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ABSTRACT

Forecasting urban phenomena such as housing prices and public health indica-
tors requires the effective integration of various geospatial data. Current meth-
ods primarily utilize task-specific models, while recent generic models for spatial
representations often support only limited modalities and lack multimodal fusion
capabilities. To overcome these challenges, we present UrbanFusion, a spatial rep-
resentation model that features Stochastic Multimodal Fusion (SMF). The frame-
work employs modality-specific encoders to process different types of inputs, in-
cluding street view imagery, remote sensing data, cartographic maps, and points
of interest (POIs) data. These multimodal inputs are integrated via a Transformer-
based fusion module that learns unified representations. An extensive evaluation
across 41 tasks in 56 cities worldwide demonstrates UrbanFusion’s strong gener-
alization and predictive performance compared to state-of-the-art GeoAI models.
Specifically, it 1) outperforms prior models on location-encoding, 2) allows mul-
timodal input during inference, and 3) generalizes well to regions unseen during
training. UrbanFusion can flexibly utilize any subset of available modalities for a
given location during both pretraining and inference, enabling broad applicability
across diverse data availability scenarios.

1 INTRODUCTION

Urban areas currently accommodate the majority of the world’s population and are expected to
absorb billions more in the upcoming decades (United Nations, 2019). This rapid growth has in-
creased the need for accurate forecasting tools to support urban planning and inform sustainable
policy decisions through urban analytics (United Nations, 2024; Daniel & Pettit, 2025). Efficient ur-
ban operations increasingly depend on precise, location-specific predictions, such as housing price
estimation (Yao et al., 2018), mobility prediction (Wiedemann, 2025), and land use classification
(Che et al., 2025). These challenges have traditionally been tackled using task-specific models de-
signed for a single domain and geographic region. A widely adopted approach to improve predictive
performance is to augment coordinates with geospatial context data (Hong et al., 2023) such as cen-
sus statistics, business directories, street view imagery, or remote sensing inputs (Mühlematter et al.,
2024b; Wang et al., 2023).

However, these models often face limitations due to the availability and quality of context data,
which can vary widely across regions (Klemmer et al., 2025). This variability restricts their scal-
ability and applicability, while also making their development costly and dependent on domain
expertise (Koldasbayeva et al., 2024). Recently, the rise of foundation models in language (Brown
et al., 2020), vision (Assran et al., 2023), and multimodal domains (Radford et al., 2021) has in-
spired efforts to build general-purpose geospatial models, commonly referred to as Geo-Foundation
Models (GeoFMs) (Mai et al., 2025; Jakubik et al., 2023).

Inspired by the success of language-image models like CLIP (Radford et al., 2021), recent research
often uses self-supervised learning to align spatial coordinates (longitude and latitude) with other
data types, such as satellite or street view imagery (Vivanco et al., 2023; Klemmer et al., 2025; Liu
et al., 2025). These works offer general, task-agnostic representations of geographic locations that
were shown to improve performance across a wide range of downstream tasks and domains. Nev-
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Figure 1: UrbanFusion. Pretrained modality-specific encoders extract features projected into to-
kens. After random token masking, a Transformer fuses the tokens. The output feeds into two heads:
one for Contrastive Location Alignment (CL), the other for Latent Modality Reconstruction
(Rec.). For downstream tasks, coordinates or available modalities are input into the frozen encoder
(green arrows) to obtain feature vectors for training downstream models.

ertheless, they are limited by the modalities they can support. The requirement for paired samples
of all modalities at each location, coupled with the use of pairwise contrastive loss between modal-
ities, makes the inclusion of additional modalities challenging. Moreover, each modality is treated
independently, missing the opportunity to learn richer representations by modeling their interactions
(Dufumier et al., 2025). Many geospatial tasks, however, rely on the combined signals of diverse
spatial data. For instance, housing prices may depend not only on visual features from imagery but
also on nearby infrastructure and services, such as road networks or points of interest (POIs) (Yao
et al., 2018). To effectively support such tasks, models must go beyond isolated modality processing
and instead learn representations that reflect the complex, layered nature of urban environments (Mai
et al., 2025).

To bridge these gaps, we present UrbanFusion, a novel location embedding tailored for urban en-
vironments. UrbanFusion integrates multiple spatial modalities across various scales, including
remote sensing imagery, street view images, cartographic basemaps, and POIs, into compact, multi-
scale, task-agnostic embeddings. To better capture the multimodal context, we propose a training
framework called Stochastic Multimodal Fusion (SMF), which combines contrastive learning with
self-supervised reconstruction. At each training step, the model samples two distinct subsets of
available modalities, aligns their embeddings, and reconstructs the modalities.

UrbanFusion not only outperforms state-of-the-art methods across diverse tasks, but also offers sig-
nificant advantages: (1) it efficiently supports multiple modalities with minimal training overhead
through modality masking, (2) enables joint training and inference on heterogeneous datasets con-
taining arbitrary subsets of modalities, (3) adeptly learns to represent modality-specific features
while integrating shared and synergistic information via SMF, and (4) generalizes well to regions
unseen during training.

In summary, our contributions are as follows:

1. We propose Stochastic Multimodal Fusion (SMF), a model-agnostic contrastive learning
framework that jointly captures modality-specific, shared, and synergistic information.
While developed for spatial data, SMF is broadly applicable to general multimodal learn-
ing.

2. We introduce UrbanFusion, the first location embedding model to flexibly integrate street
view imagery, remote sensing data, cartographic basemaps, and POIs into unified spatial
representations.

3. We conduct a large-scale evaluation of UrbanFusion on 41 downstream tasks, including
housing price prediction, healthcare, environmental variable estimation, land use and land
cover classification, demographic inference, urban perception prediction, and energy con-
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sumption forecasting. Our results show that UrbanFusion consistently outperforms state-
of-the-art models across these domains.

2 RELATED WORK

Method Street view Satellite Maps POIs Tags Others Training Data Loss Inter. (PID) Code Weights
Location embedding models
UrbanFusion (ours) ✓ ✓ ✓ ✓ ✗ ✗ PP2-M (73k) CL + rec. R+U+S ✓ ✓
GeoCLIP (Vivanco et al., 2023) ✓ ✗ ✗ ✗ ✗ ✗ MP-16 (4.7m) CL R ✓ ✓
SatCLIP (Klemmer et al., 2025) ✗ ✓ ✗ ✗ ✗ ✗ S2-100K (100k) CL R ✓ ✓
GAIR (Liu et al., 2025) ✓ ✓ ✗ ✗ ✗ ✗ Streetscapes1M (1m) CL R ✗ ✗
CSP (Mai et al., 2023) ✓ ✗ ✗ ✗ ✗ ✗ iNat2018 (438k) CL R ✓ ✓

✗ ✓ ✗ ✗ ✗ ✗ fMoW (364k) CL R ✓ ✓
Local Models for Location Encoding
GPS2Vec (Yin et al., 2019) ✗ ✗ ✗ ✗ ✓ ✗ Flickr tags (1m) Rec. R ✗ ✓
GPS2Vec+ (Yin et al., 2021) ✓ ✗ ✗ ✗ ✓ ✗ YLI-GEO (6m) Rec. R ✗ ✓
PDFM (Agarwal et al., 2024) ✗ ✗ ✗ ✗ ✗ ✓ Google (35k) Rec. R+U+S ✗ ✗

Table 1: Summary of existing and proposed methods for spatial representation learning.
Modalities and open access (✓ = available, ✗ = unavailable) are shown as binary indicators. Pre-
training sources are listed with the number of training locations in parentheses. Training objectives
include contrastive loss (CL) and reconstruction loss (Rec.). Interaction modeling (Inter.) is ana-
lyzed via partial information decomposition (PID), which quantifies modality interactions in terms
of redundancy (R), uniqueness (U), and synergy (S).

Spatial Representation Learning. A core challenge in geospatial machine learning is learning
transferable representations of locations from spatially distributed, heterogeneous data. A substan-
tial body of work has focused on local spatial representation learning, where models are trained for
specific cities or regions, often using self-supervised objectives (Jenkins et al., 2019; Wang et al.,
2020; 2025). For instance, GPS2Vec created local encoders for 120 UTM zones based on Flickr
image tags (Yin et al., 2019). Subsequent studies expanded this approach by incorporating visual
features into the representations (Yin et al., 2021). The Population Dynamics Foundation Model
(PDFM) used graph neural networks to learn multimodal embeddings for county and postal code
regions in the US, integrating signals from Internet search trends, Google Maps data, activity lev-
els, and environmental factors to model population dynamics (Agarwal et al., 2024). However, this
research did not address geographic generalization beyond those areas represented in the training
data.

This local trend evolved into global coordinate encoders inspired by CLIP-style contrastive train-
ing (Radford et al., 2021). For example, the CSP model aligned encoded coordinates with images
from the iNaturalist and FMoW datasets (Mai et al., 2023). Meanwhile, GeoCLIP employed a sim-
ilar approach, using Random Fourier Features to encode coordinates and aligning them with street
view imagery (Vivanco et al., 2023; Tancik et al., 2020). To tackle the issue of unevenly distributed
image data in previous methods, SatCLIP introduced a global model that utilized Spherical Har-
monics and SIREN networks for coordinate encoding, learning representations through contrastive
alignment with globally distributed Sentinel-2 satellite imagery (Klemmer et al., 2025; Rußwurm
et al., 2024). Most recently, GAIR pioneered a multimodal setting by training encoders for coor-
dinates, street view imagery, and satellite image modalities, employing a pairwise contrastive loss
framework (Liu et al., 2025). Beyond coordinate–image contrastive encoders, recent research has
explored richer multimodal and geometry-aware spatial representations. UrbanCLIP (Yan et al.,
2024) and ReFound (Xiao et al., 2024) leverage web-scale text–image alignment to enhance urban
region profiling, GeoLink (Bai et al., 2025) fuses satellite imagery with OSM-derived structural
vectors, highlighting the complementary nature of cartographic and visual signals.

A detailed overview of all baseline models is provided in Table 1 and Appendix F.3. Our work
builds upon these approaches by integrating new modalities essential for urban prediction tasks and
proposing a cohesive, unified multimodal encoder trained using a novel technique that combines
contrastive loss with masking.

On the Limitations of Multimodal Contrastive Alignment. While contrastive learning-based
models demonstrated strong performance by aligning paired samples across different modalities,
the information preserved in their embeddings is inherently limited. Contrastive losses, such as
InfoNCE (van den Oord et al., 2018), primarily capture redundant information between modali-
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ties while neglecting unique modality-specific content and failing to capture synergistic interactions
between them (Dufumier et al., 2025). This decomposition of information is formalized by the par-
tial information decomposition (PID) framework (Williams & Beer, 2010; Dufumier et al., 2025),
which provides a principled way to disentangle the different types of information shared between
input modalities and a target variable. Prior work has explored intra-modal alignment through data
augmentations, aiming to capture the uniqueness of individual modalities (Liang et al., 2023; Yuan
et al., 2021) or even their synergistic relationships (Dufumier et al., 2025). However, such augmen-
tations are often handcrafted and not well defined across all modalities. Another approach involves
retrieval-augmented generation (RAG) (Lewis et al., 2020), in which the model’s representations can
be used to query a database. This strategy has also been explored in the context of location repre-
sentation learning (Dhakal et al., 2025). See Appendix D.1 for additional discussion. We propose a
novel integration of reconstruction loss and random modality masking to mitigate the shortcomings
of using contrastive loss alone.

3 METHODS

3.1 ARCHITECTURE AND TRAINING WITH STOCHASTIC MULTIMODAL FUSION (SMF)

Our overall model architecture is illustrated in Figure 1. Let Ai = {m1,m2, . . . ,mK} be a set of
available input modalities at a location i. Each modality m ∈ Ai is processed via a fixed, pretrained
encoder fm to extract a latent feature vector hm, which is then projected into a token tm ∈ Rd. The
tokens are fused by a Transformer encoder Tθ, parameterized by θ, followed by average pooling to
obtain the final representation zi = Tθ({tm : m ∈ Ai}) ∈ Rd used for downstream tasks.

During training, we randomly mask a subset of modalities Mi ⊂ A, and denote the inverse non-
masked complement subset as Mi = A \Mi. Both Mi and Mi are passed through the modality-
specific encoders fm and the multimodal Transformer encoder Tθ, yielding embeddings zMi and
zMi , respectively. Finally, two decoder heads are applied on top of the fused representation, each
implemented as a lightweight projection network. The first head performs Contrastive Location
Alignment: the fused embeddings zi and zMi , derived from the masked subset Mi and its comple-
ment Mi, respectively, are passed through a shared decoder E and aligned via a symmetric InfoNCE
objective (van den Oord et al., 2018), formalized as:

Lcontr = − 1

N

N∑
i=1

[
log

f(zMi , zMi )∑N
j=1 f(z

M
i , zMj )

+ log
f(zMi , zMi )∑N
j=1 f(z

M
i , zMj )

]
,

f(a,b) := exp

(
sim(E(a), E(b))

τ

)
,

where N denotes the number of training examples in the mini-batch. Here, sim(u, v) = u⊤v
∥u∥∥v∥

denotes cosine similarity and τ is a learnable temperature. Views derived from the same geographic
location form positive pairs, while views from different locations act as negatives. It is important
to note that at both pretraining and inference time, the model can flexibly operate on an arbitrary
subset of modalities, depending on data availability and task-specific requirements. For example,
consider the case where six modalities exist in total, but at location i data is available for only three:
a, b, and c. In this case, the training loss can be computed using Mi = a and Mi = b, c. This
flexibility enables the combination of large-scale datasets with differing modality compositions for
pretraining.

The second head performs Latent Modality Reconstruction: a modality-specific projection net-
work gm is trained to reconstruct the latent vector hm for all modalities m ∈ A, based on the fused
representation zi. The loss is computed as the average mean squared error over all modalities:

Lrecon =
1

2|A|
∑
m∈A

(
∥gm(zMi )− hm∥22 + ∥gm(zMi )− hm∥22

)
,
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where all latent features are z-score normalized (per dimension, mean = 0, variance = 1) to ensure
equal contribution across modalities. By operating in the latent space, the reconstruction reduces
the computational cost compared to full input reconstruction and encourages the model to focus
on abstract representations rather than reconstructing input noise (Assran et al., 2023). The total
training loss is a weighted sum of the two objectives: Ltotal = (1 − λ) · Lcontr + λ · Lrecon, where λ
controls the balance between alignment and reconstruction.

This training method, termed Stochastic Multimodal Fusion, enables the model to capture modality-
interactions beyond redundant information, alleviating the shortcomings of contrastive loss outlined
above. Intuitively, the reconstruction loss together with random masking of modalities encourages
the model to retain unique information from individual modalities as well as synergistic information
from sets of modalities that could help to reconstruct another modality, retaining similar information
as required to solving downstream tasks. This is formalized as follows:
Lemma 1: Assume that for each downstream task Y , there exists at least a proxy modal-
ity or subset SY ⊆ A such that predicting SY is at least as demanding as predicting Y :
I(A \ SY ; Y ) ≤ I(A \ SY ; SY ). Under this assumption, the SMF loss (Ltotal) encourages Tθ
to retain redundant, synergistic, and unique information, thereby maximizes a lower bound on
I(m1, . . . ,mK ;Y ) = R+ S +

∑K
i Ui.

Proof: For two random (masked/complement) views of modalities from the same location, Lcontr

maximizes a variational lower bound on the mutual information between the corresponding repre-
sentations:

I(zM; zM) ≥ logN − Lcontr,

where N is the batch size. Thus Lcontr increases a computable lower bound on cross-modal shared
information, i.e., redundant information R as shown by Oord et al. (2018); Dufumier et al. (2025).
(For clarity we omit expectation notation; all bounds are understood in expectation over the data,
the masking distribution, and negative sampling.)

