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Abstract

Many real-world applications of language models (LMs), such as writing assistance and
code autocomplete, involve human-LM interaction. However, most benchmarks are non-
interactive in that a model produces output without human involvement. To evaluate
human-LM interaction, we develop a new framework, Human-AI Language-based Inter-
action Evaluation (HALIE), that defines the components of interactive systems and dimen-
sions to consider when designing evaluation metrics. Compared to standard, non-interactive
evaluation, HALIE captures (i) the interactive process, not only the final output; (ii) the
first-person subjective experience, not just a third-party assessment; and (iii) notions of
preference beyond quality (e.g., enjoyment and ownership). We then design five tasks to
cover different forms of interaction: social dialogue, question answering, crossword puzzles,
summarization, and metaphor generation. With four state-of-the-art LMs (three variants
of OpenAI’s GPT-3 and AI21 Labs’ Jurassic-1), we find that better non-interactive per-
formance does not always translate to better human-LM interaction. In particular, we
highlight three cases where the results from non-interactive and interactive metrics diverge
and underscore the importance of human-LM interaction for LM evaluation.

1 Introduction

Language models (LMs) have rapidly advanced, demonstrating unprecedented capabilities for generation
and striking generality for tackling a wide range of tasks (Brown et al., 2020; Rae et al., 2021; Chowdhery
et al., 2022). However, these models are at present primarily evaluated non-interactively: given an input
text, a model generates a completion with the focus solely on the quality of the completion.1 Almost all
benchmarks, even those with a diverse range of tasks, such as GEM (Gehrmann et al., 2021) and HELM
(Liang et al., 2022), encode this non-interactive view.

Our goal is to evaluate human-LM interaction instead of just model completions. LMs are already deployed
in interactive settings, where humans work with them to brainstorm ideas (e.g., Jasper, Copy.ai), paraphrase
sentences (e.g., Wordtune, QuillBot), reformulate queries (Nogueira & Cho, 2017), autocomplete sentences
(Chen et al., 2019), write code (e.g., CoPilot, TabNine), and so forth. We anticipate that the adoption rate
will continue to accelerate as LMs become more capable and novel use cases are discovered (Bommasani et al.,
2021, §2.5).2 But as a community, if we explicitly or implicitly optimize for non-interactive performance,
will this improve interactive performance?

1There are specific tasks such as dialogue that are inherently interactive (Paranjape et al., 2020; Thoppilan et al., 2022;
Shuster et al., 2022; OpenAI, 2022). We are interested in building a unified evaluation framework for human-LM interaction
(where dialogue is a subset) that is inspired by, but also extends beyond dialogue systems.

2For instance, over 300 applications were built within a year of the release of GPT-3 (Brown et al., 2020), and ChatGPT
amassed 1 million users in five days after launching (New York Times, 2022).
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Figure 1: Dimensions in human-LM interaction evaluation. We propose a framework, HALIE, that
expands on non-interactive evaluation along three dimensions: (i) we capture the full process in addition to
the final output (targets); (ii) we capture the first-person subjective experience of users interacting with the
LM in addition to the perspective of a third-party (perspectives), and (iii) we consider notions of preference
beyond quality (criteria). These dimensions interact to define the full space of evaluation metrics (i.e., a
2x2x2 cube ), which goes beyond standard, non-interactive evaluation (i.e., gray cell).

We develop an evaluation framework, Human-AI Language-based Interaction Evaluation (HALIE) that
defines the components of human-LM interactive systems and evaluation metrics, putting interaction at
the center of LM evaluation. Concretely, we first make explicit that end users interact with a system (as
opposed to a raw LM), which consists of an LM, a user interface (UI), and a system logic which constructs
prompts and invokes the LM. The distinction between an LM and a system is important because, unlike
non-interactive evaluation, interactive evaluation is fundamentally a function of the user and the system,
which acts like the glue between the user and the LM. HALIE formally defines the system logic with states
and actions. A state of the system is textual contents in the UI (e.g., dialogue history and the current text in
a user input box), and an action is taken by a user (e.g., clicking the “send” button or typing into a text box)
through the UI, which subsequently triggers the system to update the state. We define an interaction trace
to be the resulting sequence of state-action pairs. Note that the exact choice of prompts (Wei et al., 2022;
Khattab et al., 2023) and design of UIs (Clark et al., 2018; Buschek et al., 2021; Ippolito et al., 2022) can
have significant impact on human-LM interaction; we follow the most standard practice whenever possible
in our paper and leave the exploration to future work.

To evaluate human-LM interaction, HALIE defines metrics on interaction traces, which are organized along
the following three dimensions (Figure 1)—targets, perspectives, and criteria: (1) targets include more than
just the final output, and cover the entire interaction process (e.g., user queries and edits); (2) perspectives are
not limited to third parties, but the users who interact with LMs to capture first-person experiences; and (3)
criteria include not only quality (e.g., accuracy), but also preference (i.e., attitudinal measures of humans
such as enjoyment). In contrast, non-interactive benchmarking devises automatic metrics or third-party
human annotations (perspectives) to solely evaluate the quality (criteria) of outputs (targets).

We design five tasks ranging from goal-oriented to open-ended (Figure 2) to capture a variety of different
interactions, and construct an interactive system for each task by defining states and actions. With these
systems, We evaluated four state-of-the-art LMs: three variants of OpenAI’s GPT-3 (Brown et al., 2020;
Ouyang et al., 2022)—TextDavinci (text-davinci-001), TextBabbage (text-babbage-001), and Davinci
(davinci)—and AI21 Labs’ Jurassic-1 (Lieber et al., 2021)—Jumbo (j1-jumbo). We choose these models
to study the impact of model size (TextDavinci vs. TextBabbage), instruction tuning (TextDavinci vs.
Davinci), and implementation details regarding training data, architecture, and other factors (Davinci vs.
Jumbo). While the impact of these differences on non-interactive benchmark performance has been studied
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Figure 2: Five tasks and human-LM interaction in the context of accomplishing the tasks. We
study tasks ranging from goal-oriented to open-ended and cover the common usages of LMs reported by
Ouyang et al. (2022). When designing human-LM interaction for these tasks, we make use of various inter-
action styles, such as strict turn-taking (e.g., social dialogue) and iterative query reformulation (e.g., question
answering). See Section 3 for details and screenshots of the systems we built for these tasks.

quite extensively (Brown et al., 2020; Ouyang et al., 2022; Liang et al., 2022), we want to study their effect
in interactive settings.

From the 1015 interaction traces we collected (in English), we observe that better non-interactive performance
does not always lead to better human-LM interaction; even the worst-performing model in non-interactive
settings can perform as well as or better than other models in interactive settings. In Section 3, we present
the results from five tasks and highlight the cases where non-interactive and interactive metrics diverge
along the three dimensions. We release our interaction traces, their replay links, and system interfaces at
https://github.com/stanford-crfm/halie. We summarize our contributions as follows:

• We propose an evaluation framework, HALIE, to structure and explore the multidimensional space
of human-LM interaction.

• We instantiate our framework in five tasks. By studying various tasks and bringing them under one
roof, we showcase the adaptability and versatility of our framework.

• The results obtained through the framework challenge conventional, non-interactive evaluation met-
rics and highlight the need for interactive evaluation.

• We provide guidelines for applying the framework to new scenarios and publicly release all data.

2 Framework

In this section, we introduce our framework, HALIE, for evaluating human-LM interaction. Concretely, we
describe tasks and system construction for studying human-LM interaction, as well as interaction traces
that we use to represent the interaction process. Lastly, we propose dimensions and metrics for evaluating
human-LM interaction.

2.1 Solving Tasks Interactively

We study human-LM interaction in the context of tasks, which provide a structured context for facilitating
and evaluating these interactions. For a task to be interactive, the interaction between a user and an LM
needs to be specified. This involves detailing the space of possible input and output for the user and LM, as
well as any intermediate steps or back-and-forth exchanges that constitute the task.

Figure 2 shows five tasks we study in this work: social dialogue, question answering, crossword puzzles, text
summarization, and metaphor generation (see Section 3 for a detailed description of each task). When
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Algorithm 1: Generate an interaction trace
s0 ← task-specific contents
for t = 1, 2, ... do

User takes an action at

if at finishes the interaction then
break

else
System updates the state st+1 ← Transition(st, at)

end
return [(s1, a1), (s2, a2), ...]

Function Transition(st, at):
if at requires querying an LM then

p = CreatePrompt (st)
Fetch completions c = QueryLM(p)
return ShowCompletions (st, c)

else if at fills out a survey then
return st with results of survey

else
// (e.g., at edits user input)

return st updated with at

end

designing the tasks, we aim to strike a balance between incorporating the elements that exist in real-world
usage and making them concrete to conduct large-scale user studies. To incorporate real-world usage, we
base our selection on the common query types from Ouyang et al. (2022, Table 1). These query types are
abstractions of actual tasks (e.g., generation, open question answering, brainstorming, and chat), which we
then concretize into the well-specified tasks for our experiments. Furthermore, we choose the tasks that span
the spectrum from goal-oriented (e.g., question answering) to open-ended tasks (e.g., metaphor generation),
to help us better understand human-LM interaction in various contexts.

2.2 Constructing an Interactive System

For each task, we build a system that facilitates human-LM interaction in the context of the task. In this
work, we underscore the distinction between an LM and a system: users interact with a system (as opposed
to a raw LM), which consists of an LM, a user interface (UI), and a system logic which constructs prompts
and invokes the LM.

Language model. We consider an LM to be a black box that takes a text prompt and decoding parameters
as input and stochastically returns a set of text completions (QueryLM in Algorithm 1).

User interface. In this work, we follow the most standard design and practice for UIs and focus on
the performance gap between different LMs given the same interface. The exploration of UI design for
human-LM interaction (Clark et al., 2018; Buschek et al., 2021; Ippolito et al., 2022) is another dimension
of benchmarking that we leave to future work.

System logic. Given an LM, we define a system logic to be a set of states, potential user actions, and
a transition function that specifies how states get updated, borrowing the terminology and intuitions from
Markov decision processes.3 A state st captures everything the system needs to know about the current
interaction at time t. This is primarily the visual state—the text contents of each text field in the graphical

3 Note that in standard reinforcement learning (RL), the goal is to optimize a policy (e.g., the way a user interacts with an
LM), whereas we are evaluating naturally occurring patterns in a policy (e.g., the way a user interacts with and accommodates
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Dimensions Tasks
Social Question Crossword Text Metaphor

Targets Perspectives Criteria dialogue answering puzzles summarization generation

Process First-person Preference Reuse Ease Enjoyment Enjoyment
Process First-person Quality Helpfulness Helpfulness Improvement Helpfulness
Process Third-party Preference Queries
Process Third-party Quality Queries Edit distance Queries
Output First-person Preference Interestingness Satisfaction
Output First-person Quality Specificity Fluency Fluency Consistency Helpfulness
Output Third-party Preference Interestingness
Output Third-party Quality Accuracy Accuracy Consistency Aptness

Table 1: We define a set of metrics for evaluating human-LM interaction across 5 tasks (see Table 21 for the
full list); each metric can be characterized along three dimensions (targets, perspectives, and criteria). Note
that some metrics, such as the number of queries from users, can be viewed as proxies for different quality
(e.g., efficiency) or preference (e.g., enjoyment) metrics depending on the task.

interface (e.g., dialogue history and the current text in user input), but also includes any hidden dependencies,
such as the history of previous dialogues. Given a state, a user can take one of a set of actions. For example,
the user may type to modify user input or click a button.

Given a state st and an action at, the system produces the updated state st+1 through a transition function
(Transition in Algorithm 1). When the action is typing to modify user input, the update is a straightforward
rendering of textual changes. When an action requires querying an LM, the system constructs a prompt
(CreatePrompt in Algorithm 1), queries the underlying LM with the prompt (QueryLM in Algorithm 1), and
updates the state with the completions from the LM (ShowCompletions in Algorithm 1). For example, in a
dialogue system (Figure 3), a user may write “Thanks!” in user input and click the “send” button, which will
trigger the system to construct a prompt (e.g., concatenating current dialogue history and user utterance),
fetch a completion from the LM, and show it to the user. At the end of interaction, we get a sequence of
state-action pairs, similar to Lee et al. (2022), which we call interaction trace. Algorithm 1 shows the process
of generating an interaction trace as a result of human-LM interaction.

Note that there are many important design considerations regarding the system logic that can directly affect
the dynamics of human-LM interaction. First, CreatePrompt determines how much control users have over
prompts. For example, CreatePrompt can simply take the content of user input, or enforce a pre-defined
prompt regardless of the user input. It can also decide how much each query depends on past interactions, by
providing previous interactions as part of the prompt. Second, decoding parameters in QueryLM influence the
nature of completions (Holtzman et al., 2020). For instance, one of the decoding parameters, temperature,
controls the tradeoff between diversity and quality (Hashimoto et al., 2019), which can change the dynamics
of human-LM interaction (Lee et al., 2022). Third, ShowCompletions controls how model completions are
shown to users. For instance, how many completions are shown at a time, and how intrusive are they? These
decisions can have a trade-off between efficiency and ideation (Buschek et al., 2021), or lead to distraction
or cognitive load (Clark et al., 2018).

2.3 Evaluating Human-LM Interaction

To evaluate interaction traces, we expand on non-interactive evaluation along three dimensions and define
metrics characterized by those dimensions.

Dimensions. Figure 1 shows three dimensions in human-LM interaction evaluation. The first dimension
is targets (i.e., what to evaluate). Standard evaluation only considers the final output as a target, which is
often simply a model completion c, but can be a result of more complicated processes (e.g., sample multiple

to an LM over time) rather than trying to optimize it. Also, in standard RL, there is a single reward function that matters. In
our framework, we evaluate a policy in a multi-dimensional way accounting for different targets, perspectives, and criteria.
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completions and use heuristics to construct the final output). In contrast, we consider the entire interaction
process, which is represented as an interaction trace [(s1, a1), (s2, a2), ...] in HALIE.

The second dimension is perspectives (i.e., whose perspective is reflected). Non-interactive evaluation solely
depends on a third-party perspective; automatic metrics can be computed on an interaction trace without
human intervention; likewise, human evaluation is done by third parties who did not interact with LMs in
any way. In the interactive setting, however, evaluation should reflect the first-person perspective of the user
who actually takes actions at to interact with an LM through a system.

The last dimension is criteria (i.e., how to evaluate). Standard evaluation focuses on quality, which tend
to be objective and include metrics like accuracy and fluency (defined for outputs) or helpfulness and edit
distance (defined for processes). On the other hand, interactive evaluation adds attitudinal measures of a
human, which we define as preference. These measures tend to be subjective and often captured by metrics
like enjoyment and satisfaction. Note that preference criteria apply to both first-person and third-party
perspectives. One example of preference metrics with third-party perspectives is creative story writing:
some readers may not like certain kinds of stories (low preference), although they think that they are good
(high quality). Also, sometimes metrics can reflect both preference and quality when human preference is
aligned with the quality metrics of interest.

Note that each dimension has been extensively studied in subareas within NLP (e.g., dialogue systems). In
HALIE, we present the three dimensions together as a set of orthogonal dimensions to consider and argue
that it facilitates a holistic design of evaluation metrics for interactive systems.

Metrics. For each task, we define a set of metrics that cover the space defined by the three dimensions.
Some metrics are a function of interaction traces (e.g., number of queries users made), whereas some metrics
only depend on outputs (e.g., accuracy in solving a crossword puzzle). Some metrics are defined based on sur-
vey responses from users (e.g., satisfaction over the final output) and third-party evaluators (e.g., consistency
of a summary given a document).

Table 1 shows the mapping from the space to the metrics in the five tasks and example metrics (see Ta-
ble 21 for the full list of metrics). Note that non-interactive evaluation only covers one combination of the
dimensions (i.e., outputs for targets, third-party for perspectives, and quality for criteria) corresponding to
one gray cell in Figure 1. In contrast, our evaluation considers all combinations, corresponding to in
Figure 1.

2.4 Guidelines

Our framework is designed to be a reference for researchers when designing the evaluation of human-LM
interaction for a new scenario. In particular, we believe that the framework can help researchers consider
various components and dimensions of human-LM interaction that are easy to overlook (e.g., design con-
siderations associated with CreatePrompt, QueryLM, and ShowCompletions in the transition function, as
described in Section 2.2). Here, we provide the guideline for applying the framework to a new task and
discuss when the framework may not be applicable.

