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Abstract

Graph Neural Networks(GNNs) application to
text classification is currently one of the most
popular fields. Most GNNs-based models only
focus on the interaction of words in the docu-
ment, whereas the word order is ignored, and
the related semantic information is lost. In ad-
dition, when the graph density increases, the
word nodes become over-smooth. As a result,
the semantic information of the document is de-
stroyed. In this paper, TextGRNN, a text classi-
fication method based on GNN is proposed to
solve the above problems. First, our proposed
model constructs the document-level graph via
Visibility Graph, in which the graph density
is restrained, and updates the word represen-
tations by GNN. Then the TextGRNN model
utilizes Bi-LSTM that can recognize word or-
der to learn the semantic information of the
document. Finally, the attention mechanism is
used to highlight the essential words. Numer-
ous experiments on three benchmark datasets
demonstrate that our model is preferable to
state-of-the-art text classification methods.

1 Introduction

Text classification is an important research area in
natural language processing (NLP). It is necessary
for many practical scenarios, such as news filter-
ing, spam detection, sentiment analysis and author
attribution. Traditional text classification methods
focus on algorithms and rely on hand-made fea-
tures like n-gram (Brown et al., 1992) and TF-IDF
(Wu et al., 2008), resulting in low efficiency.

As deep technology progresses, more deep learn-
ing models are employed for text classification
and show better results than traditional models.
Most of the deep learning models are extended
based on convolutional neural networks (Kim,
2014) or recurrent neural networks (Mikolov et al.,
2010), for instance, TextCNN (Kim, 2014), Tex-
tRNN (Mikolov et al., 2010) and TextRCNN (Lai
et al., 2015). However, it is challenging to achieve

information interaction for some words if there is
a long distance between them. Therefore, Graph
Neural Networks (GNNs) are used to solve this
problem.

GNN is introduced in (Gori et al., 2005) and ex-
tensively applied in NLP (Nikolentzos et al., 2020).
In text classification, the corpus-level models (Yao
etal., 2019; Wu et al., 2019; Wang et al., 2020) con-
struct the graph over the entire corpus, where the
word nodes and the edges are fixed globally. These
models fail inductive learning, and it is difficult to
represent new documents with new structures and
words. The document-level models (Ding et al.,
2020; Xie et al., 2021; Zhang et al., 2020) build
graphs for each document by Word Co-occurrence,
aiming to deal with the problem of inductive learn-
ing. However, as the graph density becomes more
extensive, the nodes become over-smooth. thus the
semantic information of the documents is corrupted.
To prevent this problem, the sliding window size
is set small(Zhang et al., 2020), which makes it is
hard for words to interact with more words. In addi-
tion, some GNN-based models no longer consider
the text as a sequence, which would lose semantic
information about word order. Nikolentzos et al.
(2020) establish a directed graph to represent text
flow, but after multiple iterations of information
transmission, the word nodes became over-smooth,
and it is also difficult to convey semantic informa-
tion.

To solve these issues, in this work we propose a
new inductive learning model(TextGRNN), which
contains the GNN layer, the Bi-LSTM layer and
the attention layer. The document-level graph is
built by Visibility Graph, in which a document is
translated into time series. The series is split up
into sliding fragments by the sliding window. Our
proposed model establishes corresponding visibil-
ity sub-graphs (Stephen et al., 2015) for sliding
chips and consequently build a visibility graph for
the document through the same word nodes of visi-



bility sub-graphs. After propagating the embedding
of word nodes to their neighbors through the GNN
layer, word nodes are input into the Bi-LSTM layer
that perceives word order, in order to extract se-
mantic information. Finally, the attention layer
highlights the essential words of documents. To
sum up, our contribution is threefold:

* We propose a new method to construct the
graph of a document, named Visibility Graph,
which reduces the density of the graph in the
case of large-size sliding windows. As a result,
word nodes can avoid becoming over-smooth
and interact with more word nodes.