The reconstruction head reconstructs the latent hm from the fused representation z with Lrecon.
Minimizing this MSE loss is equivalent to maximizing the average log-likelihood under a Gaussian
variational decoder q(m)

ϕ with fixed covariance Bishop & Nasrabadi (2006):

q
(m)
ϕ (hm | z) = N

(
hm; g

(m)
ϕ (z), σ2

mI
)
, (1)

log q
(m)
ϕ (hm | z) = − 1

2σ2 ∥g(m)
ϕ (z)− hm∥2 − dm

2 log
(
2πσ2

m

)
(2)

where dm is the dimensionality of hm. Using

I(z;hm) = H(hm)−H(hm | z), H(hm | z) = − log p(hm | z), (3)
I(z;hm) = H(hm) + log p(hm | z) (4)

and replacing the intractable true conditional p(hm | z) with the q(m)
ϕ , we obtain the Barber–Agakov

lower bound Barber & Agakov (2004)

I(z;hm) ≥ H(hm) + log q
(m)
ϕ (hm | z). (5)

Since H(hm) is constant, minimizing Lrecon directly maximizes a computable lower bound on
I(z;hm). Since random subsets of modalities M are masked during SMF training (see Section 3.1,
any set of modalities will be used at some point to create the embedding z. When |M | = 1,
M contains a single input modality, the objective preserves that modality’s unique information U ;
when |M | ≥ 2, M contains multiple modalities, simultaneously reconstructing all {hm} forces z to
integrate complementary cues, thereby promoting synergistic S information.

Finally, under Assumption 1, for each task Y there exists at least one proxy subset SY such that
predicting SY is at least as demanding as predicting Y . Hence minimizing the latent reconstruction
loss maximizes Barber–Agakov–style computable lower bounds {I(z;hm)}m∈SY

, prevents z from
discarding information required for Y . Together with the symmetric InfoNCE loss which increases
the bound on I(zM; zM), the total loss Ltotal maximizes two tractable mutual information sur-
rogates and encourages retention of the PID components (redundant, unique, and synergistic) that
matter for downstream tasks.
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3.2 ENCODERS AND DATA

To ensure fair comparisons and consistency with prior work, we adopt modalities and encoders
closely aligned with those used in previous studies. Wherever applicable, we use the same archi-
tectures and freeze the encoder weights during training, following standard practice in GeoCLIP,
and SatCLIP. Although end-to-end fine-tuning may yield additional performance gains, particularly
when combined with parameter-efficient strategies (Hu et al., 2022; Mühlematter et al., 2024), we
leave this direction for future work.

For pretraining, we build upon the Place Pulse 2.0 (PP 2.0) dataset (Dubey et al., 2016), which con-
tains 110’988 locations with corresponding geographic coordinates and street-view images across
56 cities spanning all continents except Antarctica. From the PP 2.0 dataset, we hold out six cities
for testing Cross-Regional Generalization on unseen regions. The remaining data is split into 80
percent for training and 20 percent for validation. While PP2.0 provides core geographic signals
in the form of coordinates and street-view imagery, we further enrich each location with additional
geospatial modalities to provide a more comprehensive representation of place. We refer to the re-
sulting enriched multimodal dataset as PP2-M, which we release publicly for reproducibility and
future research. Below, we describe each modality and the corresponding encoder used in our model.

Coordinates. We represent geographic coordinates (longitude and latitude) using the Equal Earth
projection (Šavrič et al., 2019), followed by Random Fourier Features computed at multiple spatial
scales (Tancik et al., 2020). These features are passed through a multi-layer perceptron (MLP). This
approach, also adopted in GeoCLIP and GAIR, helps the model capture location information across
resolutions (Vivanco et al., 2023; Liu et al., 2025).
Street-view imagery. We encode the PP2.0 images using the CLIP ViT-L/14 model, pretrained on
large-scale image-text datasets (Radford et al., 2021). Thanks to its strong generalization capabilities
and prior success in GeoCLIP (Vivanco et al., 2023), this model provides a reliable and consistent
basis for evaluation.
Remote sensing imagery. We enrich the dataset with 12-channel multispectral Sentinel-2 imagery
for each location (Drusch et al., 2012), following prior work that incorporates large-scale contextual
signals (Klemmer et al., 2025). For encoding, we use the ViT-S/16 model pretrained on Sentinel-2
data (Wang et al., 2022), adopting the same configuration as in SatCLIP (Klemmer et al., 2025).
Cartographic basemaps. We extract cartographic basemaps from OpenStreetMap (OpenStreetMap
contributors, 2017), generating patches at 300 m, 600 m, and 1200 m resolutions. These maps pro-
vide a multi-scale, human-interpretable source of geospatial information, including buildings, land
cover, and transportation infrastructure (Mühlematter et al., 2024a). To encode the maps, we pre-
train a ViT-B/16 backbone using the Masked Autoencoder (MAE) framework (He et al., 2022). The
model is initialized with ImageNet-pretrained weights.
POIs. We augment each location with POI data from OpenStreetMap (OpenStreetMap contributors,
2017), collected within a 200 m radius. For each location, we extract the 15 nearest POIs and gen-
erate textual prompts describing their names, categories, and distances. These prompts are encoded
using the BAAI/bge-small-en-v1.5 language model (Xiao et al., 2023), similar to prior work (Wang
et al., 2025).
Multimodal Fusion Encoder. We use a single-block transformer with an embedding dimension of
768, eight attention heads, and learned positional encodings (Vaswani et al., 2017).
Further information about the dataset and encoders can be found in Appendix E.1 and F.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

We report results on downstream prediction tasks in urban environments. A small downstream
model (linear regression or small MLP) is trained to predict the labels based on the location em-
bedding generated with the pretrained and frozen UrbanFusion model (see Figure 1). We first test
Coordinate-Only Spatial Encoding, where the pretrained base models receives only geographical
coordinates as input, and secondly investigate Multimodal Spatial Encoding, which uses additional
modalities also at inference time. Both approaches are evaluated on out-of-sample locations within
the same geographic region as the training data, representing an interpolation setting. To assess
extrapolation, we test Cross-Regional Generalization by applying models to cities entirely outside
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the spatial extent of the training data. UrbanFusion and other methods trained on the PP2-M dataset
are pretrained for 400 epochs. Pretraining details, training accuracy, and loss curves, are provided
in Appendix F.2.

We use a large suite of urban prediction datasets. Our primary source is the PP2-M dataset (Dubey
et al., 2016), from which we select out-of-sample locations and assign target variables for multi-
modal tasks. Alternatively, for some Coordinate-Only downstream tasks, we use the locations pro-
vided directly by the corresponding task-specific datasets. We evaluate regression tasks involving
Housing Prices, Energy Consumption, Urban Perception, Crime Incidence, and postal code-
level Health, Socioeconomic, and Environmental Indicators. Classification tasks include Land
Cover Prediction and Coarse-to-Fine Land Use Classification in Europe. Ridge regression and
small MLPs are used for regression, while logistic regression and small MLPs are used for classifi-
cation.

We compare UrbanFusion against the most relevant existing methods: SatCLIP (Klemmer et al.,
2025), GeoCLIP (Vivanco et al., 2023), and GAIR (Liu et al., 2025). To ensure a fair evaluation, we
include both the original versions of these models as well as variants trained on the PP2-M dataset
for 400 epochs each. Additionally, we evaluate against other location representation approaches,
including CSP (Mai et al., 2023), as well as local models such as both versions of GPS2Vec (Yin
et al., 2019; 2021) and PDFM (Agarwal et al., 2024). As a simple baseline, we also include an
Identity model that uses raw geographical coordinates directly as input, without any transformation.
In the following result tables, we indicate below each method the dataset on which the model was
trained.

Following prior work (Klemmer et al., 2025), raw geographical coordinates are concatenated to the
model embeddings for evaluation. For each task, the dataset is split into 60% for training, 20%
for validation and hyperparameter tuning, and 20% for testing. We report linear probing perfor-
mance on the held-out test set, with hyperparameters optimized using the Optuna framework (Akiba
et al., 2019). Complete results, including MLP performance and additional baselines, are provided
in Appendix B, with further details on the datasets, baselines, evaluation protocols available in Ap-
pendix E.2, F.3, and G, respectively.

4.2 COORDINATE-ONLY SPATIAL ENCODING

Table 2 presents linear probing results for a widely studied use case of location representations: gen-
erating embeddings from raw geographical coordinates. UrbanFusion outperforms all other meth-
ods on 5 out of 8 datasets. Notably, UrbanFusion consistently outperforms the most closely related
methods when all models are trained on the PP2-M dataset. The local model GPS2Vec achieves
superior performance on the Housing Prices and Energy Consumption prediction tasks compared
to UrbanFusion. This is at least partially due to the epistemic uncertainty in UrbanFusion, stem-
ming from the limited training set of only 2’146 locations in the covered regions, whereas GPS2Vec
may benefit from a denser coverage, as suggested by the significantly larger training dataset (see
Table 1). Notably, UrbanFusion surpasses even Google’s PDFM, a domain-specific model specifi-
cally designed for ZIP code prediction, on this task, which we find particularly surprising. PDFM
performs best on ZIP Code-level health indicator tasks, potentially due to the inclusion of internet
search trends. Notably, it is the only model in this comparison where evaluated locations are not
out-of-sample, as the published representations correspond to in-sample training locations.

In contrast to prior work by Klemmer et al. (2025), but consistent with findings from Agarwal et al.
(2024), GeoCLIP consistently outperforms SatCLIP, even when evaluated against the proposed fine-
grained model, L40. This performance gap can be attributed to two key factors: (1) satellite imagery
captures broader spatial context compared to street-view images, providing less fine-grained infor-
mation; and (2) Random Fourier Features offer a more effective representation of high-frequency
spatial variations than Spherical Harmonics (see Tancik et al. (2020) and Ji et al. (2024)). A visual
analysis (Appendix Figure 4) further supports this finding, showing the embeddings reduced to 3D
by PCA and mapped to RGB color codes. While UrbanFusion produces smooth and fine-grained
representations, GeoCLIP exhibits less spatial granularity, likely due to the absence of explicitly
multimodal and multiscale inputs. In contrast, SatCLIP’s location encoder fails to adequately model
high-frequency intra-city variation, limiting its performance on urban prediction tasks.
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UrbanFusion GAIR GeoCLIP SatCLIPL40 GeoCLIP SatCLIPL40 GPS2Vec PDFM Identity
PP2-M MP-16 S2-100K tag visual Google y ∼ g(c)

Regression (%R2 ↑)
Housing Prices [78.7] 78.5 78.4 72.7 78.6 73.1 79.2 79.0 - 66.6
Energy Consumption [20.1] 18.4 18.5 2.6 18.7 3.3 22.3 20.0 - 1.5
Crime Incidence [87.4] 85.4 84.0 65.9 86.3 61.5 84.4 76.5 74.5 22.1
Urban Perception (avg. 6 tasks∗) [9.5] 7.8 8.0 6.1 8.1 5.7 - - - 1.3
ZIP Code (weighted avg. 29 tasks∗) [74.3] 64.6 67.1 54.4 66.9 52.3 55.6 48.6 74.0 3.0

Classification (%F1↑)
Land Cover [56.9] 53.3 53.2 46.4 54.6 45.9 53.3 54.4 51.3 34.4
Land Use – Coarse [58.9] 57.3 57.5 57.4 57.0 53.2 58.6 54.2 - 48.2
Land Use – Fine 47.7 [49.9] 48.3 48.0 48.6 45.7 48.3 46.6 - 42.7
∗ Detailed results in Tables 14 and 15.

Table 2: Evaluation of coordinate-only spatial encoding. Best results are shown in bold, second-
best are underlined, and top scores across all models trained on PP2-M are indicated in [brackets].

4.3 MULTIMODAL SPATIAL ENCODING

Table 3 presents results using linear probing for an additional use case of GeoFMs: incorporating
not only coordinates but also auxiliary location information such as satellite or street view imagery.
Since the benefit of a specific modality often depends on the downstream task, we select the sub-
set of modalities for each model based on validation performance. While UrbanFusion is the only
model that natively supports multimodal inputs by fusing them into a single embedding vector, we
compare to the baseline models by concatenating the representations from the individual modality
encoders. For example, for GAIR, we concatenate representations derived separately from coordi-
nates, satellite, and street-view inputs.

UrbanFusion outperforms all other methods in 4 out of 6 downstream tasks when they are trained
on the PP2-M dataset, underperforming only in land cover and coarse land use classification tasks.
Further investigation (see Appendix C.7) revealed that simply concatenating the output of encoding
models results in better performance for UrbanFusion in these particular tasks. This suggests that
such tasks may not necessitate a fused representation. The closest competitor overall is GeoCLIP,
trained on the MP-16 dataset, which achieves the best performance on 3 out of 6 datasets. It is worth
emphasizing that GeoCLIP is trained on approximately 65 times more locations than UrbanFusion
(see Table 1).

UrbanFusion GAIR GeoCLIP SatCLIPL40 GeoCLIP SatCLIPL40 GPS2Vec PDFM Identity
PP2-M MP-16 S2-100K tag visual Google y ∼ g(c)

Regression (%R2 ↑)
Crime Incidence [88.5] 85.4 84.0 69.1 86.3 66.9 84.4 76.5 74.5 22.1
Urban Perception (avg. 6 tasks∗) [18.8] 17.4 15.5 9.5 19.2 9.5 - - - 1.3
ZIP Code (weighted avg. 29 tasks∗) [75.1] 70.5 70.0 69.7 69.2 68.8 55.6 48.6 74.0 3.0

Classification (%F1↑)
Land Cover 65.6 65.4 [67.1] 56.1 69.1 56.3 53.3 54.4 51.3 34.4
Land Use – Coarse 59.3 [61.7] 61.6 57.2 62.2 57.3 58.6 54.2 - 48.2
Land Use – Fine [55.2] 54.7 54.2 49.2 55.1 47.3 48.3 46.6 - 42.7
∗Detailed results in Tables 18 and 19.

Table 3: Evaluation of multi-modal spatial encoding. Best results are shown in bold, second-best
are underlined, and top scores across all models trained on PP2-M are indicated in [brackets].

4.4 CROSS-REGIONAL GENERALIZATION

As training a global, fine-grained GeoFM for location representations is often infeasible due to
compute and data limitations, a third use case of such models is zero-shot generalization to unseen
regions. Since coordinate encodings do not generalize well to unseen regions, the model receives
only non-coordinate modalities at inference time, using the same multimodal evaluation setup as in
the previous section. Table 4 presents results using linear models on cities that were held out during
training. To ensure that no model has seen samples from the unseen regions during training, we
evaluate only models trained on the PP2-M dataset, excluding the selected cities during training.

UrbanFusion outperforms other methods, ranking first on 5 out of 6 tasks. The closest competitor
is GAIR, which performs best on one tasks. Both models clearly outperform baselines with only a
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single modality aside from coordinates, such as SatCLIP and GeoCLIP, highlighting the benefits of
multimodal representation learning for geographic generalization.

UrbanFusion GAIR GeoCLIP SatCLIPL10 SatCLIPL40 Identity
PP2-M y ∼ g(c)

Regression (%R2 ↑)
Crime Incidence 76.7 68.0 44.3 63.4 63.6 10.4
Urban Perception (avg. 6 tasks∗) 21.2 20.4 20.0 12.9 13.2 6.6
ZIP Code (weighted avg. 29 tasks∗) 56.7 62.5 42.1 60.8 59.8 17.7

Classification (%F1↑)
Land Cover 70.9 69.9 68.6 61.3 61.1 53.9
Land Use – Coarse 66.7 65.9 60.6 60.6 59.4 55.1
Land Use – Fine 61.0 60.4 55.3 53.5 53.7 49.5
∗Detailed results in Tables 23 and 24.

Table 4: Evaluation of cross-region spatial encoding. Best results are shown in bold, second-best
are underlined.

Additional insights into the superior performance of multimodal models over single-modal models
on various tasks are provided by the k-means clusters shown in Figure 2. While UrbanFusion pro-
duces spatially smooth clusters that still preserve high-frequency variations, the street-view repre-
sentations of GeoCLIP lack spatial smoothness despite the obvious conceptual similarities of nearby
city districts. In contrast, the satellite-view representations of SatCLIP fail to capture high-frequency
changes.

(a) UrbanFusion (b) GeoCLIP (c) SatCLIPL40

Figure 2: Visual comparison of Multimodal location embeddings, all trained on the PP2-M dataset.
Embeddings are grouped into 10 clusters using k-means.