2.4.1 How to apply the framework to a new task

Instantiating the HALIE framework involves defining an interactive task, constructing an interactive system,
and designing a set of metrics for a new scenario of interest. As a running example, we will use the case
study on interactive story writing in Clark et al. (2018) to describe how one might apply HALIE to evaluate
human-LM interaction in this particular setting. Note that this is a hypothetical scenario and we only
highlight parts of the work (but not all) for brevity.

Defining an interactive task. To define an interactive task, it is essential to communicate the nature of
the interaction between a user and an LM that is being studied. This involves detailing the space of possible
input and output for the user and LM, as well as any intermediate steps or back-and-forth exchanges that
constitute the task.
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For interactive story generation, the researchers decide to consider a setting where an LM writes every other
sentence in a story. Concretely, they define the task to be writing a ten-sentence long story by taking turns
between a user and an LM, writing sentence by sentence in a linear fashion. In other words, every other
sentence is first generated by an LM and optionally edited by the user. This turn-taking continues until a
story reaches ten sentences. In this task, the space for user output and model output is restricted to an
English sentence. The intermediate steps are defined as strict turn-taking. It is worth noting that there are
limited back-and-forth exchanges in this task, as the user cannot go back and edit sentences from previous
turns once they are submitted.

If a task is relatively new and it is unknown how users might interact with LMs, we recommend running
small pilots to gain insights into user goals and preferences before defining a task. In Clark et al. (2018), the
researchers restrict the output space to be sentence-level based on the preliminary study.

Constructing an interactive system. Once a task is defined, we need to define states, actions, and
transition functions for the task and build an interactive system based on them. By specifying these com-
ponents, researchers can easily communicate how their interactive systems operate not just on the surface
(i.e., frontend), but also behind the scenes (i.e., backend; even with demos, it is often hard to communicate
this aspect without a formal specification).

In the case of interactive story generation, suppose the researchers decide to show sentences from previous
turns (story history) and provide an input box for a user to write and edit a sentence (user input) in the
user interface. These elements constitute a state of the system (e.g., {story history, user input}). Then,
the researchers specify available actions, such as clicking the “Add Line to Story” button and the “Submit
Story” button (see Figure 3, 4, 7, 11, and 13 for more examples of states and actions). With states and
actions, they define transition functions, which determine how each (state, action) pair connects to the next
state (e.g., when a user clicks the “Add Line to Story” button, the system adds the current sentence to the
story, updating the story history, and empties the user input box for the next sentence).

Designing evaluation metrics. When designing metrics, we encourage researchers to first consider all
combinations of the three dimensions presented in the framework (targets, perspectives, and criteria), select
combinations that are relevant to the task, and then detail how each combination can be measured in their
systems, while taking into account the unique characteristics of the task and corresponding interaction.

For interactive story writing, the researchers come up with an idea to measure the usefulness of a model out-
put, when thinking about a metric for process (target), first-person (perspective), and preference (criteria).
Concretely, they decide to measure the usefulness by asking users while conducting open-ended interviews
(an alternative for crowdsourcing can be a Likert scale next to each turn for a model output). To account for
the unique characteristics of the task, they decide to see the relationship between the usefulness of a model
output and the location of the sentence within a story where the model output is presented (e.g., in the 2nd
turn vs. 10th turn).

2.4.2 When not to apply the framework

We note that our framework is designed to support the evaluation of human-LM interaction, where we
assume the presence of a human user, an LM, interaction between the user and LM, and an evaluation goal.
Therefore, the framework may not be applicable if an LM is evaluated by another LM (as a proxy for human
judgment), and not a user. Similarly, in a scenario where there is a user, but the user has no way to interact
with models (e.g., a user merely reads model outputs and evaluates them, as opposed to influencing model
generation by providing inputs or modifying model outputs), we consider it as human evaluation, rather
than human-LM interaction, and therefore consider it out of scope. Lastly, HALIE is designed for scenarios
where a single user interacts with an LM. Therefore, when there are multiple users and/or LMs, it may
require extending the framework.
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3 Experiments

In this section, we first present key findings from our experiments (Section 3.1), and then describe details of
the experiments for five tasks (Section 3.2—3.6). Our experiment design was reviewed and approved by the
institution’s Institutional Review Board (IRB).

3.1 Summary of Findings

3.1.1 Targets: Output vs. Process

One of the research questions we want to answer is the following (RQ 1): If we optimize for non-interactive
performance (i.e., output), will this improve interactive performance (i.e., process)? In other words, if we
select a model that performs the best on a leaderboard, can we assume this model will result in the best
interactive performance? The answer based on our observation is “not always.”

Consider a highly goal-oriented task like question answering (QA; Section 3.3) where non-interactive model
performance, such as accuracy, is likely to determine the interactive experience and overall human-LM
performance. Even for this task, we observe that the worst-performing model in non-interactive settings can
perform as well as or better than other models in interactive settings. Specifically, TextBabbage had the
worst accuracy as a zero-shot QA system, but achieved the best performance as an interactive LM assistant
for the Nutrition category (Figure 5). For the US Foreign Policy category, Jumbo performed worst as a
zero-shot QA system and Davinci performed best, but as an LM assistant, Jumbo outperformed Davinci
(Figure 5). These counter-intuitive results, although in the minority, suggest that if we select models using
only non-interactive performance, we may not achieve the best interactive performance.

For a more open-ended, creative task like metaphor generation (Section 3.6), the notion of “best” performance
is more nuanced. One common approach to approximate the usefulness of models is to measure user “effort”
given model outputs, measured by edit distance between the original model output and the final output
edited by a human user (Roemmele & Gordon, 2018; Clark & Smith, 2021). Intuitively, if users find the
model output to be helpful for writing, they would keep the generated text. Under this metric, TextDavinci
performed the best (i.e., generated the outputs that required the fewest edits overall as shown in Table 8),
closely followed by Davinci in our experiments. Turning to metrics based on the process, however, paints a
slightly different picture. We approximated user effort with the total time spent in writing a metaphorical
sentence and the number of queries users made per sentence. Under these two metrics, Davinci required
the least effort from users (Table 8). Therefore, while one might expect that specific model performance
measured based on the output would directly translate to that measured based on the process, we showed
that this might not be the case.

3.1.2 Perspectives: Third-party vs. First-person

When designing a system, we care about how users experience the system, such as how useful it is to them,
as opposed to the usefulness defined and judged by others. This leads to our next research question (RQ
2): Do the results of first-person evaluations differ from those based on the metrics defined by third parties?
If so, what are the differences, and why do they occur?

In text summarization (Section 3.5), we observe a discrepancy between the model performance judged by
human annotators (i.e., third-party) and by the users who directly interacted with the models (i.e., first-
person). Another notable case observed in crossword puzzles (Section 3.4) was that users sometimes perceived
models to be more helpful than they actually are. We measured the perceived helpfulness of a model
based on a post-survey question and found that users significantly preferred TextDavinci over other models
(Figure 8). However, assistance from TextDavinci led to statistically significantly higher crossword letter
accuracy only for one of the five crossword puzzles; with another puzzle, users actually performed worse with
both instruction-tuned models (TextDavinci and TextBabbage). One hypothesis for this behavior is that
these models can provide confident and fluent misinformation, which can be incorrectly perceived as helpful.
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3.1.3 Criteria: Quality vs. Preference

When assessing the performance of a model, it is important to differentiate between quality and preference; a
model may perform better than another according to a specific metric (e.g., fluency), but users may care less
about the metric and prefer the “inferior” model (e.g., because it is more creative). This leads us to ask the
last main research question (RQ 3): Does the perceived quality of a model correlate with user preference?
Specifically, given the current benchmarking practice of using a set of widely accepted metrics (e.g., fluency,
coherence, and engagement for dialogue systems (Thoppilan et al., 2022; Smith et al., 2022)), what are the
potential downsides of comparing models based on their performance aggregated over many metrics? Do
users prefer models that perform better according to the majority of the metrics?

In dialogue (Section 3.2), users evaluated TextDavinci to be the best LM according to most metrics, includ-
ing fluency, sensibleness, humanness, interestingness, and reuse (Table 2). However, users expressed similar
inclination to continue interacting with Davinci which achieved the best specificity (Table 2). Given that
Davinci was perceived to be worse than TextDavinci on all metrics except specificity and inclination, we
hypothesize that users expressed an inclination to interact with Davinci because its responses were the most
specific to what users had said. From this, we underscore the importance of understanding user needs and
preferences and reflecting them for model selection.

3.2 Social Dialogue
Authors: Amelia Hardy, Ashwin Paranjape, Ines Gerard-Ursin, Esin Durmus, Faisal Ladhak, Joon Sung Park, Mina
Lee

Dialogue is a natural and flexible way to engage in communication, which makes it an intuitive and popular
mode of interaction for LMs. In this section, we evaluate human-LM interaction in the context of open-ended
dialogue about social situations (henceforth social dialogue).

Task. We consider the task where given a social scenario, users converse with a system (or chatbot) about
the scenario. Users initiate the conversation and take turns with the chatbot to carry out the conversation
until users choose to finish it. We randomly select ten scenarios from the EmpatheticDialogues (Rashkin
et al., 2019) and CommonsenseDialogues datasets (Zhou et al., 2021) after manually filtering out potentially
sensitive and upsetting scenarios from the validation and test sets of the datasets.

System logic. Figure 3 shows a dialogue system state consisting of scenario, dialogue history, and user
input and possible actions: pressing a key to modify user input, clicking the “send” button to submit their
input, and finishing the dialogue. When users click the “send” button, the system creates a prompt with five
dialogue examples for in-context learning and the current dialogue history, invokes an LM with the prompt,
fetches a completion, and shows the completion in the dialogue history in the interface (ShowCompletions).

In the dialogue system, CreatePrompt creates a prompt by concatenating four example dialogues for in-
context learning and the current dialogue history. While doing so, we omit the scenario information as the
scenario is only known to the user. For QueryLM, we use top_k = 50 and temperature = 0.9 for decoding
parameters and use HTML tags to delineate a conversation and the turns within.

User study procedure. We recruited a total of 189 crowd workers (or users) on Amazon Mechanical
Turk. For each of the scenarios and models, we had three users each produce a dialogue. To ensure each
dialogue is long enough, the interface allowed users to finish the conversation only after taking more than
ten turns or exceeding 250 words in total. At the end of the conversation, users completed a survey about
their experience.

Survey questions. We ask users to evaluate the interestingness, sensibleness (i.e., whether a chatbot
response makes sense), and specificity (i.e., whether a chatbot response is specific to what a user had said)
of a chatbot, following the survey questions proposed by Thoppilan et al. (2022). We also ask users to
evaluate the fluency of the chatbot and their inclination to continue talking with the chatbot, as proposed
by Smith et al. (2022). We ask dataset-specific questions regarding empathy (EmpatheticDialogues) and
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Figure 3: [Social dialogue] A dialogue system’s state consists of a scenario, dialogue history, and user input.
When users take an action (e.g., clicking the “send” button), the system updates the state (e.g., updating
the dialogue history with a model completion).

Model Fluency Sensibleness Specificity Humanness Interestingness Inclination Reuse
(/100%) ↑ (/5) ↑

TextDavinci 93 ± 1.0 94 ± 1.0 ** 83 ± 1.6* 37 ± 2.0 36 ± 2.0 91 ± 1.2 4.09 ± .14 **

TextBabbage 90 ± 1.4 84 ± 1.7 * 81 ± 1.8 * 29 ± 2.1 30 ± 2.1 88 ± 1.5 3.35 ± .16*

Davinci 92 ± 1.3 89 ± 1.4 92 ± 1.3 ** 24 ± 2.0 27 ± 2.0 91 ± 1.3 3.80 ± .17

Jumbo 89 ± 1.3 86 ± 1.5 84 ± 1.5 24 ± 1.8 32 ± 2.0 87 ± 1.4 3.21 ± .20 *

Table 2: [Social dialogue] Users perceived TextDavinci to have the best fluency, sensibleness, humanness,
interestingness, and quality, but they expressed the similar inclination to continue interacting with Davinci
whose responses were most specific to what users had said. For the first six metrics, the numbers indicate the
percentages of system responses under each metric (0–100%). The numbers for reuse indicate the ratings of
each model after completing a dialogue (1–5). The means, standard errors, and statistical significance4 are
shown in the table.

commonsense understanding (CommonsenseDialogues), which are labeled as humanness collectively. Finally,
after a dialogue, we ask if users are willing to talk to the chatbot again using a 5-point Likert scale: reuse.

For most questions, we ask for a turn-level annotation. To reduce users’ workload, we negated those questions
where we expected the majority of turns to be annotated positively. For all questions, if users decided to
mark none of the utterances, they had to explicitly mark a checkbox acknowledging it.

• Fluency (turn-level; binary; reversed scores for the negated question): Which responses did NOT sound
human?

• Sensibleness (turn-level; binary; reversed scores for the negated question): Mark responses where the
chatbot did NOT make sense.

• Specificity (turn-level; binary; reversed scores for the negated question): Mark the responses that were
NOT specific to what you had said, i.e., responses that could have been used in many different situations.
For example, if you say “I love tennis” then “That’s nice” would be a non-specific response, but “Me too, I
can’t get enough of Roger Federer!” would be a specific response.
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• Humanness (turn-level; binary): Which responses did you feel an emotional connection to? (Empathetic-
Dialogues); Which responses made you feel the chatbot understood social contexts and situations? (Common-
senseDialogues)

• Interestingness (turn-level; binary): Mark the responses that were particularly interesting or boring

• Inclination (turn-level; binary; reversed scores for the negated question): Which responses made you NOT
want to talk with the chatbot again?

• Reuse (dialogue-level; 5-point Likert scale): Would you want to talk to this chatbot again?

• Feedback (dialogue-level; free-form; optional): Is there anything else you would like to say about the
conversation?

Results. For social dialogue, we specifically care about models’ ability to show an emotional connection
to users, by being empathetic and having commonsense about social situations (humanness), in addition to
being fluent and sensible, and specific to what they have said. Independently, users may have their own
subjective views on whether system responses are interesting and make them want to continue interacting
with the system, which are measured by preference metrics interestingness and inclination, respectively.

1 Instruction tuning improves performance on most quality metrics, but not specificity. Ta-
ble 2 shows that the instruction tuned TextDavinci scored highest on most metrics, including fluency,
sensibleness, and humanness. In particular, users evaluated TextDavinci to have considerably higher hu-
manness than Davinci. And the instruction-tuned TextBabbage model, despite its much smaller size, was
reported to have higher humanness than Davinci or Jumbo.

However, instruction tuning decreased the specificity of model completions as shown in the significant drop
in performance of TextDavinci compared to Davinci (Table 2). From this observation, we hypothesize that
general instruction-tuning makes models better aligned with most metrics at the cost of being more generic,
although previous work suggests that dialogue-specific fine-tuning improves all metrics including specificity
Thoppilan et al. (2022).

The following are two sets of completions generated by TextDavinci and Davinci (top_k = 50, temperature
= 0.9, num_completions = 5) to contrast their specificity (i.e., how specific it is to what users had said).

User: I have a cat.

Chatbot (TextDavinci):
1. What is your cat’s name?
2. What is your cat’s name?
3. What is your cat’s name?
4. What’s your cat’s name?
5. What’s your cat’s name?

Chatbot (Davinci):
1. Tell me more about your cat.
2. You have a cat?
3. This sentence is false.
4. You have a what?
5. What kind of cat?

User: I am going home for Christmas.

Chatbot (TextDavinci):
1. Really? That sounds like fun!
2. That sounds like a lot of fun!
3. Have a safe trip!

4Results are denoted by * if models had a significant effect relative to TextDavinci, * if significant relative to TextBabbage,
* if significant relative to Davinci, and * if significant relative to Jumbo at the p = 0.05 level using a Tukey-Kramer test.
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4. Have a safe trip!
5. I hope you have a safe and happy trip!

Chatbot (Davinci):
1. Where do you live?
2. I am going home for Christmas.
3. What is your name?
4. What are your plans for Christmas?
5. How are you traveling?

Although some of Davinci’s responses are inappropriate (#3 in the first example) or repetitive (#2 in the
second example), overall, they tend to be more specific and diverse to the user utterance.

2 Users may prefer to interact with a more specific LM. Although users evaluated TextDavinci
to be the best LM according to most metrics, they expressed similar inclination to continue interacting
with Davinci during dialogue. Given that Davinci was perceived to be worse than TextDavinci on all
metrics except specificity and inclination, we hypothesize that users expressed an inclination to interact with
Davinci because its responses were the most specific to what users had said. We recommend further study
of the relationship between specificity and inclination to interact with an LM, and in particular, whether
specificity affects reuse of the LM once the initial novelty of this interactive experience has faded.

