graphs, resulting in a greater performance enhancement.

Dataset RDT-B MUTAG NCI-1 IMDB-B PROTEINS COLLAB IMDB-M

DiGGR NMI 0.95 0.90 0.89 0.82 0.76 0.35 0.24
ACC Gain + 0.18% + 0.53% + 0.83% + 2.16% + 2.1% + 3.44% + 3.14%

Non-probabilistic
Factor Learning

NMI 1.00 1.00 0.80 1.00 0.60 1.00 0.94
ACC Gain -2.23% -2.02% -0.45% -0.80% -2.15% -3.00% -0.11%

node representation in Figure 4. The figure shows the absolute values of the correlation between the293

elements of 512-dimensional graph representation and representation obtained from GraphMAE and294

DiGGR, respectively. From the results, we can see that the representation produced by GraphMAE295

exhibits entanglement, whereas DiGGR’s representation displays a overall block-level pattern,296

indicating that DiGGR can capture mutually exclusive information in the graph and disentangle the297

hidden representation to some extent. Results for more datasets can be found in Appendix A.3.298

299
Why DiGGR works better: To validate that disentangled learning can indeed enhance the quality of300

the representations learned by GMAE, we further conduct quantitative experiments. The Normalized301

Mutual Information (NMI) is used to quantify the disentangling degree of different datasets. Generally,302

the NMI represents the similarity of node sets between different factor-specific graphs, and the lower303

NMI suggests a better-disentangled degree with lower similarity among factor-specific graphs. The304

NMI between latent factors and the corresponding performance gain (compared to GraphMAE)305

are shown in the Table.3. As the results show, DiGGR’s performance improvement has a positive306

correlation with disentangled degree, where the better the disentangled degree, the more significant307

the performance improvement. For methods relying on Non-probabilistic Factor Learning, the NMI308

tends to approach 1. This is attributed to the challenges faced by the factor learning module in309

converging, thereby hindering the learning of distinct latent factors. The presence of confused latent310

factors offers misleading guidance for representation learning, consequently leading to decreased311

performance.312

5 Conclusions313

In this paper, we propose DiGGR (Disentangled Generative Graph Representation Learning), de-314

signed to achieve disentangled representations in graph masked autoencoders by leveraging latent315

disentangled factors. In particular, we achieve this by two steps: 1) We utilize a probabilistic graph316

generation model to factorize the graph via the learned disentangled latent factor; 2) We develop a317

Disentangled Graph Masked Autoencoder framework, with the aim of integrating the disentangled in-318

formation into the representation learning of Graph Masked Autoencoders. Experiments demonstrate319

that our model can acquire disentangled representations, and achieve favorable results on downstream320

tasks.321
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Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via412

bootstrapping. arXiv preprint arXiv:2102.06514, 2021.413

11



Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation414

analysis to self-supervised graph neural networks. Advances in Neural Information Processing415

Systems, 34:76–89, 2021.416

Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.417

Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the418

ACM Web Conference 2023, pages 737–746, 2023.419

Ziwen Zhao, Yuhua Li, Yixiong Zou, Jiliang Tang, and Ruixuan Li. Masked graph autoencoder with420

non-discrete bandwidths. arXiv preprint arXiv:2402.03814, 2024.421

Yucheng Shi, Yushun Dong, Qiaoyu Tan, Jundong Li, and Ninghao Liu. Gigamae: Generalizable422

graph masked autoencoder via collaborative latent space reconstruction. In Proceedings of the 32nd423

ACM International Conference on Information and Knowledge Management, pages 2259–2269,424

2023.425

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,426

2016b.427

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural428

networks? arXiv preprint arXiv:1810.00826, 2018.429

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-430

archical graph representation learning with differentiable pooling. Advances in neural information431

processing systems, 31, 2018.432

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M433

Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.434

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM435

SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,436

2015.437

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,438

and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint439

arXiv:1707.05005, 2017.440

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-441

supervised graph-level representation learning via mutual information maximization. arXiv preprint442

arXiv:1908.01000, 2019.443

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.444

In International Conference on Machine Learning, pages 12121–12132. PMLR, 2021.445

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature446

learning for subgraphs. In Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia447

Conference, PAKDD 2018, Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part II 22,448

pages 170–182. Springer, 2018.449

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings450

of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,451

pages 855–864, 2016.452

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine453

learning research, 9(11), 2008.454

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM455

transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.456

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors.457

In 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages458

475–486. IEEE, 2006.459

12



A Appendix / supplemental material460

Optionally include supplemental material (complete proofs, additional experiments and plots) in461

appendix. All such materials SHOULD be included in the main submission.462

A.1 Ablation Study463

A.1.1 Number of factors464

One of the crucial hyperparameters in DiGGR is the number of latent factors, denoted as K. When465

K = 1 DiGGR degenerates into ordinary GMAE, only performing random masking over the entire466

input graph on the nodes. The influence of tuning K is illustrated in Figure 5. Given the relatively467

small size of the graphs in the dataset, the number of meaningful latent disentangled factor z is468

not expected to be very large. The optimal number of z that maximizes performance tends to be469

concentrated in the range of 2-4.470
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Figure 5: Performance of the task under different choices of latent factor number K, where the
horizontal axis represents the change in K and the vertical axis is accuracy.

