
Time-Considerable Dialogue Models via Reranking by Time Dependency

Yuiko Tsunomori1, Masakazu Ishihata1, Hiroaki Sugiyama1

1NTT Communication Science Laboratories
{yuiko.tsunomori,masakazu.ishihata,hiroaki.sugiyama}@ntt.com

Abstract

In the last few years, generative dialogue mod-
els have shown excellent performance and have
been used for various applications. As chat-
bots become more prevalent in our daily lives,
more and more people expect them to behave
more like humans, but existing dialogue mod-
els do not consider the time information that
people are constantly aware of. In this paper,
we aim to construct a time-considerable dia-
logue model that actively utilizes time informa-
tion. First, we categorize responses by their
naturalness at different times and introduce a
new metric to classify responses into our cat-
egories. Then, we propose a new reranking
method to make the existing dialogue model
time-considerable using the proposed metric
and subjectively evaluate the performances of
the obtained time-considerable dialogue mod-
els by humans.1

1 Introduction

In the last few years, generative dialogue models
have achieved outstanding performance (Ziegler
et al., 2019; Adiwardana et al., 2020; Ouyang et al.,
2022; Thoppilan et al., 2022) and have been used
in various applications, including search engines,
recommendations, healthcare, finance, and more
(Ling et al., 2023). As chatbots permeate our daily
lives, more and more people expect chatbots to be-
have in a human-like manner. Examples of research
to make chatbots more human-like include the in-
troduction of common sense (Wang et al., 2020),
empathy (Ma et al., 2020), personas (Zhang et al.,
2018), and so forth. The common point among
these studies is that they have achieved richer dia-
logue by actively utilizing not only internal infor-
mation obtained through the conversation but also
external information that does not appear in the cur-
rent dialogue. On the other hand, time information,

1The detailed information about our dataset
is available at https://github.com/nttcslab/
time-considerable-dialogue-model

Didn’t you have 
breakfast?

I’m hungry.

What do you 
want to eat?

(1)
AN

You will get fat if 
you eat at this time.

I don’t like 
doing sports.

(2)
TN

(3)
TU

(4)
AU

Utterance

Response

Spoken time

Day

Figure 1: Conversation examples depending on time.

the most basic and important external information,
still does not seem to be considered important in
dialogue models.

Humans are basically always aware of time in
conversation, whether explicitly or implicitly, be-
cause the naturalness of utterances and responses
may change based on their spoken times (e.g., time
of the day, day of the week, and season). Given an
utterance and its spoken time, a response can be cat-
egorized into the following four types by focusing
on the time variations of its naturalness:

• AN: always natural

• TN: temporarily natural at the spoken time

• TU: temporarily unnatural at the spoken time

• AU: always unnatural

Figure 1 shows examples of the above four types
of responses. Assume two time periods, day and
night, where responses (1)-(4) have different levels
of naturalness at different times. Responses (1)
and (2) (N ≜ AN ∪ TN) are natural to a given
utterance at a spoken time, although not (3) and (4)

https://github.com/nttcslab/time-considerable-dialogue-model
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(U ≜ TU ∪AU). On the other hand, the natural-
ness of (2) and (3) (T ≜ TN∪TU) changes with
the spoken time (day or night), and that of (1) and
(4) (A ≜ AN ∪AU) remains unchanged. Here-
after in this paper, we refer to such categorization
of responses as the NUTA categories.

For a dialogue model to achieve natural conversa-
tion, it is expected to generate natural responses N
and to avoid generating unnatural responses U. If a
dialogue model correctly evaluates the naturalness
of responses considering the spoken time, we call
it time-aware; otherwise, we call it time-unaware.
Many existing dialogue models are time-unaware
because they are trained on datasets without time
information. As a result, a time-unaware dialogue
model may consider TU responses as natural as
N responses because they are natural at some time.
In other words, it may generate a TU response,
which is inappropriate at the spoken time. The sim-
plest way to construct a time-aware dialogue model
is to train a general dialogue model with time in-
formation (Sato et al., 2017). Recently, the output
of a large language model (LLM) was adjusted by
giving an appropriate prompt (Lester et al., 2021;
Bae et al., 2022; Liu et al., 2022), and prompting
the time information to an LLM is another promis-
ing way to achieve a time-aware dialogue model.
The difference between time-unaware and time-
aware dialogue models is that the former considers
a response as natural if it is natural at some time,
while the latter does if it is natural at its spoken
time; namely, time-aware dialogue models avoid
generating TU responses.

Prior research has shown that users’ impressions
of dialogue models are improved by actively uti-
lizing external information (Vinyals and Le, 2015;
Li et al., 2016; Zhou et al., 2021). Referring to
this fact, we assume that users’ impressions will
be similarly improved by actively utilizing time
information; namely, users prefer TN to AN (we
empirically verify this assumption in Section 3).
Under this assumption, we aim to realize a time-
considerable dialogue model that actively outputs
more TN than AN. The difference between time-
aware and time-considerable models is that the
former only considers time information to eval-
uate the naturalness of responses at a given spoken
time (time-aware naturalness), while the latter ac-
tively generates responses whose naturalness varies
with time. To realize time-considerable models, we
need a new criterion to distinguish between TN

and AN and a new mechanism to generate TN
responses.

In this paper, we propose a new reranking
method that is a post-processing method to make
existing dialogue models more time-considerable.
As a preliminary analysis, we first verify our as-
sumption users tend to prefer TN to AN by hu-
man evaluation in Section 3. We next formally
define the NUTA categories and propose an auto-
matic metric for the NUTA categories in Section 4.
In Section 5, we propose a new reranking method
using the proposed automatic metric to make exist-
ing dialogue models time-considerable and subjec-
tively evaluate obtained time-considerable models
to verify whether our reranking method improves
response qualities.