3.3 Question Answering
Authors: Megha Srivastava, John Thickstun, Rose E. Wang, Minae Kwon, Mina Lee

Question answering is a canonical task in NLP. We consider an interactive version of question answering
where a user is asked to answer a question given access to an LM that they can query. In practice, users
tend to query information systems repeatedly, refining and reformulating their queries in response to the
system’s output (Huang & Efthimiadis, 2009; Jansen et al., 2009; Jiang et al., 2013).

Task. Given a sequence of multiple-choice questions (or quiz), users try to select the correct answer with
advice from an LM. As an example, consider this multiple-choice question:

Before Nixon resigned how many believed he should be removed from office?

A. 79% B. 98 % C. 33 % D. 57%

Users can query the system multiple times with free-form text inputs; they might start with the question
verbatim, re-phrase the question to increase specificity (e.g., “Did 79 percent of people believe Nixon should
have been removed from office?”), or find a different way to query, perhaps bringing in their own prior
knowledge (e.g., “Nixon approval rating after watergate”).

We use questions from the Measuring Massive Multitask Language Understanding (MMLU) dataset Hendrycks
et al. (2021). Concretely, we first chose five diverse subjects from the dataset (Global facts, Nutrition, US
foreign policy, College chemistry, and Miscellany), and selected 6 questions from each subject to construct a
pool of 30 questions. We constructed quizzes by randomly selecting ten questions from the pool and adding
one attention check question in the middle.

System logic. Figure 4 shows a state of our QA system consisting of a multiple-choice question, user
input, and system output. Users can take the following actions: pressing a key to modify user input, clicking
the “generate” button to query the system, selecting one of the multiple choices, clicking the “next” button
to submit their answer, and finishing the quiz. When users click the “generate” button, the system creates a
prompt with the user input, invokes an LM with the prompt, fetches a completion, and shows the completion
in the system output box in the interface (ShowCompletions).

In the QA system, CreatePrompt creates a prompt by simply copying and pasting user input from the
interface. Note that we do not include a multiple-choice question as part of the prompt. For QueryLM, we
use temperature = 0.5 and max_tokens = 100 for decoding parameters.
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Model Accuracy Time Queries Ease Fluency Helpfulness
(/100%) ↑ (min) ↓ (#) ↓ (/5) ↑

TextDavinci 69 ± 2.2 *** 1.36 ± .13 1.78 ± .06 ** 4.53 ± .08 *** 4.35 ± .07 *** 4.60 ± .07 ***

TextBabbage 52 ± 2.8* 1.77 ± .33 2.57 ± .13 * 4.09 ± .12* 3.84 ± .12*** 3.84 ± .12***

Davinci 48 ± 2.7 * 2.09 ± .14 2.66 ± .12 * 3.73 ± .13 * 3.22 ± .11** 3.52 ± .13***

Jumbo 54 ± 2.9* 1.67 ± .09 2.32 ± .11 3.87 ± .14* 3.17 ± .11 ** 3.26 ± .14 ***

Table 3: [Question answering] Performance averaged across all questions conditioning on the use of AI
assistance. Users assisted by TextDavinci achieved the highest accuracy while requiring the least effort
(queries and ease) and being perceived to be the most fluent and helpful. The numbers indicate means and
standard errors, and the markers denote statistical significance,4 conditioning on the use of AI assistance;
when the assistance was provided, users queried the system 86% of the time.
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Figure 4: [Question answering] The system’s state consists of a multiple-choice question, user input, and
system output. When users take an action (e.g., clicking the “generate” button), the system updates the
state (e.g., updating the system output with a model completion).
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Figure 5: [Question answering] Per-question accuracy broken down by category. With Text-
Davinci, human-LM interaction results in improved accuracy for Global Facts, College Chemistry, and
Miscellany, but not Nutrition and US foreign policy. The shaded bars indicate the performance of models
as zero-shot, non-interactive QA systems when given a question text verbatim, and gray bars indicate user
performance without AI assistance. The results are averaged across questions for which users were provided
with AI assistance.
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(a) Proportion of prompts that are framed as questions
decreases over time for all models.
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(b) Proportion of prompts that include answer choices
increases for all models, but particularly for TextBabbage.

Figure 6: [Question answering] Quantitative analysis of user accommodation shows that users decrease
framing their prompts as questions over time, and gradually increase using the LM to verify answer choices
over time, supporting user survey responses.

User study procedure. We recruited 342 crowd workers (users) on Amazon Mechanical Turk. Each user
answered half of the questions with assistance from a single LM (treatment) and answered the other half
without assistance (control). We instructed users not to use search engines to answer questions, and alerted
users (“Please do not switch tabs or open a new window during your participation.”) when we detected the
tab switching. At the end of each quiz, users completed a survey about their experience.

Survey questions. We asked users for first-person evaluation of fluency, helpfulness, and ease of interac-
tion of the system on a 5-point Likert scale. Also, we asked users to describe why they found the system
helpful or unhelpful, provide adjectives to describe the system, and explain whether their interaction changed
over the course of answering questions. Concretely, the following questions were asked at the end of each
quiz:

• Fluency (5-point Likert): How clear (or fluent) were the responses from the AI Assistant?

• Helpfulness (5-point Likert): Independent of its fluency, how helpful was having access to the AI Assistant
compared to not having access?

• Helpfulness (free-form): Why did you find the AI Assistant helpful or unhelpful?

• Ease of interaction (5-point Likert): How easy was it to interact with the AI Assistant?

• Change (free-form): Did the way you chose to interact with the AI Assistant change over the course of
answering questions? If so, how?

• Feedback (free-form; optional): Any feedback or comments?

Results. For the goal-oriented QA task, third-party evaluation is characterized by accuracy (i.e., how many
questions users get correct answers for) and efficiency (i.e., how much effort users put in to find an answer)
(Dibia et al., 2022). Because the bulk of a user’s time in interactive tasks is spent reacting to system outputs,
we count the number of queries needed to answer each question as a proxy measurement for efficiency.

1 Users with LM assistance generally outperform the user or LM alone, but not always.
Figure 5 shows human-LM accuracy, zero-shot LM accuracy,5 and human-LM interactive accuracy broken
down by question category. Users assisted by TextDavinci outperformed users alone in all categories. Users

5For fully-automated models, we report deterministic results with temperature = 0.
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with LM assistance generally outperformed an LM alone, with the notable exception of the US Foreign Policy
category, where both TextDavinci and Davinci achieved better accuracy as zero-shot QA systems than as
interactive assistants. For the Global Facts and Miscellany categories, users with LM assistance significantly
outperformed zero-shot LMs. In these contexts, users are able to figure out how to query the LM and when
to trust it.

2 Non-interactive performance does not always lead to better human-LM interaction. Further
analysis of Figure 5 shows that for the Nutrition category, TextBabbage had the worst accuracy as a zero-
shot QA system, but achieved the best performance as an interactive LM assistant (tied with TextDavinci).
For US Foreign Policy, Jumbo performed worst as a zero-shot QA system and Davinci performed best, but
as an LM assistant Jumbo outperformed Davinci. We speculate that this might be due to different use
cases of LMs in interactive settings (e.g., retrieving relevant information as opposed to directly answering
questions). This supports the broader point that non-interactive performance is an imperfect proxy for
evaluating human-LM interaction.

3 Instruction tuning improves accuracy and efficiency for human-LM interaction. Table 3
shows that TextDavinci was the most efficient and accurate tool (1.78 queries/question with 69% accuracy).
In contrast, Davinci was least efficient, requiring an average of 1.5x as many queries to answer a question
with only 48% accuracy. Despite its smaller size, TextBabbage performed better than Davinci on most
metrics, demonstrating the effectiveness of instruction tuning for this task. Instruction-tuned models were
also perceived most favorably in first-party survey evaluation.

4 Users have different intentions. We examine user accommodation, or change in behavior in response
to the AI system, in two ways: qualitatively, through a free-response survey question, and quantitatively,
via measuring the change in query strategies over time. Example responses to the survey question “Did the
way you chose to interact with the AI Assistant change over the course of answering questions? If so, how?”
indicate that users discovered strategies such as including potential answers in their prompts, or phrasing
their prompts as declarative statements, over the course of time, as shown below:

TextDavinci User: I tried a few question formats and found that simply repeating the
question followed by the answer choices (but not preceded by the answer choices) worked
so I continued to do that.

TextBabbage User: I initially didn’t include the multiple choice options because I
didn’t know how helpful it would be to include them, but after a couple questions with
the AI not giving definitive answers without them, I started including them.

Davinci User: I felt I could a better response if instead of asking a question I typed
in the beginning of a thought. For example, instead of saying "what causes cancer?"
it’s better to type in "cancer is caused by...".

Jumbo User: It seemed like providing an unfinished sentence as a prompt often provided
more useful results than a simple question.

To further examine these trends quantitatively, we categorized all user prompts using the below taxonomy
in order to measure how the distribution of prompt type changed for users over time:

• Question: User input ends with “?” or starts with one of the following tokens {"who", "what", "where",
"how", "which", "why", "when", "whose", "do", "does", "did", "can", "could", "has", "have", "is", "was", "are",
"were", "should"}, following Pang & Kumar (2011)

• Close: User input has normalized similarity s where 70 < s < 100 with the question text

• Keyword: User input consists of less than five words, similar to a search engine query

• Exact: User input has normalized similarity s = 100 with the question text
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• Completion: User input consists of the start of sentences the LM should fluently complete, defined by
ending with one of the following tokens created from the manual analysis: {"is", "was", "by", "may", "cause",
"are", "of", "about", "the", "to", "their"}

• Choices: User input contains answer choices provided in the question text

• Command: User input commands the language model to perform a task, such as “list" or “finish the
sentence"

• Meaning: User input provides definition or information about meaning, such as “synonym of” or “words
for”

• Others

We observe that users do indeed gradually decrease the use of questions as prompts for all models (Figure 6a),
while increasing the inclusion of answer choices in their prompts, especially for TextBabbage (Figure 6b),
quantitatively supporting user survey responses. We additionally found that users were less likely to copy
the exact MMLU question text for all models over time, further supporting our motivation of interactive LM
evaluation of question answering where users engage in query reformulation.

3.4 Crossword Puzzles
Authors: Megha Srivastava

Crossword puzzles have been studied as a challenging task for AI systems (Ginsberg, 2014; Littman et al.,
2002; Wallace et al., 2022; Rozner et al., 2021). Unlike multiple-choice QA, solving a crossword puzzle is a
generative task requiring open-ended responses to clues. The crossword puzzle task also provides additional
structure, whereby a user can check whether a candidate answer satisfies the lexical constraints of the
puzzle. Finally, clues are often not straightforward (e.g. “Christmas in Chamonix”), and a user might need
to reformulate the query to find the desired information.

Task. A crossword puzzle requires solving a series of word clues (e.g., “Oscar the Grouch’s home”) that
correspond to either rows (“Across” clues) or columns (“Down” clues) of white squares on a rectangular
grid. As users solve one clue and places letters in squares, they reveal partial information (e.g., shared
letters) that can affect their strategy for solving future clues. In our setting, users try to complete an entire
crossword puzzle with the ability to query an LM-based “AI Teammate” via a chat-based interface. Users
may message the AI Teammate with free-form text, where each individual message is used as the full prompt
to the underlying LM.

System logic. Figure 7 shows a state of our crossword system, which we adapt from Down for a Cross, an
open-source software for the multi-player crossword puzzles. Users can take the following actions: pressing a
key to modify user input, pressing the “enter” key to submit input, selecting a square in the puzzle, entering
a letter into a square, selecting a clue from the list, and finishing the session. While attempting to solve
different crossword clues (ShowCompletions), users (with the chat ID: You) are able to repeatedly interact
with an LM (with the chat ID: AI) via zero-shot prompts in a dialogue-based chat interface. Although we
display the chat history to aid players in remembering past information, only the most recent prompt from
the player is sent to the LM. The same LM is fixed throughout the course of the task, which ends either
after 30 minutes or when all clues are correctly solved.

In the crossword puzzle system, CreatePrompt creates a prompt by simply copying and pasting user in-
put from the interface, without any further context. For each of the four LMs we study, QueryLM uses
temperature = 0.5 and max_tokens = 100 for decoding parameters.

User study procedure. We recruited 350 workers (users) on Amazon Mechanical Turk, split across each
of the four language models and five puzzles (Love, Sit, Nyt-1, Nyt-2, and Elect). Each user was
provided a link to the interface, and asked to engage with the puzzle (e.g., solve clues, interact with the LM)
for at least 30 minutes. Afterwards, each user completed a survey about their experience interacting with
the AI Teammate.
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Figure 7: [Crossword puzzles] The system’s state consists of a crossword puzzle, selected clue (can be
none), user letters entered in the puzzle, dialogue history, and user input. When users take an action
(e.g., pressing the enter key after writing user input), the system updates the state (e.g., updating the
dialogue history with a model completion).

Survey questions. After playing with provided crossword puzzles, users are then asked to rank different
qualities of the AI assistant on a 5-point Likert scale, including fluency, helpfulness, enjoyment, and ease
of the interaction with the AI Teammate. Users are additionally asked to describe why they found the
teammate helpful or unhelpful, what adjectives best describe the assistant, and whether their interaction
changed over the course of answering questions. Concretely, the following questions were asked at the end
of the session:

• Fluency (5-point Likert): How clear (or fluent) were the responses from the AI Teammate?

• Helpfulness (5-point Likert): Independent of its fluency, how helpful was your AI Teammate for solving
the crossword puzzle?

• Helpfulness (free-form): Why did you find the AI Teammate helpful or unhelpful?

• Ease (5-point Likert): How easy was it to interact with the AI Teammate?

• Enjoyment (5-point Likert): How enjoyable was it to interact with the AI Teammate?

• Change (free-form): Did the way you chose to interact with the AI Teammate change over the course of
solving the crossword puzzle? If so, how?

• Description (free-form): What adjectives would you use to describe the AI Teammate?

• Feedback (free-form; optional): Any feedback or comments?

Results. Solving a crossword puzzle is simultaneously an open-ended goal-oriented task and a form of
entertainment—therefore, third-party evaluation should consider both accuracy and engagement of the
human-LM interaction. Because some users may enjoy solving crossword puzzles independently, we count
the number of queries used over the course of the task as a proxy measurement for user preference to engage
with a given LM.
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Model Accuracy Accuracy Fluency Helpfulness Ease Enjoyment
(letter) (clue)

(/100%) ↑ (/5) ↑

TextDavinci 63 ± 2.9 * 53 ± 3.4 * 3.65 ± .10 ** 3.14 ± .12 *** 4.35 ± .10 ** 2.91 ± .20 ***

TextBabbage 47 ± 3.3 * 38 ± 3.5 * 3.14 ± .13** 2.27 ± .14* 3.78 ± .15** 2.19 ± .22**

Davinci 55 ± 3.5 46 ± 3.6 2.26 ± .11 ** 1.92 ± .10 * 3.32 ± .14** 1.92 ± .17**

Jumbo 56 ± 2.8 45 ± 3.1 2.30 ± .10** 2.20 ± .10* 3.08 ± .15** 1.66 ± .18*

Table 4: [Crossword puzzles] Users assisted by TextDavinci found their model more fluent, helpful,
and easy and enjoyable to interact with compared to other models, and in general provided more accurate
solutions across all puzzles. However, while users with Davinci and Jumbo performed worst on the
self-reported survey metrics, users with TextBabbage had the worst accuracy, suggesting a disconnect
between first-person preference and automated quality metrics. The numbers indicate means and standard
errors, and the markers denote statistical significance.4
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Figure 8: [Crossword puzzles] Although across all puzzles, users assisted by TextDavinci were significantly
more likely to report the model as helpful (left), they did not always provide significantly more accurate
puzzle solutions (right). In fact, for the NYT-1 puzzle, users assisted by TextDavinci were significantly
less likely to provide accurate solutions, despite being more likely to find the model helpful.

1 Helpfulness perceived by users exceeds accuracy improvements. We measure the perceived
helpfulness of a model based on a post-task survey question with a 5-point Likert scale. Figure 8 shows
that users significantly preferred TextDavinci over other models with respect to helpfulness for all puzzles.
Interestingly, this perception of helpfulness is not necessarily reflected in the overall interaction accuracy:
as shown in Figure 8, assistance from TextDavinci led to statistically significantly higher crossword letter
accuracy only for the SIT crossword puzzle; for the NYT-1 puzzle, users actually performed worse with both
instruction tuned models (TextDavinci and TextBabbage). One hypothesis for this behavior is that these
models are capable of providing confident and fluent misinformation, which can be incorrectly perceived to
be helpful.

