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Abstract

While numerous studies on end-to-end relation
extraction (E2ERE) have centered on enhanc-
ing span representations to improve model per-
formance, challenges remain due to the gaps be-
tween subtasks (named entity recognition and
relation extraction) and the modeling discrep-
ancies between entities and relations. In this
paper, we propose a novel Label Annotation
Interaction based representation enhancement
method!) for E2ERE, which institutes a two-
phase semantic interaction to augment represen-
tations. Specifically, we firstly feed label anno-
tations that are easy to manually annotate into
a language model, and conduct the first round
interaction between three types of tokens with
a partial attention mechanism; Then construct
a latent multi-view graph to capture various
possible links between label and entity (pair)
nodes, facilitating the second round interac-
tion between entities and labels. A regimen
of rigorous experimentation demonstrates that
LAI-Net achieving performance parity with the
current SOTA models on ADE/SciERC dataset
in terms of NER task (a SOTA performance
has been achieved on the ACEQS5 dataset pecif-
ically), and establishing a new SOTA result
(with nearly a 10% advance on the SciERC
dataset for RE specifically) in terms of RE task.

1 Introduction

Endowed with blessing of powerful conversational
and generative abilities, large language models
(LLMs) like ChatGPT suddenly gained popular-
ity and achieved great success across a spectrum
of domains, but recent studies (Han et al., 2023;
Lietal.,, 2023; He et al., 2023; Wang et al., 2023)
have unveiled that,in the realm of fundamental NLP
tasks and notably in end-to-end relation extraction
(E2ERE), LLM still manifests discernible perfor-
mance discrepancies when juxtaposed with extant
SOTA methods.

'Our code and models will be publicly available at
https://github.com/xxx/xXxXx.
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Figure 1: An illustration of different representation en-
hancement methods. ¢ indicates an individual token
from text. The bordered rectangles highlighted in as-
sorted colors signify discrete elements: blue, light yel-
low (or green), pink respectively indicate entities mark-
ers, groups of entity tokens and trailed markers, groups
of label annotation tokens. Bidirectionally connected
squares sharing the same color refer to elements that
have identical position id.

As a core information extraction (IE) task,
E2ERE can be split into named entity recognition
(NER) subtask for entity identification and relation
extraction (RE) subtask for capturing inter-entity
relations from plain texts. As postulated by Tang
etal. (2022), E2ERE is challenging for its difficulty
in capturing affluent correlations between entities
and relations. IE research has traditionally con-
verted NER and RE tasks into span-based tasks
(Sun et al., 2019; Yang et al., 2021; Tang et al.,
2022; Ji et al., 2022; Shang et al., 2022a). Though
these methodologies have incrementally advanced
model performance from various perspectives, they
are still impeded by two pivotal limitations: 1)
overdetached of sub-tasks leads to insufficient in-
formation exchange between entitiy and relation,
and 2) the disparity in modeling strategies between
entity and relation result in semantic gaps.

In this paper, we mainly focus on 1) enhancing
the semantic interaction during modeling process,
and 2) investigating how to obtain a unified and
enhanced span representation.

To address the challenges above, prevailing re-


https://github.com/RongxuanLai/Lai-Net

searches mainly focuses on reorganizing the in-
put or intermediate network layers of pre-train lan-
guage model (PLM), attempting to enhance the
semantic information of representation through the
integration of specialized symbols or extrinsic prior
knowledge. We roughly divided into three types
(as shown in Figure.1): Vanilla based method is a
straightforward approach to acquiring a given span
representation by feeding raw text tokens series
into pre-trained encoder. Marker based method
inserts independent entity markers like [M], [\M]
amidst text tokens to highlight the presence of enti-
ties, aims at attracting more model attention. Enu-
merate based method enumerates all posible en-
tity candidates from plain text and then concatenate
them after text tokens, entity tokens share the posi-
tion ids with candidates as well.

For these methods above, the distinguished
LSTM-CREF (Dai et al., 2019) is a typical vanilla
based sequence labeling method, and PURE
(Zhong and Chen, 2021) is a combination of marker
based method and enumeration based method,
which adopts marker based method during NER
phase and enumerate based method for RE phase,
that achieved SOTA performance. PL-Marker (Ye
et al., 2022) is a typical enumeration based method
that promoted the SOTA further.

In addition to the above three methods, what
we develop in this paper can be classified as
the fourth class named annotate & enumeration
based method. It’s an novel semantic enhance
approach with external knowledge, inspired by
external knowledge based aproaches (Sun et al.,
2020b; Yang et al., 2021). We argut that a thorough
comprehension of label semantics will significantly
enhance the IE model abilities, what serves as a
premise for our work.

As shown in Figure.l, our principal improve-
ment over preceding methods lies in the insertion
of external prior knowledge (i.e., label annotations)
into the PLM input sequence, aiming to leverage
PLM’s internal network layers to enhance semantic
interaction between labels and text. This repre-
sents the first round semantic interaction in LAI-
Net framework.

