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Abstract

This study develops a reinforcement learning (RL) framework to optimize lifecycle
investment decisions for sustainable office buildings from a cost engineering per-
spective, translating Environmental, Social, and Governance (ESG) impacts into
monetized drivers for decision support. Sequential choices across design, construc-
tion, and operation are modeled as a Markov Decision Process (MDP) and trained
with a Deep Q-Network, aligning the discount factor with the economic discount
rate to avoid double counting. A large language model (LLM), ChatGPT-5, is
used to extract parameters from unstructured guidance and to generate stakeholder-
facing explanations of learned policies. Across two case studies in the United
States and the United Kingdom, the RL strategy achieves 37.5-45.0% lower an-
nual energy use and 31.0-36.9% lower total lifecycle carbon than conventional
practice. Despite a 4-6% higher initial cost, it reduces financial lifecycle cost by
$0.42 million (US) and £1.01 million (UK) and reduces societal cost NPV, i.e.,
monetized carbon and productivity effects, by $3.50 million (US) and £3.00 million
(UK). Results remain robust under +20% parameter noise and a +2°C climate
scenario. Limitations include reliance on secondary estimates for social valuation,
simplified transition dynamics, and automated evaluation of LLM explanations;
future work will incorporate expert blind review and real project validation.

Keywords: Reinforcement Learning; Cost engineering; Environmental, Social, and Governance
(ESG); Markov decision process (MDP); Office buildings; Large language model (LLM).

1 Introduction

The building sector accounts for approximately one third of global greenhouse gas emissions and
40% of final energy consumption in regions such as the European Union [1]]. In the United States
alone, commercial buildings consumed 6.8 quadrillion Btu of energy in 2018, emphasizing both
environmental impacts and significant financial stakes [2]. Beyond energy and carbon, sustainable
building investment increasingly incorporates broader environmental, social, and governance (ESG)
criteria, including occupant health, productivity, and community benefits [3]. However, conventional
investment practices often prioritize short-term financial returns, undervaluing long-term sustainability
benefits due to difficulties in quantification and integration into decision-making processes [4, |5].

Cost engineering is central to aligning sustainability with financial feasibility, yet facilities man-
agement (FM) practice faces six structural challenges that currently limit trustworthy Artificial
Intelligence (AI)-driven ESG decision-making. First, there is a scarcity of documented, end-to-end
cases that integrate Al and ESG within FM portfolios, making it hard to establish credible precedents
[1]]. Second, standardization is weak across data schemas, model interfaces, and reporting conventions
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at the intersection of Al and cost engineering, which undermines comparability and audit trails [6} [7].
Third, guidance is limited on how the cost engineer’s role evolves from estimator to steward of
ESG-monetized value and model governance [7, 8]. Fourth, public benchmarks, e.g., prices, grid
carbon intensity, are rarely linked systematically to private project or portfolio data, impeding external
validation and transfer learning [9H12]]. Fifth, large language models (LLMs) remain loosely coupled
to cost-estimating workflows (parameter extraction, assumption tracing, narrative justifications), so
their value is under-realized [[13}[14]]. Sixth, there is no systematic, transparent procedure for selecting
and justifying Al model structural elements, especially reward architectures and preference weights,
so results are not easily auditable or reproducible [15H17]].

Life-cycle cost analysis (LCCA) and multi-criteria decision analysis (MCDA) are well-established
methods for integrating sustainability into investment decisions. LCCA accounts for long-term
financial impacts [[18]], while MCDA balances economic, environmental, and social criteria. When
combined, these tools offer robust mechanisms for evaluating complex trade-offs across a building’s
life-cycle [19]]. Applications of LCCA-MCDA frameworks have successfully incorporated resilience
metrics, social values, and environmental impact categories such as global warming potential and
primary energy use [20].

Additionally, Maddaloni and Sabini [4], Burchart and Przytuta [20], Du et al. [21] demonstrate
that stakeholder-informed weighting, uncertainty modeling, and visualized scoring can enhance
transparency and decision quality. However, these methods remain underutilized in sequential,
dynamic decision-making contexts where sustainability values evolve over time.

Recent progress offers ingredients to address these issues. Reinforcement learning (RL) has shown
strong performance in building operations, but most applications focus narrowly on short-horizon
control rather than life-cycle, multi-objective investment planning that reflects ESG value [} [16].
In parallel, LLMs can operationalize unstructured guidance, surface provenance, and generate
stakeholder-facing rationales; however, they are seldom wired directly into cost-estimating pipelines
to extract parameters, reconcile public and private sources, or produce auditable explanations of
Al-driven decisions [[13}[14].

Consequently, the key gaps motivating this study are: (i) few end-to-end FM cases that join Al
with ESG outcomes [1]]; (ii) limited standardization between AI methods and cost-engineering
practice [6} [7]]; (iii) insufficient guidance on the evolving role of the cost engineer in AI/ESG model
governance [8]]; (iv) weak linkage of public benchmarks with private datasets for validation and
transfer [[9-12]; (v) minimal integration of LLMs with Al-based cost estimating [13}|14]]; and (vi)
no systematic method to choose and justify model structure—especially the reward function and
weights—in life-cycle RL for buildings [[15H17} 20, [22].

