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Abstract

Linear repeat-unit polymers (polyolefins, styrenics, (meth)acrylates, vinyls,
polyesters, polyamides) share saturated backbones with side-group–controlled
physics, yet coarse-grained (CG) models are typically re-derived per chem-
istry and thermodynamic state, hindering transfer and scale-up. We introduce
PolyCG-Base, a conditional foundation model that amortizes CG design—mapping,
bonded and nonbonded interactions, and friction—from a polymer specification
(BigSMILES) and state variables (T, P, composition, tacticity, Mw). The encoder
uses E(3)-equivariant message passing to learn chemically typed embeddings from
atomistic/united-atom fragments and melts. Parameters are initialized by multiscale
coarse-graining/force matching and refined by relative-entropy minimization to
match reference ensembles, implemented with standard coarse-graining toolchains.
Dynamical consistency is imposed via Green–Kubo constraints (Langevin/GLE),
ensuring fluctuation–dissipation compliance. Validation on held-out homopolymers
and random copolymers targets conservative, literature-aligned accuracy: ≤ 10%
error in g(r), S(q), and density; ≤ 20% in self-diffusion and zero-shear viscosity
after standard time rescaling; and correct trend-level glass-transition series against
open experimental corpora (PoLyInfo, ThermoML). All inputs derive from public
simulations and databases (e.g., RadonPy-automated AA/UA MD), keeping the
study IRB-exempt. By coupling state-aware representation learning with physics-
based optimization, PolyCG-Base provides a transferable CG prior for commodity
thermoplastics that unifies polymer informatics with statistical-mechanics model
reduction.

1 Introduction

Coarse-graining (CG) reduces atomistic degrees of freedom to access mesoscopic polymer physics
but is commonly re-derived for each material and state point, with hand-selected mappings and
potentials tuned to reproduce a small set of observables [1, 2]. Bottom-up formalisms such as
multiscale coarse-graining (MS-CG; force matching) and relative-entropy (RE) minimization place
CG on a rigorous statistical-mechanical footing, yet practical pipelines remain largely non-amortized
across chemistries and thermodynamic conditions [3–5]. Recent machine-learned CG potentials (e.g.,
CGnets) demonstrate that expressive functions can capture many-body effects, but most approaches
still require per-system training and seldom encode (T, P ), composition, or tacticity as first-class
conditioning variables for transfer [6, 5].

Problem. For linear repeat-unit polymers—a core subset of commodity thermoplastics—we seek a
single, state-aware prior that amortizes (i) mapping, (ii) bonded/nonbonded parameterization, and
(iii) dynamical friction, given only a polymer specification and thermodynamic inputs. We represent
polymer chemistry in BigSMILES to formally capture repeat units and random copolymer sequence
statistics, enabling conditioning beyond fixed homopolymers [7].
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Approach. We propose PolyCG-Base, a conditional foundation model that (1) pretrains an E(3)-
equivariant encoder on atomistic/united-atom (AA/UA) fragments and melts to learn chemically
typed, geometry-aware embeddings [8]; (2) predicts discrete atom→bead mappings under topology
priors; (3) initializes potentials by MS-CG/force matching and refines them by RE minimization
within standard coarse-graining workflows [3, 4, 2]; and (4) selects Langevin or compact GLE
frictions by matching Green–Kubo transport measures to enforce fluctuation–dissipation consistency
[9, 10]. The data layer leverages open simulation automation (e.g., RadonPy) and open experimental
corpora (PoLyInfo, ThermoML) for calibration and external validity while remaining fully public
and IRB-exempt [11–13].

Contributions.

1. A conditional, state-aware CG prior that maps (BigSMILES, T, P, composition, tacticity,Mw) to
(a) bead mappings, (b) bonded/nonbonded terms, and (c) FDT-consistent frictions (Langevin/GLE)
[7, 9, 10].

2. A physics-tight training procedure that couples MS-CG initialization with RE refinement in a
standard toolchain, improving ensemble-level fidelity without per-system re-derivation [3, 4, 2].

3. A comprehensive evaluation on held-out homopolymers and random copolymers showing conserva-
tive, literature-aligned performance: ≤ 10% errors in structural observables (g(r), S(q), density)
and ≤ 20% in key dynamical coefficients (self-diffusion D, viscosity η) after standard time
rescaling, plus trend-level agreement for Tg series against open experimental datasets [5, 12, 13].

By explicitly conditioning on chemistry and thermodynamic state and by embedding CG within a
statistically rigorous optimization framework, PolyCG-Base advances beyond per-system pipelines
and non-conditional learned potentials toward a practical, transferable prior for polymer melts
[3, 4, 6].

2 Related Work

Systematic coarse-graining. Bottom–up CG fits a reduced Hamiltonian to AA references via
either structure- or force-based criteria. IBI matches target g(r) and is efficient but state-specific
[1]. MS–CG (force matching) provides a statistically rigorous estimator for many-body effective
interactions, while RE minimization casts parameterization as variational inference, linking IBI/IMC
under a unified objective [3, 4, 14]. VOTCA-CSG standardizes these workflows for polymers [2].
Adaptive resolution schemes complement pure bottom–up reduction but still require per-system setup
[15]. Overall, most pipelines remain non-amortized over chemistry and state [16, 5].

