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Abstract. Angle of Progression (AoP) is a critical parameter for clin-
ical assessment of fetal head descent and prediction of delivery mode,
traditionally measured manually by experienced clinicians, which leads
to efficiency and consistency issues. In this paper, we present a heatmap
regression-based keypoint detection method as a baseline approach for
the Intrapartum Ultrasound Grand Challenge (IUGC) 2025, designed to
automatically measure the AoP in intrapartum ultrasound images. We
employ a U-Net architecture for heatmap prediction to directly iden-
tify the three key points required for AoP measurement, followed by
post-processing to extract precise coordinates. The method was evalu-
ated on the IUGC 2025 dataset, trained with 300 annotated samples
and tested on 501 samples, achieving an average AoP error of 8.37° and
a MRE of 21.83 pixels. As a baseline method, we discuss current limi-
tations and propose improvement directions, including semi-supervised
learning to leverage unlabeled data, adoption of more advanced network
architectures, and optimization of post-processing techniques. This study
demonstrates the feasibility of automated AoP measurement in obstet-
ric ultrasound imaging, potentially improving decision support tools in
obstetric clinical practice.
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1 Introduction

The delivery modalities are primarily bifurcated into vaginal delivery and ce-
sarean section[1]. The former respects maternal physiological mechanisms and
demonstrates lower morbidity and mortality indices for the maternal-fetal dyad,
⋆ Corresponding Author: Jieyun Bai (jbai996@aucklanduni.ac.nz)
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whereas the latter represents an alternative intervention when maternal or fe-
tal pathophysiology precludes vaginal parturition[2]. Optimizing maternal and
neonatal outcomes through reduction of unnecessary operative interventions
while ensuring timely cesarean deliveries necessitates precise assessment of labor
progression in contemporary obstetric practice.

Traditional labor monitoring methodologies predominantly utilize digital vagi-
nal examinations, which the World Health Organization advocates performing
at 4-hour intervals during the first stage of labor[3]. However, substantial evi-
dence indicates that vaginal assessment of fetal head station and position demon-
strates limited accuracy and significant subjectivity, particularly when cephalo-
hematoma impedes palpation of cranial sutures and fontanels[4,5]. Moreover,
repeated examinations potentially facilitate ascending microbial migration from
the vagina to the cervix and uterus, presenting potential neonatal infectious
risks[5].

Intrapartum ultrasonography has emerged as a superior methodological al-
ternative for labor progression evaluation. Multiple investigations have demon-
strated that sonographic measurements exhibit enhanced accuracy, objectivity,
and reproducibility compared with digital examination[6,7]. Furthermore, ultra-
sonographic assessment neither elicits patient discomfort nor requires substantial
additional clinical time[8]. Among various sonographic parameters,AoP has been
identified as the most reproducible parameter for evaluating fetal head descent[9].

The AOP is defined as the angle formed by the two farthest points (PS1
and PS2) along the pubic symphysis contour and the point of tangency (FH1)
where a tangent line drawn from the rightmost point (PS1) touches the fetal
head .This measurement provides critical information regarding both the current
position of the fetal head relative to the ischial spines and the trajectory of
labor progression[10]. Research demonstrates that an AoP exceeding 120 degrees
correlates significantly with successful spontaneous vaginal delivery probability,
establishing it as a valuable predictive indicator of delivery modality[11].

The contemporary AoP measurement paradigm predominantly relies on man-
ual assessments performed by experienced clinicians—a methodology character-
ized by temporal inefficiency and potential measurement inconsistencies[12]. The
development of automated algorithms for AoP quantification therefore presents
a significant opportunity to enhance both efficiency and precision in clinical
labor assessment protocols. Nevertheless, significant challenges persist in the
accurate segmentation of relevant anatomical structures due to inherent ultra-
sonographic limitations, including speckle noise, attenuation, artifacts, and sub-
optimal signal-to-noise ratios[13]. Additionally, transperineal ultrasound images
frequently exhibit blurred anatomical targets, indistinct contours, and interfer-
ence from adjacent tissues[14], with fetal head boundaries particularly suscep-
tible to delineation difficulties due to normal sutures, sonographic artifacts, or
interference from the similarly echogenic uterine wall[15].

Previous research on automated AoP measurement has primarily adopted
segmentation-based methods, which first perform complete segmentation of the
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pubic symphysis and fetal head contours in ultrasound images, and then calculate
AoP based on the segmentation results.

