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Abstract
While numerous studies on end-to-end relation001
extraction (E2ERE) have centered on enhanc-002
ing span representations to improve model per-003
formance, challenges remain due to the gaps be-004
tween subtasks (named entity recognition and005
relation extraction) and the modeling discrep-006
ancies between entities and relations. In this007
paper, we propose a novel Label Annotation008
Interaction based representation enhancement009
method1) for E2ERE, which institutes a two-010
phase semantic interaction to augment represen-011
tations. Specifically, we firstly feed label anno-012
tations that are easy to manually annotate into013
a language model, and conduct the first round014
interaction between three types of tokens with015
a partial attention mechanism; Then construct016
a latent multi-view graph to capture various017
possible links between label and entity (pair)018
nodes, facilitating the second round interac-019
tion between entities and labels. A regimen020
of rigorous experimentation demonstrates that021
LAI-Net achieving performance parity with the022
current SOTA models on ADE/SciERC dataset023
in terms of NER task (a SOTA performance024
has been achieved on the ACE05 dataset pecif-025
ically), and establishing a new SOTA result026
(with nearly a 10% advance on the SciERC027
dataset for RE specifically) in terms of RE task.028

1 Introduction029

Endowed with blessing of powerful conversational030

and generative abilities, large language models031

(LLMs) like ChatGPT suddenly gained popular-032

ity and achieved great success across a spectrum033

of domains, but recent studies (Han et al., 2023;034

Li et al., 2023; He et al., 2023; Wang et al., 2023)035

have unveiled that,in the realm of fundamental NLP036

tasks and notably in end-to-end relation extraction037

(E2ERE), LLM still manifests discernible perfor-038

mance discrepancies when juxtaposed with extant039

SOTA methods.040
1Our code and models will be publicly available at

https://github.com/xxx/xxx.
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Figure 1: An illustration of different representation en-
hancement methods. t indicates an individual token
from text. The bordered rectangles highlighted in as-
sorted colors signify discrete elements: blue, light yel-
low (or green), pink respectively indicate entities mark-
ers, groups of entity tokens and trailed markers, groups
of label annotation tokens. Bidirectionally connected
squares sharing the same color refer to elements that
have identical position id.

As a core information extraction (IE) task, 041

E2ERE can be split into named entity recognition 042

(NER) subtask for entity identification and relation 043

extraction (RE) subtask for capturing inter-entity 044

relations from plain texts. As postulated by Tang 045

et al. (2022), E2ERE is challenging for its difficulty 046

in capturing affluent correlations between entities 047

and relations. IE research has traditionally con- 048

verted NER and RE tasks into span-based tasks 049

(Sun et al., 2019; Yang et al., 2021; Tang et al., 050

2022; Ji et al., 2022; Shang et al., 2022a). Though 051

these methodologies have incrementally advanced 052

model performance from various perspectives, they 053

are still impeded by two pivotal limitations: 1) 054

overdetached of sub-tasks leads to insufficient in- 055

formation exchange between entitiy and relation, 056

and 2) the disparity in modeling strategies between 057

entity and relation result in semantic gaps. 058

In this paper, we mainly focus on 1) enhancing 059

the semantic interaction during modeling process, 060

and 2) investigating how to obtain a unified and 061

enhanced span representation. 062

To address the challenges above, prevailing re- 063
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searches mainly focuses on reorganizing the in-064