* Our model enables long-distance word inter-
action as well as awareness of word order,
which powerfully expresses the semantic in-
formation of the document.

* Our approach achieves state-of-the-art results
on several benchmark datasets compared with
the baselines.

2 Related Work

Recently, GNNs have been widely applied to text
classification. Yao et al. (2019) take word-word and
word-document relations into account and build a
graph on the entire corpus. Wang et al. (2020)
enrich the represents of the corpus-level graph by
considering topic-level nodes. Huang et al. (2019)
create the text-level graph, whose edges of each
team of words are also globally fixed.

The above models with globally fixed nodes
and edges are difficult to handle new documents,
so some studies focus on inductive representation.
Ding et al. (2020) propose a hypergrah for every
document and capture highlights text representa-
tion through dual attention mechanism. Zhang et al.
(2020) utilize the TextING for text classification,
which can represent new words that do not appear
in the training. Xie et al. (2021) blend a topic
model in variational graph-auto-encoder to reflect
the relevant semantic information. However, none
of the these models consider the word order, which
leads to the loss of relevant semantic information.

We notice that Liu et al. (2020) design the Ten-
sorGCN that contains the graph with semantic in-
formation based on word order, but the model still
works on the whole corpus, which implies that Ten-
sorGCN is incapable of inductive learning.

Some researchers study the text from the per-
spective of time series. Vieira et al. (2018) measure

the robustness of sentence length with six criteria,
where a sentence length is portrayed as a data point
of time series. Word lengths and word frequen-
cies are also used to map the document into time
series, which can quantify complexity in written
texts (Ausloos, 2012). Visibility Graph is a network
method that can analyze the time series. Stephen
et al. (2015) construct visibility sub-graphs for the
time series to provide rich information conducive
to short-term and long-term forecasts.

3 Method
3.1 Visibility Graph
Step 1 A document is denoted as

doc : {(w1,11), (w2, l2), (ws,13),
ey (wj, lj), ey (wn, ln)},
where w;, n and [;, respectively, are the j-th word,

the number of words in the document and the word
length of the w;.

D

Step 2 We fix a window of size s to slide over
doc, and the generated sliding fragment is shown
as follows:

docg = {(wq, lq), (Wgt1,lg+1),
ceey (Wq+371, lq+571)}’ (2)
q=1,2,...,n—s+ 1.

Step 3 If wy,, wg, and wy, satisfy the criterion:

ka — Kk
s < By + (g = lia) - (o), 3)
3 — N1

k17k27k3€{q7q+17"'7Q+8_1}7 (4)
k‘1<k‘2<k‘3, (5)

Wy, can see wy,, and there is an edge between
them. Thus the doc, can be mapped as a visibility
sub-graph.

Step 4 Every sliding fragment has a correspond-
ing visibility sub-graph. We represent unique
words as nodes. Thus, these Visibility Sub-graphs
can be connected to construct the Visibility Graph
for doc through the same words. The document-
level graph is denoted as G = (V, £), where V and
£ are a set of nodes and edges, respectively.

The document is preprocessed by tokenization
and removal of stop words (Rousseau et al., 2015).
The word features are used to initialize the nodes’
embedding, denoted as v € RIVI*4 where d is the
embedding dimension.
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Figure 1: The architecture of TextGRNN. First, the graph of the document is built by Visibility Graph, and the
word nodes are updated with GGNN. Then, Bi-LSTM captures semantic information based on word order. Finally,
The attention mechanism highlights the essential words in the document.