4.5 EMPIRICAL ANALYSIS OF INFORMATION PRESERVATION IN GEOFM MODELS FOR
LOCATION REPRESENTATION

As discussed in Section 2 and 3.1, UrbanFusion captures synergistic and unique information, unlike
other methods that rely on contrastive losses. To validate this property empirically, we construct
synthetic data with random coordinates and two synthetic modalities. We assign to each modal-
ity two feature dimensions within the range [0, 1], which uniquely identify the location. These
dimensions constitute the redundant information shared across both modalities and the coordinate
representation, as illustrated in Figure 6 in Appendix C.2. Designing feature dimensions that capture
solely unique (modality-specific) information is more challenging. Even randomly sampled noise
per location can unintentionally assist geolocalization. To address this, we introduce a third feature
dimension to each modality. During training, this dimension is batch-augmented: a single random
value is sampled from the range [0, 1] and assigned to all locations within the batch. During infer-
ence, this dimension contains independently sampled values per location. This strategy ensures that
the third feature dimension has zero mutual information with the geolocation task, thereby func-
tioning as a truly unique signal. We then evaluate three downstream tasks on the synthetic data:
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Geolocalizaition (requires redundant information), predicting the unique features (requires retaining
unique information), and predicting the sum of unique features (requires synergistic information).
with unique random values per modality, location-specific values as redundant information, and pre-
dicting the sum of the unique values as synergistic information (see Appendix C.2 for details). As
shown in Figure 3a, contrastive-only methods fail to capture the full information spectrum. Geo-
CLIP cannot recover synergistic content due to its contrastive-learning design. GAIR shows some
unique feature recovery, likely due to convergence artifacts rather than objective design. This is sup-
ported by average unique signal contributions in the first encoder layer (Figure 3b). UrbanFusion
reliably captures all mutual information components. Finally, our results are in line with real-world
findings in Dhakal et al. (2025), that contrastive methods often neglect task-relevant unique signals.

(a) Predictive performance across different informa-
tion types in Multi-Modal Spatial Encoding.

(b) Average normalized first-layer weights for
modality-specific (unique) feature dimensions.

Figure 3: Empirical results on synthetic data analyzing the preservation of redundant, unique, and
synergistic information using the Partial Information Decomposition (PID) framework.

4.6 TRAINING WITH INCOMPLETE MULTIMODAL DATA

All modalities used for training UrbanFusion are open-source and globally available, except street-
view imagery, which limits performance in regions without coverage (Klemmer et al., 2025). How-
ever, existing multimodal methods typically require that each location has all modalities present.
Ideally, a GeoFM shall reuse a collection of existing datasets for pretraining, even if not geographi-
cally aligned. We therefore conduct an ablation study where each location has only coordinates and
one modality (Bimodal). Despite using only ∼25% of the data per modality, this reduced-modality
setting retains 99.35% of the performance of the model trained with complete modality pairs, match-
ing or outperforming it in 40% of the evaluated domains. These results show that UrbanFusion is
both flexible and data-efficient, as even incomplete modality pairs can be used for effective pretrain-
ing. Aligning a single modality with coordinates already yields strong performance. This result is
consistent with Girdhar et al. (2023) and addresses a key limitation of prior work, which required
fully paired modalities during training. More details are in Appendix C.1.

5 DISCUSSION AND CONCLUSION

We introduced UrbanFusion, a spatial embedding model that learns fused, multimodal represen-
tations of urban locations via Stochastic Multimodal Fusion (SMF). The model flexibly supports
varying modality combinations, generalizes across diverse urban settings, enables scaling with large,
heterogeneous global datasets. UrbanFusion achieves the state-of-the-art performance on a major-
ity of tasks, with its few underperformances primarily due to the smaller dataset size for specific
modalities (e.g. trained on 64x fewer SV images than GeoCLIP), while its strength lies in tasks re-
quiring fusion to retain unique and synergistic information. Limitations include imperfect temporal
alignment across modalities and our focus on point- or postal code-level data in urban environments,
which may limit applicability to rural areas or data on other scales. Future directions include incor-
porating temporal data (e.g., satellite image sequences) for dynamic tasks such as land-use change
detection or urban growth forecasting, as well as expanding to new modalities like mobility traces,
social media, or location descriptions. Incorporating better encoders such as recent work on vector-
ized OSM embeddings Bai et al. (2025) could improve the performance. Beyond geospatial data,
SMF offers a general-purpose framework for multimodal learning, capturing cross-modal interac-
tions without handcrafted augmentations. We hope this work advances scalable, transferable GeoAI
representations and inspires broader innovation in multimodal learning.
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REPRODUCIBILITY STATEMENT

Our results are fully reproducible with the code available at https://anonymous.4open.
science/r/SpatialFoundationModel-9551/. We have included scripts for preprocess-
ing, training, and evaluation to facilitate accurate reproduction of our experiments. Additionally, to
enhance accessibility for a broader audience, we provide tutorial notebooks that guide users step-by-
step through the process. We have also published our modified version of the Place Pulse 2.0 dataset
on Hugging Face (link will be included upon publication for anonymity). This dataset includes
original SVI, extracted POIs, OSM BaseMaps, and Remote Sensing data.
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A ABBREVIATIONS

Coords Encoded coordinates
SV Street view image
RS Remote sensing imagery
OSM Cartographic basemap from OpenStreetMap
POI Point of interest
MLP Multilayer Perceptron
ViT Vision Transformer
GPU Graphics Processing Unit
GeoFM Geo-Foundation Model

B DETAILED RESULTS OVERVIEW

In this section, we provide and discuss further results, including additional baselines, downstream
learners, and ablations.

B.1 COORDINATE-ONLY SPATIAL ENCODING

Table 13 presents linear probing and MLP results for a widely studied use case of location repre-
sentations: generating embeddings from raw geographical coordinates. UrbanFusion outperforms
all other methods on 5 out of 8 datasets for linear probing and consistently outperforms the most
closely related baselines when all models are trained on the PP2-M dataset, as extensively discussed
in Section 4.2. These findings are generally consistent with the MLP-based results, where UrbanFu-
sion achieves superior performance on the majority of tasks. Notably, we observe that MLP results
tend to be less stable across the board, often performing worse than simple linear probes for certain
tasks and methods, especially on smaller datasets. This instability suggests that the added model
capacity of MLPs can lead to overfitting when training data is limited or noisy, despite extensive
hyperparameter tuning. An exception is the Identity baseline, which directly uses raw geographical
coordinates as input. This method benefits significantly from the added capacity of MLPs, which
aligns with expectations: since raw coordinates are not embedded in a higher-dimensional space,
MLPs are better suited to model the nonlinear decision boundaries required to extract meaningful
patterns directly from the coordinate space.

Table 14 provides detailed results for the Place Pulse 2.0 Urban Perception task, where all methods
exhibit low R2 values. This can be attributed to the inherent noise and bias in the dataset, which
is based on human perceptions of street view imagery. The subjective nature of the annotations,
influenced by factors such as weather conditions or traffic, likely reduces the spatial correlation of
the target labels. Even more flexible models such as MLPs tend to perform poorly on this task,
potentially due to overfitting to these noisy and weakly spatially structured labels.

Table 15 and Table 16 present detailed results for ZIP Code-level prediction tasks using linear prob-
ing and MLPs, respectively. On average across all categories, UrbanFusion achieves the highest
performance among all evaluated methods, even outperforming Google’s PDFM model, which was
explicitly designed for this task. While PDFM performs strongly on health-related tasks, likely due
to its use of web search trend data, it underperforms on environmental tasks, possibly due to the
absence of visual inputs such as street view images, satellite imagery, or cartographic basemaps. In
general, we find that MLPs perform worse than linear models on ZIP Code-level tasks, often re-
sulting in catastrophic overfitting for some baselines and different random seeds, despite extensive
hyperparameter tuning. This can be explained by the relatively small number of ZIP codes within the
evaluated urban areas, which limits the amount of training data and increases the risk of overfitting
when using higher-capacity models.

Figure 4 presents representations produced by UrbanFusion and several baseline models, reduced to
three dimensions via principal component analysis (PCA) and mapped to RGB color space. A visual
inspection reveals that UrbanFusion produces the most detailed and spatially coherent representa-
tions, likely due to its multimodal fusion strategy. GAIR and GeoCLIP follow closely, although with
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slightly less granularity. In contrast, SatCLIP yields coarser and less structured spatial patterns. This
aligns with its lower quantitative performance and can be largely attributed to its use of Spherical
Harmonics for coordinate encoding (for a more detailed discussion, see Section C.4).

GPS2Vec (tag) yields smooth and detailed representations, whereas GPS2Vec (visual) exhibits more
high-frequency variation, resulting in lower spatial smoothness. CSP displays limited spatial varia-
tion, suggesting lower sensitivity to local features. Finally, PDFM exhibits limited spatial smooth-
ness—an expected outcome, given that its design limits spatial resolution to the ZIP code level,
assigning identical representations to all locations within the same ZIP code during inference.

(a) UrbanFusion (PP2-M) (b) GAIR (PP2-M)

(c) GeoCLIP (PP2-M) (d) SatCLIPL10 (PP2-M)

Figure 4: RGB composite image of the top three principal components of location representa-
tions computed globally for the Portland area using only coordinates. (part 1 of 2)
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(e) SatCLIPL40 (PP2-M) (f) GPS2Vec (tag)

(g) GPS2Vec (visual) (h) CSP (FMoW)

(i) CSP (iNat) (j) PDFM (Google)

Figure 4: RGB composite image of the top three principal components of location representa-
tions computed globally for the Portland area using only coordinates. (part 2 of 2)
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B.2 MULTIMODAL SPATIAL ENCODING

Table 17 presents results using linear probing and MLP for an additional use case of GeoFMs:
incorporating not only coordinates but also auxiliary location information such as satellite imagery
or street view imagery as input to foundation models. Since the benefit of a specific modality
often depends on the downstream task, we select the subset of modalities for each model based
on validation performance. While UrbanFusion is the only model that natively supports multimodal
inputs, we also evaluate baseline models by concatenating representations obtained from individual
modality encoders. For example, for GAIR, we concatenate representations derived separately from
coordinates, satellite, and street view inputs. Results for linear probing are extensively discussed
in Section 4.3 of the main paper. For MLPs, UrbanFusion outperforms all other methods on 3 out
of 6 datasets, and on 5 out of 6 datasets when comparing only to baselines trained on the PP2-M
dataset. In general, performance improves compared to Coordinate-Only encoding for most methods
that support additional modalities, highlighting the limitations of purely coordinate-based encoders.
Moreover, when analyzing the selected modalities for each downstream task, it becomes evident that
modality selection is highly task-dependent. Notably, previously underexplored modalities such as
cartographic basemaps and point-of-interest data also serve as valuable predictors.

Table 18 presents results for the Urban Perception task. All baselines that support encoding street
view imagery perform significantly better than those relying solely on coordinate inputs. This high-
lights the potentially low spatial autocorrelation and biases introduced during the data collection
process, as discussed in Section B.1.

Tables 19 and 20 provide detailed results for ZIP Code-level tasks using linear probing and MLPs,
respectively, while Table 21 lists the selected modalities for each task. Again, it is evident that
models capable of encoding additional modalities beyond coordinates consistently achieve higher
performance.

B.3 CROSS-REGIONAL GENERALIZATION

Training a global, fine-grained GeoFM for location representations is often infeasible due to compu-
tational and data limitations. A third important use case for such models is zero-shot generalization
to entirely unseen regions. Since coordinate encodings do not generalize well to locations outside
the training distribution, the model is provided only with non-coordinate modalities at inference
time, using the same multimodal evaluation setup as described in Section 4.3. Table 22 presents
results for linear probing on cities that were completely held out during training. To ensure that no
model has been exposed to these regions, we evaluate only models trained on the PP2-M dataset
while explicitly excluding the selected cities from the training set.

UrbanFusion outperforms all other methods, ranking first on 5 out of 6 tasks for linear probing. The
closest competitor is GAIR, which achieves the best performance on one task. Both models clearly
outperform baselines with fewer modalities such as SatCLIP and GeoCLIP, demonstrating the ad-
vantages of multimodal representation learning for geographic generalization. A similar pattern is
observed for MLP results, where UrbanFusion achieves the highest performance on most tasks.

Table 23 provides detailed results for the Place Pulse 2.0 Urban Perception task, where UrbanFusion
achieves the strongest performance. Tables 24, 25, and 26 present detailed results for ZIP Code-
level tasks, in which GAIR outperforms all other methods for linear probing. Interestingly, for MLP
models, raw coordinates yield the best results. This may be explained by the small number of
input dimensions, which can reduce the risk of overfitting in downstream learners, despite extensive
hyperparameter tuning. In contrast, some higher-capacity models exhibit extremely poor fits for
specific tasks and random seeds, as shown in Table 25.

Additional insights into the superior performance of multimodal models compared to single-modal
models are provided by the k-means clustering visualizations shown in Figure 5. UrbanFusion pro-
duces spatially smooth clusters that still preserve high-frequency variations, indicating an effective
balance between global coherence and local detail. In contrast, the street view representations pro-
duced by GeoCLIP lack spatial smoothness, while the satellite-view representations of SatCLIP fail
to capture high-frequency spatial changes. The multimodal GAIR model produces clusters that are
smoother than those of GeoCLIP, but less smooth than those of UrbanFusion and SatCLIP.
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(a) UrbanFusion (PP2-M),
SV+RS+OSM+POI

(b) GAIR (PP2-M),
SV+RS

(c) GeoCLIP (PP2-M),
SV

(d) SatCLIPL10 (PP2-M),
RS

(e) SatCLIPL40 (PP2-M),
RS

Figure 5: KMeans clustering (k=10) results for New York City, based on Cross-Regional Gen-
eralization. The full names of all modality abbreviations are provided in the Appendix A.
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C ABLATION STUDIES

This chapter presents additional ablation studies aimed at gaining deeper insights into both Urban-
Fusion and relevant baselines. Specifically, we investigate whether UrbanFusion can be trained on
incomplete modality sets; analyze how different methods capture modality interactions through the
lens of the partial information decomposition framework; evaluate the effect of various loss function
choices for UrbanFusion; and examine the limitations of the Spherical Harmonics-based location
encoding used in the state-of-the-art model SatCLIP.

C.1 TRAINING WITH INCOMPLETE MULTIMODAL DATA

UrbanFusion utilizes open-source and globally accessible data sources, including Sentinel-2 im-
agery and OpenStreetMap (OSM) data, both of which are freely available worldwide. In contrast,
street view imagery presents a significant limitation due to its restricted spatial availability. This
constraint has previously been shown to degrade the performance of GeoFM’s in regions where
such imagery is absent (Klemmer et al., 2025).

Although it is technically feasible to collect data on a global scale, training a GeoFM model typically
requires that all modalities be available for each location. To improve data efficiency and enable
better reuse of existing datasets, which may be incomplete or not geographically aligned, we explore
training strategies that tolerate partially missing modalities.

To this end, we conduct an ablation study using incomplete multimodal datasets, which we refer as
Partial. Specifically, we randomly drop modalities across the training data as follows:

• 25% of the locations contain coordinates along with all four modalities
• 25% contain coordinates and three modalities
• 25% contain coordinates and two modalities
• 25% contain coordinates and only one modality

We also examine a Bimodal training setup in which each location includes only coordinates and a
single modality. In this case, each of the four possible coordinate-modality combinations constitutes
25% of the training set. To accelerate training, we sample batches such that all examples within a
batch share the same set of available modalities.

As shown in Table 4.6, the model maintains competitive performance even under these constrained
conditions. Remarkably, the Bimodal setup leverages only approximately 25% of the data per
modality, yet still achieves strong results. This finding indicates that aligning a single modality with
coordinates can be effective for pretraining, consistent with observations from (Girdhar et al., 2023).
The approach broadens the scope of pretraining by enabling the use of arbitrary, modality-specific
datasets, without requiring full geospatial alignment across all modalities. These results highlight
the flexibility and data efficiency of our method, making it well-suited for training in regions where
comprehensive modality coverage is lacking.
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UrbanFusion (All) UrbanFusion (Partial) UrbanFusion (Bimodal)
PP2-M

Regression (%R2 ↑)
Housing Prices 78.7 78.9 78.9
Energy Consumption 20.1 20.2 19.9
Crime Incidence 87.4 / 88.5 / 76.7 86.5 / 87.9 / 75.3 88.1 / 88.1 / 79.2
Urban Perception (avg. 6 tasks) 9.5 / 18.8 / 21.2 9.7 / 17.6 / 20.6 9.6 / 17.8 / 20.6
ZIP Code (weighted avg. 29 tasks) 74.3 / 75.1 / 56.7 71.8 / 72.3 / 55.1 69.4 / 72.3 / 56.4

Classification (%F1↑)
Land Cover 56.9 / 65.6 / 70.9 56.0 / 68.1 / 69.2 57.8 / 66.3 / 69.1
Land Use – Coarse 58.9 / 59.3 / 66.7 56.7 / 61.4 / 66.9 56.5 / 60.3 / 66.1
Land Use – Fine 47.7 / 55.2 / 61.0 49.7 / 55.3 / 61.9 51.6 / 53.7 / 60.9

Table 5: UrbanFusion performance with varying modality input. All: full modalities; Partial:
coords + 2–5 modalities; Bimodal: coords + 1 modality. Results are Coordinates-Only / Multimodal
/ Cross-Regional. Best scores are in bold, the second-best underlined.