Within these segmentation-based frameworks, the predominant strategy for
extracting the keypoints (PS1, PS2, and FH1) involves elliptical modeling of
the anatomical structures. Specifically, the segmented contours of the pubic
symphysis and fetal head are typically subjected to ellipse fitting algorithms
[16,17,18,19]. While some implementations perform dual ellipse fitting for both
structures to derive the pubic symphysis endpoints (PS1 and PS2) and the fetal
head tangent point (FH1) [16,19], others employ a hybrid approach by directly
regressing the pubic symphysis endpoints (PS1 and PS2) and applying ellipse
fitting only to the fetal head to determine FH1 [17,18]. Despite its widespread
adoption, the ellipse fitting process constitutes an additional source of measure-
ment error. This error arises because the anatomical structures may not conform
perfectly to elliptical shapes, and the fitting accuracy is highly contingent upon
segmentation quality. Moreover, the least-squares fitting algorithms themselves
introduce numerical approximations. Consequently, these errors propagate to the
subsequent AoP computation, potentially compromising measurement precision.
Notably, all existing automated methodologies rely on intermediate segmenta-
tion and/or geometric modeling steps, with none directly regressing the three
key coordinate points required for AoP computation.

Recent advancements in computational obstetrics have sought to address
these segmentation challenges through alternative methodological paradigms.
The IUGC 2025 Challenge (hosted at MICCAI) proposes a shift toward keypoint
detection-based AoP measurement, departing from conventional segmentation-
dependent approaches.This challenge focuses on keypoint detection , which di-
rectly identifies the three key coordinate points (PS1, PS2, and FH1) required for
AoP measurement to calculate process parameters. The present study provides
a comprehensive description of the baseline approach employed in IUGC2025 to
enhance participants’ comprehension of the methodological details.

2 Method

2.1 Overview of Network

This study employs a heatmap-based regression approach for landmark detection
in intrapartum ultrasound images, enabling precise measurement of the AoP.
Our methodology addresses the challenge of directly identifying the three critical
landmarks (PS1, PS2, and FH1) required for AoP calculation through heatmap
prediction and coordinate extraction.

Our approach employs a three-stage pipeline:

– Label Preprocessing: During training data loading, ground truth heatmaps
are generated by encoding landmark coordinates as Gaussian distributions
centered at each keypoint location.

– Heatmap Prediction: These heatmaps serve as training targets for a U-Net
architecture, which learns to predict pixel-wise likelihood maps for keypoint
presence.
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– Coordinate Extraction: At inference time, predicted heatmaps undergo
post-processing to extract precise landmark coordinates.

Fig. 1 illustrates the complete workflow of our proposed heatmap-based land-
mark detection system, which consists of the following key components: label
preprocessing based on Gaussian distributions, heatmap prediction via U-Net,
coordinate extraction and AoP calculation.

Fig. 1. Workflow of heatmap-based landmark detection system

2.2 Label Preprocessing

The network is trained to predict heatmaps that represent the spatial probability
distribution of landmark locations. For each of the three landmarks (PS1, PS2,
and FH1), a ground truth heatmap is generated using a Gaussian kernel centered
at the annotated landmark coordinates[20].

The ground truth heatmap for each landmark is generated as follows:

H(x, y) = exp

(
− (x− x0)

2 + (y − y0)
2

2σ2

)
(1)

where (x0, y0) represents the ground truth landmark coordinates scaled to the
heatmap dimensions, and σ controls the spread of the Gaussian peak. We empir-
ically set σ = 2.0 to balance between localization precision and network train-
ability.

The process of generating ground truth heatmaps involves:

1. Normalizing input images to dimensions of 512×512 pixels
2. Scaling annotated landmark coordinates (PS1, PS2, FH1) to match the

heatmap dimensions (64×64)
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3. Generating a separate Gaussian heatmap for each landmark using Equation
1

4. Ensuring that heatmap values range between 0 and 1, with the peak value
of 1 at the landmark location

This representation transforms the discrete landmark detection problem into
a continuous heatmap regression task, which proves advantageous in handling the
inherent noise and ambiguity in ultrasound images. The Gaussian distribution
accommodates slight annotation variations and provides a smoother optimiza-
tion landscape during training.

2.3 Heatmap Prediction

Network Architecture A fully convolutional U-Net architecture is employed
to predict heatmaps. This architecture is specifically designed for generating
high-resolution feature maps while preserving spatial information crucial for pre-
cise landmark localization.