3.2 Graph-based Word Interaction

On each graph, the embedding of word nodes can
be updated by Gated Graph Neural Network (Li
et al., 2016) as the following formulates:

ar = Avi 1 W, (6)
Z = U(Wzat + Uzvt—l + bz)y (7
ry = U(W’rat + U’rvt—l + br); (8)

v = tanh(Wya; + Uy (ry © vi—1) + by), (9)
Vi=Vvi Oz +vio1 O (1 —2y), (10)

where a is the information of the current node’s
adjacent neighbours, A € RIVI*IVI is the adjacency
matrix, o is the sigmoid function. All W and U are
trainable weights, and b is the bias. z and r are the
update and reset gates, which control the amount of
information from the current node’s previous step
(in v¢_1) and the current node’s neighbors should
contribute to the current node. ¢ means that such
update operates ¢ times and nodes can achieve the
information from their ¢-order neighbors.

3.3 Bi-LSTM

After updating the word nodes, the graph is con-
verted to doc™":

new .,
doc™ " : {x1,%X2,X3, ..., Xj, .., Xp },

(an

where x; is the updated embedding of the unique
node corresponding to w;.

LSTM has the latency capability to capture the
semantic information represented by the word or-
der(Iacobacci and Navigli, 2019). We use Bi-
directional Long Short-Term Memory (Bi-LSTM)

to learn the semantic information of the doc™*".
The LSTM transition equations are as follows:

pj = o(Wphj1 + Upx; + by), (12)
fj ZU(thj_l—l—UfXj—i-bf), (13)
0j =0(Ws,h;_1 + Uyx; + b,), (14)
Ej = tanh(Wchj_l + UCX]‘ + bc), (15)
c;=1f0c;j1+pjOcy, (16)
h; = 0; ® tanh(cy), 17

where f, p and o are forget gate, input gate and
output gate, respectively. At the j-th time step,
the memory c; and hidden state h; are updated as
Eq.(12)~(15).

Bi-LSTM (Zhou et al., 2016) can acquire infor-
mation from both the past and future of the docu-
ment. The output of the Bi-LSTM are as follows:

output = {0}, 03,03,...,07,...,0,,}, (18)

o} =0, +0;, (19)
-

h* = h, +hy, (20)

*)
where 5} and h,, are the output of j-th step and last
hidden state from the forward LSTM layer, 07 and

e

h; are the output of j-th step and last hidden state
from the backward LSTM layer, respectively.

3.4 Attention Mechanism

To highlight essential words in the document,
TextGRNN uses the attention mechanism (Zhou



et al., 2016) to assign higher weights to significant
terms:

e; = tanh(h*TW/o?), (21)
exp(e;)
= = (22)
Y exp(ey)
n
m =Y a;W,o}, (23)
=1

where W is the weight matrix, and «; is the weight
of the j-th position of the document. m is the
attention vector, that is, the output of the attention
mechanism.

Finally, TextGRNN feed the attention vector into
the softmax layer to predict. The loss ¢ is mini-
mized through the cross-entropy function:

(24)

y = softmax(W,,m + b,,),
l (25)

== 2_ilog(5h),

where W and b are weights and bias, and y; is the
i-th element of the one-hot label.

4 [Experiments

4.1 Datasets

We adopt three datasets: RS, R52! and MR?. R8
and R52 are two subsets of Reuters 21578 datasets
that have 8 and 52 categories, respectively. MR is
a collection of polarized movie reviews and has 2
categories. The statics of these datasets are demon-
strated in Table 1.

4.2 Baselines

To investigate the advance of the model proposed
in this paper, we selected 6 existing models as the
baselines for comparison. Some models have re-
sulted directly from (Zhang et al., 2020)

* CNN: Kim (2014) performs convolution and
max-pooling operation on word embeddings
to get a representation.

e LSTM: Liu et al. (2016) use the last hidden
state as the representation of the text. Bi-
LSTM is a bi-directional LSTM.

* fastText: Joulin et al. (2017) average word or
n-gram embeddings as document embeddings.

"http://disi.unitn.it/moschitti/corpora.htm

2http://www.cs.cornell.edu/people/pabo/movie-review-
data/

* TextGCN: Yao et al. (2019) build a large graph
for the whole corpus to text classification.

» Text Level Graph: Huang et al. (2019) and
TextING (Zhang et al., 2020) both build cor-
responding graphs for every document to text
classification.