C.2 EXPERIMENTS ON SYNTHETIC DATA DEMONSTRATING EMPIRICAL INFORMATION
DECOMPOSITION

This section presents a complementary ablation study aimed at deepening our understanding of
how multimodal contrastive alignment and Stochastic Multimodal Fusion (SMF) preserve or discard
different types of information. As outlined in Chapter 2, contrastive alignment of multiple modalities
using loss functions such as InfoNCE is theoretically prone to preserving redundant information,
while unique (modality-specific) and synergistic information tends to be neglected (Dufumier et al.,
2025; Dhakal et al., 2025). In UrbanFusion, we address this limitation by augmenting Contrastive
Location Alignment with Latent Modality Reconstruction.

In real-world scenarios, we often deal with high-dimensional input data such as street view imagery
or multispectral remote sensing data. In these cases, unambiguously assigning feature dimensions
to either redundant or unique modality-specific information is inherently challenging. To enable
systematic analysis of the preserved information, we design carefully controlled low-dimensional
feature representations and auxiliary tasks, an approach inspired by similar analyses conducted in
non-spatial multimodal models (see (Dufumier et al., 2025)).

C.2.1 SYNTHETIC DATA GENERATION

Contrastive spatial representation learning models differ fundamentally from other multimodal mod-
els such as CLIP (Radford et al., 2021) or CoMM (Dufumier et al., 2025), primarily due to the use of
high-capacity location encoders that directly process geographical coordinates as one of the modal-
ities. Consequently, the notion of redundant information in these models includes any signal that is
useful for geolocalization.

In our experiments, we focus on aligning geographical coordinates with two synthetic modalities. To
simulate geolocatable signals, we assign to each modality and each location two feature dimensions
within the range [0, 1], which uniquely identify the location. These dimensions constitute the redun-
dant information shared across both modalities and the coordinate representation, as illustrated in
Figure 6. Designing feature dimensions that capture solely unique (modality-specific) information
is more challenging. Even randomly sampled noise per location can unintentionally assist geolo-
calization, similar to how postal codes can implicitly encode spatial structure. To address this, we
introduce a third feature dimension to each modality. During training, this dimension is batch-
augmented: a single random value is sampled from the range [0, 1] and assigned to all locations
within the batch. During inference, however, this dimension contains independently sampled values
per location. This strategy ensures that the third feature dimension has zero mutual information with
the geolocation task, thereby functioning as a truly unique, non-redundant modality-specific signal.

We sample 40’000 equally spaced locations covering a rectangular area defined by latitudes 36.9
and 37.1, and longitudes -122.1 and -121.9. From this dataset, we use all locations in the third quad-
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rant (36.9 - 37.0 latitude and from -122.1 to -122.0 longitude) for Cross-Regional Generalization
experiments. This helps us evaluate the extrapolation capabilities of our models to unseen regions.
The remaining locations are randomly sampled, with 80% used for pretraining the spatial models
and 20% reserved for validation, as shown in Figure 6.

Figure 6: Synthetic data generation. Each location includes two modalities, each represented by
a three-dimensional vector. The first two dimensions contain localization-relevant information. The
third dimension consists of random values during inference, and during training, is batch-augmented
to remain constant across samples. This enforces zero mutual information with location, effectively
decoupling unique information from redundant information.

C.2.2 ARCHITECTURE AND PRETRAINING

For all compared methods, we use the same location encoder: Random Fourier Features (Tancik
et al., 2020) configured identically to those used in our other experiments (Vivanco et al., 2023),
followed by a multilayer perceptron (MLP) with two hidden layers of 128 dimensions each. The
modality encoders take the three-dimensional input vectors and process them through a single hidden
layer with a dimensionality of four. The resulting final representation has a dimensionality of 9,
corresponding to three dimensions per modality. This setup is designed to strike a balance. On one
hand, it avoids the need for aggressive compression, since tasks can be solved by simply copying
the input. On the other hand, it prevents excessive overparameterization, which would make the
experiments less representative. In practice, input modalities often have much higher dimensionality
than the learned spatial representations.
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We train all models using stochastic gradient descent (SGD) with a learning rate of 0.0003, mo-
mentum, and a cosine decay schedule (Robbins & Monro, 1951). This choice is motivated by the
well-understood convergence behavior of this optimizer. We apply no weight decay in order to iso-
late the optimization dynamics induced purely by the loss functions. All models are trained for 250
epochs, ensuring approximate convergence.

We compare UrbanFusion with and without Latent Modality Reconstruction against GAIR, as well
as against GeoCLIP, which uses only modality 1 as input.

C.2.3 TASKS

To evaluate the types of information captured by the learned location representations, we formulate
a set of targeted tasks designed to probe for redundant, unique, and synergistic information. The
experimental setup is as follows:

Redundant information in our setup corresponds to geolocation (i.e., the shared signal between the
modalities and the coordinates). To quantify this, we regress the learned location embeddings onto
the original geographical coordinates.

To measure unique (modality-specific) information, we focus on the third feature dimension of
each modality, which contains random values that are uninformative for geolocation. The task is to
reconstruct this feature dimension from the shared location representation. Since this dimension is
intentionally made independent of the geolocation, successful reconstruction implies preservation
of modality-unique information.

Synergistic information refers to signals that emerge only when multiple modalities are combined.
To assess this, we define a task in which the target is the sum of the unique feature dimensions (i.e.,
the third dimension) from both modalities. A regression model is trained to predict this sum from
the location embeddings. This task cannot be solved using information from a single modality alone,
requiring cross-modal synergy in the learned representation.

C.2.4 EVALUATION PROTOCOL

We evaluate all tasks on out-of-sample locations. For the Multimodal Spatial Encoding, we compute
a fused UrbanFusion representation; for comparison methods, we concatenate the outputs of the
individual modality-specific encoders. For each task, we train a ridge regression model using five-
fold cross-validation. The regularization parameter α is selected from 100 logarithmically spaced
values in the range [10−4, 104]. Parameter tuning is performed using closed-form leave-one-out
cross-validation on the training folds. For the uniqueness task, we report the average R2 score
across both modalities’ reconstruction regressors.
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C.3 EFFECTIVENESS OF COMBINING CONTRASTIVE LEARNING WITH RECONSTRUCTION
LOSS

As discussed in Section 3.1, there is theoretical motivation for combining contrastive learning with a
reconstruction loss. While contrastive learning has proven highly effective for spatial representation
learning, it primarily emphasizes features relevant for geolocalization, often overlooking modality-
specific information that, although less critical for localization, may be valuable for downstream
tasks.

Incorporating a reconstruction loss addresses this limitation by encouraging the model to capture
richer, modality-specific details in addition to localization cues. To evaluate this empirically, we
trained models using contrastive loss only (CL), reconstruction loss only (Rec.), and a combination
of both (CL+Rec.). The results, presented in Table 6, show that assigning a higher weight to the re-
construction objective improves performance in Multimodal and Cross-Regional Generalization set-
tings, whereas contrastive learning alone is more effective for Coordinate-Only encoding. Although
certain tasks benefit more from one objective than the other, the combined approach consistently
produces the strongest location encoder overall.

UrbanFusion (CL+rec.) UrbanFusion (CL) UrbanFusion (Rec.)
PP2-M

Regression (%R2 ↑)
Housing Prices 78.7 78.6 78.5
Energy Consumption 20.1 20.0 19.7
Crime Incidence 87.4 / 88.5 / 76.7 87.3 / 89.6 / 77.7 87.0 / 87.0 / 77.4
Urban Perception (avg. 6 tasks) 9.5 / 18.8 / 21.2 9.1 / 18.7 / 21.3 9.5 / 19.0 / 21.8
ZIP Code (weighted avg. 29 tasks) 74.3 / 75.1 / 56.7 71.4 / 75.5 / 57.2 73.0 / 72.6 / 59.8

Classification (%F1↑)
Land Cover 56.9 / 65.6 / 70.9 57.4 / 66.6 / 70.4 56.3 / 67.7 / 71.6
Land Use – Coarse 58.9 / 59.3 / 66.7 58.4 / 61.8 / 65.3 58.0 / 61.9 /64.3
Land Use – Fine 47.7 / 55.2 / 61.0 50.5 / 55.0 / 61.3 49.0/ 56.0 / 60.4

Table 6: UrbanFusion performance with varying loss functions. Results are Coordinates-Only /
Multimodal / Cross-Regional. Best scores are in bold, the second best are underlined.
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C.4 LIMITATIONS OF SPHERICAL HARMONICS FOR MODELING URBAN AREAS WITH
HIGH-FREQUENCY VARIATIONS

Spherical Harmonics are a widely used approach for global location representation learning due
to their ability to model arbitrary functions on the sphere without introducing artifacts (Rußwurm
et al., 2024). This method has demonstrated high effectiveness for spatial location encoding (Klem-
mer et al., 2025), particularly also in ecological applications (Dollinger et al., 2025). However, in
our evaluation, consistent with the results in Agarwal et al. (2024), the performance of Spherical
Harmonics is limited in urban tasks. This is because they model smooth functions on the sphere
and therefore struggle to capture high-frequency variations (Tancik et al., 2020; Ji et al., 2024),
which are essential for distinguishing fine-grained spatial patterns in urban environments, as shown
in Figure 4.

The expressive power of Spherical Harmonics can be increased by raising the order of the Legendre
polynomials, allowing for the modeling of higher-frequency variations on the Earth’s surface. How-
ever, the number of basis functions grows on the order of O(n2) with the polynomial order, resulting
in very high-dimensional feature vectors. For example, the authors of SatCLIP recommend setting
the L hyperparameter to 40 for local tasks such as housing price prediction. In their implementa-
tion, this corresponds to using Legendre polynomials up to degree 39 (l = 0 . . . 39), as degrees are
included up to L− 1.

Given the limited performance observed, we conducted an ablation study in which we increased
the L hyperparameter to 100 for even more local expressiveness, the highest value supported for
analytical calculation in the codebase of Klemmer et al. (2025). The results of this study are shown
in Table 7. Even with the increased order resulting in 10’000 basis functions, the capacity to cap-
ture high-frequency variations remains limited, while computing these functions incurs substantial
additional costs and leads to unstable training.

SatCLIPL10 SatCLIPL40 SatCLIPL100

PP2-M

Regression (%R2 ↑)
Housing Prices 72.6 72.7 66.2
Energy Consumption 2.5 2.6 1.1
Crime Incidence 59.4 / 67.2 / 63.4 65.9 / 69.1 / 63.6 14.2 / 56.9 / 65.6
Urban Perception (avg. 6 tasks∗) 5.3 / 9.5 / 12.9 6.1 / 9.5 / 13.2 0.4 / 8.8 / 13.4
ZIP Code (weighted avg. 29 tasks∗) 49.2 / 69.2 / 60.8 54.4 / 69.7 / 59.8 2.3 / 65.0 / 59.3

Classification (%F1↑)
Land Cover 45.6 / 55.9 / 61.3 46.4 / 56.1 / 61.1 31.0 / 56.6 / 63.7
Land Use – Coarse 54.3 / 57.5 / 66.7 57.4 / 57.2 / 66.9 54.0 / 57.4 / 66.1
Land Use – Fine 45.7 / 48.9 / 53.5 48.0 / 49.2 / 53.7 44.1 / 47.7 / 54.8
# Basis functions 100 1’600 10’000
Time forward pass ∼ 0.015s ∼0.530s ∼7.350s

Table 7: SatCLIP performance with varying hyperparameter L. Results are Coordinates-Only /
Multimodal / Cross-Regional. Best scores are in bold, the second best are underlined. Time forward
pass is measured as a single forward pass through the module using analytic spherical harmonic
expressions, implemented as in Klemmer et al. (2025), with a batch size of 256 on an NVIDIA RTX
3090 GPU.
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C.5 INFLUENCE OF COORDINATES ON DOWNSTREAM TASK PERFORMANCE

For most evaluations in our work, we concatenated the geographical coordinates with the spatial rep-
resentations, as this information is always available to a downstream learner and is consistent with
prior research (Klemmer et al., 2025). To more thoroughly analyze the influence of raw geographical
coordinates, we additionally evaluated UrbanFusion representations without concatenating coordi-
nates.

Table 8 reports the performance of UrbanFusion with concatenated coordinates, without coordi-
nates, and an Identity baseline that feeds only the raw coordinates to the downstream learner.
As shown, concatenating raw coordinates does not yield a notable improvement on downstream
tasks—and in some cases even leads to slightly lower performance—while relying solely on coor-
dinates results in clearly inferior performance.

UrbanFusion (with coords) UrbanFusion (no coords) Identity (only coords)
PP2-M

Regression (%R2 ↑)
Housing Prices 78.7 78.7 66.2
Energy Consumption 20.1 20.1 1.5
I Crime Incidence 87.4 / 88.5 / 76.7 87.3 / 87.7 / 76.4 22.1 / 22.1 / 10.4
Urban Perception (avg. 6 tasks∗) 9.5 / 18.8 / 21.2 9.4 / 18.6 / 21.2 1.3 / 1.3 / 6.6
ZIP Code (weighted avg. 29 tasks∗) 74.3 / 75.1 / 56.7 74.0 / 75.2 / 59.3 3.0 / 3.0 / 17.7

Classification (%F1↑)
Land Cover 56.9 / 65.6 / 70.9 57.1 / 64.4 / 70.6 34.4 / 34.4 / 53.9
Land Use – Coarse 58.9 / 59.3 / 66.7 59.2 / 59.5 / 66.4 48.2 / 48.2 / 55.1
Land Use – Fine 47.7 / 55.2 / 61.0 50.6 / 54.7 / 66.4 42.7 / 42.7 / 49.5

Table 8: Impact of incorporating raw coordinates on downstream task performance. Results
are Coordinates-Only / Multimodal / Cross-Regional. Best scores are in bold, the second best are
underlined.
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C.6 ARCHITECTURAL ABLATION STUDIES

We investigated the influence of different neural network design choices on downstream task per-
formance. A crucial component of our framework is the Multimodal Fusion Encoder, which fuses
the different input modalities into a unified multimodal representation. We evaluate multiple archi-
tectural variants of this encoder, specifically comparing bidirectional Transformer encoders (Devlin
et al., 2019; Vaswani et al., 2017) and bidirectional Long Short-Term Memory networks (LSTMs)
(Graves et al., 2005; Hochreiter & Schmidhuber, 1997) across varying encoder depths. Addition-
ally, we examine different pooling mechanisms, contrasting the use of a dedicated [CLS] token for
information aggregation (Devlin et al., 2019) with average pooling over token representations.

Overall, the results shown in Table 9 are consistent across architectural configurations, suggest-
ing that the model’s performance primarily stems from the learning framework that is robust to
architectural variations. Transformers outperform LSTMs, with single-layer Transformer encoders
achieving the strongest overall performance. Both pooling approaches perform well, though average
pooling shows a slight advantage on most tasks.

Fusion Encoder Transformer Transformer Transformer Transformer LSTM LSTM LSTM
Pooling Mechanism Average Average Average CLS End-state End-state End-state
Depth Fusion Encoder 1 2 3 1 1 2 3

Regression (%R2 ↑)
Housing Prices 78.7 78.7 78.8 78.8 78.6 78.6 78.7
Energy Consumption 20.1 20.4 20.2 19.3 19.9 19.1 19.8
Crime Incidence 87.4 87.2 87.7 87.7 86.3 85.1 84.8
Urban Perception (avg. 6 tasks∗) 9.5 9.3 8.9 9.3 9.0 9.1 9.2
ZIP Code (weighted avg. 29 tasks∗) 74.3 71.1 69.7 69.6 70.8 69.4 71.0

Classification (%F1↑)
Land Cover 56.9 55.9 54.4 56.0 55.3 55.6 56.8
Land Use – Coarse 58.9 56.7 58.3 58.5 57.4 56.8 57.6
Land Use – Fine 47.7 50.3 50.1 50.5 49.3 50.2 48.4

Table 9: Ablation study of architectural design choices for Coordinates-Only Encoding. Best
scores are in bold, the second best are underlined.