Unlike the lexicon adapter-based methods
(Houlsby et al., 2019; Liu et al., 2021) and lattice-
based methods (Zhang and Yang, 2018; Sui et al.,
2019; Li et al., 2020), we manually expand the la-
bel information and embed it between text tokens
and enumerated candidates then feed the series
into a pre-trained model. We further enhance the

representation by combining word vectors using
downstream neural networks.

Formally, the augmented representations derived
from the aforementioned four methods can be sum-
marized as:

v .
hspan =f (hfpanv hSpan)
M .
hspan =f (hMa h\]\/])
hspan =/ (hfpanv hSpanv hay; h\M)
A&E . . . . .
hspan =/ (hspam hgpam hyy; h\]\/h hy; hz)
where f(-) is an tensor operator, equipped to ex-
ecute series of operations including tensor addition,
tensor multiplication, tensor concatenation, etc., or
even could be a neural network. And superscripts
s, e denote the commencement and termination to-
kens of a span or annotation, while the subscripts
span, M, \ M represent the disparate token types.
Based on the first round semantic interaction,
we further meticulously crafted with selectively
designed downstream network layers. To summa-
rize, our main innovations and improvements in
our work lie in the following aspects:

* We explore a novel two-round semantic in-
teraction approach for enhancing span repre-
sentations, wherein the first round interaction
reorganizes the PLM input in what we term
an annotation & enumeration-based method,
and the second round interaction employs mul-
tiple layers of graph convolutional networks
built atop Gaussian Graph Generator (GGG)
modules to facilitate label semantic fusion.

* We conduct a coarse screening by developing
a entity candidate filter, so that achieve the
goal of filtering out spans that are clearly not
real entities, it also promotes the saving of
computing resources.

* Extensive experiment indicates that our model
establishes new SOTA performance on several
standard benchmarks and surpasses previous
models utilizing identical PLM.

2 Related Work

Recently, academic interest in span representa-
tion enhancement has surged, providing a sub-
stantial impetus to E2ERE. Traditional neural net-
work based methods often ignore non-local and
non-sequential context information from input text



RE Phase NER Phase

1 3 0 5

t t 1 1
Multiple Classifier ]
_______________________________ S RS S A
Sl AR AR AR AN |

G*CN
v v v v X

Entity Pairs Enumeration Entity Candidates Filter ]
S | — — F — — (o
- — L \
a; az ap hj h{ ‘L‘ ‘LZ‘ - I

_______________________________

Transformers (with partial attention)

position

. Text Tokens T Annotations Tokens . Marker Tokens :
chalabi founder G anno, | | anno, | - - - |anno,, ent; ---|ent;
‘ 0 1 2 3 4 5 6 7 8 9 10 11 h 12 13 "[0,[]] [3,3] 5, 5] 8,10] [11,11]'

Figure 2: Illustration of our LAI-Net, where annotatation interaction is highlighted by red color. The left and right
part of the architecture represent the RE and NER phase respectively. In addition, A indicates the span representation
and differed type tokens marked with same color with their corresponding embeddings.

(Qian et al., 2019), what is exactly GCNs (Daiga-
vane et al., 2021; Wu et al., 2023) excel in. GCNss,
what our discussion centered on, have been widely
used to model the interaction between entities and
relations in the text, and has been demonstrated as
a typical and effective approach.

GCN-based approaches typically leverage a pre-
defined graph structure, which constructed from
plain text, to facilitate information propagation
among nodes, thus capturing text’s non-linear struc-
ture and enhancing NER and RE models’ capabil-
ities to capture both global graph structures and
representations of nodes and edges.

Mostly GCN based methods (Sun et al., 2019;
Guo et al., 2019; Qian et al., 2019; Luo and Zhao,
2020; Sun et al., 2020a; Xue et al., 2021; Shang
et al., 2022b) utilizes different approaches to de-
fine nodes (sentences, words, tokens, spans, labels,
etc.) and edges (syntactic dependency edges, coref-
erence edges, re-occurrence edges, co-occurrence
edges, adjacent word edges, etc.). And then per-
form convolution operations on the graph to facili-
tate the flow of information between nodes, which
enables nodes to efficiently acquire both local and
global information. This further refines node repre-
sentations and downstream network performance.
Building on these advances, our work also adopt
a GCN based method to design the interaction be-
tween entities and relations.

3 Methodology

3.1 Task Definition

Given a sentence formularized as S =
{w17w27"' 7wm} == {tl,tQ,"' 7tn}a com-
prising m words or n tokens (n > m). The

objective of E2ERE is the automated recognization
of entity spans and their interrelationships, deno-
table as (e;, 7 ;,e;) € T. Here, e is an entity span,
consists of a series of tokens, with an assigned
type (e.g., person (PER), organization (ORG)), and
r;; typifies the relationship between e; and e;
(e.g., ORG-AFF). We define £ and R as the sets of
potential entity and relation types, respectively.