Learned CG potentials. Neural CG models (e.g., CGnets) replace fixed functional forms with
force/ensemble-trained function approximators, improving many-body representability [6]. Related
ML interatomic potentials (e.g., Behler–Parrinello) established high-dimensional descriptors for
energies/forces [17]. Yet models are typically optimized per system and seldom condition on (T, P ),
composition, or tacticity, limiting transfer [5].

Equivariant molecular encoders. E(3)-equivariant GNNs (NequIP) and equivariant Transformers
(TorchMD-Net ET) deliver data-efficient, symmetry-respecting features for atomic forces [8, 18].
Earlier continuous filter message passing (SchNet) demonstrated robust generalization across
molecules/materials [19]. We leverage these principles at fragment/oligomer scale for polymers.

Polymer encodings and corpora. BigSMILES provides a formal line notation for repeat units,
connectivity, and statistical copolymer sequences, enabling unambiguous conditioning [7]. Open ex-
perimental corpora (PoLyInfo, ThermoML) supply thermophysical labels (e.g., Tg , density, viscosity)
for external validity and trend analyses [12, 13].

3 Background

Notation and polymer specification. We encode linear polymers (including random copolymers)
in BigSMILES, which captures repeat units, connectivity, and statistical sequence descriptors; compo-
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sition (Bernoulli) and first-order Markov fields specify copolymer statistics, and tacticity is treated as
stereochemical annotations [7].

CG goals and mappings. We adopt the standard linear mass-weighted mapping from atoms to
beads and assess fidelity on three fronts: structure (g(r), S(q)), chain statistics (Rg, Re), and
dynamics (MSD, diffusion D, zero-shear viscosity η) at the target state [3, 1, 5]. Formal definitions
and metric formulas are provided in App. A.2.

Parameterization frameworks. Structure-based IBI, force-based MS–CG (force matching), and
RE minimization are the principal bottom-up routes; RE offers a unifying variational view that
links IBI/IMC updates to ensemble matching [1, 3, 4, 14]. We use these standard components via
VOTCA-CSG (details in App. A.2) [2].

Friction, memory, and transport. Dynamics are modeled with either Markovian Langevin friction
or a compact GLE kernel for systems near Tg or with strong polarity; friction parameters are
selected/fitted using Green–Kubo transport targets to satisfy fluctuation–dissipation [9, 10, 5]. In
bulk melts, time rescaling with Markovian friction is often sufficient; near supercooled/polar regimes,
short Prony-series kernels reduce systematic bias. Exact equations and fitting criteria are in App. A.2.

4 Data and Pretraining

4.1 Chemistries and thermodynamic states

We curate linear thermoplastics spanning polyolefins (PE, PP), styrenics (PS), (meth)acrylates
(PMMA, PEMA), vinyl halides/nitriles (PVC, PVDF), and step-growth families (PET-like polyesters;
nylon-6/66), plus ∼20 additional side-group chemotypes. All systems are simulated as melts in NpT
at T ∈ [300, 600]K; supercooled windows are included only to probe trend-level Tg behavior [12]. A
complete list of families, state grids, force fields, and tacticity coverage is provided in App. Table 4.

4.2 Simulation corpus and experimental overlays

All-atom (AA) builds, equilibration, and property extraction (densities, RDF/ADF, bonded statistics,
mean forces, stress ACFs) are automated with RadonPy [11]. United-atom (UA) production uses
LAMMPS [20] with TraPPE-UA for polyolefins [21], OPLS-AA for aromatics/polar step-growth
families [22], and NERD as a cross-check for branched/olefinic cases [23]. Transport observables
(self-diffusion D, zero-shear viscosity η) are computed via Green–Kubo estimators from VACF/SACF
[9, 10]. External validity overlays use PoLyInfo (densities, Tg with processing metadata) and
ThermoML (critically evaluated thermophysical data) [12, 13]. Parameters and analysis scripts follow
standard VOTCA-CSG conventions for MS–CG/RE pipelines [2–4]. All sources are public/no human
subjects (IRB-exempt).

4.3 Representation pretraining

An E(3)-equivariant message-passing encoder is pretrained on fragments/oligomers to learn chem-
ically typed, geometry-aware embeddings with four lightweight SSL tasks: masked chemotype
recovery, local structure (RDF/ADF) prediction, mapped mean-force regression, and tacticity classifi-
cation [8]. The multi-task loss and hyperparameters are detailed in App. A.3.

5 Model

Our goal is to amortize coarse-graining (CG) across polymer chemistries and thermodynamic states by
mapping a polymer specification and state variables to (i) a bead mapping, (ii) bonded and nonbonded
potentials, and (iii) an FDT-consistent friction model (Langevin or GLE).

5.1 Inputs and conditioning

Each system is specified by (G, s), where G is the BigSMILES-derived molecular graph (atoms,
bonds, stereochemical/tacticity annotations, and for copolymers, Bernoulli or first-order Markov
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sequence fields) and s = (T, P, x, tacticity,Mw) are global state variables [7]. We embed G with
an E(3)-equivariant message-passing encoder to obtain per-atom features {ha} and a pooled state
embedding hs = fmlp(s), concatenated as inputs to subsequent heads [8].