Furthermore, the variance in model performance between puzzles strongly suggests that different puzzles’
distributions over clue types may require different capabilities from LMs. In Table 5, we examine performance
across 6 clue category types proposed in Wallace et al. (2022), and find that LMs, and in particular Text-
Davinci, were most useful for clues about factual knowledge, but struggle with wordplay and phrases.

2 Short prompts exacerbate misinformation and toxicity. We observed significant amounts of
misinformation across all models. Misinformation was particularly pernicious using TextBabbage, which
achieved relatively positive responses in user-reported survey responses but the lowest objective accuracy
for puzzle solutions provided by users (Table 4). We include a set of examples of misinformation from
TextBabbage and TextDavinci below. While we believe misinformation played a big role in the difference
between user-perceived and actual performance on the task, the overall effect of misinformation might be
more nuanced: the structure of crossword puzzles provides constraints that may help users more quickly
identify incorrect model suggestions.

18



Published in Transactions on Machine Learning Research (09/2023)

Model Knowledge Definition Commonsense Phrase Wordplay Cross-Reference
(/1) ↑

TextDavinci 0.78 ± .07 0.61 ± .08 0.63 ± .08 0.47 ± .09 0.42 ± .09 0.42 ± .11
TextBabbage 0.60 ± .09 0.47 ± .09 0.51 ± .08 0.28 ± .08 0.35 ± .09 0.25 ± .09
Davinci 0.59 ± .09 0.50 ± .09 0.55 ± .09 0.44 ± .09 0.37 ± .09 0.29 ± .11
Jumbo 0.59 ± .08 0.52 ± .09 0.56 ± .08 0.39 ± .09 0.43 ± .09 0.23 ± .09

Table 5: [Crossword puzzles] Per-model clue accuracy for different clue categories across all puzzles and
users.
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Figure 9: [Crossword puzzles] Quantitative analysis of user accommodation shows that users decrease
framing their prompts as questions over time, similar to the QA task, but gradually increase using prompts
consisting of few short keywords, similar to crossword clue text.

Here, we provide several examples of misinformation observed from the TextDavinci and TextBabbage
models, which we note may be particularly serious due to the “confidence” and high fluency of these model’s
completions.

Prompt: Who won the World Cup in 2018?
TextBabbage: The United States

Prompt: Which US Vice President resigned from office?
TextBabbage: George H.W. Bush

Prompt: which vice president resigned from office
TextDavinci: Richard Nixon

Prompt: Who are the two vice presidents who resigned from office?
TextDavinci: The two vice presidents who resigned from office were Spiro Agnew and
Richard Nixon.

Additionally, we observed instances of toxic content in generated crossword outputs. Explicit responses often
occurred when users, perhaps influenced by the style of crossword clues, provided short keyword prompts:
e.g., “japanese car,” “nick wilde,” or “synonym of delayed.” Short, ungrammatical prompts may more closely
match toxic patterns in the training data (e.g., pornographic video captions or social media comments). Other
safety concerns we observed included generating personal phone numbers and YouTube accounts belonging
to non-celebrities, as well as discussing more sensitive topics. Longer prompts that setup the appropriate
context might mitigate toxic outputs, but its effectiveness merits further study.
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Here are several instances of toxic content in completions we observed. Although toxic content was more
common for Davinci (12) and Jumbo (8), than TextBabbage (5) and TextDavinci (3), we still found serious
examples of toxic content generated from TextBabbage and TextDavinci. Furthermore, models occasionally
generated text that escalated the sensitivity of the player’s prompt, such as in the following examples:

Prompt: who leads a parade

TextDavinci: of the Ku Klux Klan A man who leads a parade of the Ku Klux Klan is a
Klansman.

Prompt: Boxer’s comeback

TextDavinci: In the early 1990s, boxer Mike Tyson was convicted of rape and served
three years in prison. After his release, he made a successful comeback, winning
several bouts.

Prompt: skipping in line called

TextBabbage: for a moment of silence for the victims of the Pulse nightclub shooting a
moment of silence for the victims of the Christchurch mosque shootings a moment of
silence for the victims of the Las Vegas shooting

Such examples, which may not be directly threatening, may still cause psychological harm to users and
should therefore be considered when designing interactive applications built on language models.
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Figure 10: [Crossword puzzles] Cumulative queries to the AI Teammate over time for all users. Differences
in the slope and final height of player trajectories highlight different forms of engagement, with a long-tail
of sustained engagement with the AI Teammate over time.

3 Users demonstrate diverse engagement behavior. The relatively long period of interaction be-
tween users and the AI Teammate in the crossword puzzle task provides an opportunity to closely study
engagement, which we measure in two ways. First, we ask users in the post-task survey to answer “How
enjoyable was it to interact with the AI Teammate?,” and show that users found TextDavinci significantly
more enjoyable to use (for some puzzles, TextBabbage was also rated highly) in Table 4. This suggests that
users tended to enjoy interacting with LMs that were most helpful for the task. However, in Figure 10, we
take a closer look at engagement across the entire 30 minutes task length, and observe a diverse set of user
behaviors: while some users decided to stop querying the AI Teammate after receiving incorrect responses,
others chose to solve clues independently at the start and only query later when stuck. A long tail of users,
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mostly interacting with TextDavinci and TextBabbage, had significant sustained interaction throughout the
course of the puzzle, often experimenting with re-phrasing prompts to elicit more helpful responses. Finally,
unlike with the use of AI solvers that seek to solve a crossword puzzle perfectly (Wallace et al., 2022), some
users found the challenge of figuring out how to best use the AI Teammate itself entertaining:

Davinci Player: This is an enjoyable task that may not be as fun if the AI would give
you all the answers!

4 Users accommodate their behaviors over time. We examine user accommodation, or change in
behavior in response to the AI system, in two ways: qualitatively, through a free-response survey question,
and quantitatively, via measuring the change in query strategies over time. Example responses to the survey
question “Did the way you chose to interact with the AI Teammate change over the course of solving the
crossword puzzle? If so, how?” indicate that users discovered prompting strategies such as extract synonyms,
or phrasing their prompts as declarative statements, over the course of time, as shown below:

Jumbo User: with some of the questions, it was clear to me that I couldn’t even lead
the AI to an answer even giving hints, things like puns are a perfect example of this.
multi-word phrases were another. Where it was the most helpful is in asking for things
like names of crackers or names of clowns or Ford model cars. Factual type things that
didn’t require logic.

TextDavinci User: I tried to use a variety of techniques when asking questions, to
avoid getting misleading answers, and I also learned quickly that I needed to confirm
the responses by asking the same question multiple times (in different ways)

TextBabbage User: after I got some generic unhelpful responses, I realized I had to be
more specific with my questions ... I used AI to confirm some answers instead of
relying on it to come up with answers on its own.

Davinci User: I learned how to get synonyms. Instead of [blank] synonym I put [blank]
thesaurus

We categorize all player prompts with the same taxonomy as the QA task, but with an added “lexical”
category for prompts that include lexical information, such as “letter word” and “begins with”. We observe
that users do indeed gradually decrease the use of questions as prompts for all models (Figure 9a), while
increasing their use of short keyword prompts (Figure 9b). Surprisingly, we additionally observe that edit
distance between the prompt and clue text (typically short keywords) decreases over time, particularly for
TextDavinci. This suggests what users may have natural prior when interacting with a novel LM to use
question-style prompts, but over time can adjust to using prompts more suited to the task depending on the
capabilities of the underlying model.

3.5 Text Summarization
Authors: Esin Durmus, Faisal Ladhak, Mina Lee

Text summarization is a long-standing problem in NLP (Luhn, 1958; Mani, 1999; Spärck Jones, 1999; Nenkova
& McKeown, 2012). Notably, it has been studied in interactive settings for multi-document summarization,
where the users interact with the system to query for additional information to expand upon an initial
summary (Avinesh et al., 2018; Shapira et al., 2021; 2022). In contrast, we focus on human-LM interaction for
single-document summarization, where users interact with the system to correct LM-generated summaries.
In addition, as users correct summaries for a sequence of documents, we provide previous human-edited
summaries as examples to the system to improve future summaries via in-context learning.

Task. We consider the task, where given a document and a model-generated summary, users edit the
summary to be consistent, relevant, and coherent. We randomly select 964 documents from XSum dataset
Narayan et al. (2018) and construct 20 summarization sessions by randomly choosing ten documents per
session without replacement.
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Figure 11: [Text summarization] The system’s state consists of a document, user summary history, user
input, and survey questions. When users take an action (e.g., responding to survey questions and clicking
the “next” button), the system updates the state (e.g., showing the next document and model-generated
summary).

System logic. Figure 11 shows the system state and actions. A summarization system state consists of
a document, user summary history (not visible to users), user input, and survey questions. Users can take
the following actions: pressing a key to modify a model-generated summary, clicking the “next” button,
responding to survey questions, and finishing the session.

One notable difference in the summarization system’s state is that CreatePrompt generates a prompt by
concatenating all the previous document and user-edited summary pairs in the user’s summary history as
part of the prompt. This enables us to study whether an LM can learn from user examples and improve
over time, as well as how users behavior change as the models learn or fail to learn from their examples.

In the summarization system, CreatePrompt creates a prompt by concatenating all previous document and
user-edited summary pairs for in-context learning and the current document to be summarized. For the
very first document, we perform one-shot learning, instead of zero-shot to avoid early user dropout, with the
following example:

Document: Fire crews and police were called to the property in Savile Road, Halifax,
at 05:37 BST and the body of a man in his 50s was found inside. West Yorkshire Police
said he had not yet been identified. Det Insp Craig Lord said: “Inquiries are ongoing
today with West Yorkshire Fire and Rescue Service to determine the cause of this fire
which has sadly resulted in a man losing his life.”

Summary: A man has died in a fire at a flat in West Yorkshire.

For QueryLM, we use temperature = 0.3, max_tokens = 64, stop_sequences = [“***”] as decoding param-
eters and return the first sentence of the model output as a summary.

User study procedure. We recruited 39 crowd workers (or users) on Amazon Mechanical Turk. For each
model, we collected 20 summarization sessions (80 in total), while allowing the same users to participate
multiple times. Upon receiving a model-generated summary for each document, users were asked to edit the
summary to be consistent, relevant, and coherent. To encourage users to pay attention to the three quality
criteria when editing, we asked users to evaluate the consistency, relevance, and coherence of the original

22



Published in Transactions on Machine Learning Research (09/2023)

Model Original Edited Edit distance ↓ Revision ↓ Helpfulness ↑ Improvement ↑
(word) (/5)

TextDavinci 17.70 ± .47 25.08 ± .89 12.38 ± .89 * 3.00 ± .19 4.20 ± .19 * 2.60 ± .29

TextBabbage 20.11 ± .43 32.61 ± .85 16.34 ± .91 * 3.40 ± .17 3.40 ± .28 2.15 ± .21

Davinci 16.96 ± .38 25.05 ± .89 14.19 ± .89 3.25 ± .20 3.80 ± .22 2.10 ± .20

Jumbo 14.75 ± .34 25.33 ± .82 15.12 ± .83 3.30 ± .21 3.30 ± .25 * 2.40 ± .28

Table 6: [Text summarization] Users edited summaries generated by TextBabbage the most, and Text-
Davinci the least. The survey responses for the perceived amount of revision (revision) accurately reflect
the actual edit distance. Overall, users perceived TextDavinci to be most helpful (helpfulness) and better
improves over time (improvement) compared to the other models. The first three metrics refer to the length
of model-generated summaries (original), human-edited summaries (edited), and the Levenshtein distance
between them (edit distance). The numbers indicate means and standard errors, and the markers denote
statistical significance.4

Model Consistent Relevant Coherent
(/100%) ↑ (/5) ↑

TextDavinci 65 ± 4* 4.07 ± .08* 4.70 ± .04 *

TextBabbage 89 ± 3 *** 4.15 ± .06 ** 4.51 ± .06 *

Davinci 57 ± 4* 3.70 ± .09 ** 4.53 ± .05

Jumbo 56 ± 4 * 3.80 ± .07* 4.60 ± .04

Table 7: [Text summarization] Third-party evaluation of model-generated summaries. According
to third-party evaluation, TextBabbage performed the best with respect to consistency and relevance, while
TextDavinci was rated highest for coherence. The numbers indicate means and standard errors, and the
markers denote statistical significance.4

(model-generated) summary and edited summary before and after editing. At the end of a summarization
session, users completed a survey about their overall experience interacting with the system.

Survey questions. We ask per-summary and per-session questions to the users. Summary-level questions
ask consistency, relevance, and coherence of the original and edited summaries, following Fabbri et al. (2021).
Session-level questions evaluated users’ overall perceptions of the summarization system with respect to its
helpfulness and improvement over time. At the end of each summarization session, we asked users the
following questions:

• Helpfulness (5-point Likert): How helpful was having access to the AI assistant as an automated summa-
rization tool?

• Edit amount (5-point Likert): How much did you have to edit the generated summaries?

• Improvement (5-point Likert): The AI assistant improved as I edited more summaries.

Third-party human evaluation. We also asked third-party evaluators to evaluate the consistency, rel-
evance, and coherence of a subset of the summaries generated by LMs. To this end, we randomly sampled
100 documents from our user study and recruited 18 workers (third-party evaluators) on Amazon Mechan-
ical Turk to assess the summaries written for the documents. Each summary was assessed by 3 different
evaluators.

Results. In text summarization, we ask third-party evaluators to evaluate the quality of summaries with
respect to their consistency (i.e., all the information in the summary is inferred from the document), relevancy
(i.e., the summary includes only important information and no excess information), and coherence (i.e., the
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summary organizes the relevant information in a well-structured manner). For first-person perspectives, we
compute edit distance from interaction traces, and consider survey responses for helpfulness and improvement
(i.e., the improvement of AI assistance as more summaries are edited).

1 There is a discrepancy between metrics based on third-party and first-person perspectives.
Table 6 shows that users found summaries generated by TextDavinci to be the most helpful starting point
for editing, receiving the smallest edit distance and revision score along with the highest helpfulness score.
However, from third-party evaluation, original summaries from TextBabbage were rated as the most con-
sistent and relevant among the four models (Table 7). According to the density metric (i.e., the average
length of the extractive fragment to which each word in the summary belongs) Grusky et al. (2018), sum-
maries generated by TextBabbage are much more extractive (16.11) than those by other models (4.19 for
TextDavinci, 4.86 for Davinci, and 4.09 for Jumbo). This observation reveals a discrepancy between the
metrics commonly used to evaluate summarization quality and what users find helpful in interacting with
and improving these models.
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Figure 12: [Text summarization] We observe that users edited less with TextDavinci and more with
TextBabbage over time, suggesting that TextDavinci is better at in-context learning the user’s preferences
for summarization. The plot shows the rolling average of edit distance between original and edited summaries
over ten summaries (1st through 10th summary) across all summarization sessions, with the window size of
2.

2 Users save effort with TextDavinci over time, suggesting it is better at in-context learning.
We are interested in how users behavior change over time as LMs succeed or fail to learn from previous
examples. To that end, we observed how the edit distance between the original and edited summaries change
as a summarization session progresses. Figure 12 shows the change of edit distance across ten summaries in
a sessions. We observe that users had to edit less with TextDavinci over time, whereas they had to edit
more with TextBabbage. The survey response also indicated that users perceived TextDavinci to be best
at improving over time (improvement in Table 6). From this observation, we hypothesize that TextDavinci
is better at in-context learning the user’s preferences for summarization.

3.6 Metaphor Generation
Authors: Frieda Rong, Xiang Lisa Li, Mina Lee

Metaphors are used throughout poetry, journalism, and science education to communicate complex or ab-
stract ideas (Mio, 1997; Lakoff & Turner, 2009; Niebert et al., 2012). Creating metaphors requires divergent,
lateral thinking (Glucksberg & McGlone, 2001; Gero & Chilton, 2018). To help with ideation, prior work
designed metaphor generation tools where users could query multiple times to get suggestions and showed
that these suggestions enabled people to write metaphors that they might never have thought of (Gero &
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State

Actions

(Seed metaphor, User sentence history, 
 User input, System suggestions)

{Press a key to modify user input,
 Click the "get suggestions" button,
 Select a suggestion or dismiss,
 Click the "submit sentence" button,
 Finish the session}

Figure 13: [Metaphor generation] The system’s state consists of a seed metaphor, user sentence history,
user input, and system suggestions. When users take an action (e.g., clicking the “get suggestions” button),
the system updates the state (e.g., showing five model completions as suggestions).