C.7 EVALUATING MODALITY-SPECIFIC FEATURE CONCATENATION

We compare UrbanFusion on the task of multimodal spatial encoding against linear regression mod-
els trained on concatenated features from the modality-specific encoders. Table 10 shows that Ur-
banFusion outperforms this baseline on most tasks, which can be attributed to its ability to model
synergies between modalities through Stochastic Multimodal Fusion, while also reducing the di-
mensionality of the representations. The concatenated features perform well on the land-cover and
land-use tasks, potentially because these tasks rely primarily on information unique to each modal-
ity.

UrbanFusion Encoded Modalities
PP2-M

Regression (%R2 ↑)
Crime Incidence 88.5 62.6
Urban Perception (avg. 6 tasks∗) 18.8 17.1
ZIP Code (weighted avg. 29 tasks∗) 75.1 70.8

Classification (%F1↑)
Land Cover 65.6 67.3
Land Use – Coarse 59.3 59.7
Land Use – Fine 55.2 53.1

Table 10: Evaluation of multimodal spatial encoding. Best results are shown in bold.
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D LEARNING REDUNDANT, UNIQUE, AND SYNERGISTIC INFORMATION

D.1 ON THE LIMITATIONS OF MULTIMODAL CONTRASTIVE ALIGNMENT

While models based on contrastive learning demonstrated strong performance by aligning paired
samples across different modalities, the information preserved in their embeddings is inherently
limited. Contrastive losses, such as InfoNCE (van den Oord et al., 2018), primarily capture redun-
dant information between modalities while neglecting unique modality-specific content and failing
to capture synergistic interactions between them (Dufumier et al., 2025). This decomposition of
information is formalized by the partial information decomposition (PID) framework (Williams &
Beer, 2010; Dufumier et al., 2025), which provides a principled way to disentangle the different
types of information shared between input modalities and a target variable.

More concretely, let Y represent a downstream task variable (e.g., land use), and let m1 and m2

denote two input modalities (e.g., satellite and street view imagery). The mutual information I
between m1,m2, and Y can be decomposed as:

I(m1,m2;Y ) = R+ Um1
+ Um2

+ S, (6)

where:

• R is the redundant information, present in both m1 and m2.
• Um1

and Um2
are the unique, modality-specific contributions from m1 and m2 respec-

tively.
• S is the synergistic information that is only accessible when combining m1 and m2 jointly.

This decomposition ensures:

I(m1;Y ) = R+ Um1 (7)
I(m2;Y ) = R+ Um2 (8)

Standard contrastive objectives such as InfoNCE typically use modality-specific encoders fm, with
representations zm1

= fm1
(m1) and zm2

= fm2
(m2). The loss is

LInfoNCE = − log
exp (sim(zm1

, zm2
)/τ)∑

j exp
(
sim(zm1

, z
(j)
m2)/τ

) , (9)

where sim(·, ·) is a similarity metric (e.g., cosine similarity), and τ is a temperature hyperparame-
ter. This objective encourages zm1

and zm2
to become maximally similar for matching pairs and

dissimilar otherwise. Importantly, van den Oord et al. (2018) proved that optimizing this objective
maximizes a lower bound on the mutual information between the two representations:

I(zm1
; zm2

) ≥ log(N)− LInfoNCE, (10)

where N is the total number of samples in a mini-batch. Since zm1 and zm2 are encodings of m1 and
m2, respectively, this bound effectively encourages preservation of the information shared between
the two modalities, by treating I(zm1 ; zm2) as a proxy for I(m1;m2).

This connection suggests that contrastive objectives implicitly assume that the mutual information
between paired modalities, I(m1;m2), serves as a good approximation for task-relevant information
I(m1;Y ). Under this assumption, InfoNCE maximizes the redundant information shared across
modalities. However, as shown by Dufumier et al. (2025), this training objective is blind to informa-
tion that is unique to a single modality (Um1 , Um2 ) or synergistic (S), that is information that only
emerges from combining modalities. Such content is not aligned and is therefore suppressed in the
learned representations, limiting downstream performance when tasks depend on modality-specific
or joint signals (see Dufumier et al. (2025) for a rigorous treatment).

To address these limitations, prior work has explored intra-modal alignment through data augmen-
tations, aiming to capture the uniqueness of individual modalities (Liang et al., 2023; Yuan et al.,
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2021) or even their synergistic relationships (Dufumier et al., 2025). However, such augmenta-
tions are often handcrafted and not well defined across all modalities. Another approach involves
retrieval-augmented generation (RAG) (Lewis et al., 2020), in which the model’s representations
can be used to query a database. This strategy has also been explored in the context of location
representation learning (Dhakal et al., 2025).

Optimally, an embedding model should be trained to retain all relevant information, including re-
dundant, unique, and synergistic components, in its embeddings while enabling flexible inference
with any available subset of input modalities. We address these goals with UrbanFusion, which
leverages the underlying Stochastic Multimodal Fusion (SMF) framework to capture the full spec-
trum of modality interactions through a unified fusion strategy, without relying on handcrafted data
augmentations.

D.2 LEARNING MULTIMODAL INFORMATION WITH SMF

In the following, we present a proof that SMF retains all types of interactions. Proving that the em-
bedding zi maximizes the retained mutual information is challenging as the downstream task Y is
unknown. Dufumier et al. (2025) circumvented this difficulty by posing a strong assumption, claim-
ing that the mutual information between an input modality m and its augmentation m′, I(m;m′),
is the same as I(m;Y ). Here, we propose a significantly weaker assumption on Y : We assume that
the mutual information between the inputs and Y is lower equal than the information between the
inputs and another modality or a set of modalities:

Assumption 1: For each downstream task Y , there exists at least a proxy modality or subset SY ⊆ A
such that predicting SY is at least as demanding as predicting Y :

I(A \ SY ; Y ) ≤ I(A \ SY ; SY ). (A)

Lemma 1: The SMF loss (Ltotal) encourages Tθ to retain redundant, synergistic, and unique infor-
mation, thereby maximizes a lower bound on I(m1, . . . ,mK ;Y ) = R+ S +

∑K
i Ui.

Proof: For two random (masked/complement) views of modalities from the same location, Lcontr

maximizes a variational lower bound on the mutual information between the corresponding repre-
sentations:

I(zM; zM) ≥ logN − Lcontr,

where N is the batch size. Thus Lcontr increases a computable lower bound on cross-modal shared
information, i.e., redundant information R as shown by Oord et al. (2018); Dufumier et al. (2025).
(For clarity we omit expectation notation; all bounds are understood in expectation over the data,
the masking distribution, and negative sampling.)

The reconstruction head reconstructs the latent hm from the fused representation z with Lrecon.
Minimizing this MSE loss is equivalent to maximizing the average log-likelihood under a Gaussian
variational decoder q(m)

ϕ with fixed covariance Bishop & Nasrabadi (2006):

q
(m)
ϕ (hm | z) = N

(
hm; g

(m)
ϕ (z), σ2

mI
)
, (11)

log q
(m)
ϕ (hm | z) = − 1

2σ2 ∥g(m)
ϕ (z)− hm∥2 − dm

2 log
(
2πσ2

m

)
(12)

where dm is the dimensionality of hm. Using

I(z;hm) = H(hm)−H(hm | z), H(hm | z) = − log p(hm | z), (13)
I(z;hm) = H(hm) + log p(hm | z) (14)

and replacing the intractable true conditional p(hm | z) with the q(m)
ϕ , we obtain the Barber–Agakov

lower bound Barber & Agakov (2004)

I(z;hm) ≥ H(hm) + log q
(m)
ϕ (hm | z). (15)

Since H(hm) is constant, minimizing Lrecon directly maximizes a computable lower bound on
I(z;hm). Since random subsets of modalities M are masked during SMF training (see Section 3.1,
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any set of modalities will be used at some point to create the embedding z. When |M | = 1,
M contains a single input modality, the objective preserves that modality’s unique information U ;
when |M | ≥ 2, M contains multiple modalities, simultaneously reconstructing all {hm} forces z to
integrate complementary cues, thereby promoting synergistic S information.

Finally, under Assumption 1, for each task Y there exists at least one proxy subset SY such that
predicting SY is at least as demanding as predicting Y . Hence minimizing the latent reconstruction
loss maximizes Barber–Agakov–style computable lower bounds {I(z;hm)}m∈SY

, prevents z from
discarding information required for Y . Together with the symmetric InfoNCE loss which increases
the bound on I(zM; zM), the total loss Ltotal maximizes two tractable mutual information sur-
rogates and encourages retention of the PID components (redundant, unique, and synergistic) that
matter for downstream tasks.

E DATA

E.1 PRETRAINING

Figure 7: Urban areas covered by the PP2-M dataset and the corresponding data splits.

For pretraining, we leverage the Place Pulse 2.0 (PP 2.0) dataset (Dubey et al., 2016), which com-
prises 110’988 locations, each with associated geographic coordinates and street view images. We
enrich this dataset with additional modalities, referring to the resulting extended version as PP2-M.
The dataset spans 56 cities across 28 countries on all continents except Antarctica. We divide it into
three parts. First, we select seven cities from six distinct continents to construct a Cross-Regional
Generalization split, enabling evaluation of the model’s ability to generalize beyond regions seen
during training. From the remaining locations, we perform an 80/20 split into training and vali-
dation sets. The spatial distribution of the included urban regions is illustrated in Figure 7, while
the number of samples per city is detailed in Table 12. The street view images were obtained from
Google Street View (Google LLC, 2007) and have a resolution of 400 × 300 pixels. To ensure
compatibility with the CLIP backbone and other popular models, we apply standard preprocess-
ing following established practices from GeoCLIP (Vivanco et al., 2023): each image is resized to
256 × 256 pixels, center-cropped to 224 × 224, converted to a float tensor, and normalized using
mean values (0.485, 0.456, 0.406) and standard deviation values (0.229, 0.224, 0.225).

We enrich the dataset with remote sensing imagery by downloading Sentinel-2 Level-2A images
(Drusch et al., 2012) acquired between January 1, 2024 and December 31, 2024, selecting only
scenes with minimal cloud coverage. Each image patch includes the spectral bands: B01, B02, B03,
B04, B05, B06, B07, B08, B08A, B09, B11, and B12, and has a resolution of 256 × 256 pixels.
Since the dataset contains 12 multispectral bands and our pretrained encoder accepts only 13 input
channels (Wang et al., 2022), we append the B10 band as a zero-valued mask to match the expected
input dimensionality. The raw reflectance values are normalized by dividing by 10’000, and the
patches are center-cropped to 224 × 224 pixels to align with the input resolution of the ViT-S/16
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model (Dosovitskiy et al., 2021). The entire preprocessing pipeline for remote sensing imagery
follows the same procedure as used in SatCLIP (Klemmer et al., 2025).

Cartographic basemaps offer a globally available and human-interpretable source of geo-
graphic information, capturing features such as buildings, land cover, and transportation networks
(Mühlematter et al., 2024a). Despite their richness, this modality has been largely overlooked in
prior work. To address this, we further enrich the PP 2.0 dataset with basemaps from OpenStreetMap
tile server at zoom levels 15, 16, and 17 (OpenStreetMap contributors, 2017), corresponding to spa-
tial resolutions of 1200 m, 600 m, and 300 m, respectively. The tiles were downloaded in May 2025.
Each map tile is rendered at a resolution of 256 × 256 pixels. For compatibility with our Masked
Autoencoder (MAE) model for feature extraction from the basemaps (He et al., 2022), we resize
each image to 224 × 224 pixels using bilinear interpolation and apply channel-wise normalization
using mean values (0.485, 0.456, 0.406) and standard deviation values (0.229, 0.224, 0.225).

To further enrich the dataset with semantic information about the built environment, we extract
points of interest (POIs) from OpenStreetMap for each location in the dataset (OpenStreetMap
contributors, 2017). For every location, we identify the 15 nearest POIs within an adaptive ra-
dius of up to 200 meters. This adaptive search radius captures highly local context in dense ur-
ban areas while ensuring sufficient coverage in sparser regions, following principles commonly
used in geostatistical analysis (Oshan et al., 2019). We retain POIs with tags under the following
key-value pairs: amenity, shop, leisure, tourism, healthcare, theatre, cinema,
building=religious, building=transportation, and
public transport=station. Entries tagged as parking, parking space, bench,
bicycle parking, motorcycle parking, post box, and toilets are excluded. Each
retained POI is assigned a single representative category, determined by prioritizing tags in the fol-
lowing order: amenity, leisure, religion, public transport, shop, and tourism.
If no relevant tag is present, the POI is labeled as healthcare if any tag contains the substring
healthcare, or as museum if the name includes the word museum. Only POIs with both a de-
fined type and a name are retained for further use. The final set of POIs for each location is used to
construct a textual prompt that describes each POI’s name, category, and distance. An example of
such a prompt is shown in Figure 8.

Example POIs Text Prompt

Lila (type: clothes) with distance 11m,
Barber/Stylist (type: hairdresser) with distance 11m,
Martin Pulli (type: jewelry) with distance 14m,
Vape & Artisan Glass Gallery (type: tobacco) with distance 18m,
Bendi (type: jewelry) with distance 22m,
Chabaa (type: restaurant) with distance 26m,
Pizza Jawn (type: fast food) with distance 26m,
Martelli’s (type: hairdresser) with distance 28m,
Yanako (type: restaurant) with distance 31m,
JGlow Beauty (type: beauty) with distance 32m,
Dtxfy (type: beauty) with distance 33m,
Hero Complex (type: books) with distance 36m,
Jinxed (type: variety store) with distance 36m,
Pitchers Pub (type: pub) with distance 39m,
Han Dynasty (type: restaurant) with distance 39m

Figure 8: Example points of interest (POIs) text prompt provided as input to a language model
for a single location. The example corresponds to coordinates 40.025,−75.223 in Philadelphia.

E.2 DOWNSTREAM TASKS

This study addresses prediction tasks in urban environments. We evaluate methods for Coordinate-
Only Spatial Encoding, where models take only raw geographic coordinates as input, and explore
Multimodal Spatial Encoding, which enhances spatial representations with additional contextual
information. Both approaches are assessed on out-of-sample locations within the same geographic

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

area as the training set, representing an interpolation scenario. To examine extrapolation, we evaluate
Cross-Regional Generalization, where models are tested on cities entirely outside the spatial extent
of the training data. Our experiments draw on a diverse collection of urban prediction datasets. The
primary source is our PP2-M dataset, from which we select held-out locations and assign target
variables for multimodal prediction tasks. Two additional datasets, covering the same region as
PP2-M, are used to support large-scale experiments in the Coordinate-Only setting. The remainder
of this section provides detailed descriptions of these datasets.

Housing Prices (Wright, 2025). This dataset includes valuable information on residential prop-
erties in London, including both historical and current market data. It includes property-specific
attributes such as geographic coordinates, sale prices, and structural features like floor area. We
restrict our analysis to properties located within the convex hull of the PP2-M training region
in London, and further filter for transactions that occurred in the year 2023. The sale prices,
which serve as the target variable for regression models, are log-transformed to reduce skew-
ness in their distribution. After preprocessing, the dataset consists of 38’208 residential loca-
tions. In addition to using encoded geographic coordinates as inputs to downstream learners, we
include several continuous features: num bathrooms, num bedrooms, num living rooms,
and log floor area sqm. We also incorporate categorical variables using one-hot encoding:
tenure type, property category, and energy rating. These features collectively sup-
port a more realistic evaluation in downstream modeling tasks.

Energy Consumption (Department for Energy Security and Net Zero, 2024). This dataset con-
tains postcode-level electricity usage data for all domestic meters in the United Kingdom during the
year 2023. It includes the number of electricity meters and the total energy consumption per post-
code, measured in kilowatt-hours (kWh). We focus on the London region by filtering the convex hull
of the training area defined in PP2-M for evaluation purposes. Next, we download the geographical
centroids of all UK postcodes (Free Map Tools, 2024). For each centroid, we compute the mean
energy consumption by aggregating the total energy consumption and the total number of meters,
then dividing the total energy by the number of meters. This mean value serves as the target variable
for regression models. The final dataset contains 60’326 distinct geographical locations.

Crime Incidence (Ashby, 2017). The Crime Open Database (CODE) provides detailed crime
records for various United States cities for the year 2021. Each record includes the type of crime,
the date of occurrence, and the geographical coordinates of the incident. We use the out-of-sample
locations from the PP2-M dataset and construct a buffer of 500 meters around each location. We
then count the number of crimes falling within each buffer. Due to the skewness of the resulting
distribution, the counts are transformed using the natural logarithm of one plus the count, since
there are also locations with zero crimes. This transformed value serves as the target variable for
regression models. Additionally, we removed 17 locations to facilitate the evaluation of the PDFM
model, which does not cover all locations. In total, there are 2’454 locations in the cities of Boston,
Chicago, Houston, Los Angeles, Minneapolis, San Francisco, and Seattle for the Coordinate-Only
and Multimodal settings, and 3’398 locations in New York City for Cross-Regional Generalization.