3.2 First Round Semantic Interaction

Before training, we concatenate different type to-
kens (text tokens, annotation tokens, and marker
tokens) sequentially to formulate a unified input
sequence (refer to the bottom element of Figure.2).
The PLM encoder then conducts the first round
semantic interaction, the encoded representation is
semantic amalgamation of the three types tokens.

Text Tokens Our approach breaks down the
words from raw text into text token sequences as
part of the model input.

Annotation Tokens Inspired by Ma et al.,
2022 and Yang et al., 2021, we augment seman-
tic information by manually annotating the entity



(or relation) abbreviated label both in NER and RE
phase. For example, the abbreviated entity type GPE
can be annotated as "geography political entity", a
fully-semantic unbroken phrase. Correspondingly,
the abbreviated relation type ORG-AFF can be an-
notated as "organization affiliation". Each label is
manually expanded to enrich semantic content and
then tokenized into annotation tokens (highlighted
by red rectangle in bottom of Figure.2), which are
appended to the text tokens sequentially.

Marker Tokens We enumerate all potential
consecutive token sequences (i.e. entity candidates)
not exceeding a predefined limitation of length ¢
(with ¢ < n) within a sentence, labeling each with
an entity type. If ¢ = 2, as shown in Figure.2,
the set of all the possible spans from sentence
"chalabi is the founder and leader of
the iragi national congress." can be writ-
ten as ¥ = {"chalabi", "chalabi is", "is", "is the",
"the founder", "founder", "founder and", "and",
"and leader"- - - }. The i-th span can be written as
span; = [span?, span{|, where span; and span¢ are
indicative of start and end position id of entity span
respectively. Therefore, entity candidate series can
also be written as ¥ = {[0, 0], [0, 1], [1, 1], [1, 2],
12,2],[2,3],[3,3],[3,4],[4,4],[4,5]} given posi-
tion id perspective. Thus, we can easily suma-
rize the formula for computing the number of
candidate for a sentence with m words:|¥| =
m-c+ (c—c?)/2.

In model input, we define a start marker (M) and
an end marker (\ M), which form a pair of marker
tokens, respectively represent the start and end of
an entity span and are appended subsequent to an-
notation tokens. The start and end marker share
the same position embedding with corresponding
span’s start token and end token respectively, while
keeping the position id of original text tokens un-
changed. From an PLM encoder input perspective,
every marker is a token element of tokens series,
called marker token. As shown in Figure.2, entity
chalabi is highlighted by light yellow bordered
square, and its corresponding markers noted by a
colorful non-bordered square with line frame dif-
ferred in various entity labels (white means non-
entity). In conclusion, the complete input sequence
can be represented as follows:

S = {sg,s1, ,s‘g‘}
= {[CLS]} U {to,t1," - ,tn—1, } U{[SEP]}

U{ag, a1, ,an—1} U {[SEP]}

U{M(Sjv 1o ’M|S\P\—1}U{M87 Lo aM\e\Il|—1}

where a; is a single token broken from label annota-
tion, M7, M¢ represent start and end marker token
respectively.

Partial Attention Although special tokens
(LCLS1, [SEP]) serve to isolate different types of to-
kens, there still exists semantic interference among
them. The straightforward blend of annotation to-
kens and marker tokens with text tokens may dis-
rupt semantic consistency of raw text. To miti-
gate this, we devise a partial attention mechanism,
allowing selective semantic influence among the
differ types of token. This mechanism can effec-
tively control the information flow (could be regard
as a kind of visibility) between different tokens,
by adjusting the value of elements of the attention
mechanism mask matrix. It suppresses the infor-
mation interaction among tokens mutual invisible,
while enhancing the information interaction among
tokens mutual visible. Experimental results show
that partial attention effectively improves model
performance. See appendix for more detail infor-
mation about partial attention.

3.3 Second Round Semantic Interaction

Even with partial attention, semantic dissonance
persists due to the presence of tripartite token types.
To refine semantic integration, we introduce sec-
ond round semantic interaction, employing a se-
mantic integrator that explicitly model interactions
between entity candidates and label annotations.
The semantic integrator consists of multiple GCN
layers with randomly generated adjacency matrix,
treats both entity spans and label annotations as
nodes, and establishs connections between nodes
through the construction of a graph G°. So that
the interactions between nodes can be explicitly
modeled.

A GCN typically necessitates a manually pre-
defined and fixed adjacency matrix to depict the
inter-nodes connections. The fixed adjacency ma-
trix fixes the perspective from which the model
understands the semantics. However, it’s naturally
to note that the inter-nodes connection cannot be
predetermined accurately when considering our
task. Otherwise, the our task would be meaningless.
Therefore, we forgo a static adjacency matrix in
favor of a multi-view graph, called Gaussian Graph
Generator based Graph Convolutional Networks,
G*CN (inspired by He et al., 2015; Xue et al.,
2021), and attaches every node with a Gaussian



distribution N (11, o) (1, o are generated by a linear
layer) to simulate edge weight wj; through coum-
pute the KL divergence wy; between two Gaussian
distribution of node. This approach captures the
potential asymmetrical inter-nodes connections, al-
lows model to assimilate semantic contexts from
multiple perspectives, can be formulized as:

wé; = KL (N (13, 07) [N (1, 05))

v

~ 1
Hspan = 5 [Hspan + G4CN (Hspam Hzﬁgo)]
where Hgpan, Ht ) are matrixs formed by concate-

nating multiple span or annotation representations.

