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Abstract

Graph Neural Networks(GNNs) application to001
text classification is currently one of the most002
popular fields. Most GNNs-based models only003
focus on the interaction of words in the docu-004
ment, whereas the word order is ignored, and005
the related semantic information is lost. In ad-006
dition, when the graph density increases, the007
word nodes become over-smooth. As a result,008
the semantic information of the document is de-009
stroyed. In this paper, TextGRNN, a text classi-010
fication method based on GNN is proposed to011
solve the above problems. First, our proposed012
model constructs the document-level graph via013
Visibility Graph, in which the graph density014
is restrained, and updates the word represen-015
tations by GNN. Then the TextGRNN model016
utilizes Bi-LSTM that can recognize word or-017
der to learn the semantic information of the018
document. Finally, the attention mechanism is019
used to highlight the essential words. Numer-020
ous experiments on three benchmark datasets021
demonstrate that our model is preferable to022
state-of-the-art text classification methods.023

1 Introduction024

Text classification is an important research area in025

natural language processing (NLP). It is necessary026

for many practical scenarios, such as news filter-027

ing, spam detection, sentiment analysis and author028

attribution. Traditional text classification methods029

focus on algorithms and rely on hand-made fea-030

tures like n-gram (Brown et al., 1992) and TF-IDF031

(Wu et al., 2008), resulting in low efficiency.032

As deep technology progresses, more deep learn-033

ing models are employed for text classification034

and show better results than traditional models.035

Most of the deep learning models are extended036

based on convolutional neural networks (Kim,037

2014) or recurrent neural networks (Mikolov et al.,038

2010), for instance, TextCNN (Kim, 2014), Tex-039

tRNN (Mikolov et al., 2010) and TextRCNN (Lai040

et al., 2015). However, it is challenging to achieve041

information interaction for some words if there is 042

a long distance between them. Therefore, Graph 043

Neural Networks (GNNs) are used to solve this 044

problem. 045

GNN is introduced in (Gori et al., 2005) and ex- 046

tensively applied in NLP (Nikolentzos et al., 2020). 047

In text classification, the corpus-level models (Yao 048

et al., 2019; Wu et al., 2019; Wang et al., 2020) con- 049

struct the graph over the entire corpus, where the 050

word nodes and the edges are fixed globally. These 051

models fail inductive learning, and it is difficult to 052

represent new documents with new structures and 053

words. The document-level models (Ding et al., 054

2020; Xie et al., 2021; Zhang et al., 2020) build 055

graphs for each document by Word Co-occurrence, 056

aiming to deal with the problem of inductive learn- 057

ing. However, as the graph density becomes more 058

extensive, the nodes become over-smooth. thus the 059

semantic information of the documents is corrupted. 060

To prevent this problem, the sliding window size 061

is set small(Zhang et al., 2020), which makes it is 062

hard for words to interact with more words. In addi- 063

tion, some GNN-based models no longer consider 064

the text as a sequence, which would lose semantic 065

information about word order. Nikolentzos et al. 066

(2020) establish a directed graph to represent text 067

flow, but after multiple iterations of information 068

transmission, the word nodes became over-smooth, 069

and it is also difficult to convey semantic informa- 070

tion. 071

To solve these issues, in this work we propose a 072

new inductive learning model(TextGRNN), which 073

contains the GNN layer, the Bi-LSTM layer and 074

the attention layer. The document-level graph is 075

built by Visibility Graph, in which a document is 076

translated into time series. The series is split up 077

into sliding fragments by the sliding window. Our 078

proposed model establishes corresponding visibil- 079

ity sub-graphs (Stephen et al., 2015) for sliding 080

chips and consequently build a visibility graph for 081

the document through the same word nodes of visi- 082
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bility sub-graphs. After propagating the embedding083