put or intermediate network layers of pre-train lan-065

guage model (PLM), attempting to enhance the066

semantic information of representation through the067

integration of specialized symbols or extrinsic prior068

knowledge. We roughly divided into three types069

(as shown in Figure.1): Vanilla based method is a070

straightforward approach to acquiring a given span071

representation by feeding raw text tokens series072

into pre-trained encoder. Marker based method073

inserts independent entity markers like [M], [\M]074

amidst text tokens to highlight the presence of enti-075

ties, aims at attracting more model attention. Enu-076

merate based method enumerates all posible en-077

tity candidates from plain text and then concatenate078

them after text tokens, entity tokens share the posi-079

tion ids with candidates as well.080

For these methods above, the distinguished081

LSTM-CRF (Dai et al., 2019) is a typical vanilla082

based sequence labeling method, and PURE083

(Zhong and Chen, 2021) is a combination of marker084

based method and enumeration based method,085

which adopts marker based method during NER086

phase and enumerate based method for RE phase,087

that achieved SOTA performance. PL-Marker (Ye088

et al., 2022) is a typical enumeration based method089

that promoted the SOTA further.090

In addition to the above three methods, what091

we develop in this paper can be classified as092

the fourth class named annotate & enumeration093

based method. It’s an novel semantic enhance094

approach with external knowledge, inspired by095

external knowledge based aproaches (Sun et al.,096

2020b; Yang et al., 2021). We argut that a thorough097

comprehension of label semantics will significantly098

enhance the IE model abilities, what serves as a099

premise for our work.100

As shown in Figure.1, our principal improve-101

ment over preceding methods lies in the insertion102

of external prior knowledge (i.e., label annotations)103

into the PLM input sequence, aiming to leverage104

PLM’s internal network layers to enhance semantic105

interaction between labels and text. This repre-106

sents the first round semantic interaction in LAI-107

Net framework.108

Unlike the lexicon adapter-based methods109

(Houlsby et al., 2019; Liu et al., 2021) and lattice-110

based methods (Zhang and Yang, 2018; Sui et al.,111

2019; Li et al., 2020), we manually expand the la-112

bel information and embed it between text tokens113

and enumerated candidates then feed the series114

into a pre-trained model. We further enhance the115

representation by combining word vectors using 116

downstream neural networks. 117

Formally, the augmented representations derived 118

from the aforementioned four methods can be sum- 119

marized as: 120

hV
span = f

(
hs

span;h
e
span

)
121

hM
span = f

(
hM ;h\M

)
122

hE
span = f

(
hs

span;h
e
span;hM ;h\M

)
123

hA&E
span = f

(
hs

span;h
e
span;hM ;h\M ;hs

a;h
e
a

)
124

where f(·) is an tensor operator, equipped to ex- 125

ecute series of operations including tensor addition, 126

tensor multiplication, tensor concatenation, etc., or 127

even could be a neural network. And superscripts 128

s, e denote the commencement and termination to- 129

kens of a span or annotation, while the subscripts 130

span,M, \M represent the disparate token types. 131

Based on the first round semantic interaction, 132

we further meticulously crafted with selectively 133

designed downstream network layers. To summa- 134

rize, our main innovations and improvements in 135

our work lie in the following aspects: 136

• We explore a novel two-round semantic in- 137

teraction approach for enhancing span repre- 138

sentations, wherein the first round interaction 139

reorganizes the PLM input in what we term 140

an annotation & enumeration-based method, 141

and the second round interaction employs mul- 142

tiple layers of graph convolutional networks 143

built atop Gaussian Graph Generator (GGG) 144

modules to facilitate label semantic fusion. 145

• We conduct a coarse screening by developing 146

a entity candidate filter, so that achieve the 147

goal of filtering out spans that are clearly not 148

real entities, it also promotes the saving of 149

computing resources. 150

• Extensive experiment indicates that our model 151

establishes new SOTA performance on several 152

standard benchmarks and surpasses previous 153

models utilizing identical PLM. 154

2 Related Work 155

Recently, academic interest in span representa- 156

tion enhancement has surged, providing a sub- 157

stantial impetus to E2ERE. Traditional neural net- 158

work based methods often ignore non-local and 159

non-sequential context information from input text 160
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chalabi is the founder and leader of the iraqi national congress .
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Figure 2: Illustration of our LAI-Net, where annotatation interaction is highlighted by red color. The left and right
part of the architecture represent the RE and NER phase respectively. In addition, ▲ indicates the span representation
and differed type tokens marked with same color with their corresponding embeddings.

(Qian et al., 2019), what is exactly GCNs (Daiga-161

vane et al., 2021; Wu et al., 2023) excel in. GCNs,162

what our discussion centered on, have been widely163

used to model the interaction between entities and164

relations in the text, and has been demonstrated as165

a typical and effective approach.166

GCN-based approaches typically leverage a pre-167

defined graph structure, which constructed from168

plain text, to facilitate information propagation169

among nodes, thus capturing text’s non-linear struc-170

ture and enhancing NER and RE models’ capabil-171

ities to capture both global graph structures and172

representations of nodes and edges.173

Mostly GCN based methods (Sun et al., 2019;174

Guo et al., 2019; Qian et al., 2019; Luo and Zhao,175

2020; Sun et al., 2020a; Xue et al., 2021; Shang176

et al., 2022b) utilizes different approaches to de-177

fine nodes (sentences, words, tokens, spans, labels,178

etc.) and edges (syntactic dependency edges, coref-179

erence edges, re-occurrence edges, co-occurrence180

edges, adjacent word edges, etc.). And then per-181

form convolution operations on the graph to facili-182

tate the flow of information between nodes, which183

enables nodes to efficiently acquire both local and184

global information. This further refines node repre-185

sentations and downstream network performance.186

Building on these advances, our work also adopt187

a GCN based method to design the interaction be-188

tween entities and relations.189

3 Methodology 190

3.1 Task Definition 191

Given a sentence formularized as S = 192

{w1, w2, · · · , wm} = {t1, t2, · · · , tn}, com- 193

prising m words or n tokens (n ≥ m). The 194

objective of E2ERE is the automated recognization 195

of entity spans and their interrelationships, deno- 196

table as (ei, ri,j , ej) ∈ T . Here, e is an entity span, 197

consists of a series of tokens, with an assigned 198

type (e.g., person (PER), organization (ORG)), and 199

ri,j typifies the relationship between ei and ej 200

(e.g., ORG-AFF). We define E and R as the sets of 201

potential entity and relation types, respectively. 202

3.2 First Round Semantic Interaction 203

Before training, we concatenate different type to- 204

kens (text tokens, annotation tokens, and marker 205

tokens) sequentially to formulate a unified input 206

sequence (refer to the bottom element of Figure.2). 207

The PLM encoder then conducts the first round 208

semantic interaction, the encoded representation is 209

semantic amalgamation of the three types tokens. 210

Text Tokens Our approach breaks down the 211

words from raw text into text token sequences as 212

part of the model input. 213

Annotation Tokens Inspired by Ma et al., 214

2022 and Yang et al., 2021, we augment seman- 215

tic information by manually annotating the entity 216
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(or relation) abbreviated label both in NER and RE217