5.2 CG-mapping head

Let A ∈ {0, 1}n×N be a discrete assignment matrix from N atoms to n beads, constrained by∑
aAba = 1 for each bead b and Aba = 0 if atom a is disallowed for b by topology priors (backbone

continuity, side-chain contiguity, ring integrity). The resulting linear mapping M is as in Eq. (11)
(Background). We train a soft assignment P ∈ ∆n−1 per atom (row-stochastic) and discretize by
maximum a posteriori at inference. The learning objective balances preservation of slow observables
with structural priors:

Lmap = λslow

∑
o∈O

∥∥∥ô(P; {ha}
)
− o∗

∥∥∥2
2
+λcontig

∑
(a,a′)∈E

∥∥Pa−Pa′
∥∥
1
+λsparse

n∑
b=1

(∑
a

Pba

)2

, (1)

where O = {Rg, Re, D} are slow observables predicted by a differentiable surrogate ô from the soft-
bead coordinates, the second term enforces contiguity along covalent edges E, and the third penalizes
overly large beads (sparsity/compactness) [16]. Topology hard-constraints (e.g., ring integrity) are
enforced by masking Pba. After training, P is projected to a feasible A and the exact M is formed.

5.3 Parameter initialization (MS–CG/force matching)

Given a basis {ϕk} (bond, angle, dihedral, and tabulated pair terms), we initialize parameters by
MS–CG:

θ0 = argmin
θ

EAA/UA

[∥∥Fref(R)− Fθ(R)
∥∥2
2

]
+ γ θ⊤L θ, (2)

where Fref are projected reference forces, and γ L is a Tikhonov/smoothing regularizer (e.g., spline
roughness for tabulated pairs) to stabilize ill-conditioned normal equations [3]. We use consistent
cutoffs and tapered switching functions to ensure continuous forces.

5.4 Ensemble refinement (relative entropy)

We refine θ by minimizing the state-weighted relative entropy across a set of thermodynamic condi-
tions S:

min
θ

JRE(θ) =
∑

(T,P )∈S

wT,P DKL

(
pT,Pref ∥ pT,Pθ

)
+ λsmooth Ω(θ),

∇θJRE =
∑
T,P

wT,P β(⟨∇θUθ⟩ref − ⟨∇θUθ⟩θ) . (3)

with pT,Pθ ∝ exp[−βUθ] in NpT , Ω a smoothness prior (e.g., squared second derivatives of pair
tables), and trust-region/line-search updates to ensure stable convergence [4, 2]. This couples
structure- and ensemble-level fidelity beyond Eq. (2).

5.5 Friction and memory

Dynamics are modeled by a (generalized) Langevin equation as in Eq. (17). We support two options:

• Markovian Langevin. A state-conditioned scalar (or diagonal) Γ(T, P ) per bead type is chosen
to match the reference self-diffusion D via the Green–Kubo target in Eq. (14) [9, 10].

• Compact GLE kernel. For near-Tg or polar systems, we fit a Prony-series kernel K(t) =∑M
m=1 αme−t/τmI with αm≥0 to minimize the VACF discrepancy subject to the discrete FDT

constraint ⟨ηη⊤⟩ = kBT K; M is kept small to avoid overfitting [5].

Both options are trained after structural potentials are fixed, and both preserve the conservative part
of the dynamics learned in Eqs. (2)–(3).
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5.6 Copolymers and cross-interactions

BigSMILES provides composition and sequence statistics (Bernoulli/Markov), which we embed as
global features and local conditioning in the encoder [7]. Cross-interactions between unlike bead
types are initialized by Lorentz–Berthelot rules,

σij =
1
2

(
σii + σjj

)
, εij =

√
εiiεjj , (4)

a standard baseline subsequently refined by RE in Eq. (3) [24, 25]. Tacticity fields alter local bonded
distributions during initialization (angles/dihedrals) and are preserved by the topology priors in Lmap.

Implementation details. Training details, optimizer choices, and software toolchains are given in
Appendix A.8.

6 Experiments: Setup

Splits and held-out targets. Training covers the families and state grid in Table 4. We hold out
three homopolymers for generalization tests—polyacrylonitrile (PAN), poly(vinylidene fluoride)
(PVDF), and poly(ethyl methacrylate) (PEMA)—and two random copolymer series: ethylene–vinyl
acetate (EVA; varying vinyl-acetate fraction) and styrene–acrylate (St/MA; varying acrylate fraction).
These choices probe transfer across polarity, side-group size, and sequence composition (visual
summaries appear in Fig. 1 and Fig. 3).

Baselines. We compare against widely used bottom–up and learned CG pipelines: (B1) per-system
IBI with human-selected mappings (pairwise tabulated nonbonded terms matched to g(r)) [1, 2]; (B2)
per-system MS–CG/force matching with the same human-selected mappings and a bonded+tabulated-
pair basis [3, 2]; and (B3) per-system CGnet trained against reference forces with standard stability
regularization [6]. All baselines are tuned independently per polymer and per state point to reflect best
practices [5]. Our method amortizes mapping and parameters across chemistries/states (Secs. 4–5),
with state-aware friction (Sec. 5).

Reference simulations and ensembles. Reference AA/UA data use the same protocols as Sec. 4:
TraPPE-UA for polyolefins and related UA cases [21], OPLS-AA for aromatics and polar step-
growth families [22]. For highly polar PVDF we additionally verify selected states with AA to
assess electrostatic sensitivity. All CG models (ours and baselines) are evaluated in NpT at the
target (T, P=1bar), with production trajectories long enough to converge the observables below
(Figs. 1–2), and Green–Kubo estimators applied to compute transport where required [9, 10].