The network encompasses an encoder-decoder structure with skip connec-
tions, comprising four core components: an encoder pathway, a bottleneck, a
decoder pathway, and an output layer. This structure facilitates gradient flow
and feature reuse throughout the network.

Encoder Pathway: The encoder comprises four sequential blocks. Each
block contains two 3×3 convolutional layers with batch normalization and ReLU
activation, followed by 2×2 max pooling. The network begins with 64 channels,
which double after each pooling operation, reaching 512 channels at the deepest
encoder level. This progressive channel expansion enables the extraction of in-
creasingly complex features while reducing spatial dimensions from 512×512 to
32×32.

Bottleneck: The bottleneck serves as a transition between encoder and de-
coder pathways, consisting of two convolutional layers with 1024 channels that
capture the most abstract features with the broadest receptive field.

Decoder Pathway: The decoder mirrors the encoder with four sequential
upsampling blocks. Each block begins with a 2×2 transposed convolution that
doubles the spatial dimensions while halving the channel count. Features from
the corresponding encoder level are concatenated via skip connections, followed
by two 3×3 convolutional layers with batch normalization and ReLU activation.
This architecture facilitates the gradual recovery of spatial detail while integrat-
ing multi-scale contextual information from the encoder.

Output Layer: The final layer consists of a 1×1 convolution that reduces
the channel dimension to match the number of keypoints (three in our case),
producing three separate heatmap channels corresponding to PS1, PS2, and
FH1 landmarks.

The network architecture ensures that the output heatmaps maintain a con-
sistent size of 64×64 pixels, achieving an optimal balance between computational
efficiency and localization precision. The architectural parameters are summa-
rized in Table 1.
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Table 1. U-Net Architecture for Landmark Heatmap Regression

Layer Output Size Parameters
Input 3×512×512 -
Encoder Block 1 64×256×256 Conv(3→64), Conv(64→64), MaxPool
Encoder Block 2 128×128×128 Conv(64→128), Conv(128→128), MaxPool
Encoder Block 3 256×64×64 Conv(128→256), Conv(256→256), MaxPool
Encoder Block 4 512×32×32 Conv(256→512), Conv(512→512), MaxPool
Bottleneck 1024×32×32 Conv(512→1024), Conv(1024→1024)
Decoder Block 4 512×64×64 ConvTranspose(1024→512), Conv(1024→512), Conv(512→512)
Decoder Block 3 256×128×128 ConvTranspose(512→256), Conv(512→256), Conv(256→256)
Decoder Block 2 128×256×256 ConvTranspose(256→128), Conv(256→128), Conv(128→128)
Decoder Block 1 64×512×512 ConvTranspose(128→64), Conv(128→64), Conv(64→64)
Output 3×64×64 Conv(64→3), Resize

Loss Function We employ Mean Squared Error (MSE)[21] as the primary loss
function for training our heatmap regression network. The MSE loss measures
the pixel-wise difference between the predicted heatmaps and the ground truth
Gaussian heatmaps:

LMSE =
1

NKP

N∑
n=1

K∑
k=1

P∑
p=1

(Hpred
n,k,p −Hgt

n,k,p)
2 (2)

where N represents the batch size, K denotes the number of landmarks (3
in our case), P is the number of pixels in each heatmap (64×64), Hpred

n,k,p is the
predicted heatmap value, and Hgt

n,k,p is the ground truth heatmap value for the
n-th sample, k-th landmark, and p-th pixel.

MSE loss is particularly suitable for heatmap regression as it penalizes large
deviations more severely than small ones, encouraging the network to produce
precise peaks at landmark locations. Additionally, it provides a stable gradient
flow during training, facilitating convergence even with limited training data.

2.4 Coordinate Extraction

Following heatmap prediction, we extract precise landmark coordinates through
post-processing.

Maximum Response Location The simplest approach identifies the pixel
with the maximum value in each heatmap channel:

(xpred, ypred) = argmax
(x,y)

H(x, y) (3)

where H(x, y) represents the predicted heatmap value at location (x, y). The
resulting integer coordinates are then normalized by dividing by the heatmap



Title Suppressed Due to Excessive Length 7

dimensions to obtain values in the range [0,1], which can be mapped back to the
original image coordinates.

The extracted coordinates for all three landmarks (PS1, PS2, and FH1) are
then denormalized to the original image dimensions and used for calculating the
AOP.