phase. For example, the abbreviated entity type GPE218

can be annotated as "geography political entity", a219

fully-semantic unbroken phrase. Correspondingly,220

the abbreviated relation type ORG-AFF can be an-221

notated as "organization affiliation". Each label is222

manually expanded to enrich semantic content and223

then tokenized into annotation tokens (highlighted224

by red rectangle in bottom of Figure.2), which are225

appended to the text tokens sequentially.226

Marker Tokens We enumerate all potential227

consecutive token sequences (i.e. entity candidates)228

not exceeding a predefined limitation of length c229

(with c ≤ n) within a sentence, labeling each with230

an entity type. If c = 2, as shown in Figure.2,231

the set of all the possible spans from sentence232

"chalabi is the founder and leader of233

the iraqi national congress." can be writ-234

ten as Ψ = {"chalabi", "chalabi is", "is", "is the",235

"the founder", "founder", "founder and", "and",236

"and leader"· · · }. The i-th span can be written as237

spani = [spansi , spanei ], where spansi and spanee are238

indicative of start and end position id of entity span239

respectively. Therefore, entity candidate series can240

also be written as Ψ = {[0, 0], [0, 1], [1, 1], [1, 2],241

[2, 2], [2, 3], [3, 3], [3, 4], [4, 4], [4, 5]} given posi-242

tion id perspective. Thus, we can easily suma-243

rize the formula for computing the number of244

candidate for a sentence with m words:|Ψ| =245

m · c+ (c− c2)/2.246

In model input, we define a start marker (M ) and247

an end marker (\M ), which form a pair of marker248

tokens, respectively represent the start and end of249

an entity span and are appended subsequent to an-250

notation tokens. The start and end marker share251

the same position embedding with corresponding252

span’s start token and end token respectively, while253

keeping the position id of original text tokens un-254

changed. From an PLM encoder input perspective,255

every marker is a token element of tokens series,256

called marker token. As shown in Figure.2, entity257

chalabi is highlighted by light yellow bordered258

square, and its corresponding markers noted by a259

colorful non-bordered square with line frame dif-260

ferred in various entity labels (white means non-261

entity). In conclusion, the complete input sequence262

can be represented as follows:263

S̃ = {s0, s1, · · · , s|S̃|}

= {[CLS]} ∪ {t0, t1, · · · , tn−1, } ∪ {[SEP]}
∪ {a0, a1, · · · , aN−1} ∪ {[SEP]}

264

∪{Ms
0,Ms

1, · · · ,Ms
|Ψ|−1}∪{Me

0,Me
1, · · · ,Me

|Ψ|−1}

where ai is a single token broken from label annota- 265

tion, Ms
i ,Me

i represent start and end marker token 266

respectively. 267

Partial Attention Although special tokens 268

([CLS], [SEP]) serve to isolate different types of to- 269

kens, there still exists semantic interference among 270

them. The straightforward blend of annotation to- 271

kens and marker tokens with text tokens may dis- 272

rupt semantic consistency of raw text. To miti- 273

gate this, we devise a partial attention mechanism, 274

allowing selective semantic influence among the 275

differ types of token. This mechanism can effec- 276

tively control the information flow (could be regard 277

as a kind of visibility) between different tokens, 278

by adjusting the value of elements of the attention 279

mechanism mask matrix. It suppresses the infor- 280

mation interaction among tokens mutual invisible, 281

while enhancing the information interaction among 282

tokens mutual visible. Experimental results show 283

that partial attention effectively improves model 284

performance. See appendix for more detail infor- 285

mation about partial attention. 286

3.3 Second Round Semantic Interaction 287

Even with partial attention, semantic dissonance 288

persists due to the presence of tripartite token types. 289

To refine semantic integration, we introduce sec- 290

ond round semantic interaction, employing a se- 291

mantic integrator that explicitly model interactions 292

between entity candidates and label annotations. 293

The semantic integrator consists of multiple GCN 294

layers with randomly generated adjacency matrix, 295

treats both entity spans and label annotations as 296

nodes, and establishs connections between nodes 297

through the construction of a graph Gs. So that 298

the interactions between nodes can be explicitly 299

modeled. 300

A GCN typically necessitates a manually pre- 301

defined and fixed adjacency matrix to depict the 302

inter-nodes connections. The fixed adjacency ma- 303

trix fixes the perspective from which the model 304

understands the semantics. However, it’s naturally 305

to note that the inter-nodes connection cannot be 306

predetermined accurately when considering our 307

task. Otherwise, the our task would be meaningless. 308

Therefore, we forgo a static adjacency matrix in 309

favor of a multi-view graph, called Gaussian Graph 310

Generator based Graph Convolutional Networks, 311

G4CN (inspired by He et al., 2015; Xue et al., 312

2021), and attaches every node with a Gaussian 313
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distribution N (µ, σ) (µ, σ are generated by a linear314

layer) to simulate edge weight we
ij through coum-315

pute the KL divergence we
ij between two Gaussian316

distribution of node. This approach captures the317

potential asymmetrical inter-nodes connections, al-318

lows model to assimilate semantic contexts from319

multiple perspectives, can be formulized as:320

we
ij = KL (N (µi, σi)∥N (µj , σj))321

H̃span =
1

2

[
Hspan + G4CN

(
Hspan,H

ent
anno

)]
322

where Hspan,H
ent
anno are matrixs formed by concate-323

nating multiple span or annotation representations.324

3.4 Name Entity Recognition325

Span and Annotation Representation We ex-326

tract the contextualized representations h for indi-327

vidual token s from PLM output, and naturally ob-328

tain the involved mathematical formulas for spans329

and annotatations as:330

hanno = FCa ([h
s
a;h

e
a])331

hspan = FCspan
(
[hs

span;h
e
span;h

s
M ;he

M ]
)