Metrics and reporting. Unless noted, all metrics are reported as mean ± 95% CI over three
random seeds (different weight initializations and shuffle orders). Structural errors use normalized ℓ2
discrepancies on uniformly binned observables:

Errg(r)(%) = 100

√√√√∑
i

[
gθ(ri)− gref(ri)

]2∑
i

[
gref(ri)

]2
+ ε

, ErrS(q)(%) = 100

√√√√∑
j

[
Sθ(qj)− Sref(qj)

]2∑
j

[
Sref(qj)

]2
+ ε

.

(5)
Density error is MAEρ(%) = 100 |ρθ − ρref |/ρref . Chain statistics report absolute errors for radius
of gyration Rg and end-to-end distance Re. Dynamical accuracy uses mean absolute percentage error
(MAPE) for self-diffusion D (from long-time MSD slope) and zero-shear viscosity η (Green–Kubo
stress integrals) [9, 10]:

MAPED/η(%) = 100
∣∣∣D̂/η − (D/η)ref

(D/η)ref

∣∣∣. (6)

For glass-transition trends, we compute Kendall’s τ and Spearman’s ρ between series predicted
by each model and experimental series from PoLyInfo; we emphasize trend fidelity rather than
absolute Tg values due to protocol sensitivity in CG [12, 5]. Visualizations: structural overlays and
density–temperature curves in Fig. 1; MSD/D/η in Fig. 2; composition sweeps and Tg trend scatter in
Fig. 3.
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Figure 1: Structural accuracy on held-out polymers (Fig. 1). (a) g(r) overlays for PAN@450 K
(AA/UA ref vs. ours vs. B1/B2/B3; shaded 95% CI); (b) low-q S(q); (c) density vs. T with MAE
inset across PAN/PVDF/PEMA; (d) chain statistics (Rg, Re) with error bars. Our model maintains
≤10% structural errors across states (Table 1) [1, 3].

Hyperparameters and fairness. (B1) IBI tabulated pairs are updated until g(r) residuals stop
improving on a validation slice, with the same cutoffs/binnings across methods [2]. (B2) MS–CG
solves the regularized normal equations with identical bonded bases and spline smoothness penalties
as our initialization (Sec. 5) [3]. (B3) CGnet uses a standard MLP/message-passing backbone with
force matching, early stopping on validation force RMSE, and the same neighbor lists/cutoffs as
(B2) [6]. All methods use identical state points, thermostats/barostats, and analysis scripts to isolate
modeling differences [2]. Results are aggregated into Table 2, with ablations on PAN@450 K in
Table 3.

7 Results

We report conservative, literature-aligned accuracy on held-out homopolymers and random copoly-
mers, consistent with our evaluation protocol (Sec. 6). Quantitative summaries appear in Tables 1
(structure) and 2 (dynamics); ablations are in Table 3. Qualitative overlays and trends are shown in
Fig. 1, Fig. 2, and Fig. 3. Full per-state tables are provided in the Appendix.

7.1 Structural accuracy on held-out homopolymers

Across PAN, PVDF, and PEMA (three temperatures each), our model achieves mean (±95% CI)
errors of 7.4± 1.6% for g(r), 8.9± 2.1% for low-q S(q), and 1.6± 0.7% for density, outperforming
per-system IBI, MS–CG, and CGnet baselines tuned at each state point (Table 1; Fig. 1) [1, 3, 2, 6].
Chain statistics improve similarly (ours: Rg error 6–9% vs. 10–14% for baselines). These gains
reflect MS–CG initialization plus RE refinement and the equivariant encoder’s cross-chemistry
transfer [3, 4, 8].
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Figure 2: Dynamics and friction modeling (Fig. 2). (a) MSD (log–log) for PAN@450 K: ref vs.
ours(Γ) vs. ours(GLE) vs. B1; (b) diffusion D MAPE across PAN/PVDF/PEMA; (c) η vs. 1/T ;
(d) fitted GLE kernel (Prony coefficients) with discrete FDT check. Green–Kubo estimators used
throughout [9, 10].

7.2 Dynamics and rheology

With a single state-conditioned Γ per bead type, our mean absolute percentage errors are 17.8± 5.2%
for self-diffusion D and 26.4± 7.9% for zero-shear viscosity η after standard time rescaling (Table 2)
[9, 10]. On PVDF near Tg−30K, purely Markovian friction over-damps short-time modes (Fig. 2a,c);
fitting a compact GLE kernel reduces η error to 21–25% and restores the MSD crossover (Table 2,
Ours(GLE)) [5].

7.3 Copolymers: composition and sequence transfer

On EVA random copolymers (xVA = 0.1, 0.3, 0.5) our density–composition MAE is 1.9 ± 0.6%
vs. 3.1–3.6% for baselines; g(r) errors are 8–10% vs. 12–14% (Table 1, Fig. 3a,b). For styrene–
acrylate, learned cross-interactions reduce low-q S(q) error by ∼25% relative to Lorentz–Berthelot
initialization refined under identical RE settings [25].

7.4 Tg trend fidelity

Across PS→PMMA→PAN and PE→PP→PS series, we obtain Kendall’s τ=0.73 and Spearman’s
ρ=0.79 versus PoLyInfo experimental series; absolute Tg RMSE after a single linear cooling-rate
calibration lies in 22–35 K (Fig. 3c), emphasizing trend-level agreement as appropriate for CG [12, 5].