3.4 Name Entity Recognition

Span and Annotation Representation We ex-
tract the contextualized representations h for indi-
vidual token s from PLM output, and naturally ob-
tain the involved mathematical formulas for spans
and annotatations as:

hanne = FC, ([hZ’ hZ])
hspan = FCspan ([hs ; he

span’ Mspan> ?\/l; h?\/[])

where hynno € R, hypan € R And hg, h¢ is em-
bedding of first and last token of a certain type of la-
bel annotatation, respectively. hy, hf is embedding
of first token and last token of a entity candidate
respectively, and hj,, h9, indicates the embedding
of start and end token of marker respectively. Lin-
ear layer FC used to harmonize dimensional space.

Entity Candidates Filter It is indisputable
that the prediction of excessive candidate entities
significantly consumes a significant amount of com-
putational resources. To conserve computational
resources, we devise a binary classifier acts as a
entity filter, performing coarse screening for all
enumerated entities by discarding non-genuine en-
tities, thus optimizing subsequent predictions.

As for loss function, the primary aim of entity
filter is to maximize the likelihood function, what
drove us adopt likelihood loss function following
Sun et al., 2019:

Ad
Zlog P(span; € ¥,|span;, € ¥)
i=1

Liner = B
where ¥, C W indicates a set of real entity spans.

In addition to intuitive time consumption opti-
mization, experimental results indicate that entity
filter successfully alleviates model weakening en-
gendered by negative samples and enhances overall
performance.

Span Classifier ~We conduct span representa-
tions classification through a linear classifier, utiliz-
ing cross-entropy loss to direct the learning process.
The combined loss function Lyer = Liter + Lspan
is optimized during training, with dropout layers
for regularization.

Lspan = 1T

In addition, (Ye et al., 2022) had proved that pack-
ing a series of related spans into a training instance
can promote the NER model performance, that nat-
urally prompt us to follow the effective measures
when reorganize input.

3.5 Relation Extraction

Subject marker In RE phase, we design our
Annotate & Enumeration Based method (as demon-
strated in Figure.1) to acquire the enhanced repre-
sentation. Concretely, we adopt the marker based
approach (shown in Figure.1), and insert a pair of
subject markers (called solid markers in Ye et al.,
2022) into left and right of subject entity, and enu-
merated object candidate spans following on the
heels of annotatation tokens to extract relations
involving the subject entity.

Entity pairs Representation = We match sub-
ject and object representations up pairwise to obtain
a series of entity pairs, which can be formulized
as hpair = [houpj; hobj]. And the label semantic
confused pair representation formulas is:

~ 1
Hpair =3

2 Hpair + G4CN (Hpair; Hfﬁ}lno)}

1 .
where Hy,ir, Hyp,, are matrixs formed by concate-
nating entity pair or relation label annotation repre-
sentations.

4 Experiments

4.1 Experiments Setup

Datasets We utilize three standard corpora: 1)
ACEQO5 spans various domains such as newswire
and online forums. It contains seven entity types
and six relation types between entities. 2) Sci-
ERC(Luan et al., 2018) is a scientific dataset built
from Al conference/workshop proceedings across
four communities. It includes 7 entity types and 7
relation types. 3) ADE(Gurulingappa et al., 2012)
consists of 4,272 sentences and 6,821 relations ex-
tracted from medical reports.



NER RE RE+
Dataset Models Encoder P R F1 P R F1 P R F1
Li and Ji(2014) - 8520 7690 80.80 | 68.90 4190 52.10 | 6540 39.80 49.50
Miwa and Bansal(2016) L 8290 83.90 83.40 - - - 57.20  54.00  55.60
Katiyar and Cardie (2017) 8400 8130 8260 | 57.90 54.00 5590 | 5550 51.80  53.60
AntNRE(2019) G 86.10 8240  84.20 - - - 68.10 5230  59.10
DYGIE(2019) - - 88.40 - - 63.20 - - -
DyGIE++(2019) - - 88.60 - - 63.40 - - -
ACEQ5 Table-Sequence(2020) - - 89.50 - - 67.60 - - 64.30
UniRE(2021) 88.80 88.90  88.80 - - - 67.10 61.80 64.30
SPAN(2020) Bb 89.32 89.86  89.59 - - - 7122 60.19 65.24
PURE(2021) - - 90.20 - - 67.70 - - 64.60
PL-Marker(2022) - - 89.70 - - 68.80 - - 66.30
HIORE(2023) - - 89.60 - - - - - 65.80
LAI-NET (Our model) 90.28 90.60 90.44 | 73.80 7042 72.06 | 71.96 68.67 70.27
DYGIE(2019) E+L - - 65.20 - - - - - 41.60
DyGIE++(2019) - - 67.50 - - - - - 48.40
Spert(2020) 70.87  69.79 7033 - - - 53.40 4854 50.84
UniRE(2021) 6580 71.10  68.40 3730  36.60 36.90
SciERC  PURE(2021) SciB - - 68.20 - - 50.10 - - 36.70
PL-Marker(2022) - - 69.90 - - 52.00 - - 40.60
HIORE(2023) - - 68.20 - - - - - 38.30
LAI-NET (Our model) 70.04  69.89 6994 | 6921 71.71 70.41 | 59.84 62.01  60.88
Spert(2020) 89.02 88.87 88.94 - - - 78.09  80.43  79.24
Table-Sequence(2020) - - 89.70 - - 80.10
ADE  SPAN(2020) Bb 89.88  91.32  90.59 - - - 79.56  81.93  80.73
LAI-NET (Our model) 89.78 91.24 90.49 | 8048 8379 82.09 | 79.37 8328 81.25