332

where hanno ∈ Rd,hspan ∈ Rd. And hs
a,h

e
a is em-333

bedding of first and last token of a certain type of la-334

bel annotatation, respectively. hs
t ,h

e
t is embedding335

of first token and last token of a entity candidate336

respectively, and hs
M ,he

M indicates the embedding337

of start and end token of marker respectively. Lin-338

ear layer FC used to harmonize dimensional space.339

Entity Candidates Filter It is indisputable340

that the prediction of excessive candidate entities341

significantly consumes a significant amount of com-342

putational resources. To conserve computational343

resources, we devise a binary classifier acts as a344

entity filter, performing coarse screening for all345

enumerated entities by discarding non-genuine en-346

tities, thus optimizing subsequent predictions.347

As for loss function, the primary aim of entity348

filter is to maximize the likelihood function, what349

drove us adopt likelihood loss function following350

Sun et al., 2019:351

Lfilter = − 1

|Ψ|

|Ψ|∑
i=1

logP (spani ∈ Ψg|spani ∈ Ψ)352

where Ψg ⊆ Ψ indicates a set of real entity spans.353

In addition to intuitive time consumption opti-354

mization, experimental results indicate that entity355

filter successfully alleviates model weakening en-356

gendered by negative samples and enhances overall357

performance.358

Span Classifier We conduct span representa- 359

tions classification through a linear classifier, utiliz- 360

ing cross-entropy loss to direct the learning process. 361

The combined loss function Lner = Lfilter + Lspan 362

is optimized during training, with dropout layers 363

for regularization. 364

Lspan = − 1

|Ψg|
∑
Ψg

logPspan 365

In addition, (Ye et al., 2022) had proved that pack- 366

ing a series of related spans into a training instance 367

can promote the NER model performance, that nat- 368

urally prompt us to follow the effective measures 369

when reorganize input. 370

3.5 Relation Extraction 371

Subject marker In RE phase, we design our 372

Annotate & Enumeration Based method (as demon- 373

strated in Figure.1) to acquire the enhanced repre- 374

sentation. Concretely, we adopt the marker based 375

approach (shown in Figure.1), and insert a pair of 376

subject markers (called solid markers in Ye et al., 377

2022) into left and right of subject entity, and enu- 378

merated object candidate spans following on the 379

heels of annotatation tokens to extract relations 380

involving the subject entity. 381

Entity pairs Representation We match sub- 382

ject and object representations up pairwise to obtain 383

a series of entity pairs, which can be formulized 384

as hpair = [hsubj;hobj]. And the label semantic 385

confused pair representation formulas is: 386

H̃pair =
1

2

[
Hpair + G4CN

(
Hpair,H

rel
anno

)]
387

where Hpair,H
rel
anno are matrixs formed by concate- 388

nating entity pair or relation label annotation repre- 389

sentations. 390

4 Experiments 391

4.1 Experiments Setup 392

Datasets We utilize three standard corpora: 1) 393

ACE05 spans various domains such as newswire 394

and online forums. It contains seven entity types 395

and six relation types between entities. 2) Sci- 396

ERC(Luan et al., 2018) is a scientific dataset built 397

from AI conference/workshop proceedings across 398

four communities. It includes 7 entity types and 7 399

relation types. 3) ADE(Gurulingappa et al., 2012) 400

consists of 4,272 sentences and 6,821 relations ex- 401

tracted from medical reports. 402
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Dataset Models Encoder
NER RE RE+

P R F1 P R F1 P R F1

ACE05

Li and Ji(2014) - 85.20 76.90 80.80 68.90 41.90 52.10 65.40 39.80 49.50
Miwa and Bansal(2016) L 82.90 83.90 83.40 - - - 57.20 54.00 55.60
Katiyar and Cardie (2017) 84.00 81.30 82.60 57.90 54.00 55.90 55.50 51.80 53.60
AntNRE(2019) G 86.10 82.40 84.20 - - - 68.10 52.30 59.10
DYGIE(2019)

Bb

- - 88.40 - - 63.20 - - -
DyGIE++(2019) - - 88.60 - - 63.40 - - -
Table-Sequence(2020) - - 89.50 - - 67.60 - - 64.30
UniRE(2021) 88.80 88.90 88.80 - - - 67.10 61.80 64.30
SPAN(2020) 89.32 89.86 89.59 - - - 71.22 60.19 65.24
PURE(2021) - - 90.20 - - 67.70 - - 64.60
PL-Marker(2022) - - 89.70 - - 68.80 - - 66.30
HIORE(2023) - - 89.60 - - - - - 65.80
LAI-NET (Our model) 90.28 90.60 90.44 73.80 70.42 72.06 71.96 68.67 70.27

SciERC

DYGIE(2019) E+L - - 65.20 - - - - - 41.60
DyGIE++(2019)