of word nodes to their neighbors through the GNN084

layer, word nodes are input into the Bi-LSTM layer085

that perceives word order, in order to extract se-086

mantic information. Finally, the attention layer087

highlights the essential words of documents. To088

sum up, our contribution is threefold:089

• We propose a new method to construct the090

graph of a document, named Visibility Graph,091

which reduces the density of the graph in the092

case of large-size sliding windows. As a result,093

word nodes can avoid becoming over-smooth094

and interact with more word nodes.095

• Our model enables long-distance word inter-096

action as well as awareness of word order,097

which powerfully expresses the semantic in-098

formation of the document.099

• Our approach achieves state-of-the-art results100

on several benchmark datasets compared with101

the baselines.102

2 Related Work103

Recently, GNNs have been widely applied to text104

classification. Yao et al. (2019) take word-word and105

word-document relations into account and build a106

graph on the entire corpus. Wang et al. (2020)107

enrich the represents of the corpus-level graph by108

considering topic-level nodes. Huang et al. (2019)109

create the text-level graph, whose edges of each110

team of words are also globally fixed.111

The above models with globally fixed nodes112

and edges are difficult to handle new documents,113

so some studies focus on inductive representation.114

Ding et al. (2020) propose a hypergrah for every115

document and capture highlights text representa-116

tion through dual attention mechanism. Zhang et al.117

(2020) utilize the TextING for text classification,118

which can represent new words that do not appear119

in the training. Xie et al. (2021) blend a topic120

model in variational graph-auto-encoder to reflect121

the relevant semantic information. However, none122

of the these models consider the word order, which123

leads to the loss of relevant semantic information.124

We notice that Liu et al. (2020) design the Ten-125

sorGCN that contains the graph with semantic in-126

formation based on word order, but the model still127

works on the whole corpus, which implies that Ten-128

sorGCN is incapable of inductive learning.129

Some researchers study the text from the per-130

spective of time series. Vieira et al. (2018) measure131

the robustness of sentence length with six criteria, 132

where a sentence length is portrayed as a data point 133

of time series. Word lengths and word frequen- 134

cies are also used to map the document into time 135

series, which can quantify complexity in written 136

texts (Ausloos, 2012). Visibility Graph is a network 137

method that can analyze the time series. Stephen 138

et al. (2015) construct visibility sub-graphs for the 139

time series to provide rich information conducive 140

to short-term and long-term forecasts. 141

3 Method 142

3.1 Visibility Graph 143

Step 1 A document is denoted as 144

doc : {(w1, l1), (w2, l2), (w3, l3),

. . . , (wj , lj), . . . , (wn, ln)},
(1) 145

where wj , n and lj , respectively, are the j-th word, 146

the number of words in the document and the word 147

length of the wj . 148

Step 2 We fix a window of size s to slide over 149

doc, and the generated sliding fragment is shown 150

as follows: 151

docq = {(wq, lq), (wq+1, lq+1),

. . . , (wq+s−1, lq+s−1)},
q = 1, 2, . . . , n− s+ 1.

(2) 152

Step 3 If wk1 , wk2 and wk3 satisfy the criterion: 153

lk2 ≤ lk3 + (lk1 − lk2) · (
k3 − k2
k3 − k1

), (3) 154

k1, k2, k3 ∈ {q, q + 1, . . . , q + s− 1}, (4) 155

k1 < k2 < k3, (5) 156

wk1 can see wk3 , and there is an edge between 157

them. Thus the docq can be mapped as a visibility 158

sub-graph. 159

Step 4 Every sliding fragment has a correspond- 160

ing visibility sub-graph. We represent unique 161

words as nodes. Thus, these Visibility Sub-graphs 162

can be connected to construct the Visibility Graph 163

for doc through the same words. The document- 164

level graph is denoted as G = (V, E), where V and 165

E are a set of nodes and edges, respectively. 166

The document is preprocessed by tokenization 167

and removal of stop words (Rousseau et al., 2015). 168

The word features are used to initialize the nodes’ 169

embedding, denoted as v ∈ R|V|×d, where d is the 170

embedding dimension. 171
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Figure 1: The architecture of TextGRNN. First, the graph of the document is built by Visibility Graph, and the
word nodes are updated with GGNN. Then, Bi-LSTM captures semantic information based on word order. Finally,
The attention mechanism highlights the essential words in the document.