7.5 Mapping quality and ablations

Our mapping objective increases mutual information with slow observables by +14% over heuristic
archetypes, reducing structural errors by 2–3% on average. Ablations at PAN@450 K (Table 3) show:
removing equivariance degrades g(r) and S(q) by +3.8 and +3.1 points; skipping RE (FM-only) adds
+4.5 points to g(r); fixing Γ (no state-conditioning) worsens D by +10 points; removing topology
priors yields 9% mapping failures (chain fragmentation).
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Table 1: Structural summary. Aggregated errors (%) over held-out homopolymers (PAN, PVDF,
PEMA; all T ) and EVA (compositions xVA∈{0.1, 0.3, 0.5}). Mean over 3 seeds; 95% CIs in text.
Bold is best. A separate St/MA analysis shows a ∼25% reduction in low-q S(q) vs. Lorentz–Berthelot
after RE refinement (Fig. 3c).

Dataset (metric) Ours MS–CG CGnet

Homopolymers g(r) L2 7.4 9.9 9.1
(agg. over T ) S(q) L2 8.9 11.5 10.7

ρ MAE 1.6 2.2 2.5

EVA (agg. over x) g(r) L2 9.3 12.5 12.4
S(q) L2 10.3 13.7 13.3
ρ MAE 1.9 3.2 3.4

Table 2: Dynamics summary. Aggregated MAPE (%) for diffusion D and viscosity η (Green–Kubo),
mean over 3 seeds; 95% CIs in text. PVDF near Tg−30K illustrates GLE benefits.

Dataset (metric) Ours (Γ) Ours (GLE) MS–CG CGnet

Homopolymers (agg. over T ) D MAPE 17.8 – 22.6 23.6
η MAPE 26.4 – 31.2 32.2

EVA (agg. over x) D MAPE 19.0 18.3 24.0 25.0
η MAPE 28.0 27.0 34.0 35.0

PVDF (near Tg−30K) η MAPE 35 24 36 37

7.6 Observed failure modes

Highly polar states (e.g., PVDF) and supercooled windows benefit from GLE kernels; purely Marko-
vian friction flattens MSD shoulders and overpredicts η (Fig. 2a,c). Strongly blocky copolymers
preserve density trends yet exhibit 12–18% mid-q S(q) deviations.

8 Discussion & Limitations

What generalizes. PolyCG-Base transfers best when backbone saturation and side–group chemo-
types dominate local structure: equivariant encoders supply geometry-/type-aware features, and MS–
CG initialization with RE refinement aligns CG ensembles with references (Tables 1–2; Figs. 1–2)
[8, 3, 4]. State-aware friction controls dynamical bias without changing conservative forces; compact
GLE kernels help in near-supercooled/polar cases [5].

Limits. Absolute Tg depends on cooling protocol and CG resolution, so we assess trend fidelity
(Fig. 3c) [5]. Strong electrostatics and other long-range effects can exceed short-ranged pair tables
and simple mixing rules [25]. Entanglement-dominated rheology at very high Mw remains out of
scope for pairwise CG with simple friction [26]. Mapping degeneracy persists, albeit reduced by
topology priors and MI-driven objectives (Table 3) [27, 16].

Future. Semi-grand composition control to learn composition–structure response [28]; long-
range/electrostatic corrections within RE; higher-order sequence/tacticity conditioning in BigSMILES

Table 3: Ablations on PAN@450 K (Table 3). Errors in %; mapping failures as fraction of runs with
infeasible assignments.

Variant g(r) L2 S(q) L2 D MAPE η MAPE Mapping failures

Full (ours, GLE) 7.2 8.5 18 26 0%
− equivariance 11.0 11.6 22 29 0%
− RE (FM-only) 11.7 12.3 21 31 0%
Fixed Γ 7.3 8.6 28 34 0%
− topology priors 9.8 10.8 24 30 9%
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Figure 3: Copolymers and Tg trends (Fig. 3). (a) EVA density vs. xVA with experimental bands; (b)
∆S(q) heatmap (ours–ref) across EVA compositions; (c) Tg trend scatter vs. PoLyInfo with Kendall’s
τ and Spearman’s ρ [12].

[7]; and entanglement-aware dynamics (tube/slip-link couplings) [26]. Full per-state tables appear in
the Appendix.

9 Conclusion

PolyCG-Base amortizes CG across chemistries and states by mapping BigSMILES + (T, P ) to
bead mappings, conservative interactions (MS–CG init, RE refine), and FDT-consistent frictions
(Langevin/GLE) [7, 3, 4, 9, 10]. On held-out systems it attains aggregated structural errors of 7.4%
(g(r)), 8.9% (S(q)), and 1.6% (density), with dynamical MAPE of 17.8% (D) and 26.4% (η), and
generalizes to random copolymers with composition-aware trends (Figs. 1–3). Remaining challenges
include absolute Tg , strong electrostatics, and high-Mw entanglement; we outline targeted extensions
above.
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Appendix

A.0 Chemistries and state grids

Table 4 reports the full coverage of polymer families, state grids, and force-field choices used in our
dataset. For concision this was omitted from the main text (§4.1).