Chilton, 2019; Chakrabarty et al., 2022). In this section, we want to compare degrees in which different LMs
support such ideation process.

Task. Given a seed metaphor, the task is to write metaphorical sentences that evoke the given metaphor in
a limited amount of time. For example, for the metaphor “Time is money,” we might generate the following
metaphorical sentences:

How do you spend your time?
That flat tire cost me an hour.
I’ve invested a lot of time in him.

From Lakoff & Johnson (1980), we select 3 metaphors and their corresponding sentences as in-context
learning examples, and choose 4 thematically diverse metaphors for evaluation. We carefully choose the
evaluation metaphors in order to build a distinct and rich set that covers various complexity levels.

System logic. Figure 13 shows our metaphor system state consisting of a seed metaphor, user sentence
history, user input, and system suggestions. Users can take one of the following actions: pressing a key to
modify user input, clicking the “get suggestions” button, selecting a suggestion from the list of suggestions or
dismiss all of them, and finishing the session. When users click the “get suggestions” button, the system cre-
ates a prompt with three in-context examples and the current user input, invokes an LM in the state, fetches
five outputs with the prompt, and shows the outputs in the popup box in the interface (ShowCompletions).

In the metaphor system, CreatePrompt prepends the following three pairs of metaphor and metaphorical
sentences to the seed metaphor to generate a prompt for few-shot learning.

Metaphor: Argument is war.
Metaphorical Sentence: He attacked every weak point in my argument.

Metaphor: Time is money.
Metaphorical Sentence: Is that worth your while?
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Metaphor: Love is a journey.
Metaphorical Sentence: We’ll just have to go our separate ways.

We carefully chose these metaphors from Lakoff & Johnson (1980) that are relatively simple and direct
without being generic. In our preliminary studies, we did not observe a qualitatively significant difference
with respect to the ordering of these examples. For QueryLM, we use temperature = 0.9, max_tokens = 30,
stop_sequences = [“Metaphor:”] for decoding parameters.

User study procedure. We recruited 32 crowd workers (users) on Amazon Mechanical Turk, and each
of them could work on all four seed metaphors if desired. For each seed metaphor, we randomly assigned
one of the four LMs. In each session, each user was given 10 minutes to come up with as many metaphorical
sentences as they could using the system. In the instructions, we asked users to write sentences that are apt,
specific, and imageable along with examples, following the evaluation criteria in Gero & Chilton (2019). At
the end of the session, users completed a survey about their experience.

Survey questions. In the survey, we asked about users’ perceptions concerning fluency, helpfulness, ease
of interaction, enjoyment, satisfaction, ownership, and willingness to reuse the system on a 5-point Likert
scale, similar to Lee et al. (2022). At the end of each metaphor session, we asked users the following questions:

• Fluency (5-point Likert): How fluent were the responses from the AI assistant?

• Helpfulness (5-point Likert): During this writing session, the system helped me come up with new ideas.

• Ease (5-point Likert): It was easy to write metaphorical sentences with the system.

• Enjoyment (5-point Likert): I enjoyed this writing session.

• Helpfulness (free-form): What kinds of suggestions did you find helpful and why? (Give a concrete example
if possible.)

• Non-helpfulness (free-form): What kinds of suggestions did you find not helpful and why? (Give a concrete
example if possible.)

• Editing (free-form): What were the reasons you made edits, if any, to suggestions from the system?

• Change (free-form): Did the way you interacted with the AI assistant change over the course of the writing
session? If so, how?

• Satisfaction (5-point Likert): I am satisfied with the metaphorical sentences I came up with.

• Ownership (5-point Likert): I feel like the metaphorical sentences are mine.

• Reuse (5-point Likert): I would be willing to use this system again.

• Description (free-form): What adjectives would you use to describe the AI assistant?

• Feedback (free-form; optional): Any feedback or comments?

Third-party evaluation. We also asked third-party evaluators to evaluate whether written metaphorical
sentences are apt, specific, and imageable, following Gero & Chilton (2019). To this end, we recruited 7
crowd workers (third-party evaluators) on Amazon Mechanical Turk to assess the sentences. Each sentence
was assessed by 2 different evaluators.

Results. In metaphor generation, we measure user effort in writing with time and the number of queries
per sentence. Then, we look at user survey responses on helpfulness, satisfaction, ease of interaction, and
willingness to reuse the system. Lastly, we evaluate the quality of metaphorical sentences (based on how
apt, specific, and imageable the sentences are) through third-party evaluation.
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Model Time Queries Acceptance Edit distance
(min) ↓ (#) ↓ (/100%) ↑ (word) ↓

TextDavinci 0.74 ± .07 0.92 ± .07 51 ± 4.4 ** 4.79 ± .52

TextBabbage 0.73 ± .04 0.97 ± .09 56 ± 3.6* 6.43 ± .73

Davinci 0.60 ± .05 0.77 ± .06 71 ± 4.1 ** 4.83 ± .60

Jumbo 0.75 ± .06 1.03 ± .11 68 ± 4.3 * 5.59 ± .54

Table 8: [Metaphor generation] User effort in writing a metaphorical sentence. Users spent the
least effort writing metaphorical sentences with Davinci, taking least time and making the fewest queries
among the four models. The same model achieved the highest acceptance rate. However, conditioning on the
acceptance of suggestions, users edited the least amount (edit distance) when working with suggestions from
TextDavinci. The numbers indicate means and standard errors (for writing one metaphorical sentence),
and the markers denote statistical significance.4

Model Helpfulness Satisfaction Ease Reuse
(/5) ↑

TextDavinci 4.21 ± .18 4.42 ± .14 3.68 ± .22 4.42 ± .18

TextBabbage 3.64 ± .21 4.14 ± .20 3.82 ± .23 4.39 ± .17

Davinci 4.17 ± .23 4.33 ± .20 3.94 ± .25 4.61 ± .14
Jumbo 4.13 ± .24 4.40 ± .13 3.87 ± .24 4.47 ± .19

Table 9: [Metaphor generation] User survey responses. Overall, users perceived TextDavinci to be the
most helpful and satisfied with the results from working with the model. However, users perceived Davinci
to be the easiest to work with and were willing to reuse the model the most. Overall, perceived helpfulness
of models and user satisfaction had a strong positive correlation (r = 0.95), while ease of interaction and
users’ willingness to reuse the system were also positively correlated (r = 0.74). The numbers indicate
means and standard errors. For these outcomes, no results were found to have statistical significance using
a Tukey-Kramer test.

1 Users are more willing to reuse models that require less effort. Table 8 shows that users needed
the least effort when working with Davinci, given that they took the least time and made the fewest queries.
Despite the fewest number of queries, and therefore fewest suggestions, the acceptance rate for suggestions
was the highest for Davinci and the final metaphorical sentences were rated most highly by third-party
evaluators (Table 10). From these observations, we hypothesize that users could query a few times and
quickly find acceptable sentences generated by Davinci. According to survey responses, users also perceived
the same model as the easiest to interact with and were most willing to reuse the system when the model
was used.

2 More satisfying user experiences may not correlate with the quality of outputs. On the
other hand, users found TextDavinci to be most helpful and satisfactory according to the survey responses
(Table 9). However, third-party evaluators considered sentences written with the same model to be the worst
among the four models (Table 10). Although it is hard to draw strong conclusions due to the relatively small
size of users and third-party evaluators, one possible explanation is that users’ value judgment for satisfaction
and reuse may depend on different factors (e.g., helpfulness and ease, respectively) based on the context.

4 Related Work

We first review the evaluation of LM-based language generation systems while distinguishing the evaluation
of model completions and interaction traces. Then, we briefly recount specialized interactive systems other
than LMs. In addition, we provide related work for the five tasks we studied in this paper in Section B.
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Model Apt Specific Imageable Overall
(/100%) ↑

TextDavinci 75 ± 4.0 78 ± 4.6 75 ± 4.6 78 ± 3.4
TextBabbage 75 ± 4.0 79 ± 3.7 70 ± 5.0 78 ± 3.0

Davinci 90 ± 3.3 90 ± 3.3 83 ± 5.3 88 ± 3.0
Jumbo 77 ± 5.5 83 ± 5.3 72 ± 5.7 84 ± 3.9

Table 10: [Metaphor generation] Third-party evaluation on the quality of metaphorical sen-
tences. The numbers indicate means and standard errors. These metrics were not found to exhibit any
statistically significant differences using a Tukey-Kramer test at the p = 0.05 level. Conditioning on the use

Evaluation of model completions. Evaluation has a long history in NLP (see Spärck Jones & Galliers,
1995; Liberman, 2010). Traditionally, evaluations for generative systems have centered on specific tasks: for
example, WMT for machine translation (WMT, 2006), TIPSTER SUMMAC for text summarization (Mani
et al., 1999), Dialogue System Technology Challenges (DSTC) (Gunasekara et al., 2020) and Alexa Prize
Challenges (Hakkani-Tür, 2021; Gottardi et al., 2022) for dialogue systems. More recently, efforts like GEM
(Gehrmann et al., 2021) and GEMv2 (Gehrmann et al., 2022) have consolidated and standardized practices
for natural language generation across many tasks.

For LMs, we have seen an analogous trend: LMs were initially evaluated for the probabilities they assigned to
unseen corpora like the Penn Treebank (Marcus et al., 1999), One Billion Word Benchmark (Chelba et al.,
2013), and WikiText-103 (Merity et al., 2016). However, as LMs have functioned as foundation models
(Bommasani et al., 2021) underpinning myriad downstream systems, evaluation practices have shifted to
consolidated evaluations for many downstream tasks (Wang et al., 2019a;b; Kiela et al., 2021; Liang et al.,
2022). We emphasize that across all the benchmarks used to evaluate generation systems and/or LMs, the
prevailing norm has been non-interactive evaluation with few notable exceptions (e.g., dialogue benchmarks).

Evaluation of interaction traces. While human-LM interaction has been studied within NLP in specific
domains, such as dialogue (Hu et al., 2021; Thoppilan et al., 2022; Smith et al., 2022) and story generation
(Akoury et al., 2020; Clark & Smith, 2021), these works only consider some aspects of user interaction.
Namely, while they target the interaction process (e.g., dialogue history), they often foreground quality
and third-party evaluations, with less consideration of preference and first-person experiences. In contrast,
our evaluations cover a broader range of evaluation dimensions by working with richer user interactions
(e.g., users’ keystrokes to type in prompts, button clicks for querying systems, the appearance of a popup
box for showing completions to users, and users’ cursor movements to edit after getting completions) along
with timestamps in interaction traces. In the field of Human-Computer Interaction (HCI), interaction traces
have been used to reason about the helpfulness of completions (Roemmele & Gordon, 2018; Clark et al.,
2018), the time that humans take to work with given completions (Buschek et al., 2021), and the language,
ideation, and collaboration capabilities of the systems (Lee et al., 2022). Our goal is to study the process
of human-LM interaction through interaction traces and compare interactive performance to non-interactive
performance.

Interactive systems. Human interaction with user-facing intelligent systems has been explored in many
disparate communities (see Bommasani et al., 2021, §2.5). Examples include work in information retrieval
and search engines (Salton, 1970; Belkin et al., 1982; Kuhlthau, 1991; Ingwersen, 1992; Marchionini, 2006;
Micarelli et al., 2007; White & Roth, 2009; Kelly, 2009; Croft, 2019), recommender systems (Goldberg
et al., 1992; Konstan, 2004), voice assistants (Kamm, 1994; Cohen et al., 2004; Harris, 2004), human-robot
interaction and assistive technologies (Hadfield-Menell et al., 2016; Mataric, 2017; Xie et al., 2020; Jeon
et al., 2020), and broadly as a means for user creativity and expression (Fede et al., 2022; Lee et al., 2022).
Relative to these works, we study how the unique aspects of LMs mediate user interaction with language
generation systems.

When interaction has been consider in prior work, many works understand interaction to be a feedback
signal for model improvement. Examples include work in the active learning (Settles, 2012) and language
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learning (Wang et al., 2016) communities, with ter Hoeve et al. (2021) specifically proposing interactive
language modeling to improve learning. In contrast to these learning-from-interaction settings, while we do
consider the role of in-context learning in text summarization (Section 3.5), our focus is on the broader user
experience with LMs (Yang et al., 2019).

5 Discussion

Benchmarking LMs with human users in interactive settings introduces both old and new challenges. In this
section, we share the challenges and limitations we encountered while designing our tasks and systems as
well as working with users. Given these experiences, we discuss potential solutions and paths forward.

5.1 General Challenges in Human Evaluation

Cost. Compared to automatic evaluation, human evaluation requires costly human labors, which can be
one of the biggest challenges for researchers to adopt human-centric evaluation approaches. Recently, there
have been effort to leverage LMs to approximate human judgement, or more generally, simulate human
behaviors (Liu et al., 2023; Dubois et al., 2023; Park et al., 2023). It would be interesting to study what
kind of human behaviors can be modeled by LMs and how much coverage LMs can have over diverse
human preferences in various contexts, which we believe is one viable, cost-effective way to extend this work.
However, we emphasize that we need to do the evaluation with human users at least once to learn what the
ground truth is and see which automatic metrics correlate with the real user evaluation.

Reproducibility. According to Belz et al. (2023), many papers do not specify fundamental details
such as the number of users, details of training, instructions, and set of model outputs, thereby severely
hindering their reproducibility. We provide details on our methodology, data collection processes, and
experimental design in Section 3 and C, and make our code and data publicly available at https:
//github.com/stanford-crfm/halie. We hope this information facilitates other researchers in replicating
our study, building upon our findings, and doing additional analyses.

Subjectivity. Human judgments are inherently subjective and can vary among different annotators
(i.e., annotator bias). The interpretation of task instructions (i.e., instruction bias), evaluation criteria, and
the perception of quality can differ, leading to inconsistencies in the decision-making process (Ethayarajh
& Jurafsky, 2022; Parmar et al., 2023). One way to mitigate this variability is to perform within-subject
studies. However, to compare four models, each user would need to repeat an experiment four times, which
significantly increases the workload. For instance, each experiment (or “HIT” in Amazon Mechanical Turk)
in text summarization asks a user to evaluate and edit a model summary 10 times; with four models, it will
be 40 times (instead of 10), taking two hours (instead of 30 minutes) in total. Therefore, to streamline our
experiments, we made use of between-subject studies as a practical choice, while recruiting a large number
of users to reduce the effect of individual differences whenever possible and employing statistical analyses to
ensure the robustness of our findings (Appendix D).

5.2 General Challenges in Interactive Evaluation

Study design. User study design requires researchers to account for individual difference: we empirically
observe significant heterogeneity in how users qualitatively experience and interact with LMs. Due to
these individual effects, especially when the number of recruited users is not especially large, it is generally
desirable for each user to interact with most/all models (i.e., within-subjects study design). Consequently,
this would requires the set of models themselves to be decided upon in advance. This is in contrast to
many non-interactive settings, where model selection and evaluation do not have much dependency on each
other. If each user is expected to interact with multiple models, sequential effects need to be controlled for
(e.g., through the randomization of model order across users). Otherwise, results may be subject to undesired
confounding from the novelty effect (i.e., initial performance improvement due to the increased interest in
the new technology) and user adaptation (i.e., performance improvement over time due to the increased
familiarity of the technology). If possible, we recommend recruiting a large number of diverse users to
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allow for more flexibility in selecting which models to evaluate and to alleviate concerns of sequential effects
(e.g., by having each user only interact with one model).

Latency. The amount of time an LM takes to generate completions, or latency, can significantly influ-
ence human-LM interaction and how humans perceive models. Guidelines in HCI research recommend that
interactive systems respond within 0.1 seconds to appear instantaneous and within 1 second to avoid inter-
rupting the user’s flow of thought (Miller, 1968; Card et al., 1991; Nielsen, 1994). The four models in our
experiments had similar latency in an acceptable range: on average, it took 0.12s for TextDavinci, 0.12s
for TextBabbage, 0.36s for Davinci, and 0.48s for Jumbo to generate a completion. With these models,
we did not find any significant preference toward faster models. However, we did have to exclude some
models that were simply too slow at the time of experiments (e.g., 50x slower than Davinci). Meeting these
latency standards can be a challenge, exacerbated by the growing scale of existing LMs. With that said, the
observed latency can be largely determined by the factors beyond model scale alone (e.g., allocated compute
resources, query optimization, API support) as observed by Liang et al. (2022, §4.9). Overall, we underscore
that latency is crucial to positive user experience for deploying human-LM interaction in the real world.