2.5 Training Details

The network was trained using an Adam optimizer with an initial learning rate
of 10−4 and weight decay of 10−4 to prevent overfitting. We implemented a step
learning rate scheduler that reduces the learning rate by a factor of 0.5 every 15
epochs, facilitating convergence in later training stages.

Training was conducted for 150 epochs with a batch size of 4 on standard-
ized ultrasound images resized to 512×512 pixels. Data augmentation techniques
were deliberately minimal to preserve the anatomical integrity of the ultrasound
images, which is crucial for accurate landmark detection.

To monitor training progress and prevent overfitting, we tracked both the
heatmap loss and the coordinate distance metrics. Model checkpoints were saved
at regular intervals (every 50 epochs) as well as when achieving the best perfor-
mance on either the training loss or coordinate distance metrics.

The training process leveraged TensorBoard for real-time visualization of loss
curves, learning rates, and sample predictions, enabling continuous assessment
of model convergence. Training was conducted on a NVIDIA RTX 2080Ti GPU.

3 Experiments and Results

3.1 Evaluation Metrics

We evaluated our model using several complementary metrics to assess landmark
detection accuracy and clinical applicability:

Mean Radial Error (MRE) MRE is adopted as the primary metric, quan-
tifying the average Euclidean distance (in pixels) between predicted landmarks
(xp, yp) and ground truth landmarks (xg, yg) . For each landmark, the radial
error Ri is computed as:

Ri =
√
(xp − xg)2 + (yp − yg)2 (4)

The MRE across N landmarks are then defined as:

MRE =
1

N

N∑
i=1

Ri (5)

All values are reported in pixel space (range 0–512). Lower MRE values indicate
superior localization accuracy.
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AOP Error Given the clinical significance of AoP, we directly calculate the
absolute difference between the angles derived from predicted landmarks and
ground truth landmarks:

∆AoP = |AoP pred −AoP gt| (6)

The AoP is calculated using the law of cosines:

AoP = cos−1

(
a2 + b2 − c2

2ab

)
· 180

π
(7)

where a is the distance between PS1 and PS2, b is the distance between PS1
and FH1, and c is the distance between PS2 and FH1.

Our evaluation protocol provides a comprehensive assessment of model per-
formance, combining pixel-level accuracy with clinically relevant angular mea-
surements to ensure that the proposed method meets both technical and prac-
tical requirements for automated AoP determination in clinical settings.

3.2 Datasets

The IUGC2025 challenge dataset comprises 31,421 intrapartum ultrasound im-
ages collected from multiple clinical centers, with the following official division:

– Training set: 31,421 cases (including 300 annotated samples with landmark
coordinates)

– Validation set: 100 fully annotated cases
– Test set: 501 fully annotated cases

Our baseline method utilizes only the labeled portion of the training data (300
annotated samples) for supervised learning, intentionally excluding unlabeled
data to establish a fundamental performance benchmark.

This experimental design intentionally limits the baseline model to supervised
learning from scarce annotated data, demonstrating the fundamental feasibility
of landmark detection while highlighting potential improvements through semi-
supervised approaches that could leverage the substantial unlabeled data.

3.3 Results

The proposed methodology was evaluated on the official IUGC2025 challenge
dataset comprising 601 annotated intrapartum ultrasound images, with 100 sam-
ples allocated for validation and 501 for testing. All experiments were conducted
under standardized conditions using a single NVIDIA RTX 2080Ti GPU, en-
suring consistency in computational resources and environmental parameters.
We evaluated the proposed heatmap-based landmark detection model on the
provided validation and test datasets.
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Table 2. Comprehensive evaluation metrics on validation and test sets.

Metric Validation (N=100) Test (N=501)
PS1 MRE (pixels) 12.3408 10.6720
PS2 MRE (pixels) 21.5383 15.6234
FH1 MRE (pixels) 48.1807 39.1866
MRE of all landmarks (pixels) 27.35 21.83
coordinates MAE(pixels) 16.8517 14.0043
Mean AoP Error (°) 10.47 8.37

Quantitative Results Table 2 presents the comprehensive evaluation metrics
for both validation and test sets. The model demonstrates robust performance
across all metrics, with particularly notable results in clinical AoP measurement
accuracy.

The performance was assessed using the metrics described in Section 3.2. The
MRE for each individual landmark (PS1, PS2, FH1) are reported, demonstrating
detailed localization accuracy across different anatomical points.Additionally, we
introduce average Mean Absolute Error (MAE) computed for the coordinates
of three landmarks to provide a more comprehensive assessment of localization
precision.