3.2 Graph-based Word Interaction172

On each graph, the embedding of word nodes can173

be updated by Gated Graph Neural Network (Li174

et al., 2016) as the following formulates:175

at = Avt−1Wa, (6)176

zt = σ(Wzat +Uzvt−1 + bz), (7)177

rt = σ(Wrat +Urvt−1 + br), (8)178

ṽt = tanh(Wvat +Uv(rt ⊙ vt−1) + bv), (9)179

vt = ṽt ⊙ zt + vt−1 ⊙ (1− zt), (10)180

where a is the information of the current node’s181

adjacent neighbours, A ∈ R|V|×|V| is the adjacency182

matrix, σ is the sigmoid function. All W and U are183

trainable weights, and b is the bias. z and r are the184

update and reset gates, which control the amount of185

information from the current node’s previous step186

(in vt−1) and the current node’s neighbors should187

contribute to the current node. t means that such188

update operates t times and nodes can achieve the189

information from their t-order neighbors.190

3.3 Bi-LSTM191

After updating the word nodes, the graph is con-192

verted to docnew:193

docnew : {x1,x2,x3, ...,xj , ...,xn}, (11)194

where xj is the updated embedding of the unique195

node corresponding to wj .196

LSTM has the latency capability to capture the197

semantic information represented by the word or-198

der(Iacobacci and Navigli, 2019). We use Bi-199

directional Long Short-Term Memory (Bi-LSTM)200

to learn the semantic information of the docnew. 201

The LSTM transition equations are as follows: 202

pj = σ(Wphj−1 +Upxj + bp), (12) 203

fj = σ(Wfhj−1 +Ufxj + bf ), (13) 204

oj = σ(Wohj−1 +Uoxj + bo), (14) 205

c̃j = tanh(Wchj−1 +Ucxj + bc), (15) 206

cj = fj ⊙ cj−1 + pj ⊙ c̃j , (16) 207

hj = oj ⊙ tanh(ct), (17) 208

where f , p and o are forget gate, input gate and 209

output gate, respectively. At the j-th time step, 210

the memory cj and hidden state hj are updated as 211

Eq.(12)∼(15). 212

Bi-LSTM (Zhou et al., 2016) can acquire infor- 213

mation from both the past and future of the docu- 214

ment. The output of the Bi-LSTM are as follows: 215

output = {o∗1,o∗2,o∗3, ...,o∗j , ...,o∗n}, (18) 216

o∗j =
→
oj +

←
oj , (19) 217

h∗ =
→
hn+

←
h1, (20) 218

where
→
oj and

→
hn are the output of j-th step and last 219

hidden state from the forward LSTM layer,
←
oj and 220

←
h1 are the output of j-th step and last hidden state 221

from the backward LSTM layer, respectively. 222

3.4 Attention Mechanism 223

To highlight essential words in the document, 224

TextGRNN uses the attention mechanism (Zhou 225
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et al., 2016) to assign higher weights to significant226

terms:227

ej = tanh(h∗TWh
oo
∗
j ), (21)228

αj =
exp(ej)∑n
i=1 exp(ej)

, (22)229

m =
n∑

i=1

αjWo∗o
∗
j , (23)230

where W is the weight matrix, and αj is the weight231

of the j-th position of the document. m is the232

attention vector, that is, the output of the attention233

mechanism.234

Finally, TextGRNN feed the attention vector into235

the softmax layer to predict. The loss ℓ is mini-236

mized through the cross-entropy function:237

ŷ = softmax(Wmm+ bm), (24)238

ℓ = −
∑
i

yi log(ŷi), (25)239

where W and b are weights and bias, and yi is the240

i-th element of the one-hot label.241

4 Experiments242

4.1 Datasets243

We adopt three datasets: R8, R521 and MR2. R8244

and R52 are two subsets of Reuters 21578 datasets245

that have 8 and 52 categories, respectively. MR is246

a collection of polarized movie reviews and has 2247

categories. The statics of these datasets are demon-248

strated in Table 1.249

4.2 Baselines250

To investigate the advance of the model proposed251

in this paper, we selected 6 existing models as the252

baselines for comparison. Some models have re-253

sulted directly from (Zhang et al., 2020)254

• CNN: Kim (2014) performs convolution and255

max-pooling operation on word embeddings256

to get a representation.257

• LSTM: Liu et al. (2016) use the last hidden258

state as the representation of the text. Bi-259

LSTM is a bi-directional LSTM.260

• fastText: Joulin et al. (2017) average word or261

n-gram embeddings as document embeddings.262

1http://disi.unitn.it/moschitti/corpora.htm
2http://www.cs.cornell.edu/people/pabo/movie-review-