4.3 Experiment Set-up

We have obtained the training set and test set. The
actual training set and validation set are obtained
by splitting the training set into the ratio 9:1. We
adjust the hyperparameters according to the perfor-
mance of the validation set, and adjust the learning
rate to 0.01 via the Adam optimizer (Kingma and
Ba, 2015). Dropout is set as 0.5, and the num-
ber of layers for Bi-LSTM is 2. Training will be
performed in 300 epochs. The default size of the
sliding window is 7.

The word embeddings are initialized with
Glove® (Pennington et al., 2014) with 300 dimen-
sions, and The out-of-vocabulary(OOV) words’ em-
bedding were randomly selected from a uniform
distribution [-0.01, 0.01].

4.4 Result

Table 2 shows the consequence of TextGRNN
against other baseline methods, and our model is
state-of-the-art.

We observe that the GNN-based approaches per-
form better than other models, suggesting that
some closely related but distant words can interact
through the graph. Their interaction frequencies
are reflected by the edge weights.

We also note that TextGCN, Huang et al. (2019)
and TextING can not represent the word order of
the document. In order to learn the semantic infor-
mation of the document, our proposed TextGRNN
model upgrades the embedding of word nodes
through the graph, then transmits them to the Bi-
LSTM layer as well as attention layer according
to the word order. Therefore, our model performs
better.

4.5 Attention Visualisation

To understand how TextGRNN learns the seman-
tic information of the document, we visualize the
attention layer (Yang and Zhang, 2018) on MR
as shown in Table 3. Our model pays more
attention to words that contribute positively to
sentiment analysis and ignores noise words that

3http://nlp.stanford.edu/data/glove.6B.zip



Table 1: The statistics of the datasets including MR, R8 and R52. The vocab means the number of unique words in

a document.
Dataset Docs Training Test class Avg. Vocab Avg. Length
MR 10662 7108 3554 2 18.46 6
R8 7674 5485 2189 8 41.25 65.72
R52 9100 6532 2568 52 44.02 69.82

Table 2: Test accuracy of various models on three datasets. Our model’s mean #+ standard deviation is based on 10

time runs reported.

Model RS R52 MR
CNN(Non-static)  95.71 £0.52 87.59 +048 77.75+0.72
Bi-LSTM 96.31 £0.33 90.54 £091 77.68 £0.86
fastText 96.13 £0.21 92.82+0.09 75.14 +£0.20
TextGCN 97.07 £0.10 93.56 £0.18 76.74 £ 0.20
Huang et al. (2019) 97.80 +0.20 94.60 4+ 0.30 -

TextING 98.04 £0.25 9548 £0.19 79.82 £0.20
TextGRNN 98.42 £0.08 9599 £0.10 80.82 +£0.37

negatively contribute to sentiment analysis. For
example, TextGRNN highlights ‘interesting’
and misses ‘bad’ in the positive review. In con-
trast, TextGRNN emphasizes ‘1ittle’ and ig-
nores ‘explicit’ in the negative review.

Table 3: Attention visualization of positive and negative
reviews in MR.

Labels Reviews

it is usually a bad sign when

directors abandon their scripts

and go where the moment

takes them , but olympia

Positive , wash , based filmmakers
anne de marcken and marilyn

freeman did just that and it I

. makes their project so

aside from showing us in
explicit detail how difficult it
is to win - . - drink
minimum crowd , there is -
to be learned from watching
’comedian’

Negative

5 Ablation Study

5.1 Model Variant

There are four ways to change the structure of the
TextGRNN, called Model-V1, Model-V2, Model-
V3 and Model-V4. Table 4 shows the result of

these model variants, TextING, and our model.