2 Related Work

Previous studies have pointed out that general dia-
logue models trained on large-scale datasets tend
to generate neutral (bland, generic, and hackneyed)
responses (Li et al., 2016; Serban et al., 2016). To
tackle this issue, some dialogue models utilizing
external information to generate interesting and in-
formative responses have been proposed, where
examples of external information include sys-
tem/user persona (Zhang et al., 2018; Roller et al.,
2021; Lu et al., 2022), knowledge graphs (Zhang
et al., 2020), knowledge sources (Parthasarathi and
Pineau, 2018; Majumder et al., 2022), interpersonal
relationships (Utami and Bickmore, 2019), and sit-
uated environments (Misu, 2018). Some studies
have empirically shown that generating responses
specific to external information improved users’
impression of the dialogue models (Vinyals and
Le, 2015; Li et al., 2016; Zhou et al., 2021). In
this paper, we introduce the time information as
external information and consider that T responses,
whose naturalness varies with time, are specific to
time information. Furthermore, to verify whether
the time information improves model performance
as well as other external information, we evaluate
the qualities of T responses by human evaluations.

In this paper, we define a dialogue model as time-
aware if the model evaluates the naturalness of re-
sponses considering their spoken times. Sato et al.
(2017) proposed a time-aware dialogue model that
is an encoder-decoder model based on Long-Short
Term Memory (LSTM) (Zaremba et al., 2015) in-
spired by Johnson et al. (2017) and trained on
utterance-response pairs with their timestamps ex-



tracted from Twitter. Another recent technique to
achieve a time-aware dialogue model is prompt-
ing LLMs, where prompting is a technique to
guide LLMs in generating high-quality and rele-
vant responses by providing detailed descriptions
and/or input-output examples of the target task as
input (Brown et al., 2020). Various prompting-
based methods for utilizing external information
have been proposed, and their examples include
system/user persona information (Kasahara et al.,
2022; Lee et al., 2022), knowledge sources (Liu
et al., 2022), and fictional character’s style (Han
et al., 2022). In this paper, we aim to construct a
time-considerable dialogue model, which actively
utilizes the time information, and propose a new
reranking method to make the existing dialogue
models more time-considerable using time-aware
naturalness represented by a time-aware dialogue
model. While time-aware dialogue models only
consider time to evaluate the naturalness of re-
sponses, time-considerable dialogue models ac-
tively generate responses whose naturalness varies
with time.

3 Preliminary Analysis

Through this paper, we assume users prefer TN
to AN, and in this section, we verify this assump-
tion by human evaluations. We first constructed
a NUTA dataset consisting of the tuples of utter-
ances, their spoken times, their responses, and their
NUTA categories: AN,TN,TU, and AU. Then,
we conducted a subjective evaluation to determine
which category of responses users found most in-
teresting and informative.

3.1 The NUTA Dataset

We constructed a NUTA dataset, which is a collec-
tion of tuples t ≜ ⟨u, t, r, c⟩, where u is an utter-
ance, t ∈ T ≜ {0, 1, . . . , 23} is its spoken time
in 24-hour time format, r is a response to u, and
c ∈ {AN,TN,TU,AU} is its NUTA category.

We first prepared a set of utterances U . We ex-
tracted Japanese tweets posted between May and
December 2022 with filtering rules described in
Appendix A.1 and randomly selected 1,000 tweets.
We manually deleted tweets containing discrimi-
natory, violent, or other inappropriate expressions.
As a result, we obtained 640 appropriate tweets and
used them as utterances U .

We next obtained responses to the prepared
utterances U by crowdsourcing, where we used

Lancers2, a Japanese crowdsourcing service. We
assigned one crowd worker to each utterance u ∈ U
and asked them to perform the following tasks to
create responses:

1. Create response rAN
u to u that is natural at

any time.

2. Select two time periods tN and tU (tN, tU ∈
T ) and create response rTN

u to u that is natu-
ral at tN but not at tU.

For instance, given utterance u = “It seems the
train is stopped,” the crowd worker selected two
time periods t = 22 and t′ = 6 and created two
responses rAN

u = “Really? I wonder when it will
start moving.” and rTN

u = “Wow, it’s almost the
last train. I wonder what’s going to happen?”

Finally, we constructed a NUTA dataset by cre-
ating the following four tuples for each utterance
u ∈ U , where u′ was randomly chosen from U so
that u ̸= u′:

⟨u, tN, rAN
u ,AN⟩, ⟨u, tN, rTN

u ,TN⟩,
⟨u, tU, rTN

u ,TU⟩, ⟨u, tN, rAN
u′ ,AU⟩.

Thus, the dataset consists of 2,560 (= |U| × 4)
tuples. Table 1 shows examples of four created
tuples for the same utterance.

3.2 Subjective Evaluation
We conducted a subjective evaluation to determine
which response category is the most interesting and
informative for humans.

We introduced a new metric to measure the qual-
ity of responses considering time information. The
metric is in the range [0, 1] and based on the Sen-
sibleness, Specificity, Interestingness (SSI) met-
ric (Thoppilan et al., 2022) for evaluating responses
based on context. Our metric, denoted by SSI-t,
averages the following four scores:

• Sensibleness for the utterance (SU): If its spo-
ken time is ignored, is the response reasonable
to its utterance?