SciB

- - 67.50 - - - - - 48.40
Spert(2020) 70.87 69.79 70.33 - - - 53.40 48.54 50.84
UniRE(2021) 65.80 71.10 68.40 37.30 36.60 36.90
PURE(2021) - - 68.20 - - 50.10 - - 36.70
PL-Marker(2022) - - 69.90 - - 52.00 - - 40.60
HIORE(2023) - - 68.20 - - - - - 38.30
LAI-NET (Our model) 70.04 69.89 69.94 69.21 71.71 70.41 59.84 62.01 60.88

ADE

Spert(2020)

Bb

89.02 88.87 88.94 - - - 78.09 80.43 79.24
Table-Sequence(2020) - - 89.70 - - 80.10
SPAN(2020) 89.88 91.32 90.59 - - - 79.56 81.93 80.73
LAI-NET (Our model) 89.78 91.24 90.49 80.48 83.79 82.09 79.37 83.28 81.25

Table 1: The main experiment results of overall NER and RE tasks on different datasets. We highlight our results making new
SOTA with bold and sub-optimal performance with underline. The Encoder column in the table denotes the base encoder each
model used: Bb = BERT-base, SciB = SciBERT (size as BERT-base), E = ELMO, L = LSTM, G = Glove.

Metrics The model with best F1 performance403

on test set will be selected on a fixed number of404

epochs. Both micro and macro average metrics are405

used to evaluate the model performance, former for406

ACE05/SciERC and latter for ADE. For NER task,407

an entity prediction is correct if and only if its type408

and boundaries both match with those of a gold409

entity. For RE task, a relation prediction is consid-410

ered correct if its relation type and the boundaries411

of the two entities match with those in the gold data.412

We also report the strict relation F1 (denoted RE+),413

where a relation prediction is considered correct if414

its relation type as well as the boundaries and types415

of the two entities all match with those in the gold416

data. We show detailed experimental settings in417

Appendix.418

4.2 Main Results419

4.2.1 Results against horizontal comparison420

Table 1 horizontally compares across a spectrum of421

methods, which focus on comparing outstanding422

models developed recent years, including several423

previous SOTA models.424

For NER task, given the same PLM encoer, our425

best model matches or slightly surpasses previous426

SOTA methods. For RE task, given the same PLM427

encoder (bert-base), we achieved a performance428

gain of 2-10% on relation F1 and strict relation429

F1, consistently outperforming all selected base- 430

lines. All these performance comparison results 431

fully demonstrate the advantages of our interactive 432

method. 433

On ACE05, we can find that LAI-Net achieves 434

an overall lead in terms of NER and RE tasks 435

(particularly obtains a gain of nearly 4% in 436

the RE task) compared to all the baselines listed. 437

Both on SciERC and ADE, although our LAI- 438

Net slightly lags behind the SOTA performance 439

in numerical (nearly 0.4% and 0.1% respectively 440

behind, but still achieves sub-optimal perfor- 441

mance) for NER task, surpasses existing SOTA 442

algorithms (about 2% and 10% respectively) in 443

the downstream RE task. 444

All these improvements demonstrate that 2- 445

rounds semantic interactions indeed further utilizes 446

the predicted entities from the NER stage through 447

the two-rounds semantic interaction, significantly 448

improving the performance of relation recognition 449

without compromising NER performance. 450

4.2.2 Results against significant 451

hyperparameters 452

Table 2 delineates the impact of varying significant 453

hyperparameter of GCN layer on the performance 454

of LAI-NET. For the number of GCN layers, we 455

consider a range from 0 to 5, with zero indicating 456

the absence of GCN for semantic interaction and 457
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Task
Number of GCN Layer Number of Attention Head

0 1 2 3 4 5 1 2 3 4 6

ACE05
NER 90.23 89.95 90.44 89.92 90.03 89.94 90.16 90.21 90.30 90.44 90.24
RE 68.05 68.38 72.06 69.37 69.26 69.53 71.75 72.06 72.16 71.84 71.37

RE+ 65.61 65.75 70.27 66.93 66.70 66.88 69.54 70.27 70.03 69.86 69.21

ADE
NER 90.49 90.18 90.23 90.32 90.28 90.17 - - - - -
RE 80.99 82.09 81.64 80.71 81.25 81.04 81.42 81.79 82.09 81.21 80.94

RE+ 80.99 81.25 80.81 80.39 80.95 80.63 80.83 81.02 81.25 80.88 80.55

SciERC
NER 69.40 69.94 69.47 69.17 69.31 69.40 69.42 69.76 69.32 69.94 69.23
RE 69.80 70.06 70.41 69.70 70.31 69.36 69.58 69.20 69.99 70.41 69.43

RE+ 60.49 60.57 60.88 59.91 60.82 60.06 60.24 60.15 60.61 60.88 59.56

Table 2: The ablation F1 result comparisons against various configuration setting: (1) if embed entity filter or not,
(2) number of GCN layer, (3) number of attention head.