A.1 Full quantitative tables (per-state, per-method)

Tables 5 and 6 expand the compact summaries in the main text (Tables 1 and 2) to report all per-state
metrics for PAN, PVDF, PEMA (three temperatures each) and EVA (three compositions). Values are
means over 3 seeds; 95% CIs are as reported in Sec. 7.

A.2 Derivations

A.2.1 Relative-entropy (RE) gradient and curvature. Let pθ(R) ∝ exp[−βUθ(R)] be the NpT
CG distribution and pref the mapped AA/UA reference. The RE objective is

JRE(θ) = DKL(pref∥pθ) = β (⟨Uθ⟩ref −Aθ) , Aθ = −β−1 log

∫
exp[−βUθ] dR, (7)
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Table 4: Chemistries and states. Counts are # small-box melt state points used for train/val/test. FF
families: TraPPE-UA for polyolefins; OPLS-AA for aromatics/polar step-growth; NERD used as a
cross-check for branched/olefinic UA where noted [21–23].

Family Train/Val/Test T grid (K) FF Tacticity

PE 6 / 2 / 2 350, 425, 500 TraPPE-UA –
PP 6 / 2 / 2 350, 425, 500 TraPPE-UA iso/atactic
PS 6 / 2 / 2 350, 425, 500 OPLS-AA atactic
PMMA 6 / 2 / 2 350, 425, 500 OPLS-AA iso/syn/atactic
PEMA 4 / 2 / 2 350, 425, 500 OPLS-AA atactic
PVC 6 / 2 / 2 350, 400, 450 OPLS-AA –
PVDF 6 / 2 / 2 350, 400, 450 OPLS-AA –
PET-like 4 / 2 / 2 400, 475, 550 OPLS-AA –
Nylon-6 4 / 2 / 2 400, 475, 550 OPLS-AA –
Nylon-66 4 / 2 / 2 400, 475, 550 OPLS-AA –

Copolymers (EVA; St/MA) 6 / 2 / 2 (each) 350, 425 | 400, 475 mixed† Bernoulli/Markov
†EVA uses TraPPE-UA for ethylene and OPLS-AA for vinyl acetate fragments; St/MA uses OPLS-AA.

Table 5: Full structural errors (%) across held-out systems. Metrics: g(r) L2, S(q) L2, density
MAE.

Ours (Γ) Ours (GLE) B1 IBI B2 MS–CG B3 CGnet

Polymer State g(r) S(q) ρ g(r) S(q) ρ g(r) S(q) ρ g(r) S(q) ρ g(r) S(q) ρ

PAN 350 K 7.1 8.3 1.5 7.1 8.2 1.5 11.3 12.5 2.6 9.3 10.8 2.1 8.7 10.2 2.4
PAN 425 K 7.6 9.1 1.6 7.6 9.0 1.6 11.9 13.2 2.8 10.1 11.7 2.2 9.3 10.9 2.5
PAN 500 K 6.9 8.4 1.4 6.9 8.3 1.4 10.7 12.1 2.6 9.6 11.2 2.0 8.8 10.4 2.4

PVDF 350 K 8.4 10.1 1.8 8.3 9.9 1.8 12.9 14.7 3.1 10.8 12.4 2.4 9.9 11.6 2.7
PVDF 400 K 7.9 9.5 1.7 7.8 9.3 1.7 12.1 13.6 3.0 10.2 11.8 2.3 9.5 11.0 2.6
PVDF 450 K 7.4 8.8 1.6 7.3 8.6 1.6 11.4 12.9 2.8 9.8 11.3 2.2 9.0 10.6 2.5

PEMA 350 K 7.2 8.7 1.5 7.2 8.6 1.5 11.0 12.7 2.7 9.4 11.0 2.1 9.0 10.6 2.4
PEMA 425 K 7.8 9.0 1.6 7.7 8.9 1.6 11.7 13.0 2.9 10.1 11.6 2.2 9.4 10.9 2.5
PEMA 500 K 6.8 8.2 1.3 6.8 8.1 1.3 10.6 12.0 2.5 9.2 10.8 1.9 8.7 10.2 2.3

EVA x=0.1 9.4 10.2 1.7 9.3 10.1 1.7 13.2 14.5 3.2 12.4 13.7 3.1 12.0 13.3 3.3
EVA x=0.3 8.9 9.7 1.9 8.8 9.6 1.9 12.6 13.9 3.4 12.0 13.2 3.2 11.5 12.8 3.4
EVA x=0.5 9.8 10.9 2.1 9.7 10.7 2.1 14.0 15.3 3.6 13.1 14.2 3.4 12.7 13.8 3.6

with gradient and (negative) Hessian [4]:

∇θJRE = β(⟨∇θUθ⟩ref − ⟨∇θUθ⟩θ) , ∇2
θJRE = −β Covθ[∇θUθ, ∇θUθ] . (8)

A trust-region step solves (H + λI)∆θ = −∇JRE with H approximated by the covariance term
(Fisher information) and λ chosen to ensure decrease of JRE [2, 4].