• Sensibleness for the spoken time (ST): If its ut-
terance is ignored, is the response reasonable
to its spoken time?

• Specificity to time (S): Is the response specific
to any time regardless of its spoken time?

• Interestingness (I): Is the response interesting
or informative?

2https://www.lancers.jp/

https://www.lancers.jp/


Utterance u = It seems the train is stopped. (電車止まってるらしい．．)

Time t Response r Category c
22 Really? I wonder when it will start moving. (そうなんだ。いつになったら動くのかなー。) AN

22 Wow, it’s almost the last train. I wonder what’s going to happen? (ええー。あと少しで終電
だけど、どうなるのかな？)

TN

6 Wow, it’s almost the last train. I wonder what’s going to happen? (ええー。あと少しで終電
だけど、どうなるのかな？)

TU

22 Understood! I’ll decide on the character as soon as possible. (了解！なるべく早くキャラを
決めるわ)

AU

Table 1: Four tuples t = ⟨u, t, r, c⟩ for the same utterance. A crowd worker selected tN = 22 and tU = 6 and
generated two sentences rAN

u and rTN
u . The utterance and all responses were originally written in Japanese and

translated into English by the authors.

For example, a score SU of 1.0 indicates r is a
perfect response to u if t is ignored, and a score S
of 0.0 indicates the naturalness of r never changes
over time.

We randomly selected 25 tuples for each NUTA
category (100 tuples in total). For any tuple
t = ⟨u, t, r, c⟩ and any score SC ∈ {SU, ST, S, I},
we asked two expert annotators, who are in-house
workers specialized in annotating dialogues and
have worked in their positions for at least five years,
to rate SC of t with either 0 or 1. We defined the
SC value of t as the average of two obtained rates
and the SSI-t value of t as the average of all SC
values of t. Finally, for any NUTA category c
and any score SC ∈ {SU, ST, S, I, SSI-t}, we ob-
tained the SC value of c by averaging those of all
tuples t whose categories are c. Table 2 shows four
examples of tuples and their obtained values.

Table 3 shows the SSI-t scores for each NUTA
category and indicates that TN achieved the high-
est quality (SSI-t): more specifically, the highest
ST and I scores. We believe that the results sup-
port our assumption that users prefer TN to AN,
and based on this assumption, we will propose
a method to realize a time-considerable dialogue
model that actively outputs more TN than AN.

4 Automatic Metric for NUTA Categories

We propose a new automatic metric for classify-
ing the NUTA categories of given responses and
experimentally show that our metric can correctly
categorize the responses of the NUTA dataset.

4.1 Definition

We mathematically introduce the time-aware natu-
ralness and the time dependency of responses and
define the NUTA categories using those quantities.
Let u, r, and t be an utterance, a response to u, and
the time at which the conversation took place.

Time-aware naturalness We assume that the
time-aware naturalness (TAN) of u and r at t is
implicitly defined by conditional probability dis-
tribution p(u, r | t) = p(u | t) p(r | u, t), where
p(u | t) and p(r | u, t) indicate the TANs of u at t
and r given u at t. We consider N responses of the
NUTA categories as natural at spoken time t; i.e.,
response r is classified as N (resp. U) iff p(r | u, t)
is high (resp. low). Since it is very difficult to know
the true TAN p, throughout this paper, we assume
that TAN p is given as a time-aware dialogue model
that allows us to evaluate p(r | u, t) for any u, r,
and t.

Change of naturalness Using TAN p, we define
the change of (log) naturalness (CN) from t′ to t as

CNt′:t(u, r) ≜ ln
p(u, r | t)
p(u, r | t′)

, (1)

CNt′:t(u) ≜ ln
p(u | t)
p(u | t′)

, (2)

CNt′:t(r | u) ≜ ln
p(r | u, t)
p(r | u, t′)

. (3)

By definition, the following equation must hold:

CNt′:t(u, r) = CNt′:t(u) + CNt′:t(r | u) , (4)

where the CN of conversation (u, r) can be factor-
ized into the CNs of u and r given u. For instance,
CNt′:t(u, r) > 0 holds iff the conversation (u, r)
is more natural at t than at t′.

Time dependency Using the above CN, we de-
fine time dependency (TD) of r given u as

TD(r | u, t) ≜ max
tU∈T

CNtU:t(r | u) , (5)

TD(r | u) ≜ max
tN∈T

TD
(
r | u, tN

)
. (6)

TD(r | u, t), denoted by TD@t, is the CN of r
given u from the most unnatural time tU to spoken



Utterance u Time t Response r Cat. c SU ST S I SSI-t

If gummies are within reach, I can’t
stop eating them endlessly. (グミ、
手の届くとこにあると無限に食
べ続けてしまう。)

10

I also love gummies, especially
the ones with lots of fruit juice.
(グミ私も好きです。特に果
汁多めのやつが)

AN 1.0 1.0 0.0 1.0 0.75

Does anyone want to play Apex Leg-
ends ranked match with me some-
time? (エペランクマ今度一緒に
やってくれる人いませんか？…)

17
Maybe we can play a game to-
gether tonight. (せっかくだか
ら今晩やってもいいですよ)

TN 1.0 1.0 1.0 1.0 1.00

Oh! I just realized I have over 1000
followers! (え！！今気づいたんだ
けどふぉろわさん１０００人い
ってる！？)

10

Congrats! I’m glad to hear the
good news before I go to bed.
(おめでとう！寝る前に良い
ニュース聞けて嬉しいよ。)

TU 1.0 0.0 1.0 0.5 0.63

Maybe I’ll eat curry today. (今日は
カレー食うかな)

17
Autumn goes by so fast. (秋は
あっという間にすぎていく
よね)

AU 0.0 1.0 0.0 0.5 0.38

Table 2: Four example tuples ⟨u, t, r, c⟩ and their obtained SU, ST, S, I, and SSI-t values. All utterances and
responses were originally written in Japanese and translated into English by the authors.