more layers corresponding to increased communi-458

cation times among nodes within the graph. As for459

the number of attention heads, we opt for values of460

1, 2, 3, 4, and 6. The deliberate exclusion of the461

value 5 is attributed to the fact that the encoder’s462

hidden dimension is not divisible by 5, a constraint463

inherent to the multi-head attention mechanism.464

The table permits an intuitive observation that:465

(1) an increase in the GCN layers number does not466

linearly translate to enhanced performance; an ex-467

cessive GCN layers number can exert a deleterious468

effect on the model, with the more optimal layers469

number identified as either 1 or 2; (2) concerning470

the number of attention heads, the more optimal471

solution exhibits some variation across different472

datasets, yet it is unequivocally clear that neither473

an excessively high (e.g. 6) nor a disproportion-474

ately low (e.g. 1) number of attention heads can475

fully capitalize on the GCN’s capabilities.476

4.3 Ablation Study477

4.3.1 Performance against two rounds of478

interaction479

We conducted ablation experiment specifically tar-480

geting the two-stage semantic interaction, which481

is considered crucial ablation experiment in our482

work. Drawing upon the outcomes of the experi-483

ment, we can directly evaluate the extent to which484

our devised dual semantic interaction genuinely485

augments the model’s performance.486

What should be noted is that the second stage487

interaction is built upon the annotated label infor-488

mation (that’s what the first stage interaction do), so489

when the label annotation information is no longer490

inject, the second stage interaction ceases to exist491

as well. However, the existence of the second stage492

interaction does not affect the first stage interaction.493

As shown in Table 3, no matter which round494

of semantic interaction is eliminated, it invariably495

Task Method P R F1

A
C

E
05

NER
LAI-Net 90.28 90.60 90.44
w/o 1st 89.72 (-0.55) 90.68 (+0.08) 90.20 (-0.24)
w/o 2nd 89.97 (-0.31) 90.50 (-0.10) 90.23 (-0.21)

RE
LAI-Net 73.80 70.42 72.06
w/o 1st 70.04 (-3.76) 67.83 (-2.60) 68.91 (-3.15)
w/o 2nd 69.70 (-4.09) 66.49 (-3.94) 68.05 (-4.01)

RE+
LAI-Net 71.96 68.67 70.27
w/o 1st 67.14 (-4.82) 65.02 (-3.66) 66.06 (-4.21)
w/o 2nd 67.20 (-4.77) 64.10 (-4.58) 65.61 (-4.67)

A
D

E

NER
LAI-Net 89.78 91.24 90.49
w/o 1st 88.94 (-0.84) 91.07 (-0.17) 89.99 (-0.51)
w/o 2nd - - -

RE
LAI-Net 79.38 83.29 81.26
w/o 1st 79.08 (-0.30) 82.99 (-0.30) 80.99 (-0.27)
w/o 2nd 79.01 (-0.37) 83.17 (-0.12) 81.04 (-0.22)

RE+
LAI-Net 79.37 83.28 81.25
w/o 1st 78.87 (-0.51) 82.68 (-0.61) 80.73 (-0.52)
w/o 2nd 78.73 (-0.64) 82.64 (-0.64) 80.63 (-0.62)

Sc
iE

R
C

NER
LAI-Net 70.04 69.89 69.94
w/o 1st 69.58 (-0.46) 69.12 (-0.77) 69.35 (-0.59)
w/o 2nd 69.82 (-0.22) 68.98 (-0.91) 69.40 (-0.54)

RE
LAI-Net 69.21 71.71 70.41
w/o 1st 69.18 (-0.03) 69.94 (-1.77) 69.56 (-0.85)
w/o 2nd 69.00 (-0.21) 70.64 (-1.08) 69.80 (-0.61)

RE+
LAI-Net 59.84 62.01 60.88
w/o 1st 59.81 (-0.03) 60.47 (-1.54) 60.14 (-0.74)
w/o 2nd 59.79 (-0.05) 61.22 (-0.80) 60.49 (-0.39)

Table 3: The ablation result comparisons against two
rounds interaction.

leads to adverse effects of varying magnitudes on 496

the newly SOTA we have developed, encompassing 497

the precision, recall, and F1-score metrics. Notably, 498

the impact on the RE task for the ACE05 dataset is 499

particularly severe, with the greatest reduction in 500

the F1-score reaching up to 4.67%. 501

4.3.2 Ablations against attention mask matrix 502

In order to evaluate the efficacy of partial atten- 503

tion matrices, we selected three distinct attention 504

masking matrices for ablation study, namely: (1) 505

the full attention matrix, wherein all tokens are mu- 506

tually visible; (2) the anno-token visible attention 507

matrix, where annotation tokens and text tokens 508

are intervisible; and (3) the anno-token invisible 509

attention matrix, with annotation tokens and text 510

tokens also being intervisible. Irrespective of the 511
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Task NER RE RE+
A

C
E

05 Invisible 90.44 72.06 70.27
Visible 90.36 (-0.08) 68.01 (-4.05) 65.57 (-4.70)

Full 88.29 (-2.14) 65.79 (-6.28) 64.28 (-5.99)

A
D

E

Invisible 90.49 82.09 81.25
Visible 90.09 (-0.40) 81.26 (-0.83) 80.09 (-1.16)

Full 89.40 (-1.10) 79.99 (-2.10) 78.92 (-2.33)

Sc
iE

R
C Invisible 69.94 70.41 60.88

Visible 69.13 (-0.81) 69.44 (-0.97) 60.61 (-0.27)
Full 66.21 (-3.73) 69.55 (-0.85) 60.30 (-0.59)

Table 4: The ablation F1 result comparisons against
various types of attention mask matrix.