Harms. LMs are prone to generating toxic, biased, or otherwise undesirable text (Gehman et al., 2020).
When users are exposed to this text via interaction, this can cause serious psychological harm. In our exper-
iments, we observe that toxic content can be elicited by seemingly innocuous prompts, even for instruction-
tuned models designed to discourage this behavior. For example, a natural prompt constructed during a
crossword puzzle interaction resulted in the following appalling response from TextBabbage:

User: What is a young pigeon called?
System: A young pigeon is called a n****.

We emphasize that in this setting the user’s prompts were benign, a departure from prior work that
specifically designs prompts to elicit unsafe behavior (Ganguli et al., 2022; Perez et al., 2022). More surpris-
ingly, it was extremely easy to reproduce the completion even with slightly different prompts and decoding
parameters (with TextBabbage as of June 2022). In our case, where the primary goal is to evaluate LMs, strik-
ing the right balance between comprehensive evaluation and stringent safeguards poses a unique challenge.
While our experiments include a mild measure (i.e., blocklist) to mitigate potential harms, we acknowledge
that a more extensive approach could be pursued in future work, and should be pursued for productionized
applications (Kirk et al., 2022). Given the evolving nature of both NLP research and societal considerations,
continued exploration of enhanced safeguards should be a collective effort within the community.

5.3 Limitations Specific to Our Experiment Design

Task selection. In this work, we selected five tasks to highlight different aspects of interaction. These
tasks range from goal-oriented to open-ended and cover the common usages of LMs reported by Ouyang
et al. (2022, Table 1), such as generation (45.6%), open QA (12.4%), brainstorming (11.2%), chat (8.4%),
and summarization (4.2%). However, given the generality of LMs, there are a vast number of tasks and
domains (e.g., story generation, copywriting, etc.) that can be considered. One could also imagine taking
any non-interactive task and turning it into an interactive version (similar to what we did with question
answering), or creating non-traditional tasks to explore new ways of using LMs (similar to what we did with
metaphor generation). While we conducted extensive experiments and evaluations on the selected tasks as
case studies to demonstrate the usefulness of our framework, future work can further extend it to other tasks
and novel ways of interacting with LMs.

User interface design. Designing user interfaces (UIs) with a strong focus on user needs and preferences
is essential to creating positive user experiences. Prior work has shown how design elements (e.g., who
initiates interaction, where suggestions are presented, and how many suggestions are shown at a time)
can have significant impact on the dynamics of human-LM interaction (Clark et al., 2018; Buschek et al.,
2021; Ippolito et al., 2022; Dang et al., 2023). In our experiments, however, we decided to follow the most
standard design and practice for UI design whenever possible and leave the exploration of UIs to future
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work. Concretely, we used an existing dialogue interface (Paranjape et al., 2020) and crossword puzzles
interface from Down for a Cross (an open-source software for the multi-player crossword puzzles) almost as
is, while minimally adopting the interface from Lee et al. (2022) for question answering, text summarization,
and metaphor generation. Before user studies, we tested out our interfaces with small in-person pilots and
iterated on the design, mainly to resolve any confusion users had with the task and functionality. By focusing
on the performance gap between LMs given the same interface, we were able to reason about the difference
between their non-interactive performance and interactive performance. Future work may investigate how
to design UIs that better leverage these strengths, and perhaps narrow down the gap of the different models
through the design.

Model selection. The choice of LMs in our experiments is susceptible to rapid technological advancements.
Since we conducted our experiments, there have been many new models over the last year. In light of
these newer models, we acknowledge the nuanced nature of our findings. Particularly, as chat interfaces
have grown significantly in popularity, this dominance has prompted adaptations that prioritize interactive
aspects, resulting in a more aligned optimization goal than before. Consequently, we speculate that the
gap between non-interactive and interactive performance might have been partially bridged due to these
adaptations. Future work can investigate the implications of these newer models on our research questions
and further contextualize our findings in this ever-changing landscape. Regardless, we believe the validity
of our research questions and conclusions remain, and the significance of our work lies in its ability to offer
a conceptual framework and insights that extend beyond the specific models under consideration.

System logic design. Similar to UI design, the choice of system logic undoubtedly influences the nature
of the human-LM interaction for any given LM. In particular, recent work has shown that prompts and
even the order of examples presented in the prompts can significantly affect the performance of LMs (Brown
et al., 2020; Wei et al., 2022; Lu et al., 2022). In this work, we chose a simple and generic prompt per
task and used it for all models, which corresponds to CreatePrompt in Algorithm 1 (see Section 3 for exact
prompts we used). Likewise, we chose a set of decoding parameters per task and applied it to all models,
which corresponds to QueryLM in Algorithm 1. Before in-person pilots and user studies, we tested out the
four models with the chosen prompts and hyperparameters ourselves to ensure our selection did not unfairly
penalize specific models. However, given the sensitivity of these models, we expect that different prompt
design and decoding parameter choices can result in different outcomes and interaction behaviors. Thus,
there is also ample opportunity to explore other system logics and understand their impacts on human-LM
interaction.

User recruitment. Due to the large number and size of user studies we ran, we recruited crowd workers
from Amazon Mechanical Turk to recruit users in a timely and scalable manner (see Section C for details
on crowdsourcing). This may have influenced the results due to a potentially uniform level of expertise
among users, and more importantly, different incentives compared to those of actual users in the wild.
Therefore, it is important to take into account that the findings presented here may not directly generalize
to actual users. Moreover, each task’s user study was designed independently, resulting in some tasks having
between-subjects study design while the others having within-subjects study design. These decisions were
made based on the design of each HIT (Human Intelligence Task; a single, self-contained, virtual task) which
determined expected time commitment and difficulty of the task for users, thus affecting our recruitment
strategy. We did not prefer either type of study design and acknowledge that both have associated strengths
and weaknesses. Whenever possible, we tried to recruit a large number of users (especially for social dialogue,
question answering, and crossword puzzles) and performed random assignment of users to groups to provide
some assurance that the results are well-calibrated across different groups.

5.4 Future Work

Accommodation. One important aspect of human-AI interaction to account for is user accommodation, or
the ability of users to adapt their behavior as they learn more about the strengths and weaknesses of a system
and the underlying model. For QA and crossword puzzles, we asked users to answer the survey question
“Did the way you chose to interact with the AI Teammate change over time? If so, how?.” Oftentimes,

31

https://downforacross.com/


Published in Transactions on Machine Learning Research (09/2023)

user accommodation reflected underlying properties of the models—for example, in QA, prompts phrased
as questions yield successful outputs mainly from TextBabbage and TextDavinci, so users assisted with
Davinci or Jumbo were more likely to switch to declarative, “fill-in-the-blank” style prompting strategies.
Additionally, for some scenarios, we studied user accommodation quantitatively by either measuring how
the edit distance or query strategies of user prompts changed over time. We found that task framing can
also affect accommodation—while for QA, users engaged in more reformulation over time and became less
inclined to copy the provided question verbatim, for crossword puzzles, users became more likely to copy
clue text over time, perhaps due to later relying on the LM to understand unfamiliar clue texts. Because
of these results, we believe future work should closely study more long-term interactive scenarios, where the
time it takes a user to develop familiarity with a tool is outweighed by the overall interaction period.

Lasting impact. In our work, the emphasis is on the short-term interaction of users with LMs: we evaluate
this localized experience. However, human-LM interaction, and human-AI interaction more broadly, can have
more lasting and longitudinal impacts on users. In the context of LMs specifically, we expect interactions with
LMs may influence human writing practices, opinions and beliefs, broader perception of language technology
and AI systems, and potentially many other aspects of human experience that are mediated by language.
That is, we expect these effects could persist to environments where LMs are not present. Existing evidence
includes the works of Jakesch et al. (2023), which finds interacting with an opinionated language model
influences written opinions and reported attitudes, and Wenker (2022), which finds that machine agency
affects the content users write. More established evidence for other language technologies, such as search
engines, shows users’ knowledge, beliefs, and attitudes can be significantly altered by sustained interaction
with these technologies (Allam et al., 2014). Overall, especially given the rapid deployment of LMs, we
recommend that future work should actively monitor how these interactions come to affect human language
practices (e.g., writing, reading, listening, speaking), culture, well-being, and broader society.
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B Related Work

B.1 Social Dialogue

Dialogue systems leverage the power of natural language to promise a highly natural mode of interaction
with machines in a wide range of domains ranging from information retrieval, transactions, entertainment,
and even informal chit-chatting (Glass, 1999). LMs pose an interesting opportunity to boost the development
of such systems given their generative capacity and the breadth of knowledge encoded in them that could
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enable dialogue systems to be able to react even in open domains. Although we do not evaluate them in this
paper, due to time and technical constraints, recent models such as BlenderBot (Shuster et al., 2022) and
ChatGPT (OpenAI, 2022) demonstrate significant advancements in this field. Still, achieving a successful
dialogue between the users and machines is difficult owing to the frequent rise of unmatched expectations
of the systems’ capabilities (Clark et al., 2019) and the difference in conversational styles between the
interlocutors (Thomas et al., 2020). Additionally, models trained on human-human conversations learn to
replicate not only desirable, but also undesirable patterns of behavior (Xu et al., 2020). As such, evaluation of
their interaction is important as we build the next generation of dialogue systems powered by large language
models.

Our evaluation of dialogue systems is focused on open-domain contexts, in which the conversational agent is
tasked with continuing a dialogue with the user in a hypothetical scenario (Langevin et al., 2021; Thoppilan
et al., 2022; Smith et al., 2022). Using specific scenarios, rather than allowing users to select any option, has
several benefits. First, it encourages the preservation of privacy, by giving the user something to talk about
beyond their own personal experience. Second, it enables greater standardization of results, since variance
due to selected topic is reduced (Ji et al., 2022). Third, using particular scenarios is consistent with past
work in dialogue evaluation (Smith et al., 2022). Although this approach is less naturalistic than giving
users an open-ended interface, we believe that the benefits outweigh the costs.

However, there is a lack of standard approach for evaluating dialogues in such contexts (Deriu et al., 2021;
Huang et al., 2020; Roller et al., 2021). It is difficult to standardize dialogue evaluation, since for any context,
there are many possible appropriate responses (Ji et al., 2022). One common approach to this problem is
evaluating the quality of dialogues via automated metrics, which promise fast and reproducible means to
understanding dialogue systems’ performance. However, a growing literature suggests that such metrics can
be limiting in capturing the breadth of possible interactions that could happen in an open domain dialogue
(Liu et al., 2016). Additionally, they have been shown to have little correlation with human judgments (Liu
et al., 2016; Ji et al., 2022). Unlike task-oriented dialogues, there is not a clear goal that is either reached or
not, so evaluating social dialogues relies on traits that are inherently more subjective.

Prior work employed crowd workers as well as experts (e.g., a group of researchers in the same institution as
where the study took place, or those trained in dialogue evaluations (Deriu et al., 2020 2020; 2021) to evaluate
the quality of dialogue systems, with each group of evaluators offering their unique strengths. Our study
employs crowd worker-based evaluation of dialogues as scalability and reproducibility are key considerations
for benchmarking tasks.

B.2 Question Answering

Question answering is a popular task within NLP that is often evaluated with large, non-interactive datasets
of question-answer pairs, sometimes accompanied with additional context Rajpurkar et al. (2016); Joshi
et al. (2017). The most closely related work to ours is Bowman et al. (2022), which evaluates LM-assisted
QA on the MMLU dataset. Whereas Bowman et al. (2022) evaluate interactions between a single LM and a
small group of five well-trained users, we consider interactions between four different LM’s and hundreds of
users. In addition to replicating the finding of Bowman et al. (2022) that human-LM interaction generally
outperforms a human or LM alone, we are able to observe statistically significant patterns in the relative
performance of human interactions with different LM’s. Other recent efforts to design interactive evaluation
for question answering, such as Kiela et al. (2021); Bartolo et al. (2020), largely aim to reduce test-set
overfitting by asking humans to adversarially identify edge cases, rather than considering how they would
naturally choose to interact with models.

To account for more naturalistic ways humans use these systems, researchers have built datasets from
actual human-generated search queries, such as MS-MARCO (Nguyen et al., 2016) and NaturalQuestions
(Kwiatkowski et al., 2019), thereby capturing a more realistic distribution of the information users would
naturally seek from an intelligent assistant. However, while these datasets are useful for measuring model
performance in the context of realistic user prompts for potential downstream applications, they do not
provide information about the quality (e.g., reported satisfaction) of a user’s interaction over multiple queries.
Furthermore, evaluations on such datasets do not account for the ability of humans to adapt, such as changing

46



Published in Transactions on Machine Learning Research (09/2023)

their query styles over time (i.e., query reformulation) or adjusting how they trust and use system outputs
in decision-making.

Query reformulation refers to the iterative process of expressing our requests differently to improve system
utility, and arises commonly in the context of search engines; for example, Teevan et al. (2007) found
that up to 40% of Yahoo search log queries in a year were reformulations. A significant body of research
from the information retrieval community focuses on deriving taxonomies for query reformulation based on
analyzing search logs, including lexical-based (e.g., adding words) and more general reformulation strategies
(e.g., specialization) (Huang & Efthimiadis, 2009; Lau & Horvitz, 1999). These works have inspired several
methods for automatic query reformulation for inferred user goals, including using context-sensitive term-
substitutions and reinforcement learning to optimize for retrieved document recall (Wang & Zhai, 2008;
Nogueira & Cho, 2017).

Further research has focused on varying querying habits across time and user populations. For example,
Pang & Kumar (2011) found, perhaps surprisingly, that the use of natural language question-queries (e.g.
starting with “What”) has increased over time, despite requiring more user effort, perhaps due to an increase
in novice users unfamiliar with formulating keyword-based queries White et al. (2015). Additional research
has also demonstrated a strong effect of a system’s interface on users’ query formats (Spink & Ozmultu,
2002), and that long-term users are more likely to interact longer with a search engine during a session
with more complex queries Liu et al. (2013). While effective querying strategies for large language models
(e.g., “prompt hacking”) have been popularly discussed, to the best of our knowledge we are the first to
study these questions in the context of real user data from an LM-based interactive system.

Finally, our task allows us to study how the lack of factuality and faithfulness of outputs from different
LMs influence user trust and behavior Jacovi & Goldberg (2020). Several recent works on interpretability
and human-AI collaboration have studied the effects of model explanations on human decision-making in
classification settings Lakkaraju et al. (2019) finding that explanations that make model outputs appear
more justifiable can make users trust even incorrect outputs more (Bansal et al., 2021b). Furthermore, they
found that human-AI collaborative contexts place an additional cost of verification of model outputs on users
Bansal et al. (2021a) that, if needed frequently, may discourage future model use. Our task allows us to
assess the degree to which efforts to align LMs to human preferences (Ouyang et al., 2022), as well as factors
such as fluency and tone, can impact user trust over time in a collaborative task.

B.3 Crossword Puzzles

Here we discuss interactive crossword puzzle solving in the broader setting of human-AI collaborative games.
We refer readers to Section B.2 for related work on shared aspects with the interactive question answer task.

Solving crossword puzzles has long been a challenging task for designing more complex AI systems (Ginsberg,
2014; Littman et al., 2002; Wallace et al., 2022; Rozner et al., 2021). However, the increased success of modern
text generation models and their ability for interaction with lay-people has sparked further development in
several AI-based language games, including text-adventure games and AI Charades (Urbanek et al., 2019;
Frans, 2021). Cooperative games can help highlight differences between AI-AI and human-AI benchmarking,
as shown in Chattopadhyay et al. (2017). Furthermore, they differ from other human-AI collaborative
contexts as the goal of the collaboration is not simply completion of a task, but also a general sense of user
engagement and enjoyment, which in turn depend more on more abstract properties of LM outputs. For
example, players of the text adventure game in Ammanabrolu et al. (2019) found that the creativity of an
AI-generated game setting was anti-correlated with its coherence.