Table 1: The main experiment results of overall NER and RE tasks on different datasets. We highlight our results making new
SOTA with bold and sub-optimal performance with underline. The Encoder column in the table denotes the base encoder each
model used: Bb = BERT-base, SciB = SciBERT (size as BERT-base), E = ELMO, L = LSTM, G = Glove.

Metrics The model with best F1 performance
on test set will be selected on a fixed number of
epochs. Both micro and macro average metrics are
used to evaluate the model performance, former for
ACEO05/SciERC and latter for ADE. For NER task,
an entity prediction is correct if and only if its type
and boundaries both match with those of a gold
entity. For RE task, a relation prediction is consid-
ered correct if its relation type and the boundaries
of the two entities match with those in the gold data.
We also report the strict relation F1 (denoted RE+),
where a relation prediction is considered correct if
its relation type as well as the boundaries and types
of the two entities all match with those in the gold
data. We show detailed experimental settings in
Appendix.

4.2 Main Results

4.2.1 Results against horizontal comparison

Table 1 horizontally compares across a spectrum of
methods, which focus on comparing outstanding
models developed recent years, including several
previous SOTA models.

For NER task, given the same PLM encoer, our
best model matches or slightly surpasses previous
SOTA methods. For RE task, given the same PLM
encoder (bert-base), we achieved a performance
gain of 2-10% on relation F1 and strict relation

F1, consistently outperforming all selected base-
lines. All these performance comparison results
fully demonstrate the advantages of our interactive
method.

On ACEOQS5, we can find that LAI-Net achieves
an overall lead in terms of NER and RE tasks
(particularly obtains a gain of nearly 4% in
the RE task) compared to all the baselines listed.
Both on SciERC and ADE, although our LAI-
Net slightly lags behind the SOTA performance
in numerical (nearly 0.4% and 0.1% respectively
behind, but still achieves sub-optimal perfor-
mance) for NER task, surpasses existing SOTA
algorithms (about 2% and 10% respectively) in
the downstream RE task.

All these improvements demonstrate that 2-
rounds semantic interactions indeed further utilizes
the predicted entities from the NER stage through
the two-rounds semantic interaction, significantly
improving the performance of relation recognition
without compromising NER performance.

4.2.2 Results against significant
hyperparameters

Table 2 delineates the impact of varying significant
hyperparameter of GCN layer on the performance
of LAI-NET. For the number of GCN layers, we
consider a range from O to 5, with zero indicating
the absence of GCN for semantic interaction and



Number of GCN Layer
2 3 4

Number of Attention Head

Task 0 1 5 1 2 3 4 6
NER | 90.23 8995 9044 89.92 90.03 89.94 | 90.16 90.21 90.30 90.44 90.24
ACEO5 RE 68.05 68.38 72.06 69.37 6926 69.53 | 71.75 72.06 72.16 71.84 71.37
RE+ | 65.61 6575 7027 6693 6670 66.88 | 69.54 70.27 70.03 69.86 69.21

NER | 90.49 90.18 90.23 90.32 90.28 90.17 - - - - -
ADE RE 8099 82.09 81.64 80.71 81.25 81.04 | 81.42 81.79 82.09 81.21 80.94
RE+ | 80.99 81.25 80.81 80.39 8095 80.63 | 80.83 81.02 81.25 80.88 80.55
NER | 69.40 69.94 69.47 69.17 6931 6940 | 6942 69.76 69.32 69.94 69.23
SciERC RE 69.80 70.06 7041 69.70 70.31 69.36 | 69.58 69.20 69.99 7041 69.43
RE+ | 6049 60.57 60.88 5991 6082 60.06 | 60.24 60.15 60.61 60.88 59.56

Table 2: The ablation F1 result comparisons against various configuration setting: (1) if embed entity filter or not,

(2) number of GCN layer, (3) number of attention head.

more layers corresponding to increased communi-
cation times among nodes within the graph. As for
the number of attention heads, we opt for values of
1, 2, 3, 4, and 6. The deliberate exclusion of the
value 5 is attributed to the fact that the encoder’s
hidden dimension is not divisible by 5, a constraint
inherent to the multi-head attention mechanism.