The method achieved a mean AoP error of 8.37° on the test set, with average
landmark localization(disantce) accuracy of 21.83 pixels.

Computational Efficiency Analysis While accuracy is a primary metric
for clinical applications, computational efficiency is important for real-time as-
sessment in clinical environments. We conducted a comprehensive analysis of
computational resource utilization[22] during inference on the test set, provid-
ing valuable benchmarks for future lightweight model development efforts. These
efficiency metrics, though not part of the challenge evaluation criteria, establish
important baselines for subsequent optimization research.

The area under curve (AUC) metrics provide an integrated view of resource
consumption over time, offering a more comprehensive assessment than peak
values alone.

Table 3. Computational efficiency metrics for the baseline model.

Metric Value
Runtime (s) 17.66
Maximum GPU Memory (MB) 6,694
GPU Memory-Time AUC (MB·s) 117,188
Maximum CPU Utilization (%) 19.32
CPU Utilization-Time AUC (%·s) 144.96
Maximum RAM Usage (MB) 37,831.25
RAM-Time AUC (MB·s) 644,770
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The resource utilization was monitored during model inference using the test
set, capturing GPU memory usage, CPU utilization, and RAM consumption
over time. Table 3 summarizes the key computational efficiency metrics.

(a) GPU Memory Usage (b) CPU Utilization (c) RAM Consumption

Fig. 2. Time-series visualization of computational resource utilization during model
inference.

Figure 2 visualizes the resource usage patterns during model inference. The
time-series plots demonstrate the evolving computational demands throughout
the inference process, with notable observations including a rapid increase in
GPU memory allocation during model initialization, followed by stable utiliza-
tion during inference, and progressive RAM consumption over time.

Qualitative Analysis In addition to quantitative metrics, we generate visual
overlays of predicted landmarks and heatmaps on test images to facilitate qual-
itative assessment. These visualizations enable expert evaluation of predicted
landmark placements and identification of systematic errors.

Fig. 3. Comparison of Ground Truth annotations and model predictions
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In Figure 3 ,we illustrate comparison of Ground Truth annotations (top row)
and model predictions (bottom row) for ultrasound image feature point detec-
tion. The Ground Truth group (left: ultrasound image and three heatmaps)
marks red (PS1), green (PS2), and blue (FH1) dots; the Prediction group (left:
ultrasound image and three heatmaps) indicates predicted points with "×" sym-
bols in corresponding colors. Heatmaps transition from blue (low probability) to
red/yellow (high probability), showing differences in localization confidence.

4 Discussion

The baseline method presented in this paper demonstrates the effectiveness
of heatmap-based keypoint detection for AoP measurement. As a baseline ap-
proach, it has limitations that provide participants with room for improvement.

The main limitations of the baseline method include using only 300 annotated
samples for training, employing a standard U-Net[23] architecture, implement-
ing simple post-processing methods, and inadequate consideration of clinical
anomalies.

Participants can explore improvement directions including: leveraging the
large amount of unlabeled data through semi-supervised learning, adopting more
advanced network architectures , integrating anatomical prior knowledge, and
optimizing post-processing techniques.

Additionally, our computational efficiency analysis (runtime: 17.66s, GPU
memory: 6,694MB, RAM: 37,831MB) suggests potential for optimization through
techniques like pruning and quantization. Future work should explore lightweight
architectures while maintaining clinical accuracy.

Technical challenges primarily include domain generalization capability, adap-
tation to anatomical variability, achieving real-time performance, and improv-
ing model explainability. We expect participants to focus not only on improving
technical metrics but also on the clinical applicability and robustness of their
solutions.

5 Conclusion

This study presents a baseline method for AoP measurement in intrapartum
ultrasound images based on heatmap regression for keypoint detection. Despite
using limited annotated data, the method achieves an average AoP error of
8.37° and a MRE of 21.83 pixels, demonstrating the feasibility of automated
AoP measurement.

The IUGC2025 challenge aims to advance artificial intelligence technologies
in obstetric ultrasound imaging, particularly through keypoint detection for more
accurate and objective labor assessment. This baseline method provides partic-
ipants with a starting point, showcasing both the potential and limitations of
foundational approaches.
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We encourage participants to explore innovative methodologies, leverage the
large amount of unlabeled data, integrate clinical knowledge, and consider di-
verse clinical scenarios. Successful solutions will directly contribute to the ad-
vancement of obstetric clinical practice by providing more precise decision sup-
port tools, ultimately improving maternal and neonatal health outcomes.
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