Human-AI collaborative games also serve as a rich test-bed for understanding human’s mental models of an
AI system; for example, humans performing poorly in the cooperative word guessing game in Gero et al.
(2020) tended to overestimate the knowledge capabilities of the collaborating AI agent; another user study
found that users were more likely to believe their teammate was an AI if it failed to adapt their behavior
(Ashktorab et al., 2020). However, a notable risk of such applications is that the greater agency provided to
human users in steering the overall interaction with the AI may result in exacerbating risks of LMs such as
toxic outputs—particularly harmful if such responses were unexpected. One notable example is AI Dungeon

47



Published in Transactions on Machine Learning Research (09/2023)

(Hua & Raley, 2020), where player inputs resulted in sexually inappropriate outputs involving children.6 We
observe similar behaviors in our system, as described in the results (Section 3.4).

B.4 Text Summarization

Text summarization is a well established research direction in NLP (Mani, 1999; Spärck Jones, 1999; Nenkova
& McKeown, 2012), where the goal is to compress the salient information in the source document into a
coherent and fluent summary (Peyrard, 2019). The advent of pre-trained large LMs has led to dramatic
improvements in summarization capabilities, particularly in terms of coherence and fluency (Lewis et al.,
2020; Zhang et al., 2020). However, generated summaries are far from perfect and tend to contain information
that is not supported by the original document (Cao et al., 2018; Durmus et al., 2020; Maynez et al., 2020;
Pagnoni et al., 2021).

Given the faithfulness issues, recent work has focused on methods to improve the consistency of generated
summaries with respect to the input document. Prior work has largely focused on improving fine-tuned
models with approaches such as reducing noise incorporated from training data (Nan et al., 2021b; Kang &
Hashimoto, 2020; Goyal & Durrett, 2021), adding losses aimed at improving consistency (Nan et al., 2021a;
Cao & Wang, 2021), and learning discriminators to select from set of candidate summaries Chen et al. (2021);
Ladhak et al. (2022). In contrast, our work focuses on summarization via in-context learning with an aim
to understand the role of interaction in improving the quality of generated summaries.

Interactive summarization has been studied by prior work in the context of multi-document summarization,
where users interact with the system to query for additional information to expand upon an initial summary
(Shapira et al., 2021; 2022; Avinesh et al., 2018). In contrast, our work focuses on single-document sum-
marization, where users interact with the system in order to correct the summaries to provide feedback to
improve the system.

Our work is closely related to a line of recent work that looks at improving the performance of LMs through
human feedback by fine-tuning LMs using reinforcement learning (Ziegler et al., 2019; Böhm et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022) or natural language feedback (Campos & Shern, 2022). In contrast,
our work has humans interact with the model and directly edit generated summaries to improve quality.
Rather than fine-tuning the LM, the edited summaries are incorporated into the prompt for in-context
learning for future interactions.

B.5 Metaphor Generation

Metaphor generation has been studied in the literature for creative writing applications and NLP. Here, we
distinguish and introduce works that focus on implementing an automatic pipeline for producing metaphor-
ical language and works that emphasize human engagement in the creative writing process.

Computational approaches to generating metaphorical language build off of conceptual metaphor theory
Lakoff & Johnson (1980), which describes metaphors as mappings between source and target concepts.
Approaches to generate metaphorical language can operationalize this framework by training LMs to replace
literal phrases in an originally non-metaphorical sentence with figurative ones from the source (Chakrabarty
et al., 2021; Stowe et al., 2021b;a), or by searching for connections from the source to the target concept out
of a pre-existing knowledge graph of concepts (Gero & Chilton, 2019). More recent works compare the use
of pipelines that focus on specific keywords to our strategy of few-shot prompting for generating figurative
language in the context of puns (Mittal et al., 2022) and find that decomposing the generation task improves
successful generation, although surprisingly the few-shot only approach achieves the highest coherency.

Since the quality of creative writing is subjective and difficult to capture by automatic metrics alone, the
evaluation of metaphors typically involves human annotation to assess the effectiveness of the metaphorical
connection and figurative aspect of the generation. For instance, works related to lexical substitution or
paraphrasing assess metaphoricity to determine how well the modified sentence evokes figurative imagery,
while checking that the intended meaning is present (Chakrabarty et al., 2021; Stowe et al., 2021b;a), whereas

6https://www.wired.com/story/ai-fueled-dungeon-game-got-much-darker/
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Gero & Chilton (2019) consider more precisely how well the identified metaphorical connection fits the seed
metaphor, or mapping, in both aptness and specificity.

The use of computational metaphor generation to support creative writing has been explored in Gero &
Chilton (2019), where users could try out different seed metaphors for a target word and use the system
to generate metaphorical connections to inspire their own writing. In such settings, the diversity that the
system enables in cooperation with the human user is important: “creative writers do not want tools that
will make their writing sound the same as others” (Gero & Chilton, 2019). They find that their system
enables at least as much diversity as writing alone does. Another aspect that becomes important in using
a system to help generate metaphorical connections is the sense of ownership that the human writer has
over the written result. The same work finds that, depending on the mental model that the user has of
the system, the interpretation of ownership can vary from feeling usurped by an overly involved partner to
treating the system similarly to some other computational aid, such as a calculator.

C Crowdsourcing Details

Our experiment was reviewed and approved by the institution’s Institutional Review Board (IRB). Before
the study, all participants read and agreed to a consent form that included risks, payments, participants’
rights, and contact information.

Qualification. We recruited participants through Amazon Mechanical Turk, where we required that they
had a HIT approval rate greater than 97%, were located in the United States, and had greater than 10000
approved HITs.

Payment. The payment was determined to be around $18 or more per hour, which exceeds the minimum
wage in the United States. For data collection, we paid $3 for social dialogue (10 minutes), $5 for question
answering (15 minutes), $10 for crossword puzzles (30 minutes), $10 for text summarization (30 minutes),
and $4 for metaphor generation (10 minutes). For third-party evaluation, we paid $0.35 for evaluating one
document and summary pair on three criteria and $0.15 for evaluating one metaphorical sentence on three
criteria.

C.1 Social Dialogue

Instructions. We provided users with both general and dataset-specific instructions.

General instructions

You are invited to participate in a research study on understanding human-chatbot
communication and evaluating the performance of chatbots on certain tasks. Our goal is
to learn how to build chatbots that can talk to people naturally, much like another
human being does. You will chat with a chatbot for around 10-15 minutes. The chatbot
is designed to discuss a range of social topics (for example music or travel) and you
are encouraged to converse with it naturally, as you would with a friend. For example,
you may ask questions or introduce your own topics. Once you have completed your
conversation, you will be asked to answer feedback questions about the interaction.
Data from responses and chatlogs will be analysed in deidentified format and extracts
edited to preserve confidentiality may be featured in any published work resulting out
of the study.

CommonsenseDialogues task instructions

When you start the chat, you will be given a scenario to discuss. For example, you may
have the scenario “I lost my keys this morning. It was very stressful.” During the
conversation, please talk as though you have experienced the scenario given. For this
scenario, you might say something like “I had such a stressful morning! I couldn’t
find my keys anywhere.” The goal of this task is to evaluate how well the chatbot
understands common social scenarios.
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EmpatheticDialogues task instructions

When you start the chat, you will be given a scenario to discuss. For example, you may
have the scenario “I lost my keys this morning. It was very stressful.” During the
conversation, please talk as though you have experienced the scenario given. For this
scenario, you might say something like “I had such a stressful morning! I couldn’t
find my keys anywhere.” The goal of this task is to evaluate how well the chatbot
communicates empathetically.

Interface. See Figure 3.

C.2 Question Answering

Instructions. Users were given a description of the task and asked to answer questions as accurately as
possible. We also informed users that for some questions, they will have the option to query an AI assistant.

Before users start the question-answering experiment, we walk them through an example multiple-choice
question and illustrate two examples of unsuccessful prompts and one example of a successful prompt.
These examples were created from initial pilot experiments. The example question we use is:

What is another name for the camelopard?

A. Circus
B. Giraffe
C. Cantaloupe
D. Oasis

The unsuccessful examples illustrate how prompts result in inconclusive answers from the model. The first
unsuccessful example is:

Prompt: What is another name for the camelopard?

Completion: A: The camelopard is a cross between a camel and a leopard. The
camelopard is a cross between a camel and a leopard.

The second unsuccessful example is:

Prompt: Another name for the camelopard is

Completion: the “camel-cat.” which is a more common name in the United States.
References External links Category: Mammals described in 1828 Category: Mammals of
the Middle East Category: Mammals of the Arabian Peninsula

The successful example illustrates how a prompt results in a conclusive answer from the model for answering
the question. We used the following example:

Prompt: Circus, Giraffe, Cantaloupe, Oasis. Another name for camelopard is

Completion: giraffe. In the animal kingdom, giraffes are the tallest land animals.

To encourage diversity in prompting, we emphasize that users need not follow the example prompts we
outlined and are free to prompt the assistant in whatever manner they choose. We also remind users not to
use Google or another search engine and not to switch tabs during the experiment.

Interface. See Figure 14.
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C.3 Crossword Puzzles

Instructions. We provided users a description of how to interact with the AI Teammate and overall
crossword puzzle interface, as well as examples of prompts they could provide to assist with solving puzzle
clues. As in the QA task, these examples were drawn from pilot studies. We include an image of the full
instructions provided to crowdworkers in Figure 15, which users were able to access at any point from the
crossword interface.

Interface. See Figure 7.

C.4 Text Summarization

Instructions. For the main study, we provided users a description of how to interact with the text sum-
marization system before presenting the system interface. Concretely, the instructions included the following
seven steps.

1. When you click the link below, you will be given a text editor with a document and
AI-generated summary.

2. First, rate whether the machine generated summary is consistent, coherent and
relevant. The descriptions for these aspects are provided in this link.

3. Once you’re done rating the machine generated summaries, click "Next" button which
will allow you to edit the generated summary to improve its consistency, coherence
and relevance.

4. After editing the summary, click "Next" button to evaluate the edited summary.
Rate whether the edited summary is consistent, coherent and relevant.

5. You will repeat the steps above for 10 article-summary pairs. Then, at the end of
your session, you will be shown a verification code.

6. Copy your verification code below.
7. Finally, answer the survey questions below to complete the task.

For the third party evaluation, the following description was provided.

In this task, we need your help in evaluating machine generated summaries. In the
below table, a news article (top) and a summary generated by an AI system (below) are
shown. Please evaluate the (1) consistency, (2) relevance, and (3) coherence of the
summary based on the article.

(1) We ask you to give a binary decision about whether the summary is consistent with
the new article. We define a summary to be consistent if the all the information
expressed by the summary can be inferred from the new article. We now give you two
examples where the first example is inconsistent and the second example is consistent.
For illustration purpose, we omit parts of the article.

Here is an example where the summary is inconsistent because the summary mistakenly
summarizes that the person died on March 5, 1898 when they were actually born on March
5, 1898:

• Article: The world’s oldest person has died a few weeks after celebrating her
117th birthday. Born on March 5, 1898, the great-grandmother had lived through two
world wars, the invention of the television and the first successful powered
aeroplane flight by the wright brothers [...]

• Summary: The world ’s oldest person has died on March 5, 1898.

Here is an example where the output is consistent because all information can be
inferred from the news article:

• Article: Andy Murray [...] is into the semi-finals of the Miami Open, but not
before getting a scare from 21 year-old Austrian Dominic Thiem, who pushed him to
4-4 in the second set before going down 3-6 6-4, 6-1 in an hour and three quarters.
[...]
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• Summary: Andy Murray defeated Dominic Thiem 3-6 6-4, 6-1 in an hour and three
quarters.

The summary should only contain information from the original article. If the
information presented in the summary is true based on general knowledge (e.g. the
earth is round) but is not supported by the original article, you should mark it as
unfaithful. It is okay for the output to have minor grammatical errors. If you can
understand what the output expresses despite the minor grammatical errors and if the
information is supported by the article, select consistent. If the output is
nonsensical, select inconsistent.

(2) We ask you to judge whether the summary is relevant to the news article on a 1 to 5
scale. The summary should include only important information from the source document.
If the summary contains redundancies and excess information, you should consider it as
less relevant.

Here is an example where the summary is not very relevent because the information
summarized is not the main point of the article.

• Article: The world’s oldest person has died a few weeks after celebrating her
117th birthday. Born on March 5, 1898, the great-grandmother had lived through two
world wars, the invention of the television and the first successful powered
aeroplane flight by the wright brothers [...]

• Summary: The first successful powered aeroplane flight was by the wright brothers.

(3) We ask you to judge whether the summary is coherent on a 1 to 5 scale. A good
summary should organize the relevant information into a well-structured summary. The
summary should not just be a heap of related information, but should build from
sentences into a coherent body of information about a topic.

Here is an example where the summary is not very coherent because the two sentences
don’t flow well together.

• Article: The world’s oldest person has died a few weeks after celebrating her
117th birthday. Born on March 5, 1898, the great-grandmother had lived through two
world wars, the invention of the television and the first successful powered
aeroplane flight by the wright brothers [...]

• Summary: The world’s oldest person has died at the age of 117. The first
successful powered aeroplane flight was by the wright brothers.

Interface. See Figure 17.

C.5 Metaphor Generation

Instructions. Users were given a description of the task, examples of good metaphorical sentences for
three criteria, and instructions for the metaphor generation system. The task and examples were provided
as follows:

Goal: Given a seed metaphor, your goal is to write as many metaphorical sentences as
possible (at least 5) in 10 minutes with the help of the AI-powered system!

Examples: Consider a seed metaphor in the form of "[source] is [vehicle]", such as
"Love is a storm".

Good metaphorical sentences meet the following three criteria:

Apt: Describe a connection between the concepts. The connection between source’s
feature and vehicle’s feature (e.g., both love and storm can come unexpectedly) should
be sound.

• Strong example: Love can come on unexpectedly.
• Weak example: Love is a weather event.
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Specific: Describe a connection unlikely to be transferable to other concepts. The
vehicle’s feature (e.g., lasting through the night) should be specific enough to source
(i.e., love) and vehicle (i.e., storm).

• Strong example: Love can last through the night.
• Weak example: Love is dark.

Imageable: Evoke visual. It should be easy to visualize a scenario from the sentence.

• Strong example: Love can rain down on our heads.
• Weak example: Love can scare people.

We acknowledge that it might be difficult to satisfy all of the criteria for every
metaphorical sentence. Therefore, we ask you to do your best to meet most of them
while writing sentences, but it is okay not to satisfy some of them. However, if all
of your sentences fail to meet these criteria, we reserve the right to reject your HIT.

Instructions were provided right above the “Click here to start writing” button to guarantee that users are
aware of and understand the task before proceeding to interacting with the system.

1. When you click the link below, you will be given a text editor with a seed
metaphor.

2. In 10 minutes, write as many metaphorical sentences as possible that express the
seed metaphor. The timer will start once you start writing. If you want, you can
write more than 10 minutes.

3. While writing, you can write on your own from scratch or get suggestions from AI.
• To get suggestions from AI, click the “get suggestions” button or press the tab

key, then our AI-powered system will show suggestions (that continue your input
text if provided).

• If you do not like any of them, just press the tab key again to get a new set of
suggestions.

• If you like a suggestion, click it to add this suggestion to your text!
• You can also use up/down arrow keys to navigate the suggestions and press the

enter key to add one to your sentences.
• Revise your text or suggestions to meet the aforementioned criteria.

4. When you finish writing one metaphorical sentence, click the "add sentence" button.
Then, write another metaphorical sentence and repeat the process.

5. Once the time is up, click the “finish session” button which will give you a
verification code. Copy and paste the code into the survey.

For the third party evaluation, the following instruction was provided along with the same set of examples
for three criteria.

In the table below, you will see a seed metaphor and a metaphorical sentence that
attempts to express the seed metaphor. Please evaluate whether the metaphorical
sentence is apt, imaginable, and specific with respect to the seed metaphor. We
consider metaphors of the form "[source] is [vehicle]" (e.g. Love is a storm).

Interface. See Figure 18.

D Statistical Analysis

D.1 Methods for statistical analysis

For the main results presented in the paper, we computed group-wise means and standard errors and used
the modified Tukey-Kramer post-hoc test to account for unequal group sizes. For these calculations, we used
both the Python scipy and R stats packages Virtanen et al. (2020); R Core Team (2020).
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Model Sensibleness Specificity Humanness Interestingness Inclination Reuse
(/100%) ↑ (/5) ↑

TextDavinci 94 ± .03 82 ± .03‡ 36 ± .05 37 ± .05 91 ± .03 4.09 ± .23

TextBabbage 84 ± .03 81 ± .04 ‡ 28 ± .05 29 ± .05 88 ± .03 3.35 ± .24

Davinci 89 ± .02‡ 92 ± .02 ‡ 24 ± .04 ‡ 27 ± .04 ‡ 91 ± .02‡ 3.8 ± .17‡
Jumbo 85 ± .03 83 ± .04 25 ± .05 31 ± .05 86 ± .03 3.21 ± .24

Table 11: [Social dialogue] Model performance based on user survey responses. Metrics are
denoted by ‡ if models had a significant effect relative to Davinci, at the Bonferroni-corrected significance
level of p = .0125. The numbers indicate averages and standard errors.