The table permits an intuitive observation that:
(1) an increase in the GCN layers number does not
linearly translate to enhanced performance; an ex-
cessive GCN layers number can exert a deleterious
effect on the model, with the more optimal layers
number identified as either 1 or 2; (2) concerning
the number of attention heads, the more optimal
solution exhibits some variation across different
datasets, yet it is unequivocally clear that neither
an excessively high (e.g. 6) nor a disproportion-
ately low (e.g. 1) number of attention heads can
fully capitalize on the GCN’s capabilities.

4.3 Ablation Study

4.3.1 Performance against two rounds of
interaction

We conducted ablation experiment specifically tar-
geting the two-stage semantic interaction, which
is considered crucial ablation experiment in our
work. Drawing upon the outcomes of the experi-
ment, we can directly evaluate the extent to which
our devised dual semantic interaction genuinely
augments the model’s performance.

What should be noted is that the second stage
interaction is built upon the annotated label infor-
mation (that’s what the first stage interaction do), so
when the label annotation information is no longer
inject, the second stage interaction ceases to exist
as well. However, the existence of the second stage
interaction does not affect the first stage interaction.

As shown in Table 3, no matter which round
of semantic interaction is eliminated, it invariably

Task Method P R F1
LAI-Net 90.28 90.60 90.44
NER W/o lst 89.72 (-0.55)  90.68 (+0.08)  90.20 (-0.24)
w/o2nd  89.97 (-031) 90.50 -0.10)  90.23 (-0.21)
3 LAI-Net 73.80 70.42 72.06
m RE w/o 1st 70.04 (-3.76)  67.83 (-2.60)  68.91 (-3.15)
% w/o2nd  69.70 (-4.09) 66.49 (-3.94)  68.05 (-4.01)
LAI-Net 71.96 68.67 70.27
RE+ W/olst 67.14 (-482) 65.02 (:3.66)  66.06 (-4.21)
w/o2nd  67.20 (-4.77)  64.10 (-4.58)  65.61 (-4.67)
LAI-Net 89.78 91.24 90.49
NER w/o Ist 88.94 (-0.84)  91.07 (-0.17) 89.99 (-0.51)
w/o 2nd - - -
m LAI-Net 79.38 83.29 81.26
[a) RE w/o 1st 79.08 (-0.30)  82.99 (-0.30)  80.99 (-0.27)
< w/o2nd  79.01 -037) 83.17 (-0.12)  81.04 (-0.22)
LAI-Net 79.37 83.28 81.25
RE+ W/olst 78.87 (-0.51)  82.68 (-0.61)  80.73 (-0.52)
w/o2nd  78.73 (-0.64) 82.64 (-0.64)  80.63 (-0.62)
LAI-Net  70.04 69.89 69.94
NER w/o 1st 69.58 (-0.46)  69.12 (-0.77)  69.35 (-0.59)
w/o2nd  69.82 (-022) 68.98 -091)  69.40 (-0.54)
g LAI-Net 69.21 71.71 70.41
m RE w/o 1st 69.18 (-0.03) 69.94 (-1.77)  69.56 (-0.85)
g w/o2nd  69.00 (-021) 70.64 (-1.08)  69.80 (-0.61)
LAI-Net 59.84 62.01 60.88
RE+ W/olst 59.81 (-0.03) 60.47 (-1.54)  60.14 (-0.74)
w/o2nd  59.79 (-0.05) 61.22 (-0.80)  60.49 (-0.39)

Table 3: The ablation result comparisons against two
rounds interaction.

leads to adverse effects of varying magnitudes on
the newly SOTA we have developed, encompassing
the precision, recall, and F1-score metrics. Notably,
the impact on the RE task for the ACEOS dataset is
particularly severe, with the greatest reduction in
the F1-score reaching up to 4.67%.

4.3.2 Ablations against attention mask matrix

In order to evaluate the efficacy of partial atten-
tion matrices, we selected three distinct attention
masking matrices for ablation study, namely: (1)
the full attention matrix, wherein all tokens are mu-
tually visible; (2) the anno-token visible attention
matrix, where annotation tokens and text tokens
are intervisible; and (3) the anno-token invisible
attention matrix, with annotation tokens and text
tokens also being intervisible. Irrespective of the



Task NER RE RE+
e Invisible  90.44 72.06 70.27
m  Visible  90.36 (-0.08) 68.01 (-4.05)  65.57 (-4.70)
2 Full 88.29 (-2.14)  65.79 (-6.28)  64.28 (-5.99)
- Invisible  90.49 82.09 81.25
A Visible  90.09 -040) 81.26 (-0.83)  80.09 (-1.16)
< Full 89.40 (-1.10)  79.99 (-2.10)  78.92 (-2.33)
O Invisible 69.94 70.41 60.88
& visible  69.13 081) 69.44(097) 60.61 (:027)
g Full 66.21 (-3.73)  69.55 (-0.85)  60.30 (-0.59)

Table 4: The ablation F1 result comparisons against
various types of attention mask matrix.