Entity Filter ACE05 F1 ADE F1 SciERC F1

w/ 90.44 90.49 69.94
w/o 88.70 (-1.74) 89.92 (-0.57) 69.76 (-0.18)

Table 5: The ablation result comparisons against entity
filter.

attention masking matrix employed, tokens of the512

same type remain mutually visible during the com-513

putation of attention scores. And a more in-depth514

explanation has been provided in Appendix.515

As Table 4 elucidates, across all three datasets,516

the anno-token invisible attention matrix exhibits517

a markedly superior performance compared to the518

other attention matrice types. The anno-token vis-519

ible attention matrix comes in second place, with520

its largest deficit compared to the top-performing521

technique capping out at 4.7% across the varied522

tasks encapsulated within the trio of benchmarks.523

Meanwhile, the fully attention matrix turns in the524

least impressive showing, lagging behind the peak525

achieved score on each respective dataset by up to526

6.28%, indicative of appreciably inferior capabili-527

ties amongst the range of workloads tested.528

In attempting to analyze the underlying reasons529

for this phenomenon, it is hypothesized that the530

following factors play a critical role: (1) the mutual531

visibility mechanism between annotation tokens532

and text tokens establishes a conduit for semantic533

communication, thereby enhancing the semantic534

richness of the embeddings for both annotations535

and text; (2) conversely, the full attention matrix al-536

lows for the intermingling of semantic information537

among annotation tokens, text tokens, and entity538

candidate tokens, which may inadvertently lead to539

an over-amplification of semantic input, potentially540

diluting the primary information or even causing541

semantic confusion, culminating in a decrement in542

model performance.543

4.3.3 Ablations against entity filter 544

During the NER phase, considering the exponential 545

surge in candidate entity quantity accompanying 546

increased entity length, the preponderance of nega- 547

tive samples can readily overwhelm the relatively 548

paltry positive examples, which easily impedes the 549

network’s capacity to accurately identify genuine 550

entities. To mitigate this, LAI-Net incorporates a 551

deliberately inserted filter prior to the entity classi- 552

fier to preliminarily sieve out spans that are clearly 553

non-entity. To validate whether said filter genuinely 554

facilitates the NER process, we devised associated 555

ablation experiments. As depicted in Table 5, the 556

presence of the filter effectively improves NER per- 557

formance, with advantages most conspicuous on 558

the ACE05 dataset (surpassing no-filter models by 559

1.74% in terms of F1 scores). 560

5 Conclusion 561

Faced with the weaknesses of LLMs in funda- 562

mental NLP tasks, we propose LAI-Net, a novel 563

interaction-based E2ERE method for representa- 564

tional semantic enhancement via two round inter- 565

actions. Experiments on several datasets show that 566

our LAI-Net allows high-level semantic informa- 567

tion flow and facilitates the E2ERE task. 568

In summary, the key novelty is the multi-phase 569

semantic interaction framework to effectively inject 570

external knowledge and unify representations for 571

entities and relations. The gains demonstrate this 572

allows better information flow and facilitates the 573

E2ERE task. 574

6 Ethical Statement 575

This research strictly adheres to the ethical code 576

outlined by ACL, recognizing the significance of 577

ethical considerations in AI. Our work on relation 578

extraction is conducted with a commitment to re- 579

sponsible use of data and conscious awareness of 580

the potential impacts of our findings. We acknowl- 581

edge the potential of this technology to influence 582

various AI applications, and we are aware of the 583

dual-use nature of our contributions. To mitigate 584

risks of misuse, we advocate for transparent and 585

regulated use of relation extraction technologies, 586

especially in sensitive domains. Our research is ori- 587

ented towards positive societal benefits, such as en- 588

hancing information accessibility and aiding knowl- 589

edge discovery, while actively seeking to minimize 590

any adverse consequences. 591
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7 Limitations592