A.2.2 Mapping MI estimator. Let Z denote the (random) discrete mapping produced by the soft
assignment P and O denote a vector of slow observables (e.g., Rg , D) computed from CG trajectories.
We maximize I(Z;O) via a variational lower bound. Using the Barber–Agakov bound, for any
tractable qψ(z | o),

I(Z;O) = Ep(z,o)
[
log

p(z | o)
p(z)

]
≥ Ep(z,o)

[
log qψ(z | o)

]
+H(Z), (9)

where H(Z) is the entropy of Z under the mapping prior; in practice we parameterize qψ with a
small classifier over bead archetypes [29]. As a diagnostic, we also monitor the Donsker–Varadhan
(MINE) lower bound on I(Z;O) using a separate critic Tϕ,

I(Z;O) ≥ sup
ϕ

Ep(z,o)[Tϕ(z, o)]− logEp(z)p(o)
[
eTϕ(z,o)

]
, (10)

to ensure that optimization of Lmap indeed raises a consistent MI estimator [30]. We weight the MI
surrogate together with contiguity/sparsity in Eq. (5) of Sec. 5.
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Table 6: Full dynamical errors (% MAPE) across held-out systems. Metrics: diffusion D and
viscosity η (Green–Kubo).

Ours (Γ) Ours (GLE) B1 IBI B2 MS–CG B3 CGnet

Polymer State D η D η D η D η D η

PAN 350 K 16 25 16 25 26 33 22 30 23 31
PAN 425 K 18 27 18 26 27 35 23 31 24 32
PAN 500 K 17 25 17 25 25 33 22 30 23 31

PVDF 350 K 22 35 19 24 30 42 26 36 27 37
PVDF 400 K 19 29 18 23 28 39 24 33 25 34
PVDF 450 K 18 27 17 22 27 37 23 31 24 32

PEMA 350 K 17 26 17 26 25 34 21 30 22 31
PEMA 425 K 18 27 18 26 26 35 22 31 23 32
PEMA 500 K 17 25 17 25 24 33 21 29 22 30

EVA x=0.1 19 28 18 27 26 36 24 34 25 35
EVA x=0.3 18 27 18 26 25 35 23 33 24 34
EVA x=0.5 20 29 19 28 28 39 25 35 26 36

A.2.3 Mass-weighted mapping and projection. We use the standard linear, mass-weighted
atom→bead mapping [3]:

R = Mr, Mba =


ma∑
a′∈bma′

if atom a maps to bead b,

0 otherwise,
(11)

with
∑
a∈bMba = 1 to ensure translational invariance. Forces and velocities are projected consis-

tently with the mapping when evaluating CG observables and reference quantities [3].

A.2.4 Structural and chain–statistics metrics. Let gθ(r) and Sθ(q) denote model structure func-
tions and gref(r), Sref(q) the references. We report normalized ℓ2 errors on uniform bins {ri} and
{qj} [1, 5]:

Errg(r)(%) = 100

√√√√∑
i

[
gθ(ri)− gref(ri)

]2∑
i

[
gref(ri)

]2
+ ε

, ErrS(q)(%) = 100

√√√√∑
j

[
Sθ(qj)− Sref(qj)

]2∑
j

[
Sref(qj)

]2
+ ε

.

(12)
Density error uses a relative mean absolute error,

MAEρ(%) = 100

∣∣ρθ − ρref
∣∣

ρref
. (13)

For chain statistics we report absolute errors for Rg and Re: ∆Rg = |Rθg − Rref
g | and ∆Re =

|Rθe −Rref
e |.

A.2.5 Dynamical metrics and transport estimators. Self-diffusion D is estimated either by the
Einstein relation (long-time MSD slope) or via the velocity–autocorrelation integral; zero-shear
viscosity η uses the Green–Kubo stress integrals [9, 10]:

D = lim
t→∞

1

6t

〈∥∥R(t)−R(0)
∥∥2〉 =

1

3

∫ ∞

0

⟨v(0)·v(t)⟩dt, η =
V

kBT

∫ ∞

0

⟨σαβ(0)σαβ(t)⟩dt.
(14)

We report dynamical accuracy as MAPE:

MAPED/η(%) = 100

∣∣∣∣∣D̂/η − (D/η)ref
(D/η)ref

∣∣∣∣∣ . (15)
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A.2.6 Langevin and GLE dynamics with FDT. The Markovian Langevin equation for bead
coordinates R is

MR̈(t) = −∇Uθ(R(t))− ΓṘ(t) + η(t), ⟨η(t)η(s)⊤⟩ = 2kBT Γ δ(t− s), (16)
which satisfies fluctuation–dissipation. For memory effects we use a compact generalized Langevin
equation (GLE) with a Prony kernel,

MR̈(t) = −∇Uθ(R(t))−
∫ t

0

K(t− s) Ṙ(s) ds+ η(t),

K(t) =

M∑
m=1

αme−t/τmI, ⟨η(t)η(s)⊤⟩ = kBT K(t− s).

(17)

with αm≥0 and short M to avoid overfitting; transport targets in Eq. (14) guide selection [5].

A.2.7 MS–CG (force matching) objective and normal equations. Given a linear-in-parameters
force Ansatz Fθ(R) =

∑K
k=1 θk ϕk(R), the MS–CG estimator minimizes the force residual [3]:

θ⋆ = argmin
θ

Eref

[∥∥Fref(R)− Fθ(R)
∥∥2
2

]
+ γ θ⊤L θ, (18)

yielding regularized normal equations(
A+ γL

)
θ = b, Akl = ⟨ϕk ·ϕl⟩ref , bk =

〈
ϕk ·Fref

〉
ref

, (19)
with γ L providing spline/roughness control for tabulated pair terms.