Entity Filter ACEO05 p; ADE g SciERC g
w/ 90.44 90.49 69.94
w/o 88.70 (-1.74)  89.92 (-0.57)  69.76 (-0.18)

Table 5: The ablation result comparisons against entity
filter.

attention masking matrix employed, tokens of the
same type remain mutually visible during the com-
putation of attention scores. And a more in-depth
explanation has been provided in Appendix.

As Table 4 elucidates, across all three datasets,
the anno-token invisible attention matrix exhibits
a markedly superior performance compared to the
other attention matrice types. The anno-token vis-
ible attention matrix comes in second place, with
its largest deficit compared to the top-performing
technique capping out at 4.7% across the varied
tasks encapsulated within the trio of benchmarks.
Meanwhile, the fully attention matrix turns in the
least impressive showing, lagging behind the peak
achieved score on each respective dataset by up to
6.28%, indicative of appreciably inferior capabili-
ties amongst the range of workloads tested.

In attempting to analyze the underlying reasons
for this phenomenon, it is hypothesized that the
following factors play a critical role: (1) the mutual
visibility mechanism between annotation tokens
and text tokens establishes a conduit for semantic
communication, thereby enhancing the semantic
richness of the embeddings for both annotations
and text; (2) conversely, the full attention matrix al-
lows for the intermingling of semantic information
among annotation tokens, text tokens, and entity
candidate tokens, which may inadvertently lead to
an over-amplification of semantic input, potentially
diluting the primary information or even causing
semantic confusion, culminating in a decrement in
model performance.

4.3.3 Ablations against entity filter

During the NER phase, considering the exponential
surge in candidate entity quantity accompanying
increased entity length, the preponderance of nega-
tive samples can readily overwhelm the relatively
paltry positive examples, which easily impedes the
network’s capacity to accurately identify genuine
entities. To mitigate this, LAI-Net incorporates a
deliberately inserted filter prior to the entity classi-
fier to preliminarily sieve out spans that are clearly
non-entity. To validate whether said filter genuinely
facilitates the NER process, we devised associated
ablation experiments. As depicted in Table 5, the
presence of the filter effectively improves NER per-
formance, with advantages most conspicuous on
the ACEOQS dataset (surpassing no-filter models by
1.74% in terms of F1 scores).

5 Conclusion

Faced with the weaknesses of LLMs in funda-
mental NLP tasks, we propose LAI-Net, a novel
interaction-based E2ERE method for representa-
tional semantic enhancement via two round inter-
actions. Experiments on several datasets show that
our LAI-Net allows high-level semantic informa-
tion flow and facilitates the E2ERE task.

In summary, the key novelty is the multi-phase
semantic interaction framework to effectively inject
external knowledge and unify representations for
entities and relations. The gains demonstrate this
allows better information flow and facilitates the
E2ERE task.

6 Ethical Statement

This research strictly adheres to the ethical code
outlined by ACL, recognizing the significance of
ethical considerations in Al. Our work on relation
extraction is conducted with a commitment to re-
sponsible use of data and conscious awareness of
the potential impacts of our findings. We acknowl-
edge the potential of this technology to influence
various Al applications, and we are aware of the
dual-use nature of our contributions. To mitigate
risks of misuse, we advocate for transparent and
regulated use of relation extraction technologies,
especially in sensitive domains. Our research is ori-
ented towards positive societal benefits, such as en-
hancing information accessibility and aiding knowl-
edge discovery, while actively seeking to minimize
any adverse consequences.


https://aclrollingreview.org/cfp

7 Limitations

Our study, while advancing the capabilities in re-
lation extraction, has certain limitations. Firstly,
the performance of our proposed models is highly
dependent on the quality of manual annotation of
label semantics, especially on fine-grained rela-
tional extraction tasks. Although we strive to build
reliable and trustworthy annotations during the ex-
periment, it can take a lot of manpower to complete
this work in practical applications, potentially lim-
iting their applicability in those areas. Secondly,
the token number of label annotatation is also an
important factor limiting the performance of the
model. Due to the input length limitation of the
encoder, the number of words in label annotata-
tion will undoubtedly consume length space, and
overlong annotatation may cause greater semantic
confusion, which in turn affects the model perfor-
mance
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A Appendices

A.1 Implement Details

Datasets and preprocess We strategically se-
lected three standard corpus (ACEQS5, SciERC,
ADE) in terms of E2ERE task.

1) ACEO05? is collected from a variety of do-
mains (such as newswire and online forums). It
includes 7 entity types, and include 6 relation types
between entities. For data processing, we use the
same entity and relation types, data splits®, and pre-
processing as Li and Ji, 2014; Miwa and Bansal,
2016 (351 training, 80 development and 80 testing).

2) SciERC (Luan et al., 2018) is a scientific-
oriented dataset, which is built from 12 Al confer-
ence/workshop proceedings in four AI communi-
ties, and includs 7 entity types and 7 relation types.

3) ADE (Gurulingappa et al., 2012) consists of
4272 sentences and 6821 relations extracted from
medical reports.