A.1.2 Representation for downstream tasks471

We investigate the impact of various combinations of representation levels on downstream tasks. As472

illustrated in Table 4, for the node classification task, both Hd and Hg are required, i.e., concatenating473

them in feature dimension, whereas for the graph classification task, Hd alone is sufficient. This474

difference may be due to the former not utilizing pooling operations, while the latter does. Specifically,475

the graph pooling operation aggregates information from all nodes, providing a comprehensive476

view of the entire graph structure. Thus, in node classification, where the node representation has477

not undergone pooling, a graph-level representation (Hg) is more critical. In contrast, in graph478

classification, the node representation undergoes pooling, making disentangled information Hd more479

effective.

Table 4: The average accuracy of datasets is calculated through 5 random initialization tests when
using different representations.

Hd Hg Cora IMDB-MULTI Citeseer PROTEINS

✓ 61.10 ± 1.83 54.77 ± 2.63 71.82 ± 0.98 77.76 ± 2.46
✓ 84.22 ± 0.38 51.62 ± 0.61 73.41 ± 0.43 75.52 ± 0.49

✓ ✓ 84.96 ± 0.32 53.69 ± 2.06 73.98 ± 0.27 77.61 ± 0.97
480

A.2 Implementation Details481

Environment All experiments are conducted on Linux servers equipped with an 12th Gen Intel(R)482

Core(TM) i7-12700, 256GB RAM and a NVIDIA 3090 GPU. Models of node and graph classification483

are implemented in PyTorch version 1.12.1, scikit-learn version 1.0.2 and Python 3.7.484

Experiment Setup for Node Classification The node classification task involves predicting the485

unknown node labels in networks. Cora, Citeseer, and Pubmed are employed for transductive learning,486

whereas PPI follows the inductive setup outlined in GraphSage [Hamilton et al., 2017]. For evaluation,487
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Table 5: Statistics for node classification datasets.
Dataset Cora Citeseer Pubmed PPI

Statistics

# node 2708 3327 19717 56944
# feature 1433 3703 500 50
# edges 5429 4732 44338 818736

# classes 7(s) 6(s) 3(s) 121(m)

Hyper-parameters

Mask Rate 0.5 0.5 0.75 0.5
Hidden Size 512 512 1024 1024
Max Epoch 1750 200 1000 1000
λd; λg; λz 1; 1; 1 1; 1; 2 1; 1; 1 1; 1; 1

Learning Rate 0.001 0.0005 0.001 0.0001
Factor_Num 4 4 2 2

we use the concatenated representations of Hd and Hg in the feature dimension for the downstream488

task. We then train a linear classifier, report the mean accuracy on the test nodes through 5 random489

initializations. The graph encoder GNNenc(.) and decoder GNNdec(.) are both specified as standard490

GAT [Velickovic et al., 2017].We train the model using Adam Optimizer with β1 = 0.9, β2 = 0.999,491

ϵ = 1× 108, and we use the cosine learning rate decay without warmup. We follow the public data492

splits of Cora, Citeseer, and PubMed.493

Experiment Setup for Graph Classification The graph classification experiment was conducted on494

7 benchmarks, in which node labels are used as input features in MUTAG, PROTEINS and NCI1, and495

node degrees are used in IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY, and COLLAB. The496

backbone of encoder and decoder is GIN [Xu et al., 2018], which is commonly used in previous graph497

classification works. The evaluation protocol primarily follows GraphMAE [Hou et al., 2022]. Notice498

that we only utilize the factor-wise latent representation Hd for the downstream task. Subsequently,499

we feed it into a downstream LIBSVM [Chang and Lin, 2011] classifier to predict the label and500

report the mean 10-fold cross-validation accuracy with standard deviation after 5 runs. We set the501

initial learning rate to 0.0005 with cosine learning rate decay for most cases. For the evaluation, the502

parameter C of SVM is searched in the sets {103, ..., 10}.503

Data Preparation The node features for the citation networks (Cora, Citeseer, Pubmed) are bag-of-504

words document representations. For the protein-protein interaction networks (PPI), the features of505

each node are composed of positional gene sets, motif gene sets and immunological signatures (50 in506

total). For graph classification, the MUTAG, PROTEINS, and NCI1 datasets utilize node labels as507

node features, represented in the form of one-hot encoding. For IMDB-B, IMDB-M, REDDIT-B, and508