Category SU ST S I SSI-t

AN 0.98 0.86 0.14 0.66 0.66
TN 0.97 1.00 0.80 0.76 0.89
TU 0.93 0.19 0.88 0.71 0.68
AU 0.06 0.87 0.13 0.66 0.43

Table 3: SU, ST, S, I, and SSI-t scores of responses of
each NUTA category

time t, which evaluates whether r is specific to
spoken time t. Consequently, r has a high TD@t
if it is natural at t but unnatural at another time and
a low TD (i.e., near zero) if its naturalness remains
unchanged as time changes. On the other hand,
TD(r | u), denoted by TD@all, is the CN from the
most unnatural time tU to the most natural time
tN, which evaluates whether r is specific to time or
not. So, r has a high TD@all if it is natural at some
time but not at another time. Since we consider the
naturalness of T responses of the NUTA categories
varies with time, r is classified as T (resp. A) iff
TD(r | u) is high (resp. low).

NUTA category By the definitions of TAN
p(r | u, t) and TD@all TD(r | u), we define each
NUTA category by Table 4. For instance, re-
sponse r is classified as TN iff both p(r | u, t)
and TD(r | u) are high, and r is classified as AU
iff both p(r | u, t) and TD(r | u) are low. Strictly
speaking, to use this definition, two thresholds must
be set that distinguish between the high and low
of p(r | u, t) and TD(r | u); however, since we be-
lieve that determining these thresholds in advance
is difficult, all the methods proposed in this pa-
per are designed so that they do not require such
thresholds.

Category p(r | u, t) TD(r | u)

AN High Low
TN High High
TU Low High
AU Low Low

Table 4: Definition of NUTA categories using TAN
p(r | u, t) and TD@all TD(r | u).

Related criteria In natural language processing,
various criteria have been proposed for measur-
ing the dependency between two sentences. Li
et al. (2016) proposed pointwise mutual informa-
tion (PMI) to choose appropriate response r to
given utterance u:

PMI(r | u) ≜ log
p(r | u)
p(r)

. (7)

As an extension of PMI, Paranjape and Manning
(2021) proposed pointwise conditional mutual in-
formation (PCMI) to cope with additional external
information other than utterance u to evaluate an
appropriate response to u. Given utterance u, re-
sponse r, and time information t as external infor-
mation, PCMI@t is defined as

PCMI(r | u, t) ≜ log
p(r | u, t)
p(r | u)

, (8)

where let p(r | u) be the time-unaware naturalness
(TUN). While TD@t in Eq. (5) is the CN of r given
u from the most unnatural time tU to the current
time t, PCMI@t is the CN of r given u when the
naturalness changes from TUN to TAN at t. In a
similar manner as TD@all, we define PCMI@all
as PCMI(r | u) ≜ maxtN∈T PCMI

(
r | u, tN

)
.



We believe our TD is a more appropriate met-
ric for time information than PCMI. PCMI con-
siders the presence or absence of time informa-
tion, not its change; however, time information
always exists and changes, unlike such common
external information as user persona and knowl-
edge graphs. Therefore, PCMI is expected to be
more blurred in its evaluation than TD. For in-
stance, suppose two time ranges, t1 and t2, such
that p(t1) = p(t2) = 0.5 where (u, r) is a strongly
time-specific response such that p(r | u, t1) = 0
(i.e., r cannot be a response to u at t1) and p(r |
u, t2) = 1 (i.e., r is a perfect response to u at
t2). Then, p(r | u) = 0.5 since p(r | u) =∑

t∈{t1,t2} p(t)p(r | u, t). By Eqs. (3), (5) and (6),
TD(r | u) = ∞ where TD@all considers r as a
strongly time-specific response. On the other hand,
PCMI(r | u, t) = ln 2 ≈ 0.69 where PCMI@all
considers r as not so time-specific. Thus, using
TUN p(r | u) blurs the evaluation of time depen-
dency, and our TD@all is expected to detect time-
specific responses more clearly than PCMI@all.

4.2 Experiments

We conducted experiments to show that our auto-
matic metric for the NUTA categories correctly or-
ders responses of the NUTA dataset of Section 3.1.

4.2.1 Experimental Settings
For each utterance u ∈ U , we ranked four tuples
containing u in the NUTA dataset by each quantity:
TUN p(r | u), TAN p(r | u, t), TD@all TD(r | u),
TD@t TD(r | u, t), PCMI@all PCMI(r | u), and
PCMI@t PCMI(r | u, t). We attached a label high
(resp. low) to the top (resp. bottom) of two tuples
in each ranking for each quantity and used the ob-
tained labels to classify NUTA categories.

As TUN p(r | u), we used the Transformer-
based Japanese dialogue model (TJD) (Sugiyama
et al., 2023) with 1.6B parameters trained on more
than two billion tweet-reply pairs: (u, r). We con-
structed TAN p(r | u, t) by fine-tuning the above
model using tweet-reply-time triplets: (u, r, t),
where the fine-tuning dataset was obtained simi-
larly as (Sato et al., 2017): we collected Japanese
tweets with replies from August 2021 to April
2022 with filtering rules described in Appendix A.1
and obtained 470,255,625 triplets. We denote the
fine-tuned time-aware TJD by TJD-t and used TJD
p(r | u) and TJD-t p(r | u, t) to evaluate TD@all/t
and PCMI@all/t. Detailed implementational set-
tings are shown in Appendix A.2.