data/

• TextGCN: Yao et al. (2019) build a large graph 263

for the whole corpus to text classification. 264

• Text Level Graph: Huang et al. (2019) and 265

TextING (Zhang et al., 2020) both build cor- 266

responding graphs for every document to text 267

classification. 268

4.3 Experiment Set-up 269

We have obtained the training set and test set. The 270

actual training set and validation set are obtained 271

by splitting the training set into the ratio 9:1. We 272

adjust the hyperparameters according to the perfor- 273

mance of the validation set, and adjust the learning 274

rate to 0.01 via the Adam optimizer (Kingma and 275

Ba, 2015). Dropout is set as 0.5, and the num- 276

ber of layers for Bi-LSTM is 2. Training will be 277

performed in 300 epochs. The default size of the 278

sliding window is 7. 279

The word embeddings are initialized with 280

Glove3 (Pennington et al., 2014) with 300 dimen- 281

sions, and The out-of-vocabulary(OOV) words’ em- 282

bedding were randomly selected from a uniform 283

distribution [-0.01, 0.01]. 284

4.4 Result 285

Table 2 shows the consequence of TextGRNN 286

against other baseline methods, and our model is 287

state-of-the-art. 288

We observe that the GNN-based approaches per- 289

form better than other models, suggesting that 290

some closely related but distant words can interact 291

through the graph. Their interaction frequencies 292

are reflected by the edge weights. 293

We also note that TextGCN, Huang et al. (2019) 294

and TextING can not represent the word order of 295

the document. In order to learn the semantic infor- 296

mation of the document, our proposed TextGRNN 297

model upgrades the embedding of word nodes 298

through the graph, then transmits them to the Bi- 299

LSTM layer as well as attention layer according 300

to the word order. Therefore, our model performs 301

better. 302

4.5 Attention Visualisation 303

To understand how TextGRNN learns the seman- 304

tic information of the document, we visualize the 305

attention layer (Yang and Zhang, 2018) on MR 306

as shown in Table 3. Our model pays more 307

attention to words that contribute positively to 308

sentiment analysis and ignores noise words that 309

3http://nlp.stanford.edu/data/glove.6B.zip
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Table 1: The statistics of the datasets including MR, R8 and R52. The vocab means the number of unique words in
a document.

Dataset Docs Training Test class Avg. Vocab Avg. Length
MR 10662 7108 3554 2 18.46 6
R8 7674 5485 2189 8 41.25 65.72
R52 9100 6532 2568 52 44.02 69.82

Table 2: Test accuracy of various models on three datasets. Our model’s mean ± standard deviation is based on 10
time runs reported.

Model R8 R52 MR
CNN(Non-static) 95.71 ± 0.52 87.59 ± 0.48 77.75 ± 0.72

Bi-LSTM 96.31 ± 0.33 90.54 ± 0.91 77.68 ± 0.86
fastText 96.13 ± 0.21 92.82 ± 0.09 75.14 ± 0.20

TextGCN 97.07 ± 0.10 93.56 ±0.18 76.74 ± 0.20
Huang et al. (2019) 97.80 ± 0.20 94.60 ± 0.30 -

TextING 98.04 ± 0.25 95.48 ± 0.19 79.82 ± 0.20
TextGRNN 98.42 ± 0.08 95.99 ± 0.10 80.82 ±0.37

negatively contribute to sentiment analysis. For310

example, TextGRNN highlights ‘interesting’311

and misses ‘bad’ in the positive review. In con-312

trast, TextGRNN emphasizes ‘little’ and ig-313

nores ‘explicit’ in the negative review.314

Table 3: Attention visualization of positive and negative
reviews in MR.