Our study, while advancing the capabilities in re-593

lation extraction, has certain limitations. Firstly,594

the performance of our proposed models is highly595

dependent on the quality of manual annotation of596

label semantics, especially on fine-grained rela-597

tional extraction tasks. Although we strive to build598

reliable and trustworthy annotations during the ex-599

periment, it can take a lot of manpower to complete600

this work in practical applications, potentially lim-601

iting their applicability in those areas. Secondly,602

the token number of label annotatation is also an603

important factor limiting the performance of the604

model. Due to the input length limitation of the605

encoder, the number of words in label annotata-606

tion will undoubtedly consume length space, and607

overlong annotatation may cause greater semantic608

confusion, which in turn affects the model perfor-609

mance610
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A Appendices829

A.1 Implement Details830

Datasets and preprocess We strategically se-831

lected three standard corpus (ACE05, SciERC,832

ADE) in terms of E2ERE task.833

1) ACE052 is collected from a variety of do-834

mains (such as newswire and online forums). It835

includes 7 entity types, and include 6 relation types836

between entities. For data processing, we use the837

same entity and relation types, data splits3, and pre-838

processing as Li and Ji, 2014; Miwa and Bansal,839

2016 (351 training, 80 development and 80 testing).840

2) SciERC (Luan et al., 2018) is a scientific-841

oriented dataset, which is built from 12 AI confer-842

ence/workshop proceedings in four AI communi-843

ties, and includs 7 entity types and 7 relation types.844

3) ADE (Gurulingappa et al., 2012) consists of845

4272 sentences and 6821 relations extracted from846

medical reports.847

In terms of experiment, for ACE05 and SciERC,848

we run our model 10 times with different random849

seeds, and report averaged results of all the runs.850

And for ADE, we adopt 10 fold cross-validation851

respectively and run each fold 10 times and report852

averaged results of all the runs.853

PLMs and hardware devices For fair com-854

parison with previous works, we employ bert-base-855

uncased (Devlin et al., 2019) as the encoders for856

ACE05 and ADE, and use the in-domain scibert-857

scivocab-uncased4 (Beltagy et al., 2019) as the en-858

coder for SciERC, and all the experiments are exe-859

cuted using three GeForce RTX 3090 24GB GPUs.860

Optimizer and learning rate settings We861

use AdamW optimizer during training. We set862

the learning rate as 4e-4 for both NER and RE863

task. We had tried to set different learning rate for864

different layers, and experiment results show that 865

it’s useless. 866

Maximum length settings We respectively 867

set the maximum length of reorganized sentence C 868

as 150, 100, 150 on ACE05, ADE, SciERC. As enu- 869

merating possible spans, we set the maximum span 870

length L as 8 for all datasets, and limit the num- 871

ber of entity candidates as 220 for every train/eval 872

2https://catalog.ldc.upenn.edu/LDC2006T06
3https://github.com/tticoin/LSTM-ER/tree/

master/data/ace2005/split
4SciBERT is a BERT model trained on scientific text,

whose corpus includes the full text of 1.14 million scientific
papers (82% in biomedical and 12% in computer science), and
may be more suitable for natural language processing tasks on
SciERC dataset

sample. 873

Batch size and epoch settings In NER phase, 874

we respectively set batch size as 16 per GPU for 875

SciERC, 20 per GPU for ACE05, and 14 per GPU 876

for ADE. And in RE phase, we set the batch size as 877

40 per GPU for SciERC, 50 per GPU for ACE05, 878

64 per GPU for ADE. We set the epoch as 80 for 879

all Datasets in NER phase, and 60 for all dataset in 880

RE phase. 881

Cold start settings for NER It should be 882

noted that, due to the enumeration of a large num- 883

ber of non-entity spans as negative samples in NER 884

pahse, which extremely likely to lead to unable- 885

convergence train, or the phenomenon that the 886

model directly predicts all spans as non-entities. 887

Therefore, we set up a specific cold start process 888

for training. In the first half of training, we use the 889

true labels as the filter result for next entity clas- 890

sification in order to calculate the loss to update 891

the parameters. This guides the model during early 892

learning before exposing it to negatively labeled 893

non-entity spans. In actual training, we set the 894

cold boot epoch number as 15, 40, 40 for ACE05, 895

SciERC, ADE respectively. Moreover, according 896

to unpublished experimental results, experiments 897

without cold start configuration were utterly inca- 898

pable of acquiring any knowledge whatsoever, with 899

all performance metrics equaling zero throughout 900

the training phase. 901

Symmetry of relation for RE We formulate 902

the directed relation as ri,j , with the subject entity 903

ei always pointing to object entity ej . Therefore, a 904

triplet with positive relation canbe written as ei → 905

ri,j → ej , and its reverse formula is ej → rj,i → 906

ei. ri,j , rj,i may refer to different relation types. In 907

RE phase, we consider the subject be left and the 908

object be right by default. Either (ei → ri,j → ej) 909

or (ej → rj,i → ei) will be predicted if it’s a really 910

relaiton. Only when they are both predicted to be 911

true (that is, the probability value is greater than 912

the threshold), the triplet (ei, ri,j , ej) and triplet 913

(ej , rj,i, ei) will be established. 914

A.2 Parital attention mask 915

Obviously, the series of annotation tokens and916

marker tokens manually attached after the text to-917

kens does not form a coherent and semantically918

complete sentence. It inevitably affects the seman-919

tic construction from text tokens, and impair the920

representational ability of word vectors during the921

PLM encoding process.922

To address this potential issue, we adopt a spe-923
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Figure 3: Diagrams of three types attention mask matrix with an assumption that there is two entity candidates.

cialized partial attention mechanism to selectively924

mitigate or enhance the semantic impact of tokens925

from differed types. In details, by adjusting the926

value of elements of the attention mechanism mask927

matrix, we can control the visibility among three928

types of tokens.929

Partial attention can effectively control the infor-930

mation flow between different tokens. It suppresses931

the information interaction between text and anno-932

tations (i.e. invisible) while enhancing the infor-933

mation interaction between text and candidates (i.e.934

visible).935

We show three different masking matrices in936

Figure.3, for which we conduct some ablation ex-937

periments. In conjunction with Figure.3, we fur-938

ther elucidate the meaning of the discrete elements939

within mask matrix. Train our gaze upon the first940

row of Figure.3 (a), which delineates the tokens 941

discernible by the text token. The pale green re- 942

gion signifies it can see corresponding tokens, the 943

white space those it cannot see, and the faint yel- 944

low elements the marker tokens within its purview. 945

Notably, the two faint yellow squares on the left 946

denote the start marker tokens, while the two on 947

the right denote the end marker tokens. 948
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