Naturalness TD PCMI
TUN TAN @all @t @all @t

N 0.60 0.68 0.47 0.58 0.46 0.55
T 0.54 0.54 0.68 0.60 0.53 0.48

Table 5: Accuracy of N/U and T/A classifications of
each quantity. Best scores are indicated by bold.

TD PCMI
@all @t @all @t

AN 0.54 0.43 0.43 0.38
TN 0.48 0.60 0.35 0.51
TU 0.44 0.19 0.34 0.14
AU 0.45 0.44 0.33 0.32
Ave. 0.48 0.42 0.36 0.34

Table 6: Accuracy of each NUTA category of each
combination. Best scores are indicated by bold.

4.2.2 Experimental Results

We first checked whether TAN p(r | u, t) and
TD@all TD(r | u) correctly classified N and T.
Using high/low labels obtained by each quantity,
we categorized tuples with high (resp. low) labels
as N (resp. U) and computed the accuracy of the
N category of each quantity. Similarly, we also
computed the accuracy of the T category. Table 5
shows the accuracies of each quantity and indicates
that TAN and TD@all achieved the highest accu-
racy of N and T. Consequently, TAN and TD@all
are appropriate quantities for evaluating the natu-
ralness and time dependency of responses.

Next, we checked whether the combination of
TAN and TD@all correctly classified each NUTA
category. We categorized tuples into one of AN,
TN, TU, and AU according to Table 4 using
the combination of high/low labels obtained by
TAN and those obtained by one of TD@all, TD@t,
PCMI@all, and PCMI@t. Table 6 shows the ac-
curacy of each NUTA category of each combina-
tion and indicates that TD@all achieved the best
average accuracy; however, for the TN category,
TD@t achieved the best. Since TD@t evaluates
whether response r is specific to the current time
t but not to other times, it is more effective to
detect TN responses than TU responses. Be-
cause our original motivation for using these quan-
tities as automatic metrics for the NUTA categories
is to detect TN responses that users prefer than
AN, we conclude that TD@t TD(r | u, t) is the
most appropriate metric for constructing a time-
considerable dialogue model.



Model len distinct-1 distinct-2 SU ST S I SSI-t
TJD 17.22 0.36 0.57 0.86 0.84 0.16 0.40 0.56

TC-TJD 12.50 0.55 0.78 0.86 0.85 0.19 0.45 0.59
TJD-t 16.74 0.33 0.48 0.78 0.83 0.12 0.36 0.52

TC-TJD-t 14.44 0.49 0.75 0.86 0.86 0.20 0.48 0.60
GPT-3.5 40.50 0.45 0.76 0.80 0.89 0.36 0.60 0.66

TC-GPT-3.5 34.92 0.44 0.74 0.74 0.90 0.53 0.54 0.68
GPT-4 37.79 0.40 0.73 0.86 0.96 0.89 0.62 0.83

TC-GPT-4 30.88 0.37 0.69 0.83 0.96 0.93 0.59 0.83

Table 7: Average length (len), distinct-N (N = 1, 2), SU, ST, S, I, and SSI-t scores of each model. TC-M is a
time-considerable M achieved by our proposed reranking method. White and gray rows correspond to M and
TC-M. If TC-M’s score exceeded M’ one, it is indicated by bold.

5 Time-Considerable Dialogue Models

We propose a new reranking method to make exist-
ing dialogue models time-considerable. We applied
our method to various existing models, including
GPT-4, which is a state-of-the-art LLM, and eval-
uated the time-considerable dialogue models to
verify whether they improved response qualities.

5.1 Proposed Reranking method
Let M be any dialogue model that can generate
multiple responses to the same utterance. Our pro-
posed reranking method extends M to be time-
considerable. Given base dialogue model M, TAN
p(r | u, t), positive integer N , and probability δ,
we obtain time-considerable response r∗ to utter-
ance u at time t by the following manner:

1. Generate N candidate responses to u at t, de-
noted by R ≜ {ri | i ∈ [N ]}, from base
dialogue model M,

2. Evaluate TAN p(ri | u, t) for all ri ∈ R and
delete ri from R if r has no sufficient natural-
ness; i.e., p(ri | u, t) ≤ δ,

3. Evaluate TD@t TD(ri | u, t) for all ri ∈ R
and find the most time-specific response r∗ ∈
maxr∈RTD(r | u, t),

4. Return obtained r∗ as a time-considerable re-
sponse to u at t.

Since Step 2 removes candidate responses with
lower naturalness than threshold δ, the filtering
mechanism may improve the naturalness of the
final response r∗ when the response generation
model is weak.

Our proposed reranking method is simple
but strong because we can create various time-
considerable dialogue models by combining ex-
isting base dialogue models and TANs, where

base dialogue model M is required only to gener-
ate multiple responses for the same utterance and
TAN p(r | u, t) only to be evaluable. Namely, our
method can be applied to dialogue models whose
architectures and parameters are not publicly avail-
able but are provided as APIs. Of course, if M is
time-aware and evaluable, it can also be used as
TAN p(r | u, t).

5.2 Experiments

We applied our proposed reranking method to exist-
ing dialogue models and gauged their performance
by human subjective evaluations.

5.2.1 Experimental Settings
We briefly explain our experimental settings, and
the detailed settings are shown in Appendix A.2.