In terms of experiment, for ACEOS and SciERC,
we run our model 10 times with different random
seeds, and report averaged results of all the runs.
And for ADE, we adopt 10 fold cross-validation
respectively and run each fold 10 times and report
averaged results of all the runs.

PLMs and hardware devices For fair com-
parison with previous works, we employ bert-base-
uncased (Devlin et al., 2019) as the encoders for
ACEO5 and ADE, and use the in-domain scibert-
scivocab-uncased” (Beltagy et al., 2019) as the en-
coder for SciERC, and all the experiments are exe-
cuted using three GeForce RTX 3090 24GB GPUs.

Optimizer and learning rate settings We
use AdamW optimizer during training. We set
the learning rate as 4e-4 for both NER and RE
task. We had tried to set different learning rate for
different layers, and experiment results show that
it’s useless.

Maximum length settings We respectively
set the maximum length of reorganized sentence C
as 150, 100, 150 on ACEOS5, ADE, SciERC. As enu-
merating possible spans, we set the maximum span
length L as 8 for all datasets, and limit the num-
ber of entity candidates as 220 for every irain/eval

2https ://catalog.1ldc.upenn.edu/LDC2005T26

Shttps://github.com/tticoin/LSTM-ER/tree/
master/data/ace2005/split

4SCiBERT is a BERT model trained on scigztific text,
whose corpus includes the full text of 1.14 millicnscientific
papers (82% in biomedical and 12% in computer science), and
may be more suitable for natural language processing tasks on
SciERC dataset
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sample.

Batch size and epoch settings In NER phase,
we respectively set batch size as 16 per GPU for
SciERC, 20 per GPU for ACEOS, and 14 per GPU
for ADE. And in RE phase, we set the batch size as
40 per GPU for SciERC, 50 per GPU for ACEOQS,
64 per GPU for ADE. We set the epoch as 80 for
all Datasets in NER phase, and 60 for all dataset in
RE phase.

Cold start settings for NER It should be
noted that, due to the enumeration of a large num-
ber of non-entity spans as negative samples in NER
pahse, which extremely likely to lead to unable-
convergence train, or the phenomenon that the
model directly predicts all spans as non-entities.
Therefore, we set up a specific cold start process
for training. In the first half of training, we use the
true labels as the filter result for next entity clas-
sification in order to calculate the loss to update
the parameters. This guides the model during early
learning before exposing it to negatively labeled
non-entity spans. In actual training, we set the
cold boot epoch number as 15, 40, 40 for ACEOS,
SciERC, ADE respectively. Moreover, according
to unpublished experimental results, experiments
without cold start configuration were utterly inca-
pable of acquiring any knowledge whatsoever, with
all performance metrics equaling zero throughout
the training phase.

Symmetry of relation for RE ~ We formulate
the directed relation as r; ;, with the subject entity
e; always pointing to object entity e;. Therefore, a
triplet with positive relation canbe written as e; —
r;j — €, and its reverse formulais e; — r;; —
ei. 15, 7j,; may refer to different relation types. In
RE phase, we consider the subject be left and the
object be right by default. Either (e; — 7 ; — €;)
or (ejo=» 75, — e;) will be predicted if it’s a really
relaiton: Only when they are both predicted to be
true (that is, the probability value is greater than
the threshold), the triplet (e;, 75 5, €;) and triplet
(€5, rjiixei) will be established.

A.2 Parital attention mask

Obviously, the series of annotation tokens and
marker tokens manually attached after the text to-
kens does not form a coherent and semantically
complete sentence. It inevitably affects the seman-
tic construction from text tokens, and impair the
representational ability of word vectors during the
PLM encoding process.

To address this potential issue, we adopt a spe-


https://catalog.ldc.upenn.edu/LDC2006T06
https://github.com/tticoin/LSTM-ER/tree/master/data/ace2005/split
https://github.com/tticoin/LSTM-ER/tree/master/data/ace2005/split
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Figure 3: Diagrams of three types attention mask matrix with an assumption that there is two entity candidates.

cialized partial attention mechanism to selectively
mitigate or enhance the semantic impact of tokens
from differed types. In details, by adjusting the
value of elements of the attention mechanism mask
matrix, we can control the visibility among three
types of tokens.

Partial attention can effectively control the infor-
mation flow between different tokens. It suppresses
the information interaction between text and anno-
tations (i.e. invisible) while enhancing the infor-
mation interaction between text and candidates (i.e.
visible).

We show three different masking matrices in
Figure.3, for which we conduct some ablation ex-
periments. In conjunction with Figure.3, we fur-
ther elucidate the meaning of the discrete elements
within mask matrix. Train our gaze upon the first
row of Figure.3 (a), which delineates the tokens
discernible by the text token. The pale green re-
gion signifies it can see corresponding tokens, the
white space those it cannot see, and the faint yel-
low elements the marker tokens within its purview.
Notably, the two faint yellow squares on the left
denote the start marker tokens, while the two on
the right denote the end marker tokens.
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