Urban Perception (Dubey et al., 2016). While the PP2-M dataset serves as the basis for pretraining
our models, we use the out-of-sample locations and the six included downstream tasks to evaluate
human perception of urban environments based on street view imagery across 56 cities. Specif-
ically, 1’170’000 pairwise comparisons between street view images were collected from 81’630
online volunteers, who assessed six perceptual attributes: safe, lively, boring, wealthy, depressing,
and beautiful. The Microsoft TrueSkill algorithm is applied to generate ranking scores for each
image across all six attributes, allowing for quantitative comparison (Herbrich et al., 2006). These
TrueSkill scores serve as the target variable for the regression models. We recognize the potential
limitations of this method, as noted in previous studies (Dubey et al., 2016), including the reliance
on virtual representations instead of in-person experiences. Nevertheless, we believe it is a valuable
task for modeling human perception of urban environments. In total, we have 18’233 locations for
Coordinate-Only and Multimodal settings, and 19’727 locations for Cross-Regional Generalization.

ZIP Code Tasks (Agarwal et al., 2024). We evaluate our method on postal code level prediction
tasks in the United States, using datasets previously introduced and released by PDFM (Agarwal
et al., 2024). Below, we describe the data acquisition process. The dataset includes the general
geospatial benchmark introduced by Sun et al. (2024), accessed via Data Commons (2024) and the
Earth Engine Catalog (Gorelick et al., 2017). All health-related tasks are based on the 2022 CDC
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PLACES metrics, which are available at the postal code resolution through Data Commons. Socioe-
conomic and environmental variables are selected following Rolf et al. (2021), including income,
home value, night lights, tree cover, and elevation, with all data retrieved from either Data Commons
or the Earth Engine Catalog. Additionally, we include postal code level poverty data from 2022, ac-
cessed through Data Commons. We augment the PP2-M dataset by incorporating out-of-sample
locations and attaching the corresponding target variables for regression tasks. In total, we construct
28 downstream tasks across major urban areas, including Philadelphia, Denver, Atlanta, Portland,
Houston, Minneapolis, Chicago, Seattle, Washington, D.C., Boston, San Francisco, Los Angeles for
Coordinate-Only and Multimodal settings, and New York for Cross-Regional Generalization.

Land Cover (U.S. Geological Survey, Earth Resources Observation and Science Center, 2024).
The Annual National Land Cover Database provides land cover data across the continental United
States at a spatial resolution of 30 meters, comprising 16 land cover classes. To support compre-
hensive evaluation scenarios, we augment the out-of-sample locations of the PP2-M dataset with
corresponding land use labels. Since our focus is on urban areas, some classes are underrepresented.
To address this, we merge all forest-related categories into a single Forest class and exclude the
category Emergent Herbaceous Wetlands. Further, we removed 44 locations to evaluate the PDFM
model, which does not cover all locations. For both Coordinate-Only and Multimodal Encoding
tasks, we focus on five land cover classes: Developed Open Space, Developed Low Intensity, Devel-
oped Medium Intensity, Developed High Intensity, and Forest. The resulting dataset contains 4’826
labeled observations spanning the urban areas of Philadelphia, Denver, Atlanta, Portland, Houston,
Minneapolis, Chicago, Seattle, Washington, D.C., Boston, San Francisco, and Los Angeles. For
the Cross-Regional Generalization setting, which focuses exclusively on the city of New York, we
exclude the Open Water and Forest classes due to insufficient sample sizes, leaving four classes: De-
veloped Open Space, Developed Low Intensity, Developed Medium Intensity, and Developed High
Intensity, with a total of 3’394 labeled locations.

Coarse to Fine Land Use Classification (Copernicus Land Monitoring Service & European
Environment Agency, 2021). The Urban Atlas Land Cover and Land Use 2018 dataset contains
27 categories at a spatial resolution of 10m, covering 785 Functional Urban Areas across Europe
with populations exceeding 50’000. We augment the out-of-sample locations from PP2-M with
corresponding land use labels. Due to a highly imbalanced distribution of classes, we evaluate
this dataset through two distinct tasks. For all tasks, we exclude the category Construction sites
due to their temporary nature and potential misalignment with modalities such as remote sensing
or street view imagery, and retain only categories with more than 10 samples for each task. In
the first task, we group the 27 categories (25 of which are present in the cities we analyze) into 7
supercategories, as illustrated in Table 11. This results in 6’094 labeled locations for the Coordinate-
Only and Multimodal settings across 7 classes, and 4’178 locations across 6 classes in the Cross-
Regional Generalization setup, which includes the cities of Milan and Paris. The second task focuses
on fine-grained land use classification using the original Urban Atlas categories. Despite the strong
class imbalance, this setup allows us to evaluate model performance in highly challenging scenarios,
including few-shot cases. This yields 6’109 locations across 18 classes for the Coordinate-Only and
Multimodal settings, and 4’178 locations across 13 classes for Cross-Regional Generalization.
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Urban Atlas Class (2018) Supercategory

Continuous urban fabric (S.L. : ¿ 80%) Urban fabric
Discontinuous dense urban fabric (S.L. : 50% - 80%)
Discontinuous medium density urban fabric (S.L. : 30% - 50%)
Discontinuous low density urban fabric (S.L. : 10% - 30%)
Discontinuous very low density urban fabric (S.L. : ¡ 10%)

Other roads and associated land Transportation
Fast transit roads and associated land
Railways and associated land
Port areas
Airports

Industrial, commercial, public, military and private units Industrial & built-up
Isolated structures
Mineral extraction and dump sites

Green urban areas Green & recreation
Sports and leisure facilities

Arable land (annual crops) Cropland & pasture
Pastures
Permanent crops (vineyards, fruit trees, olive groves)
Complex and mixed cultivation patterns

Forests Natural vegetation
Herbaceous vegetation associations (natural grassland, moors...)
Wetlands

Water Water & unused land
Land without current use

Construction sites Excluded from task

Table 11: Mapping of Urban Atlas land use classes to supercategories used in coarse-grained
classification.
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City Training Validation Cross-Regional Generalization Total Samples

Atlanta 3228 806 - 4034
Berlin 3188 796 - 3984
Tokyo 3029 757 - 3786
Rio De Janeiro - - 3659 3659
Santiago 2799 699 - 3498
New York - - 3398 3398
Sydney - - 3359 3359
Toronto 2630 657 - 3287
Chicago 2574 643 - 3217
Houston 2467 616 - 3083
Warsaw 2396 599 - 2995
Sao Paulo 2380 594 - 2974
Moscow 2304 576 - 2880
Philadelphia 2226 556 - 2782
Melbourne 2179 544 - 2723
London 2146 536 - 2682
Montreal 2096 524 - 2620
Singapore - - 2600 2600
Cape Town - - 2513 2513
Paris - - 2478 2478
Denver 1920 480 - 2400
Munich 1781 445 - 2226
Rome 1742 435 - 2177
Bucharest 1732 433 - 2165
Madrid 1725 431 - 2156
Mexico City 1677 419 - 2096
Belo Horizonte 1572 393 - 1965
Portland 1544 385 - 1929
Lisbon 1497 374 - 1871
Johannesburg 1494 373 - 1867
Prague 1384 346 - 1730
Milan - - 1720 1720
Bangkok 1272 318 - 1590
Dublin 1259 314 - 1573
Guadalajara 1239 309 - 1548
Seattle 1207 301 - 1508
Barcelona 1153 288 - 1441
Taipei 1109 277 - 1386
Boston 1062 265 - 1327
Los Angeles 1036 258 - 1294
Stockholm 940 234 - 1174
Zagreb 865 216 - 1081
San Francisco 815 203 - 1018
Washington DC 762 190 - 952
Glasgow 761 190 - 951
Kiev 711 177 - 888
Minneapolis 674 168 - 842
Kyoto 577 144 - 721
Gaborone 552 137 - 689
Helsinki 550 137 - 687
Tel Aviv 512 128 - 640
Bratislava 512 127 - 639
Amsterdam 510 127 - 637
Hong Kong 496 123 - 619
Copenhagen 401 100 - 501
Valparaiso 343 85 - 428

Total 73028 18233 19727 110988

Table 12: List of urban areas in the PP2-M dataset with corresponding sample counts for
training, validation, and cross-regional generalization splits.
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F IMPLEMENTATION DETAILS

F.1 DETAILED IMPLEMENTATION OF URBANFUSION’S ENCODERS AND FUSION MODULES

To ensure consistency with previous research and allow fair comparisons, we use modality-specific
encoders that reflect those typically used in past studies. Whenever possible, we use the same pre-
trained network architectures and freeze their weights during training, following established prac-
tices in studies like GeoCLIP (Vivanco et al., 2023) and SatCLIP (Klemmer et al., 2025). While full
fine-tuning, particularly with parameter-efficient techniques like Low-Rank Adaptation (LoRA), has
shown promise across various modalities (Hu et al., 2022; Mühlematter et al., 2024), we will leave
the exploration of this avenue for future research.

Our approach supports flexible integration of arbitrary encoders and modalities, each producing a
dense representation of variable size. To enable multimodal fusion, these representations are linearly
projected to a shared dimensionality. This projection can map each modality to a single or multiple
tokens; in practice, we find that a single token per modality is sufficient. Each linear layer is followed
by a GELU activation (Hendrycks & Gimpel, 2016), which introduces non-linearity, before a learned
positional embedding is added to each token. In the following, we describe the implementation of
all modality-specific encoders, the multimodal fusion module, and the associated decoders, as also
illustrated in Figure 1.

Location Encoder. To encode geographic coordinates (latitude and longitude), we first apply the
Equal Earth projection (Šavrič et al., 2019), yielding a globally consistent 2D spatial representation.
We then apply Random Fourier Features (RFF) with multi-scale encoding to capture spatial patterns
at different resolutions (Tancik et al., 2020). Specifically, the projected coordinates are mapped into
a 256-dimensional frequency space using sinusoidal functions (sine and cosine), resulting in a 512-
dimensional RFF output. This process is performed independently for three spatial scales, using σ
values of σ ∈ {20, 24, 28}. Each scale-specific RFF embedding is then passed through a multi-layer
perceptron (MLP) with three hidden layers of 1024 units each. The outputs of the MLPs across the
three scales are subsequently summed to produce the final location representation. Our approach
closely follows prior work such as GeoCLIP and GAIR (Vivanco et al., 2023; Liu et al., 2025), using
the same RFF configuration and MLP hyperparameters to ensure consistency and comparability.

Street View Imagery Encoder. We adopt the CLIP ViT-L/14 architecture, pretrained on large-
scale vision-language datasets (Radford et al., 2021; Dosovitskiy et al., 2021), to process street view
images. Its demonstrated robustness across a wide range of tasks and prior use in GeoCLIP (Vivanco
et al., 2023) supports consistent and fair evaluation.

Remote Sensing Imagery Encoder. To encode satellite imagery, we utilize the ViT-S/16 model
trained on Sentinel-2 data using the momentum contrast (MoCo) approach (Dosovitskiy et al., 2021;
Wang et al., 2022; He et al., 2020). This setup mirrors the configuration adopted in SatCLIP (Klem-
mer et al., 2025), ensuring methodological consistency.

Cartographic Basemap Encoder. Despite the rich semantic information contained in cartographic
basemaps and the global availability of such data through sources like OpenStreetMap (Open-
StreetMap contributors, 2017), their usage in visual representation learning remains limited. A
key missing component is the lack of pretrained encoders tailored for feature extraction from this
modality. To extract features, we fine-tune a Masked Autoencoder (MAE) (He et al., 2022) with a
ViT-B/16 backbone (Dosovitskiy et al., 2021) that was initially pretrained on ImageNet (Deng et al.,
2009). Our training setup employs a batch size of 256 over 100 epochs, with early stopping based
on validation loss evaluated every 5 epochs. We use the AdamW optimizer with a base learning
rate of 3× 10−4, weight decay of 0.05, and betas set to (0.9, 0.95) (Loshchilov & Hutter, 2019). A
cosine learning rate decay schedule is applied with 2140 warmup steps. We adopt a masking ratio
of 0.6 during training. The training data consists of the training split of our PP2-M dataset. Qualita-
tive results of basemap reconstruction are shown in Figure 9 for the validation set, and in Figure 10
for inputs from regions not covered in the training data. The model successfully reconstructs the
semantic context of the images, including features such as land cover, buildings, and streets. The
blurry patches in the reconstruction come from the fact that the decoder receives the non-masked
patches as input and reconstructs them as well, but since the loss is only applied to masked tokens,
fine details in the non-masked patches are not preserved. During application of the model, we only
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use the encoder and conduct average pooling over all image tokens. We repeat this process for all
three spatial scales and combine their embeddings with a learned projection.

Points of Interest (POI) Encoder. Each generated prompt is embedded using the BAAI/bge-small-
en-v1.5 language model (Xiao et al., 2023), following prior work in multimodal location modeling
(Wang et al., 2025).

Multimodal Fusion Encoder. We employ a single Transformer block to integrate information
across all modalities (Vaswani et al., 2017). This design enables joint processing of heterogeneous
input representations in an efficient and unified manner. The Transformer uses an embedding di-
mension of 768 and the GELU activation function (Hendrycks & Gimpel, 2016). [MASK] tokens
are represented as zero vectors. Instead of relying on a [CLS] token, we apply average pooling
over all output token embeddings to construct the final fused representation, which is then used for
downstream tasks.

Contrastive Learning Head. Instead of directly using the downstream task representation for con-
trastive learning, as done in prior work (Vivanco et al., 2023; Klemmer et al., 2025; Liu et al., 2025;
Mai et al., 2023), we observe that incorporating an additional decoding step improves performance,
particularly when combined with Latent Modality Reconstruction, as noted in previous studies (e.g.,
Chen et al. (2020)). We introduce a lightweight decoder head composed of a LayerNorm layer (Ba
et al., 2016), a GELU activation function (Hendrycks & Gimpel, 2016), and a linear projection to
512 dimensions, following established designs in prior work (Vivanco et al., 2023; Liu et al., 2025).

Reconstruction Head. For the Latent Modality Reconstruction objective, we employ a lightweight
decoder head composed of a LayerNorm layer (Ba et al., 2016), a GELU activation function
(Hendrycks & Gimpel, 2016), and a linear projection to 3842 dimensions. This output dimension-
ality corresponds to the concatenated length of all modality-specific latent representations produced
by the pretrained encoders.
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Figure 9: Cartographic basemap reconstruction using MAE on the validation set. The masked
view is used as input to the encoder, while the reconstructed view is the output of the decoder. Since
the decoder is trained to reconstruct only the masked tokens (not the visible ones), we additionally
present a combined view that merges the input tokens with the reconstructed tokens for better visu-
alization.
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Figure 10: Cartographic basemap reconstruction using MAE for generalization to regions un-
seen during training. The masked view is input to the encoder, and the decoder outputs the re-
construction of the masked tokens. For improved visualization, we also show a combined view that
merges the original input tokens with the reconstructed ones.
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F.2 TRAINING URBANFUSION

We train UrbanFusion for 400 epochs using the AdamW optimizer (Loshchilov & Hutter, 2019)
with a base learning rate of 1 × 10−4 and a weight decay of 1 × 10−5. The learning rate follows
a cosine decay schedule with linear warm-up during the first 5% of training steps. The batch size
is set to 2’560, and early stopping is applied based on the validation loss. At each training step,
random masking schemes are sampled uniformly. The validation loss is computed as the mean over
all possible masking schemes and is evaluated every ten epochs. For the loss function, we assign a
weight λ = 0.0625 to the Latent Modality Reconstruction term, chosen empirically to ensure that
the magnitudes of both loss terms are similar during early training. The contrastive term uses a
learned temperature parameter in the InfoNCE loss, initialized to 0.07. The implementation is based
on torchvision 0.21.0 (Paszke et al., 2019).

(a) Training and validation loss per epoch. (b) Validation Top-5 accuracy per epoch.