Base dialogue models We used the following
four dialogue models as base dialogue model M
of our proposed reranking method:

1. TJD is a transformer-based Japanese dialogue
model with 1.6B parameters trained on over
two billion tweet-reply pairs (Sugiyama et al.,
2023) described in Section 4.2.

2. TJD-t is a time-aware TJD obtained by fine-
tuning described in Section 4.2.

3. GPT-3.5 is an extension LLM of GPT-
3 (Brown et al., 2020) with 355B parameters
and supports various tasks in many languages.
gpt-3.5-turbo is a specialized GPT-3.5 for
dialogue tasks and is provided as an API.

4. GPT-4 is a large-scale multimodal model that
extends GPT-3.5 (OpenAI, 2023). gpt-4 is
a specialized GPT-4 for dialogue tasks and is
provided as an API.



All models can generate multiple responses for
the same utterance by top-p sampling (Holtzman
et al., 2020), where p is a hyperparameter and set
to 0.9 through the experiments. Since GPT-3.5
and GPT-4 do not treat time information as input,
they are originally time-unaware; however, in our
experiment, we used them with prompts to generate
time-aware responses. We created prompts based
on a sample prompt for dialogue tasks provided by
OpenAI and shown in Appendix A.2.

Settings on proposed reranking method For
any base dialogue model M, we denote time-
considerable M achieved by our proposed rerank-
ing method by TC-M (e.g., TC-TJD, TC-GPT-
4). Throughout the experiments, we used TJD-t
as TAN p(r | u, t) and set N = 20 and δ = 0,
where N is the number of candidate responses to
be generated and δ is a threshold for filtering candi-
date responses by their naturalness. We set δ = 0
because we used sufficiently strong models for re-
sponse generation and did not aim to improve their
naturalness.

Time intervals Since TD@t is the maximum of
CNtU:t(r | u) for all possible tU ∈ T , tU could be
very close to spoken time t, and in such cases, the
time dependency of r might be not interpretable
for humans since it is too short-term. To avoid
detecting such short-term time dependency, we di-
vided 24 hours into three intervals, morning (3 to
8), noon (9 to 17), and night (18 to 2), and de-
fined their representatives as 6, 13, and 22, with
reference to Yamamoto and Shimada (2019). The
reason of adopting the above intervals is that morn-
ing/noon/night is defined based on the human life-
cycle; thus, this interval is more intuitive for human
understanding. We evaluated TD@t by Eq. (5)
with T as representatives except for one of spoken
time t (e.g., t = 10 ⇒ T = {6, 22}).

Evaluation dataset As an evaluation dataset, we
prepared 100 utterance-time pairs in the same man-
ner as U in Section 3.1, where we excluded the
same tweets as the NUTA dataset. Given utterance
u and its spoken time t, for each base dialogue
model M ∈ {TJD, TJD-t, GPT-3.5, GPT-4}, we
generated the best response of M and a time-
considerable response of TC-M, denoted by r̄M
and r∗M. Thus, the evaluation dataset consisted of
100 tuples of u, t, and responses r̄M and r∗M for
each M.

Evaluation criteria For each dialogue model, we
computed the average output response length (len)
and distinct-N (N = 1, 2), which is the ratio of
the number of unique N -grams to the total words
generated by the dialogue model, for evaluating its
diversity (Li et al., 2016). We also obtained the ST,
SU, S, I, and SSI-t scores defined in Section 3.2
by human subjective evaluations. We assigned five
crowd workers for each response and asked them
to evaluate its SU, ST, S, and I scores with a five-
point Likert scale (1 to 5) and normalized them into
[0, 1] scale. We obtained the SU, ST, S, and I values
of each model by averaging the annotated values
of responses generated by the model. Finally, we
obtained its SSI-t value as the average of those
values.

5.2.2 Experimental Results
Table 7 shows the values of each model for the
eight indicates: the average output response length
(len), distinct-N (N = 1, 2), SU, ST, S, I, and SSI-
t scores. For any score except len, a higher value
denotes a better result. In the table, if the score of
TC-M exceeds the original M, we highlighted it
in bold; in other words, bold scores were improved
by our proposed reranking method.

TC-M improved the ST, S, and SSI-t scores
for almost all M; namely, it was more time-
considerable than the original M. TC-M tended
to prefer a short response to M because the len of
TC-M is smaller than M for each model. For
GPTs, the distinct-N , SU, and I scores of TC-
M were slightly lower than M. This is because
those scores of M were already sufficiently high,
and our reranking method aims to improve time-
considerability but not diversity and general sensi-
bility of naturalness. Consequently, we confirmed
that our reranking method improved the quality of
the existing dialogue models.

One interesting observation from this experiment
is that TJD-t, which we used as TAN p(r | u, t),
had lower quality than TJD. This fact suggests
that fine-tuning explained in 4.2 was not enough
and that our reranking method improved the per-
formance of the existing dialogue models even if
TAN’s performance is somewhat low. However,
of course, using TAN with low performance is not
desirable. For GPTs, TC-M achieved a higher
S score but lower SU and I scores than the origi-
nal M. We believe this deterioration of SU and I
scores can be easily avoided using a more accurate
model as TAN, such as GPT-4.



Utterance Tomo-san, you can get up feeling refreshed after drinking; I really like you. (tomoさんのお酒飲んだ次の
日寝起きいいのすき) @ 10 a.m (daytime)

TJD Tomo-san! Tomo-san! Tomo-san! Tomo-san! (とーもーさん!!とーもーさん!!とーもーさん!!とーもー
さん!!とーもーさん!!)