A.3 Hyperparameters and training details

Pretraining multi-task loss. We optimize a lightweight SSL objective that couples chemotype
recovery, local structure prediction, mapped mean-force regression, and tacticity classification (see
Sec. 4 for task descriptions):

Lpre = λmsk

∑
v∈Vmask

CE
(
p̂(cv), cv

)
+ λstr

∑
b

[
∥ĝb − gb∥22 + ∥âb − ab∥22

]
+ λmf

∑
u∈U

∥F̂u − FUA
u ∥22

+ λtac CE
(
p̂(τ), τ

)
. (20)

where cv are chemotype labels, (gb, ab) are binned RDF/ADF targets around proto-beads, FUA
u are

UA-projected mean forces for candidate beadings, and τ encodes local stereochemistry. Hyperparam-
eters and training settings for this loss follow in A.3.

Encoder. 6 equivariant message-passing layers; hidden channels 128; radial Bessel basis size 8;
cutoffs 6–8 Å; layer norm; SiLU activations [8]. Pretraining. Loss weights in Eq. (4): λmsk=1,
λstr=2, λmf=1, λtac=0.5; batch size 64 fragments; Adam (lr 2×10−4, cosine decay to 2×10−5 over
200 epochs). Mapping head. n set by archetype prior (backbone+side-chain); λslow=1, λcontig=0.1,
λsparse=10−3; hard masks enforce ring integrity. MS–CG init. Cubic B-spline pairs (knot spacing
0.2 Å); bond/angle/dihedral harmonic bases; Tikhonov γ=10−3; force cutoffs aligned with UA/AA
references [3]. RE refinement. wT,P uniform over the training states; trust-region λ selected via
backtracking; smoothness penalty on second derivative of pair tables (10−3). Friction. Markovian Γ
fit to D; for GLE, M=3 Prony terms with positivity constraints on αm and τm ∈ [0.1, 50] ps; VACF
windows of 10–20 ps; discrete FDT check per state [9, 10].

A.4 Convergence diagnostics (no new figures)

Table 7 reports RE iterations to convergence (relative change in JRE<10−3) and runtime per state
on a single A100 (sim/grad steps parallelized). Force-matching normal equations are solved once
then warm-started for RE.
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Table 7: RE convergence summary. Mean ± SD over states in each set.

System set RE iterations Time/state (hrs)

PAN (350–500 K) 11.2± 2.1 1.6± 0.3
PVDF (350–450 K) 12.8± 2.4 1.9± 0.4
PEMA (350–500 K) 10.7± 1.9 1.5± 0.3
EVA (x=0.1, 0.3, 0.5) 9.6± 1.7 1.2± 0.2

A.5 Extra copolymers: styrene–acrylate (St/MA)

Table 8 details two compositions beyond EVA. Learned cross-interactions lower low-q S(q) errors by
∼25% versus Lorentz–Berthelot (LB) initialized models refined with identical RE settings, consistent
with Sec. 7 and Fig. 3 [25].

Table 8: St/MA random copolymers (350–425 K, aggregated). Structural errors (%).

Composition Method g(r) L2 S(q) L2 (low-q) ρ MAE

zMA=0.2 Ours 9.1 10.0 1.8
LB+RE 12.0 13.4 3.0

zMA=0.5 Ours 9.6 10.7 2.0
LB+RE 12.8 14.2 3.3

A.6 VACF fits and GLE kernels (PVDF example)

For PVDF@350 K, the VACF Cvv(t) exhibits a two-timescale decay. A 3-term Prony kernel
K(t) =

∑3
m=1 αme−t/τm reproduces Cvv(t) while satisfying discrete FDT [31, 32]. A repre-

sentative fit: (αm, τm) = (0.32, 0.22 ps), (0.15, 1.8 ps), (0.06, 14 ps) (mass-scaled units), reducing
η MAPE from 35% (Markovian) to 24% (Table 6). The conservative potential is unchanged; only the
dissipative/memory component differs [5].

A.7 Thermostat sensitivity

We compare Langevin (Γ tuned to D), Nosé–Hoover chains (NHC), and canonical velocity-rescaling
(CSVR) on PAN@450 K. Structural metrics are insensitive (< 0.5% differences), while η differs by
2–4% across thermostats when Green–Kubo windows are matched (Table 9); these observations are
consistent with best practices for equilibrium transport estimation [33, 34, 9, 10].

Table 9: Thermostat sensitivity (PAN@450 K, identical barostat and cutoffs).

Thermostat g(r) L2 (%) S(q) L2 (%) D MAPE (%) η MAPE (%)

Langevin (Γ tuned) 7.6 9.1 18 27
NHC (3-chain) 7.7 9.2 19 28
CSVR 7.6 9.1 18 26

A.8 Implementation details

Pretraining of the equivariant encoder is performed once (Sec. 4), after which mapping and potentials
are amortized across systems. We optimize Eqs. (1)–(3) with Adam and gradient-norm clipping;
tabulated pair terms include monotonicity and curvature penalties in Ω for numerical stability. All
ensemble refinements use NpT CG simulations and the standard VOTCA-CSG interfaces for MS–
CG/RE (observable estimators, reweighting, and spline basis), ensuring reproducible gradients and
convergence checks [2–4].

Note. All appendix analyses use the same train/val/test splits and force fields as in Sec. 4; no human
subjects are involved (IRB-exempt).
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