Figure 11: Training curves for UrbanFusion: (a) Training and validation loss, and (b) validation
batch Top-5 retrieval accuracy. Validation Top-5 batch retrieval accuracy is computed on the similar-
ity matrix between two masked views. Accuracy is averaged over both query→key and key→query
retrieval directions within each batch, and then across all validation batches

To reduce memory usage and improve training speed, modality features are precomputed using the
frozen modality-specific encoder networks. This reduces GPU memory consumption and speeds up
training significantly. The final model is trained on a single NVIDIA RTX 3090 (24 GB) for approx-
imately 8 hours. Figure 11a shows the training and validation loss curves. Training loss is averaged
over an entire epoch with randomly sampled masks per batch, whereas validation loss is averaged
over all possible masking combinations. The higher variability in the training loss compared to the
validation loss is due to the random masking. Figure 11b reports the Top-5 retrieval accuracy within
a batch, which converges to approximately 70% for a batch size of 2’560.

F.3 BASELINES

To benchmark UrbanFusion, we focus on recent Geo-Foundation Models (GeoFMs) that satisfy two
key criteria. First, they must support coordinate encoding, that is, the ability to generate represen-
tations directly from raw geographic coordinates, with optional integration of additional modalities.
Second, the models should be applicable across multiple urban areas, rather than being tailored to a
specific city.

Based on these criteria, we select GeoCLIP (Vivanco et al., 2023), SatCLIP (Klemmer et al., 2025),
and the preprint version of GAIR (Liu et al., 2025) as primary baselines. These models represent
recent state-of-the-art approaches and can be trained on the same dataset as UrbanFusion, allowing
for a fair comparison of the underlying learning frameworks. Where available, we additionally
evaluate the models using their original pretrained weights. Due to variations in dataset sizes and
spatial coverage, direct comparisons are difficult. Nevertheless, we believe that such comparisons
can provide insight into the effects of pretraining conditions and scaling.

We also include several additional models to ensure a comprehensive comparison. CSP (Mai et al.,
2023) is the first CLIP-style framework developed specifically for location encoding. PDFM is
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Google’s Population Dynamics Foundation Model, designed for ZIP code-level tasks within the
United States (Agarwal et al., 2024). Finally, we compare our approach against the set of local
models from GPS2Vec, which serve as strong local baselines (Yin et al., 2019; 2021), as well as a
simple Identity model that uses raw coordinates without any transformation.

Some of these models have been commonly used as baselines in prior work for location represen-
tation learning (Klemmer et al., 2025; Agarwal et al., 2024; Vivanco et al., 2023). However, to the
best of our knowledge, this is the first systematic evaluation of GeoFMs on urban prediction tasks.

F.3.1 GeoCLIP

GeoCLIP (Vivanco et al., 2023) proposes a CLIP-inspired framework for image-to-GPS retrieval,
jointly embedding images and geographic coordinates into a shared latent space. The location
encoder transforms GPS coordinates into high-dimensional representations using Random Fourier
Features (RFF) (Tancik et al., 2020) combined with a hierarchical multi-resolution design, which
mitigates spectral bias in MLPs and outperforms traditional discrete region-based classifiers (Vi-
vanco et al., 2023). GeoCLIP achieves state-of-the-art performance on image geolocalization bench-
marks, surpassing region-classification baselines across diverse thresholds and performs robustly
even in low-data settings. Its GPS encoder also generalizes well to downstream tasks such as co-
ordinate regression and classification (Vivanco et al., 2023; Klemmer et al., 2025; Agarwal et al.,
2024).

The model is trained contrastively on 4,7 million geo-tagged images, with a frozen CLIP image
encoder and a trainable two-layer projection head. The location encoder is optimized via contrastive
loss, aided by a memory bank of sampled GPS embeddings (Vivanco et al., 2023).

We evaluate UrbanFusion against the released GeoCLIP weights and also retrain the model on our
PP2-M dataset. Following original training settings from Vivanco et al. (2023), we use a batch size
of 512, Adam optimizer (Kingma & Ba, 2015), a learning rate of 3e-5 with step decay, weight decay
of 1e-6, and a memory bank with queue size 4096. Training proceeds for 400 epochs with early
stopping based on validation loss.

F.3.2 Satellite Contrastive Location Image Pretraining (SatCLIP)

Klemmer et al. (2025) introduces a dual-encoder, CLIP-style framework that embeds satellite im-
agery and GPS coordinates into a shared latent space via contrastive learning, following a similar
paradigm to GeoCLIP Vivanco et al. (2023). The satellite image encoder (based on CNN or ViT ar-
chitectures) processes multispectral Sentinel-2 tiles, while the coordinate encoder generates contin-
uous GPS embeddings using Spherical Harmonics and SIREN-based MLPs (Rußwurm et al., 2024).
In Klemmer et al. (2025), SatCLIP embeddings have been shown to outperform previous coordinate
encoders such as GeoCLIP (Vivanco et al., 2023), CSP (Mai et al., 2023), and GPS2Vec (Yin et al.,
2019; 2021) across nine geospatial downstream tasks, including temperature prediction, population
density estimation, housing prices, median income, biome classification, and animal species recog-
nition. They also demonstrate strong geographic generalization, particularly in underrepresented
regions and continents (Klemmer et al., 2025).

The model is pretrained on the newly introduced S2-100K dataset, which contains 100’000 globally
distributed Sentinel-2 image tiles with associated GPS coordinates. This uniform global sampling
mitigates the geographic bias found in prior datasets and provides comprehensive spatial cover-
age Klemmer et al. (2025).

We compare UrbanFusion against both the original SatCLIP pretrained weights and versions pre-
trained on our PP2-M dataset. For training, we follow the original setup from Klemmer et al.
(2025), using a batch size of 8192, learning rate of 1e-4, weight decay of 0.01, and the AdamW
optimizer over 400 epochs (Loshchilov & Hutter, 2019). We use the backbone ViT-S/16 pretrained
on Sentinel-2, which is also used in UrbanFusion (Dosovitskiy et al., 2021; Wang et al., 2022). We
evaluate both published variants L10 and L40.

F.3.3 GAIR

GAIR (Liu et al., 2025) proposes the first multimodal CLIP-style location representation model,
unifying remote sensing imagery, street view imagery, and GPS coordinates into a shared embedding
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space. Although GAIR had not undergone peer review at the time of writing, it demonstrates state-
of-the-art performance across multiple geospatial benchmarks.

Its architecture consists of three modality-specific encoders: one each for Sentinel-2 satellite tiles,
street view images, and GPS coordinates. A key innovation is the Implicit Neural Representation
(INR) module, which enables continuous spatial embeddings by interpolating within the satellite im-
age representations at the precise location of the corresponding street view image. These modality-
specific embeddings are then aligned through pairwise contrastive learning. GAIR is pretrained on a
globally sampled dataset of 1 million paired Sentinel-2 and street view images (Liu et al., 2025).

The official code and pretrained weights were not publicly available at the time of writing. We reim-
plemented the method following the paper’s description, with minor modifications. Specifically, we
use the same encoders for street view and satellite imagery as in UrbanFusion, GeoCLIP (Vivanco
et al., 2023), and SatCLIP (Klemmer et al., 2025) to facilitate consistent comparison. While this
omits one of GAIR’s core contribution, the INR module, we note that UrbanFusion could similarly
support INR, making the comparison still informative.

We train the model on PP2-M using the hyperparameters reported in the original paper (Liu et al.,
2025): a batch size of 256, a base learning rate of 1.5 × 10−6 with a warm-up over the first 5% of
training epochs. We use the AdamW optimizer with β1 = 0.9, β2 = 0.999, a weight decay of 0.01,
and a memory bank with queue size 4096.

F.3.4 GPS2Vec

GPS2Vec (Yin et al., 2019) introduces a two-level, grid-based approach for encoding global GPS co-
ordinates. The Earth is first partitioned into UTM zones, with a lightweight neural network trained
per zone. Each model learns to predict semantic tags directly from GPS coordinates using supervi-
sion from one million geo-tagged Flickr images, selecting the 2’000 most frequent tags as the target
vocabulary. This method achieved state-of-the-art performance in geo-tagged image classification.
The approach was later extended to GPS2Vec+ (Yin et al., 2021), which incorporates additionally
visual features extracted from RGB images. This enhanced version, trained on six million Flickr
images with tags, further improved performance over the original GPS2Vec.

Although GPS2Vec is not a global GeoFM, but rather a collection of local models, we include it in
our benchmark as a strong local baseline. Following previous convention in Klemmer et al. (2025),
we refer to the original version as GPS2Vec (tag) and the multimodal version as GPS2Vec (visual).

F.3.5 Contrastive Spatial Pre-Training (CSP)

CSP (Mai et al., 2023) introduces the first global-scale CLIP-style location encoding framework
that aligns raw GPS coordinates with ground-level (iNaturalist) (Van Horn et al., 2018) or satellite
images (FMoW) (Christie et al., 2018) through contrastive learning. It pioneers the treatment of
“location” as a distinct modality in a multimodal embedding space, learned by matching coordinate
encodings via positional encodings and neural networks to corresponding visual features extracted
by a CNN or ViT. CSP extends traditional CLIP objectives with spatially aware sampling strategies,
such as random location negatives and SimCSE-inspired views (Gao et al., 2021). CSP achieves
strong performance across tasks like image geolocation, geo-aware image classification, and spatial
retrieval (Mai et al., 2023).

Due to the two versions of the model trained on iNaturalist and FMoW, we only include results
from the coordinate encoder and do not utilize the image encoder. Previous research indicated
that CSP performed worse than other baselines (Klemmer et al., 2025), and the modality encoders
are not compatible with our set of geolocated modalities. In particular, street view imagery does
not typically contain animal photographs as in iNaturalist, and the spectral channels in the FMoW
dataset differ from those used by UrbanFusion and SatCLIP, making direct integration with our
framework infeasible.

F.3.6 Population Dynamics Foundation Model (PDFM)

PDFM (Agarwal et al., 2024) is a novel geospatial foundation model developed by Google Research
that learns location embeddings by integrating diverse data modalities through a graph neural net-
work (GNN). It constructs a geo-indexed dataset covering U.S. ZIP codes and counties, aggregating
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information such as busyness, map features, search trends, weather, and air quality. A GNN captures
spatial relationships across these modalities, yielding fixed-size embeddings for each location that
can support a wide variety of downstream prediction tasks.

Its performance surpasses that of GeoCLIP and SatCLIP, achieving state-of-the-art results on ZIP
code tasks. Additionally, when combined with time series forecasting models, PDFM enhances
predictions for variables such as unemployment and poverty rates, outperforming fully supervised
baselines (Agarwal et al., 2024).

Neither the code, training data, nor model weights were publicly available at the time of writing.
However, we were able to obtain the model’s predicted representations for ZIP codes within the
United States. Because the model learns a lower-dimensional embedding for each county and ZIP
code, these representations are inherently in-sample, in contrast to other baselines where evaluation
locations are consistently out-of-sample.

F.3.7 Identity

As a basic sanity check, instead of first constructing a spatial representation to be used as input for
a downstream task, we directly use the raw geographical coordinates c = [lat, lon] as input to the
predictive model g. The problem is thus formulated as y ∼ g(c), where y is the target variable of
interest, and g denotes the predictive model (e.g., a linear model or a MLP).
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G EVALUATION PROTOCOLS FOR DOWNSTREAM TASK PERFORMANCE

G.1 EVALUATION METRICS

In this section, we outline the metrics used to evaluate model performance on downstream tasks.
These metrics allow us to compare the effectiveness of different representations across both classi-
fication and regression settings.

G.1.1 R2 SCORE (COEFFICIENT OF DETERMINATION)

The R2 score, or coefficient of determination, is a commonly used metric to evaluate the perfor-
mance of regression models. It measures the proportion of variance in the dependent variable that is
predictable from the independent variables. The score is given by:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (16)

where yi is the true value, ŷi is the predicted value, ȳ is the mean of the true values, and n is the
number of data points.

An R2 score of 1 indicates perfect prediction, while a score of 0 implies that the model does no
better than simply predicting the mean of the target values. Negative values indicate that the model
performs worse than the mean predictor.

G.1.2 WEIGHTED F1-SCORE

The weighted F1-score is a metric used to evaluate classification performance by averaging the F1-
scores of all classes, weighting each class by its support (the number of true instances for that class).
This approach accounts for class imbalance by giving more influence to classes with more samples.
It is defined as:

F1weighted =

∑C
j=1 nj · F1j∑C

j=1 nj

, (17)

where C is the total number of classes, nj is the number of true instances of class j, and F1j is the
F1-score for class j, given by

F1j =
2pjrj
pj + rj

.

Here, pj and rj denote the Precision and Recall for class j, respectively:

rj =
TPj

TPj + FNj
, pj =

TPj

TPj + FPj
,

with TPj , FPj , and FNj representing the number of True Positives, False Positives, and False
Negatives for class j.

G.2 LOSS FUNCTIONS

We also describe the loss functions used during downstream model training. These losses guide the
optimization of classifiers or regressors applied on top of the pretrained representations.

G.2.1 MEAN SQUARED ERROR (MSE)

The mean squared error (MSE) is a standard metric for training regression models. It calculates the
average of the squared differences between predicted and true values, penalizing larger errors more
heavily. MSE is defined as:
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MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (18)

where yi is the true value, ŷi is the predicted value, and n is the number of data points. Lower values
indicate better performance.

G.2.2 CROSS-ENTROPY

Cross-entropy is a commonly used loss for classification tasks, measuring the dissimilarity between
the predicted probability distribution and the true distribution. For a dataset of n samples with
one-hot encoded target vectors yi and predicted probabilities pi, the mean cross-entropy is defined
as:

L = − 1

n

n∑
i=1

K∑
k=1

yi,k log(pi,k), (19)

where K is the number of classes, yi,k is 1 if sample i belongs to class k and 0 otherwise, and pi,k
is the predicted probability for class k in sample i.

G.3 DOWNSTREAM EVALUATION PROCEDURE

For evaluation on downstream tasks, we assess exclusively out-of-sample locations. Specifically,
for training downstream models we use only locations and input modalities that were not used for
pretraining the models, in order to analyze the generalization capability of the methods. The only
exception is PDFM, since all published representations are compressed representations at the postal
code level and correspond to in-sample data from the training phase.

For each downstream task, we split the available locations into training (60 percent), validation (20
percent), and test (20 percent) sets. For classification tasks, the splits are stratified to preserve the
label distribution across sets. Hyperparameter tuning is performed using the Optuna framework
(Akiba et al., 2019). For each method, we conduct 20 trials optimizing one of the following:

• The alpha regularization parameter of scikit-learn’s ridge regression (Pedregosa et al.,
2011), sampled logarithmically from the interval [10−4, 104].

• The C regularization parameter of scikit-learn’s logistic regression (Pedregosa et al., 2011),
also logarithmically within [10−4, 104].

• For MLPs implemented in PyTorch (Paszke et al., 2019), we tune the learning rate sampled
logarithmically between [10−5, 10−1] and weight decay similarly between [10−6, 10−1].

The MLP architecture consists of two hidden layers with 512 and 256 units respectively. Models
are trained for 40 epochs using the AdamW optimizer with a batch size of 64 (Loshchilov & Hutter,
2019). Early stopping is applied with a patience of 10 epochs, based on validation performance.

All representations are concatenated with raw coordinates, following common practice in prior work,
and normalized to have zero mean and unit variance (Klemmer et al., 2025). Hyperparameter tuning,
early stopping, and modality selection are all performed based on the validation score. We use mean
squared error (Equation 18) for regression tasks and cross-entropy (Equation 19) for classification
tasks. After selecting the best hyperparameters based on validation, we train five MLP models with
different random seeds and report both the mean and standard deviation of their performance.

A specialized evaluation procedure is applied to ZIP code level tasks. The PDFM model is specif-
ically designed for postal code scale, whereas other methods produce representations at varying or
multi-scale resolutions. In the PP2-M dataset, multiple locations may exist within a single postal
code. To prevent overrepresentation of specific ZIP codes and to ensure consistency, we use a
grouped evaluation protocol: during evaluation, predictions for all locations within the same ZIP
code are averaged before computing metrics.
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H STATEMENT ON THE USE OF GENERATIVE AI AND DECLARATION OF
ORIGINALITY

In the preparation of this paper, generative AI (ChatGPT version 4o) was utilized for language cor-
rections, including grammar and style improvements. The use of AI was limited to improving read-
ability; it was not used to generate original content, conduct research, or contribute to the intellectual
development of the work.