Model Time Queries Accuracy
(min) ↓ (#) ↓ (/100%) ↑

TextDavinci 0.77 ± 0.69 0.83 ± 0.08‡ 58 ± 2 ‡
TextBabbage 0.9 ± 0.73 1.14 ± 0.09 51 ± 2

Davinci 0.98 ± 0.51 1.1 ± 0.06‡ 49 ± 2
Jumbo 1.89 ± 0.73 0.93 ± 0.09 52 ± 2

Table 12: [Question answering] Model performance based on automatic metrics. The results
are derived from linearly regressing the model types against the continuous metrics using an ordinary least
squares method, and the resulting values are the means of the metrics for each model type. Metrics are
denoted by ‡ if models had a significant effect with a Bonferroni correction (see Appendix D.3 for details).

Given the likely bias in our survey sample, we decided to add robustness to the investigation and check our
results while mathematically controlling for error by supplementing our analysis with univariate regressions.
We ran linear regression models on all of the models against the different survey metrics using the stats
package in R, which fits a linear regression against continuous variables using an ordinary least squares
method R Core Team (2020). The numbers reported in the Table 11 —19 are the intercept plus the beta
effect estimates associated with each variable.

Significance was assessed at the Bonferroni-corrected level Bland & Altman (1995). We checked the assump-
tions of the regressions held through manual verification of the residuals and Q-Q plots, and we compared
the results of our experiments with the linear regression and validated relationships.

D.2 Social Dialogue

The metrics analyzed for the dialogue task included sensibility, specificity, humanness, interestingness, in-
clination, and reuse. The significant results are in Table 11.

In the main body of the paper, it was reported that TextDavinci scored highest on sensibleness, humanness,
interestingness, and reuse. TextDavinci tied with Davinci on inclination, and Davinci scored highest on
specificity. The linear regression analysis confirms the results. For inclination, similar to the main paper, the
rounded values are equivalent for TextDavinci and Davinci, and there is no significant measured difference
between the two, although Davinci significantly outperforms Jumbo. This could reflect the performances in
the previous metrics, and indicate the influence of specificity on inclination. Further research could be done
by diving deeper into the nuances of the survey questions when evaluating dialogue, and investigating the
relationships between the metrics. Additionally, this specific experiment could be well suited for a mixed
effects analysis and could stand to benefit from further question refinement with the help of user feedback.

D.3 Question Answering

The metrics analyzed for question answering are elapsed time, number of queries, and user correctness
(accuracy). The results can be found in Table 12 and 13.
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Accuracy (/100%) ↑

Model No LM LM Used‡

TextDavinci 54 ± 2 ‡ 62 ± 4 ‡
TextBabbage 47 ± 2 55 ± 4

Davinci 46 ± 2 ‡ 54 ± 4 ‡
Jumbo 49 ± 2 57 ± 4

Table 13: [Question answering] Model performance on accuracy, conditional upon language
model use. Metrics are denoted by ‡ if models had a significant effect with a Bonferroni correction (see
Appendix D.3 for details). The ‡ next to the LM-Used column refers to the fact that LM use was associated
with an increase in accuracy accross all models. However, there was also statistically significant higher
accuracy in some groups over others, suggesting sample bias.

Model Fluency Helpfulness Ease Enjoyment
(/5) ↑

TextDavinci 3.65 ± .17 ‡ 3.16 ± .17 ‡ 4.35 ± .20 ‡ 3.42± .20 ‡
TextBabbage 3.05 ± .17‡ 2.35 ± .18‡ 3.85 ± .21‡ 2.76 ± .21‡

Davinci 2.24 ± .12 ‡ 1.90 ± .12 ‡ 3.26 ± .14‡ 2.18 ± .14 ‡
Jumbo 2.34 ± .17 2.28 ± .18 3.11 ± .21 2.23 ± .20

Table 14: [Crossword puzzle] Model performance based on user survey responses. The results are
derived from linearly regressing the model types against the metrics using an ordinary least squares method,
and the resulting values are the means of the metrics for each model type. Metrics are denoted by ‡ if models
had a significant effect relative to Davinci, at the Bonferroni-corrected significance level of p = .0125.

The results are derived from linearly regressing the model types against the continuous metrics using an
ordinary least squares method, conditioning upon whether a linear model was used, and the resulting values
are the means of the metrics for each model type. Overall, using AI assistance was significantly associated
with higher accuracy for all of the models; similarly to the main results reported in the paper, TextDavinci
performed the best. Additionally, like the main paper, participants using TextDavinci used the least time,
and had the least queries suggesting ease of use. However, there were significant differences in accuracy
amongst the study participants assigned to TextDavinci and Davinci, suggesting potential confounding
factors and possible limitations to the results. Future research could control for potential confounding by
using block randomization when assigning participants to different language models, and thus lend robustness
to results.

D.4 Crossword Puzzle

The metrics analyzed for the crossword puzzle task included fluency, helpfulness, ease, and enjoyment.
Further analysis was conducted conditioning on the prompts used, to test for prompt-specific error and
variability. The linear regression results are in Table 14. None of the prompts besides the arbitrarily chosen
intercepts were deemed significant, and therefore the table is not included.

The model results reported in the main results section show TextDavinci outperforming the other models in
all metrics. However, TextDavinci only showed significant improvement over TextBabbage for helpfulness
and enjoyment, and there was no significant difference between the two models’ performances on fluency and
ease. The added linear regression analysis here demonstrates that, when controlling for error, TextDavinci
has the best performance metrics to a significant degree above the other models. Additionally, although
this analysis yields similar patterns of results for the worst performers, the overlapping confidence intervals
and lack of significant differences between Jumbo and Davinci indicate that there is less clarity around the
worst performer when using a technique that accounts for error and assumes normally distributed residuals.
Upon verifying the linear regression assumptions, the residual and Q-Q plots indicate that there were certain
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influential outliers that might be responsible for this lack of clarity. Further research could involve replicating
this analysis in different survey samples, including regularization techniques in the statistical evaluation to
account for overfitting, and investigating nonlinear relationships between the variables. These techniques
might all yield clearer comparisons between the models.

D.5 Text Summarization

Model Time Edit distance
(min) (word) ↓

TextDavinci 1.11 ± .13 12.38 ± 1.25

TextBabbage 1.22 ± .13 16.33 ± 1.25
Davinci 1.10 ± .09‡ 14.18 ± .88‡

Jumbo 1.17 ± .13 15.12 ± 1.25

Table 15: [Text summarization] Model performance based on automatic metrics. The results were
derived using the same ordinary least squares method and linear regression as described previously for the
continuous variables (elapsed time, distance, improvement, edit). Model type was used as the predictor.
Metrics are denoted by ‡ if models had a significant effect with a Bonferroni correction (see Appendix D.5
for details).

Model Improvement Revision Helpfulness
(/5) ↑ (/5) ↓ (/5) ↑

TextDavinci 2.60 ± .35 3.00 ± .27 4.20 ± .34

TextBabbage 2.15 ± .35 3.40 ± .27 3.40 ± .34

Davinci 2.10 ± .25 ‡ 3.25 ± .19‡ 3.80 ± .24‡
Jumbo 2.40 ± .35 3.30 ± .27 3.30 ± .34

Table 16: [Text summarization] Model performance based on user survey responses..

A linear regression analysis of the summarization task was used to calculate the means and significance
for the variables (elapsed time, edit distance, improvement, edit, helpfulness, original consistency, original
coherency, original relevance, edited consistency, edited coherency, and edited relevance). The results can be
found in Table 15, Table 16, and Table 17. Model type was used as the predictor.

We checked the assumptions of the regressions by looking at the residuals and Q-Q plots. In the main paper
TextDavinci was found to be the most helpful and improve the most with time, resulting in the lowest
Levenshtein edit distance between the model produced and final summary, TextBabbage and Jumbo both
scored low - TextBabbage requiring the most editing, and Jumbo producing the worst original summary
and being the least helpful. The linear regression confirmed this and additionally highlighted the lack of
distinction between the bad performers TextBabbage and Jumbo.

Third party evaluation indicated higher performance from TextBabbage than was found in the main paper,
highlighting the importance of including annotation to verify the validity of results. Although the evidence
reveals conclusively that users rate their summaries higher after editing, the evidence only slightly points to
the superiority of TextDavinci, and the field could benefit from additional experiments in wider samples.

D.6 Metaphor Generation

The metrics analyzed for metaphor generation included elapsed time, queries, acceptance, edit distance,
helpfulness, satisfaction, ease, reuse and for third party evaluation aptness, specificity, and imageability.
The significant results are in Table 18, Table 19 and Table 20. The direction of the results were comparable
to the main paper, however no statistically significant relationships were found in the linear analysis besides
the differences in acceptance and edit distance. In all other metrics, none of the models besides the arbitrarily

56



Published in Transactions on Machine Learning Research (09/2023)

First-person evaluators Third-party evaluators
Model Consistency Relevance Coherence Consistency Relevance Coherence

(/100%) ↑ (/1) ↑ (/100%) ↑ (/5) ↑

TextDavinci 56 ± 5 0.63 ± .05 0.77 ± .04 65 ± 5 4.7 ± .07 ‡ 4.07 ± .11‡
TextBabbage 75 ± 5 ‡ .67 ± .05 0.7 ± .04 89 ± 5 ‡ 4.51 ± .07 ‡ 4.15 ± .11

Davinci 57 ± 3‡ 0.65 ± .03‡ 0.77 ± .03 ‡ 57 ± 4‡ 4.53 ± .05‡ 3.7 ± .08 ‡
Jumbo 50 ± 5 .61 ± .05 0.74 ± .04 56 ± 5 4.6 ± .07 3.8 ± .11

Table 17: [Text summarization] Linear regression evaluating quality metric annotation based on
first-person and third-party human evaluation. Metrics are denoted by ‡ if models had a significant
effect with a Bonferroni correction (see Appendix D.5 for details).

Model Time Queries Acceptance Edit distance
(min) ↓ (#) ↓ (/100%) ↑ (word) ↓

TextDavinci 0.74 ± 0.08 0.92 ± 0.12 50.79 ± 5.94 ‡ 4.78 ± 0.96

TextBabbage 0.73 ± 0.07 0.97 ± 0.11 55.68 ± 5.51‡ 6.42 ± 0.85 ‡
Davinci 0.6 ± 0.05 0.77 ± 0.09 71.48 ± 4.24 ‡ 4.83 ± 0.64‡

Jumbo 0.75 ± 0.08 1.03 ± 0.13 68.29 ± 6.28 5.59 ± 0.92

Table 18: [Metaphor generation] Model performance based on automated metrics. The results
are derived from linearly regressing the model types against the metrics using an ordinary least squares
method, and the resulting values are the means of the metrics for each model type. Metrics are denoted by
‡ if models had a significant effect with a Bonferroni correction, p = 0.0125 (see Appendix D.6 for details).

Model Helpfulness Satisfaction Ease Reuse
(/5) ↑

TextDavinci 4.21 ± 0.32 4.42 ± 0.27 3.68 ± 0.35 4.42 ± 0.26

TextBabbage 3.64 ± 0.3 4.14 ± 0.25 3.82 ± 0.32 4.39 ± 0.24

Davinci 4.17 ± 0.23‡ 4.33 ± 0.19‡ 3.94 ± 0.25 ‡ 4.61 ± 0.19 ‡
Jumbo 4.13 ± 0.34 4.4 ± 0.29 3.87 ± 0.37 4.47 ± 0.28

Table 19: [Metaphor generation] User survey responses. The results are derived from linearly regress-
ing the model types against the metrics using an ordinary least squares method, and the resulting values are
the means of the metrics for each model type. Metrics are denoted by ‡ if models had a significant effect
with a Bonferroni correction, p = 0.0125 (see Appendix D.6 for details). None of the above metrics were
found to be significantly different from each other, except for the reference model.

Model Apt Specific Imageable
(/100%) ↑

TextDavinci 77 ± 5 74 ± 5 73 ± 5

TextBabbage 80 ± 4 74 ± 5 72 ± 5

Davinci 83 ± 3 ‡ 81 ± 4 ‡ 74 ± 4‡
Jumbo 81 ± 5 76 ± 5 75 ± 6

Table 20: [Metaphor generation] Third-party evaluation on the quality of metaphorical sen-
tences. The numbers indicate means and standard errors.The results are derived from linearly regressing
the model types against the metrics using an ordinary least squares method, and the resulting values are the
means of the metrics for each model type. Metrics are denoted by ‡ if models had a significant effect with a
Bonferroni correction, p = 0.0125 (see Appendix D.6 for details).
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chosen baseline models performed at a significantly different level from each other in the user survey. This
indicates that the experiment found that the means of the models collectively were more than zero. However,
the results do not conclusively reveal which ones performed better or worse (confirmed by the overlapping
confidence intervals) on most metrics. This means that although the experiment found higher acceptance
for Davinci suggestions and shorter edit distance, other conclusions are pending further investigation and
experiment replication.
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Targets Perspectives Criteria Framework
Metric Target Unit Method Evaluator Criteria Standard HALIE (ours)

Social dialogue

fluency output turn survey first-person quality N Y
sensibleness output turn survey first-person quality N Y
specificity output turn survey first-person quality N Y
humanness output turn survey first-person quality/preference N Y

interestingness output turn survey first-person quality/preference N Y
inclination output turn survey first-person preference N Y

reuse process dialogue survey first-person preference N Y

Question answering

accuracy output quiz auto third-party quality Y Y
time process question auto third-party quality N Y

queries process question auto third-party quality N Y
queries process change auto third-party quality N Y

prompt styles process change auto third-party preference N Y
fluency output quiz survey first-person quality N Y

ease process quiz survey first-person quality N Y
helpfulness process quiz survey first-person quality N Y

Crossword puzzles

accuracy (letter) output puzzle auto third-party quality Y Y
accuracy (clue) output puzzle auto third-party quality Y Y

queries process puzzle auto third-party preference N Y
prompt styles process change auto third-party preference N Y

fluency output puzzle survey first-person quality N Y
ease process puzzle survey first-person quality N Y

helpfulness process puzzle survey first-person quality N Y
enjoyment process puzzle survey first-person preference N Y

Text summarization

improvement process session survey first-person quality N Y
helpfulness process session survey first-person quality N Y

consistency (self) output summary survey first-person quality N Y
relevance (self) output summary survey first-person quality N Y
coherency (self) output summary survey first-person quality N Y

consistency output summary survey third-party quality Y Y
relevance output summary survey third-party quality Y Y
coherency output summary survey third-party quality Y Y

edit distance output summary auto third-party quality Y Y
edit distance process change auto third-party quality N Y

Metaphor generation

queries process sentence auto third-party quality N Y
acceptance process sentence auto third-party quality N Y

edit process sentence auto third-party quality N Y
time process sentence auto third-party quality N Y

aptness output sentence survey third-party quality Y Y
specificity output sentence survey third-party quality Y Y

imageability output sentence survey third-party quality Y Y
fluency output session survey first-person quality N Y

satisfaction output session survey first-person preference N Y
ease process session survey first-person quality N Y

helpfulness process session survey first-person quality N Y
enjoyment process session survey first-person preference N Y
ownership process session survey first-person preference N Y

reuse process session survey first-person preference N Y

Table 21: Full list of metrics and their mappings to the three dimensions.
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Figure 14: [Question answering] The interface enables AI assistance for half of the questions in a quiz
(top) and disables it for the other half (bottom) in which case users have to answer the question without
any assistance.
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Figure 15: [Crossword puzzles] Instructions provided for users.
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Figure 17: [Text summarization] We first ask users to rate the original summary generated by the system
(top). Then, users edit the original summary to be more consistent, coherent, and relevant (middle). Finally,
users rate their own edited summary (bottom).
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Figure 18: [Metaphor generation] Once users write a metaphorical sentence in the text editor, they can
add it to the left-hand side of the interface (top) which keeps the list of metaphorical sentences written
(bottom).
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