Model-V1 Instead of feeding the updated word
nodes into Bi-LSTM, Model-V1 aggregates the
representations of all word nodes to generate pre-
dictions. Like TextING, the readout function are:

vi = o(fi(v{)) © tanh(fa2(vy)),  (26)
vg = 1 Z vy
b= 27)

+ Maxpooling (th .. Vf ) ,

where fi and fo are two multilayer perceptrons
(MLP). Maxpooling is a max-pooling function.

Model-V2 Model-V2 changes TextGRNN with
the different ways of building graphs, where Word
Co-occurrence replaces Visibility Graph.

Model-V3 To exam whether the attention layer
can work, Model-V3 is designed without the atten-
tion layer based on our models.

Model-V4 We build the graph for the document
by Visibility Graph, in which the edges between
words are determined by counting the word length.
The word length is a natural attribute and is re-
placed by the TF-IDF (Wu et al., 2008), an artificial
feature of words, in model-V4.

5.2 Result

Table 4 exhibits that TextGRNN, Model-V1,
Model-V3 and Model-V4 can work better than



Model RS RS2 MR
TextING  98.01 £0.11 9541 +0.17 79.87 £0.30
Model-V1  98.04 £0.06 95.51+£0.15 7991 £0.15
Model-V2  98.17 £0.09 95.81 £0.16 80.04 +0.18
Model-V3 9833 £0.15 95.80£0.11 80.71 £0.32
Model-V4  98.27 £0.09 95.82 £0.07 80.10 £ 0.11
TextGRNN 9843 £0.11 96.024+0.11 80.84 £0.39

Table 4: Test accuracy of various models on three datasets. All models’ mean + standard deviation is based on 5
time runs reported.

Model-V1 and TextING, which reveals that models
with the Bi-LSTM layer can learn the semantic in-
formation of the document about word order. The
accuracy of Model-V1 is higher than TextING on
MR, RS, and R52, suggesting that compared with
Word Co-occurrence, Visibility Graph can work
very well. The outcome of Model-V3 indicates that
if our model discards the attention mechanism, then
essential words in the document will not be high-
lighted, and the model’s performance will decrease.
Comparing with Model-V4 and TextGRNN, the re-
sult shows that artificial features are not necessarily
preferable to the natural properties of words.

5.3 Graph Density

Figure 2 exhibits the graph density of Visibility
Graph and Word Co-occurrence for different win-
dow sizes on MR, R8 and R52. Figure 3 shows the
performance of TextGRNN and Model-V2 with a
varying window size on MR, R8 and R52. The
result proves that when window size increases,
the rapid growth of graph density of Word Co-
occurrence results in the graph nodes being over-
smooth. Thus, the semantic information of the
document is destroyed, and the performance of
Model-V2 is lower than TextGRNN. However, Vis-
ibility Graph constrains the graph density to a lower
level, where nodes achieve the information from
more neighbors and avoid destroying the semantic
information. Hence, the accuracy of TextGRNN
still improves when the window size surpasses 3.

6 Conclusion

Unlike the existing GNN-based methods that only
focus on the interaction between words in the text,
we propose a model for text classification, which
can be conscious of the word order based on re-
taining the advantages of the GNN-based models.
In addition, we construct the graph for every docu-
ment through Visibility Graph, which is helpful to

0.4 0.4

Graph Density

~3 Visibility Graph
0.0 ~5~ Word Co-occurrence .

1 3 5 7 9
Window Size

(a) MR

Window Size

(b)R8

Window Size

() RS2

Figure 2: Graph density with varying window size

Accuracy(%)

~H- TextGRNN
~E5~Model-V2

~3-TextGRNN
~E-Model-V2

97.
7 9 1 3 5 7 9 1 3 5 7 9
Window Size

() RS2

Figure 3: Accuracy with varying window size

decrease the graph density and prevent graph nodes
from becoming over-smooth. Experiments prove
that our model has an excellent ability to express
semantic information.

However, in this work, we only discuss two cases
where word length or word TF-IDF is the data
point of time series without exploring other ways
to calculate data points. In the future, finding more
methods to map the document into time series will
be the focus of our work.
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