I ADDITIONAL TABLES

This section presents additional results, including the baselines CSP and SatCLIPL10, as well as
detailed results for MLP models, and results on the Urban Perception and ZIP Code tasks.
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Under review as a conference paper at ICLR 2026

UrbanFusion GAIR GeoCLIP SatCLIPL10 SatCLIPL40 Identity
PP2-M y ∼ g(c)

Linear
Regression (%R2 ↑)
Crime Incidence 76.7 68.0 44.3 63.4 63.6 10.4
Urban Perception (avg. 6 tasks∗) 21.2 20.4 20.0 12.9 13.2 6.6
ZIP Code (weighted avg. 29 tasks∗) 56.7 62.5 42.1 60.8 59.8 17.7

Classification (%F1↑)
Land Cover 70.9 69.9 68.6 61.3 61.1 53.9
Land Use – Coarse 66.7 65.9 60.6 60.6 59.4 55.1
Land Use – Fine 61.0 60.4 55.3 53.5 53.7 49.5

MLP
Regression (%R2 ↑)
Crime (USA) 85.3 ± 0.3 77.1± 0.2 38.7± 0.6 74.3± 0.6 74.0± 0.3 60.8± 4.1
Perception PP 2.0 (avg. 6 tasks∗) 17.0 11.9 11.5 7.0 7.4 8.0
ZIP Code (weighted avg. 29 tasks∗) 42.5 21.6 −241.3 39.5 35.0 52.0

Classification (%F1↑)
Land Use (USA) 72.1 ± 0.5 69.5± 0.4 69.5± 0.4 62.6± 0.8 62.4± 0.2 55.5± 0.9
Land Use (EU) – Coarse 66.9± 0.6 67.5 ± 0.4 65.0± 0.7 60.9± 0.4 61.3± 0.6 55.1± 0.0
Land Use (EU) – Fine 62.0 ± 0.3 61.6± 0.4 59.4± 0.8 56.1± 1.0 56.2± 1.5 49.5± 0.0

Selected modalities
Crime (USA) RS+OSM RS SV RS RS -
Land Use (USA) SV SV SV RS RS -
Land Use (EU) – Coarse SV+RS SV+RS SV RS RS -
Land Use (EU) – Fine SV+RS+OSM SV+RS SV RS RS -
∗Detailed results in Tables 23, 24, 26, and 25.

Table 22: Cross-Regional Generalization using all available modalities as inputs. Best results are
in bold, the second-best are underlined. MLP results include standard deviations across 5 random
seeds. The full names of all modality abbreviations are provided in Appendix A.
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Under review as a conference paper at ICLR 2026

UrbanFusion GAIR GeoCLIP SatCLIPL10 SatCLIPL40 Identity
PP 2.0 y ∼ g(c)

Linear
Regression (%R2 ↑)
Cleanliness 9.3 9.1 8.5 3.9 4.3 1.0
Depressiveness 15.2 14.5 14.1 9.3 9.9 5.2
Beauty 24.8 24.7 23.5 14.3 15.0 8.1
Safety 30.1 28.5 28.5 18.3 18.3 9.5
Liveliness 24.7 23.4 22.9 14.1 14.4 5.5
Wealth 23.4 22.5 22.2 17.3 17.4 10.0

Average 21.2 20.4 20.0 12.9 13.2 6.6

MLP
Regression (%R2 ↑)
Cleanliness 4.4 ± 0.2 −1.3± 0.2 −0.0± 0.0 −1.8± 3.5 −0.0± 0.0 1.2± 0.5
Depressiveness 10.1 ± 0.4 5.2± 0.2 3.9± 0.2 2.0± 0.1 1.7± 0.2 5.7± 0.3
Beauty 20.7 ± 0.2 16.6± 0.1 15.6± 0.3 9.4± 0.3 10.7± 0.1 9.7± 0.1
Safety 27.0 ± 0.2 20.1± 0.1 21.3± 0.3 12.0± 0.2 12.4± 0.3 12.3± 0.4
Liveliness 20.2 ± 0.3 14.9± 0.1 12.6± 0.2 8.3± 0.4 8.4± 0.1 7.4± 0.2
Wealth 19.5 ± 0.8 15.9± 0.4 15.7± 0.4 11.9± 0.4 11.5± 0.5 11.7± 0.4

Average 17.0 11.9 11.5 7.0 7.4 8.0

Selected modalities
Cleanliness SV SV SV RS RS -
Depressiveness SV SV+RS SV RS RS -
Beauty SV+OSM SV SV RS RS -
Safety SV SV SV RS RS -
Liveliness SV SV SV RS RS -
Wealth SV SV SV RS RS -

Table 23: Cross-Regional Generalization using all available modalities as inputs for the Place
Pulse 2.0 Urban Perception tasks. Best results are in bold, the second-best are underlined. MLP
results include standard deviations across 5 random seeds. The full names of all modality abbrevia-
tions are provided in Appendix A.
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Under review as a conference paper at ICLR 2026

UrbanFusion GAIR GeoCLIP SatCLIPL10 SatCLIPL40 Identity
PP 2.0 y ∼ g(c)

Linear (%R2 ↑)
Health
High Cholesterol 20.5 29.2 28.5 20.3 19.9 1.1
Physical Health Not Good 79.5 74.2 49.8 74.8 73.1 11.9
Stroke 67.7 65.1 47.7 64.4 60.5 19.4
Binge Drinking 80.4 74.5 71.2 73.9 71.2 40.6
Physical Inactivity 76.8 73.5 53.5 72.4 71.7 17.1
Received Annual Checkup 66.1 75.7 60.7 72.9 67.2 51.0
Cancer (Excl. Skin) 15.0 30.7 20.6 32.9 26.8 −1.4
Diabetes 77.3 70.6 57.6 70.4 67.3 28.8
Mental Health Not Good 64.6 69.5 25.8 66.5 66.6 −0.5
Coronary Heart Disease 42.4 48.0 43.1 51.1 47.0 13.9
High Blood Pressure 70.4 74.3 61.3 73.3 67.2 38.4
High Blood Pressure (Medicated) 30.2 44.0 35.0 34.7 26.4 17.1
Obesity 81.4 77.0 63.3 74.0 74.3 28.7
Sleep Less Than 7 Hours 71.9 66.8 54.1 67.6 65.4 27.7
Smoking 69.7 70.2 40.8 67.3 67.0 1.9
Asthma 75.1 74.4 19.8 73.9 72.2 8.2
Chronic Kidney Disease 55.9 63.1 49.5 63.8 58.9 17.7
Arthritis 39.3 47.6 38.0 38.0 32.5 11.2
Chronic Obstructive Pulmonary Disease 64.1 65.6 39.8 61.8 61.4 6.6
Received Cholesterol Screening 47.4 58.9 19.6 55.7 55.8 −0.3
Received Dental Visit 68.4 68.5 44.1 66.4 66.2 8.9

Health Average 60.2 62.9 44.0 60.8 58.0 16.6

Socioeconomic
Median Household Income 50.5 66.6 40.6 65.4 68.7 4.4
Median Home Value 63.1 73.4 56.0 69.9 74.3 34.9
Night Lights 70.0 71.7 46.0 61.1 65.1 12.2
Population Density 64.0 57.2 58.9 60.5 57.6 34.6
Poverty Rate 58.8 55.7 19.8 57.3 55.8 −0.6

Socioeconomic Average 61.3 64.9 44.3 62.8 64.3 17.1

Environment
Elevation 44.7 63.2 33.8 61.5 54.9 13.5
Tree Cover 52.4 56.5 42.4 56.2 59.0 25.1

Environment Average 48.6 59.8 38.1 58.8 57.0 19.3

Average over Categories 56.7 62.5 42.1 60.8 59.8 17.7

Table 24: Cross-Regional Generalization using all available modalities as inputs for ZIP Code
tasks. Best results are in bold, the second-best are underlined.
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Under review as a conference paper at ICLR 2026

UrbanFusion GAIR GeoCLIP SatCLIPL10 SatCLIPL40 Identity
PP2-M y ∼ g(c)

MLP (%R2 ↑)
Health
High Cholesterol 16.1± 4.0 −49.4± 2.4 −58.1± 6.0 −68.7± 15.2 −7.3± 3.7 25.9 ± 2.7
Physical Health Not Good 79.2 ± 2.3 71.0± 3.9 52.8± 8.1 68.6± 2.9 76.0± 2.6 72.6± 5.0
Stroke 57.7± 5.1 61.8± 5.2 50.5± 2.9 54.8± 4.3 60.4± 4.0 66.1 ± 3.3
Binge Drinking 79.3± 0.7 81.9± 1.8 −110.4± 150.4 83.8 ± 1.0 75.0± 1.4 82.0± 1.4
Physical Inactivity 73.4 ± 2.0 73.2± 2.3 49.2± 1.5 66.8± 5.2 72.3± 1.0 72.0± 2.6
Received Annual Checkup 59.0± 5.8 −54.4± 10.9 −17348.5± 21225.8 −145.0± 13.0 −64.9± 14.5 67.8 ± 2.7
Cancer (Excl. Skin) 8.3± 5.2 11.2± 8.7 25.0 ± 2.5 −4.2± 6.4 −1.2± 6.2 −2.6± 5.8
Diabetes 72.6 ± 3.9 69.5± 2.9 55.7± 6.9 64.7± 2.7 69.5± 2.7 71.6± 2.3
Mental Health Not Good 57.6± 6.6 65.5 ± 2.2 31.6± 8.6 58.5± 3.3 62.3± 3.4 53.7± 4.6
Coronary Heart Disease 50.3± 4.7 48.4± 2.4 42.2± 6.3 −1.4± 17.6 43.7± 2.8 50.9 ± 1.7
High Blood Pressure 72.2± 3.2 65.9± 1.5 55.1± 10.4 52.9± 10.4 72.9± 2.8 75.2 ± 3.7
High Blood Pressure (Medicated) 27.6± 4.3 −80.4± 28.3 −62.2± 25.7 −163.2± 46.8 −59.0± 10.7 34.3 ± 11.0
Obesity 81.5 ± 2.3 76.6± 1.9 66.5± 3.5 18.6± 124.3 80.7± 0.9 78.4± 4.5
Sleep Less Than 7 Hours 60.6 ± 1.6 54.9± 6.0 50.0± 9.4 40.3± 15.3 53.7± 6.4 55.1± 4.4
Smoking 65.4± 3.0 70.0 ± 3.2 47.1± 5.8 55.2± 14.2 67.1± 5.9 63.2± 2.5
Asthma 68.9± 3.6 73.9± 4.3 47.7± 3.5 69.3± 10.8 74.6± 2.0 78.0 ± 3.6
Chronic Kidney Disease 63.9 ± 2.7 59.9± 0.9 −11.3± 1.1 41.5± 5.9 56.0± 2.5 59.3± 7.7
Arthritis 39.7± 2.8 20.2± 11.1 28.4± 6.5 14.6± 5.5 28.1± 4.9 47.5 ± 2.5
Chronic Obstructive Pulmonary Disease 64.7± 2.2 56.1± 2.9 −7.7± 0.8 56.9± 4.1 64.4± 1.3 70.1 ± 1.5
Received Cholesterol Screening 22.3± 24.7 −80.6± 13.4 −34.0± 8.8 −109.4± 25.6 −82.5± 12.5 34.9 ± 6.0
Received Dental Visit 70.3± 2.3 69.3± 3.7 40.3± 7.6 71.0 ± 2.0 63.9± 3.2 51.9± 6.3

Health Average 56.7 36.4 −809.1 15.5 38.4 57.5

Socioeconomic
Median Household Income 52.9± 3.5 56.6± 3.8 44.4± 2.0 64.5± 1.0 64.9 ± 4.1 50.1± 15.6
Median Home Value 65.7± 1.8 69.5 ± 1.6 53.0± 4.7 64.4± 4.9 65.7± 4.5 27.2± 2.3
Night Lights 63.8 ± 9.7 49.0± 6.2 51.6± 4.4 34.5± 7.4 35.2± 9.8 34.2± 12.1
Population Density 60.9 ± 4.8 −112.4± 66.7 51.1± 5.5 −3.0± 0.7 2.1± 10.8 57.8± 2.0
Poverty Rate 58.6± 3.9 64.4± 4.1 27.3± 17.5 55.1± 3.5 57.1± 2.4 65.9 ± 2.3

Socioeconomic Average 60.4 25.4 45.5 43.1 45.0 47.0

Environment
Elevation 44.9± 7.4 53.2 ± 1.9 33.1± 5.0 49.7± 3.5 22.5± 49.8 49.8± 6.0
Tree Cover −24.3± 66.4 −47.1± 0.5 46.3± 4.3 70.4 ± 1.3 20.8± 52.0 53.0± 3.2

Environment Average 10.3 3.1 39.7 60.0 21.6 51.4

Average over Categories 42.5 21.6 −241.3 39.5 35.0 52.0

Table 25: Cross-Regional Generalization using all available modalities as inputs for ZIP Code
tasks. Best results are in bold, the second-best are underlined. MLP results include standard devia-
tions across 5 random seeds.
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UrbanFusion GAIR GeoCLIP SatCLIPL10 SatCLIPL40 Identity
PP 2.0 y ∼ g(c)

Health
High Cholesterol SV+RS+OSM+POI SV+RS SV RS RS -
Physical Health Not Good RS+POI SV+RS SV RS RS -
Stroke SV+RS+POI SV+RS SV RS RS -
Binge Drinking SV+RS+POI SV+RS SV RS RS -
Physical Inactivity RS+POI RS SV RS RS -
Received Annual Checkup SV+RS SV+RS SV RS RS -
Cancer (Excl. Skin) RS+POI RS SV RS RS -
Diabetes SV+RS+POI SV+RS SV RS RS -
Mental Health Not Good RS+POI RS SV RS RS -
Coronary Heart Disease SV+RS SV SV RS RS -
High Blood Pressure SV+RS SV+RS SV RS RS -
High Blood Pressure (Medicated) RS+OSM SV+RS SV RS RS -
Obesity RS+POI SV+RS SV RS RS -
Sleep Less Than 7 Hours RS+POI RS SV RS RS -
Smoking RS+POI RS SV RS RS -
Asthma RS+POI RS SV RS RS -
Chronic Kidney Disease SV+RS SV+RS SV RS RS -
Arthritis SV+RS+POI SV+RS SV RS RS -
Chronic Obstructive Pulmonary Disease SV+RS+POI SV+RS SV RS RS -
Received Cholesterol Screening RS+OSM RS SV RS RS -
Received Dental Visit RS+POI RS SV RS RS -

Socioeconomic
Median Household Income SV+POI RS SV RS RS -
Median Home Value SV+OSM+POI RS SV RS RS -
Night Lights RS+OSM+POI SV+RS SV RS RS -
Population Density SV+OSM SV+RS SV RS RS -
Poverty Rate RS+POI RS SV RS RS -

Environment
Elevation SV+RS+OSM+POI SV+RS SV RS RS -
Tree Cover SV+RS+OSM SV+RS SV RS RS -

Table 26: Selected modalities of Cross-Regional Generalization for various ZIP Code tasks. The
full names of all modality abbreviations are provided in Appendix A.

63


	Introduction
	Related Work
	Methods
	Architecture and Training with Stochastic Multimodal Fusion (SMF)
	Encoders and Data

	Experiments
	Experimental Setting
	Coordinate-Only Spatial Encoding
	Multimodal Spatial Encoding
	Cross-Regional Generalization
	Empirical Analysis of Information Preservation in GeoFM Models for Location Representation
	Training with Incomplete Multimodal Data

	Discussion and conclusion
	Appendix
	Abbreviations
	Detailed Results Overview
	Coordinate-Only Spatial Encoding
	Multimodal Spatial Encoding
	Cross-Regional Generalization

	Ablation Studies
	Training with Incomplete Multimodal Data
	Experiments on Synthetic Data Demonstrating Empirical Information Decomposition
	Effectiveness of Combining Contrastive Learning with Reconstruction Loss
	Limitations of Spherical Harmonics for Modeling Urban Areas with High-Frequency Variations
	Influence of Coordinates on Downstream Task Performance
	Architectural Ablation Studies
	Evaluating Modality-Specific Feature Concatenation

	Learning Redundant, Unique, and Synergistic Information
	On the Limitations of Multimodal Contrastive Alignment
	Learning Multimodal Information with SMF

	Data
	Pretraining
	Downstream Tasks

	Implementation Details
	Detailed Implementation of UrbanFusion’s Encoders and Fusion Modules
	Training UrbanFusion
	Baselines

	Evaluation Protocols for Downstream Task Performance
	Evaluation Metrics
	Loss Functions
	Downstream Evaluation Procedure

	Statement on the Use of Generative AI and Declaration of Originality
	Additional Tables