TC-TJD I overslept and missed my first class. (1限寝過ごしたよ)
TJD-t I also get up feeling refreshed after drinking. (わたしもお酒飲んだ次の日寝起きいいの)

TC-TJD-t I’m sure that I’ll get back to bed. (二度寝安定ですねこれは)

GPT-3.5 Yes, I have trouble getting up after drinking, but I slept well last night, so I feel fine. (そうですね、お酒を
飲んだ翌日は寝起きが悪くなりますが、今日はしっかりと寝ていたので大丈夫です。)

TC-GPT-3.5 Yes, you feel better. But I was drinking last night, so I am a little hungover today. (そうですね、体が軽く
感じますよね。でも、昨日は遅くまで飲んでしまったので、今日は少し眠いです。)

GPT-4
Oh, that’s great! Being energetic in the morning has a very positive effect on the start of your day, doesn’t
it? (えー、それはすごいですね!朝から元気なのは、一日の始まりにとても良い影響があります
よね。)

TC-GPT-4
Oh, that’s great! Being energetic in the morning has a very positive effect on the start of your day, doesn’t
it? (えー、それはすごいですね!朝から元気なのは、一日の始まりにとても良い影響があります
よね。)

Utterance I still love a big chorus!!!! (やっぱり大合唱は最高だ!!!!) @ 7 p.m (nighttime)
TJD Thanks a lot! (おつかれさまでした!)

TC-TJD Yay! Thanks for today! It was fun! (いぇーい!今日はありがとう!楽しかった!)
TJD-t Thanks a lot! I had the best time!!!! (おつかれさまでした!最高にたのしかったです!!!)

TC-TJD-t It was great...! Thank you so much for today! (最高だったね...!今日は本当にありがとう!)

GPT-3.5
That’s right! That song is a real crowd-pleaser when everyone sings it together. But what about the next
song? (そうだね!特にあの曲はみんなで歌うと本当に盛り上がるよね。でも、次の曲はどうす
る?)

TC-GPT-3.5 Yes, a big chorus is really exciting, isn’t it? Are you going out for a drink afterward? (そうだね、大合
唱は本当に盛り上がるよね。この後は何か飲みに行く予定はある?)

GPT-4 I really agree! It’s even more exciting to hear a big chorus at this time of night, isn’t it? (本当にそうだ
ね!夜のこの時間に大合唱を聴くと、さらに感動が増すよね。)

TC-GPT-4 I really do! But it’s almost time for dinner, so why don’t we head home? (本当にそうだね!でもそろそ
ろ夕食の時間も近いから、帰ろうか?)

Table 8: Examples of generated responses by each model. TC-M is time-considerable M achieved by our proposed
reranking method. White and gray rows correspond to M and TC-M. Time-specific phrases are indicated by bold.
All utterances and responses were originally written in Japanese and translated into English by the authors.

Table 8 shows example responses r̄M and r∗M
generated by each M and TC-M, where r̄M and
r∗M are shown in white and gray rows. The result
indicates r∗M contained more time-specific expres-
sions than r̄M; e.g., “I overslept” in the morning
and “thanks for today” at night. The detailed anal-
ysis is described in Appendix A.3. For the first
utterance, the original GPT-4 already generated
time-specific responses, and TC-GPT-4 selected
the same response as its output; namely, in this
example, TC-GPT-4 considered that the original
response was sufficiently time-considerable.

6 Conclusion

We proposed a new reranking method to construct
time-considerable dialogue models that distinguish
between always natural responses AN and tem-
porally natural responses TN and actively output
TN. We verified the assumption users prefer TN
to AN by human evaluations and introduced a
new metric to classify the NUTA categories of re-
sponses. We proposed a new reranking method to
make existing dialogue models time-considerable
using the metric and empirically showed that our

method improved the qualities of existing models.
A promising future study is to control the de-

gree to which a time-considerable dialogue model
actively uses time information in different situa-
tions. Not only time information but all external
information is valuable when used appropriately,
but excessive use may harm the users’ impression.
Therefore, we plan to develop a mechanism to es-
timate an appropriate TD@t value that a response
should have in the current situation and to output
or generate a response with the estimated value.
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Limitations

Effect of TAN’s quality In our proposed rerank-
ing method, we used TJD-t, which is a time-aware
transformer-based Japanese dialogue model ob-
tained by fine-tuning, as TAN, but our experimental
result showed the quality of TJD-t was lower than
the other models. One of our contributions is that
we empirically showed that our reranking method



successfully improved the S (specificity to time)
score of each model even though the quality of
TAN (TJD-t) is somewhat low. However, it would
be desirable to investigate how the effectiveness
of our proposed method changes as the quality of
TAN changes.

Different types of time information In this pa-
per, we used the time of day as time information.
However, there are other types of time information
that have longer periods, such as day of the week
and seasons. It is promising future research to in-
vestigate how the quality of dialogues changes with
the use of such longer periodic time information.

Cultural differences in time information In this
paper, we investigate the effect of the use of time in-
formation on dialogues in Japanese; however, it has
been shown that the time-specific expression varies
depending on the country and culture (Shwartz,
2022). Therefore, it is desirable to investigate
whether the proposed method can produce time-
considerable responses for different languages.

Ethics Statement

In this paper, we employed workers using a crowd-
sourcing service. We made sure that the workers
were paid above the minimum wage. It applies to
all crowdsourcing experiments in this paper.
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A Appendix

A.1 Dataset Construction
We describe the filtering rules used to obtain the
NUTA dataset in Section 3 and the fine-tuning
dataset in Section 4.