Labels Reviews

Positive

it is usually a bad sign when
directors abandon their scripts
and go where the moment
takes them , but olympia
, wash , based filmmakers
anne de marcken and marilyn
freeman did just that and it is
what makes their project so
interesting

Negative

aside from showing us in
explicit detail how difficult it
is to win over the two drink
minimum crowd , there is little
to be learned from watching
’comedian’

5 Ablation Study315

5.1 Model Variant316

There are four ways to change the structure of the317

TextGRNN, called Model-V1, Model-V2, Model-318

V3 and Model-V4. Table 4 shows the result of319

these model variants, TextING, and our model. 320

Model-V1 Instead of feeding the updated word 321

nodes into Bi-LSTM, Model-V1 aggregates the 322

representations of all word nodes to generate pre- 323

dictions. Like TextING, the readout function are: 324

325

vν
t = σ(f1(v

ν
t ))⊙ tanh(f2(v

ν
t )), (26) 326

327

vG =
1

|V|
∑
ν∈V

vν
t

+ Maxpooling
(
v1
t . . .v

V
t

)
,

(27) 328

where f1 and f2 are two multilayer perceptrons 329

(MLP). Maxpooling is a max-pooling function. 330

Model-V2 Model-V2 changes TextGRNN with 331

the different ways of building graphs, where Word 332

Co-occurrence replaces Visibility Graph. 333

Model-V3 To exam whether the attention layer 334

can work, Model-V3 is designed without the atten- 335

tion layer based on our models. 336

Model-V4 We build the graph for the document 337

by Visibility Graph, in which the edges between 338

words are determined by counting the word length. 339

The word length is a natural attribute and is re- 340

placed by the TF-IDF (Wu et al., 2008), an artificial 341

feature of words, in model-V4. 342

5.2 Result 343

Table 4 exhibits that TextGRNN, Model-V1, 344

Model-V3 and Model-V4 can work better than 345
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Table 4: Test accuracy of various models on three datasets. All models’ mean ± standard deviation is based on 5
time runs reported.

Model R8 R52 MR
TextING 98.01 ± 0.11 95.41 ± 0.17 79.87 ± 0.30

Model-V1 98.04 ± 0.06 95.51 ± 0.15 79.91 ± 0.15
Model-V2 98.17 ± 0.09 95.81 ± 0.16 80.04 ± 0.18
Model-V3 98.33 ± 0.15 95.80 ± 0.11 80.71 ± 0.32
Model-V4 98.27 ± 0.09 95.82 ± 0.07 80.10 ± 0.11
TextGRNN 98.43 ± 0.11 96.02 ± 0.11 80.84 ±0.39

Model-V1 and TextING, which reveals that models346

with the Bi-LSTM layer can learn the semantic in-347

formation of the document about word order. The348

accuracy of Model-V1 is higher than TextING on349

MR, R8, and R52, suggesting that compared with350

Word Co-occurrence, Visibility Graph can work351

very well. The outcome of Model-V3 indicates that352

if our model discards the attention mechanism, then353

essential words in the document will not be high-354

lighted, and the model’s performance will decrease.355

Comparing with Model-V4 and TextGRNN, the re-356

sult shows that artificial features are not necessarily357

preferable to the natural properties of words.358

5.3 Graph Density359

Figure 2 exhibits the graph density of Visibility360

Graph and Word Co-occurrence for different win-361

dow sizes on MR, R8 and R52. Figure 3 shows the362

performance of TextGRNN and Model-V2 with a363

varying window size on MR, R8 and R52. The364

result proves that when window size increases,365

the rapid growth of graph density of Word Co-366

occurrence results in the graph nodes being over-367

smooth. Thus, the semantic information of the368

document is destroyed, and the performance of369

Model-V2 is lower than TextGRNN. However, Vis-370

ibility Graph constrains the graph density to a lower371

level, where nodes achieve the information from372

more neighbors and avoid destroying the semantic373

information. Hence, the accuracy of TextGRNN374

still improves when the window size surpasses 3.375

6 Conclusion376

Unlike the existing GNN-based methods that only377

focus on the interaction between words in the text,378

we propose a model for text classification, which379

can be conscious of the word order based on re-380

taining the advantages of the GNN-based models.381

In addition, we construct the graph for every docu-382

ment through Visibility Graph, which is helpful to383
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decrease the graph density and prevent graph nodes 384

from becoming over-smooth. Experiments prove 385

that our model has an excellent ability to express 386

semantic information. 387

However, in this work, we only discuss two cases 388

where word length or word TF-IDF is the data 389

point of time series without exploring other ways 390

to calculate data points. In the future, finding more 391

methods to map the document into time series will 392

be the focus of our work. 393
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