COLLAB, which lack node features, we utilize the node degree and convert it into a one-hot encoding509

as a substitute feature. The maximum node degree is set to 400. Nodes with degrees surpassing 400510

are uniformly treated as having a degree of 400, following the methodology of GraphMAE[Hou et al.,511

2022]. Table 5 and Table 6 show the specific statistics of used datasets.512

Details for Visualization MUTAG is selected as the representative benchmark for visualization513

in 4.3. The MUTAG dataset comprises 3,371 nodes with seven node types. The distribution is514

highly skewed, as 3,333 nodes belong to three types, while the remaining four types collectively515

represent less than 1.2% of the nodes. For clarity in legend display, we have visualized only the nodes516

belonging to the first three types.517

A.3 Disentangled Representations Visualization518

We chose PROTEINS and IMDB-MULTI as representatives of the graph classification dataset, and519

followed the same methodology as in Section 4.3 to visualize their representation correlation matrices520

on GraphMAE, and community representation correlation matrices on DiGGR, respectively. The521

feature dimensions of PROTEINS and IMDB-MULTI are both 512 dimensions, and the number of522

communities is set to 4.523
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Table 6: Statistics for graph classification datasets.
Dataset IMDB-B IMDB-M PROTEINS COLLAB MUTAG REDDIT-B NCI1

Statistics

Avg. # node 19.8 13.0 39.1 74.5 17.9 429.7 29.8
# features 136 89 3 401 7 401 37
# graphs 1000 1500 1113 5000 188 2000 4110
# classes 2 3 2 3 2 2 2

Hyper-
parameters

Mask Rate 0.5 0.5 0.5 0.75 0.75 0.75 0.25
Hidden Size 512 512 512 256 32 512 1024
Max Epoch 300 200 50 20 20 200 200

Learning Rate 0.0001 0.001 0.0005 0.001 0.001 0.0005 0.0005
λd; λg; λz 1; 1; 1 1; 1; 1 1; 1; 1 1; 1; 1 1; 1; 1 1; 1; 1 1; 0.5; 1
Batch_Size 32 32 32 32 32 16 32

Pooling_Type mean mean max max sum max max
Factor_Num 2 4 4 4 2 2 4

The result is presented in Figure 6. We can see from the results that the graph representations of524

GraphMAE are entangled. In contrast, the correlation pattern exhibited by DiGGR reveals four525

distinct diagonal blocks. This suggests that DiGGR is proficient at capturing mutually exclusive526

information within the latent factor, resulting in disentangled representations.527

(a) PROTEINS, GraphMAE (b) PROTEINS, DiGGR

(c) IMDB-MULTI, GraphMAE (d) IMDB-MULTI, DiGGR

Figure 6: The absolute correlation between the representations learned by GraphMAE and DiGGR is
measured on the PROTEINS and IMDB-MULTI datasets when K = 4.

A.4 Training Algorithm528
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Algorithm 1 The Overall Training Algorithm of DiGGR
1: Input: Graph G = {V,A,X}; latent factor number K.
2: Parameters: Θ in the inference network of Latent Factor Learning phase, Ω in the encoding

network of DiGGR, Ψ in the decoding network of DiGGR.
3: Initialize Θ, Ω, and Ψ;
4: for iter = 1,2, · ·· do
5: Infer the variational posterior of zu based on Eq. 5;
6: Sample latent factors zu from the variational posterior according to Eq. 6;
7: Factorize the graph G into K factor-wise groups {G(k)}Kk=1 by node and edge factorization

methods;
8: Encoding {G(k)}Kk=1 via latent factor-wise Graph Masked Autoencoder according to Eq. 8;
9: Encoding G via graph-level graph masked autoencoder according to Eq. 11;

10: Calculate ∇Θ,Ω,ΨL(Θ,Ω,Ψ;G) according to Eq. 13, and update parameters Θ, Ω, and Ψ

jointly.
11: end for=0

A.5 Broader Impacts529

This paper presents work whose goal is to advance the field of Machine Learning. There are many530

potential societal consequences of our work, none which we feel must be specifically highlighted531

here.532

A.6 Limitations533

Despite the promising experimental justifications, our work might potentially suffer from limitation:534

Although the complexity of the model is discussed in Section 3.4, and it is comparable to previously535

published work, extending DiGGR to extremely large graph datasets remains challenging at this stage536

due to the incorporation of an additional probabilistic model into the generative graph framework.537

One potential solution to this problem could be utilizing PPR-Nibble [Andersen et al., 2006] for538

efficient implementation, a method that has proven effective in some graph generative models [Hou539

et al., 2023]. This approach will be pursued in our future work.540
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the architecture clearly and fully.634
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