NUTA dataset In Section 3, we constructed the
NUTA dataset which is a collection of tuples of
utterances, their spoken times, their responses, and
their NUTA categories. As utterances, we extracted
Japanese tweets posted between May and Decem-
ber 2022 that satisfied the following conditions:

• Do not contain URLs, usernames, other
tweets, parentheses,

• Consists of 6 to 30 characters,
• Not posted by users whose names contain

“bot”,
• Not Replied to another tweet.

We randomly selected 1,000 tweets from the ex-
tracted tweets and manually deleted tweets contain-
ing discriminatory, violent, or inappropriate expres-
sions. As a result, we obtained 640 appropriate
tweets and used them as utterances U .

Fine-tuning dataset In Section 4, we con-
structed a fine-tuning dataset in the same manner
as Shwartz (2022) to obtain time-aware TJD by
training TJD on the obtained dataset. We collected
Japanese tweet-reply pairs with their timestamp
posted between August 2021 to April 2022 that do
not contains URLs or other tweets. As a result, we
obtained 470,255,625 triplets.

A.2 Implementational and Experimental
Settings

We here describe the detailed settings of our imple-
mentation and experiments.

TJD and TJD-t For a time-unaware dialogue
model, we used TJD which is a transformer-
based Japanese dialogue model with 1.6B pa-
rameters trained on over two billion tweet-reply
pairs (Sugiyama et al., 2023). We downloaded
the trained TJD 3 and obtained a time-aware
TJD, denoted by TJD-t, by fine-tuning TJD on
Fairseq 4 (Ott et al., 2019), which is a sequence
modeling toolkit to train custom models for var-
ious takes including translation, summarization,

3https://github.com/nttcslab/
japanese-dialog-transformers

4https://github.com/facebookresearch/fairseq

language modeling, and other text generation tasks.
In fine-tuning, we used SentencePiece 5 (Kudo and
Richardson, 2018) to tokenize utterances and re-
sponses written in Japanese. Table 9 shows the
hyperparameters we set to in fine-tuning. We used
the computational resource of AI Bridging Cloud
Infrastructure (ABCI) provided by the National
Institute of Advanced Industrial Science and Tech-
nology (AIST).

Configurations Values
Model Architecture Transformer
Pretrained Model TJD (Sugiyama et al., 2023)
Devices Nvidia V100 GPU
Max tokens 4,000
Optimizer Adafactor
Learning rate 1e-04
Learning rate scheduler inverse sqrt
Warmup 10000
weight decay 0.0
Loss Function label smoothed cross entropy

Table 9: Hyper-parameters for fine-tuning

GPT-3.5/4 We used GPT-3.5 and GPT-4 (Ope-
nAI, 2023) as state-of-the-art dialogue models.
Since architectures and parameters of GPT-3.5/4
were not publicly available, we used OpenAI APIs
gpt-3.5-turbo and gpt-4 to generate responses
of GPT-3.5/4. We created the following prompt
based on a sample prompt for dialogue tasks pro-
vided by OpenAI and gave the prompt as input to
GPT-3.5/4 to generate a time-aware response.

The current time is [hour], and A and B
are having a conversation. Taking into
account the current time, generate the
following B's response to A's utterance.
However, avoid expressions like "it's
[hour] o'clock now."
A: [utterance]
B:

TD@t in our proposed reranking method As
shown in Eq. (5),TD@t is the maximum of
CNtU:t(r | u) for all possible tU ∈ T , and tU

could be very close to spoken time t. In such cases,
the time dependency of r might be difficult for
humans to understand since its naturalness varies
in too short-term. To avoid detecting such short-
term time dependency, we divided 24 hours into
three intervals, morning (3 to 8), noon (9 to 17),

5https://github.com/google/sentencepiece

https://github.com/nttcslab/japanese-dialog-transformers
https://github.com/nttcslab/japanese-dialog-transformers
https://github.com/facebookresearch/fairseq
https://github.com/google/sentencepiece


and night (18 to 2). We used 6, 13, and 22 as the
representatives of morning, noon, and night, re-
spectively. The division and their representatives
were determined with reference to Yamamoto and
Shimada (2019). We computed TD@t by Eq. 5
using the above T excluding the representative of
spoken time t. For instance, for t = 10, we use
T = {6, 22} to evaluate TD@t because the rep-
resentative of 10 is defined as 13. We conducted
the same experiments as Section 4 using the above
TD@t, and Table 10 and 11 show the results. The
results indicate that the accuracy of TN classifi-
cation was slightly improved by introducing the
above time intervals but not for the average accu-
racy. Therefore, it cannot be said that either TD
with intervals is better than the original TD.

Naturalness TD PCMI
TUN TAN @all @t @all @t

N 0.60 0.68 0.48 0.61 0.48 0.55
T 0.54 0.54 0.65 0.58 0.51 0.48

Table 10: Accuracy of N/U and T/N classifications
with the morning/day/naight quantization

TD PCMI
@all @t @all @t

AN 0.50 0.39 0.41 0.38
TN 0.48 0.61 0.39 0.51
TU 0.41 0.15 0.30 0.14
AU 0.46 0.45 0.34 0.32
Ave. 0.46 0.40 0.36 0.34

Table 11: Accuracy of NUTA classification with the
morning/day/naight quantization

A.3 Time-specific Expressions
We conducted a subjective evaluation to count the
number of time-specific expressions by authors. As
a result, our method increased their occurrences by
80% and 8% for TJD-t and GPT-4, respectively.
These results on occurrences of time-specific ex-
pression are consistent with the improvements in S
shown in Table 7.