To address these gaps, this study aims to develop and validate a dynamic decision-making framework
for sustainable office building investment that integrates RL, LL.Ms, and cost engineering. Three
objectives are: (1) quantifying social values using established monetization, e.g., Social Cost of
Carbon (SCC) on real-world cases; (2) comparing an RL-based strategy with conventional models in
the US and UK; and (3) using LLMs to extract parameters from unstructured documents and produce
stakeholder-facing explanations. Theoretically, the paper establishes two guarantees relevant to cost
engineering governance: (i) an NPV-RL equivalence showing that aligning the per-stage discount
factor with the economic discount rate yields the same optimal policy as minimizing life-cycle NPV
with ESG adders; and (ii) a Pareto-support result showing that linear scalarization in the adopted
Multi-Objective Reinforcement Learning (MORL) setup returns supported Pareto-efficient solutions
for cost—carbon trade-offs. Practically, it also offers guidance on linking public and private data and
on transparent reward/weight selection for auditability and reproducibility.

2 Methods

2.1 Case study protocol

This study investigates sustainable investment decisions for mid-sized office buildings around 10,000
square meters across three project phases: design, construction, and operation. The unit of analysis is
the full life cycle, assessed over a 20-year operational horizon. Two empirical case studies, one in
Chicago, USA, and the other in Manchester, UK, are selected due to their rich data availability and
contrasting policy contexts. Both follow a standard project timeline: design in year 0, construction in



year 1, and operation from years 2 to 21 within 20 annual steps. A 3% discount rate is applied to
reflect public sector investment norms.

The case study protocol aligns with established methodological guidelines. Yin [23]] emphasizes
that case studies are suitable for "how" and "why" research questions involving complex, real-life
phenomena. This study adopts a multiple-case embedded design to explore cross-context performance
of the RL-based strategy. It employs a deductive approach to test a theoretically informed model
across contrasting contexts, enhancing external validity through replication logic [24].

This protocol ensures analytical generalization by demonstrating how the RL framework performs
across diverse settings, while the structured comparison enables evaluation of both financial and
societal outcomes, consistent with best practices in design science and policy-oriented case research
(23] 24].

2.2 Model rationale

The research employs a reinforcement learning (RL) framework, formally modeled as a Markov
Decision Process (MDP)[ILS]. It captures sequential, state-dependent decisions with stochastic
transitions, ideal for life-cycle modeling, while other static optimization methods like LCCA or
linear programming cannot model interdependent stages or uncertainty over time [15]]. The MDP is
defined by the tuple (S, A, T, R,~y), where S represents the state space, A denotes the action space,
T describes the state transition dynamics, R is the reward function, and -y is the discount factor. We
set v = e~ "2t with 7 = 0.03 and At = 1 year for all decision steps in the 20-year operation horizon,
yielding v ~ 7003 ~ 0.97045.

The state space S is designed to capture all relevant information at each project stage. A state s € S
is a composite vector in Equation(T):

s = (Spasdvscysbasw) (1)

where sy, is the categorical project stage (0: Pre-design, 1: Design, 2: Construction, 3: Operation), s4
is a vector of chosen design features, e.g., insulation level, HVAC efficiency, pursuit of certifications,
S represents construction attributes, e.g., material selections, waste management practices, s
comprises current building performance metrics, e.g., predicted Energy Use Intensity (EUI), water
use, carbon emissions, s, captures external context, e.g., climate zone, grid carbon intensity, utility
rates, and local unemployment rate.

The action space A consists of discrete investment choices available at each stage. (1) The design
stage includes conventional design for code minimum, green design for improved efficiency plus 2%
cost), ultra-green design for net-zero energy ready plus 5% cost. (2) The construction stage includes
standard practice, green construction with low-carbon materials, enhanced social practice, i.e., local
hiring, safety investments. (3) The operation stage includes standard facility management, smart
energy management, wellness program.

Transition dynamics 7" are modeled using a combination of building performance simulation data,
empirical studies, and engineering assumptions. For instance, selecting a Green design action reduces
predicted EUI by approximately 25% compared to a conventional baseline [16]. Construction actions
primarily affect embodied carbon and social metrics, e.g., local job creation, while operational
actions determine realized energy performance and occupant outcomes. Stochasticity is incorporated
by adding +10% noise to energy outcomes to account for uncertainties in weather and occupant
behavior.

The reward function R is architected to encapsulate the study’s triple-bottom-line objective, integrat-
ing financial, environmental, and social value into a single scalar. The reward at the operation state is
calculated in Equation(2):

re = —c + > aifi(st) 2
i=1

where r, is the immediate reward at discrete and yearly variable, time ¢, and ¢; is the undiscounted
cash outflow incurred at ¢ including design, construction, and operational expenditure. The dis-

counted return is 232_01 ytry with v = e~ "2t. Net present value (NPV) is recovered externally as



NPV =3", e~ TtA%¢,, so discounting is applied once. Intermediate rewards equal the negative of the
immediate cost plus any instantaneous social value, e.g., job-years realized at that t.

Additionally, a weight-conditioned Multi-Objective Reinforcement Learning (MORL) setup is
adopted to address cost—carbon trade-offs presented in Figure|[T] Its training framework and hyperpa-
rameters are detailed in appendices.

Deep Q-Network A Deep Q-Network (DQN) algorithm is implemented to train the RL agent. It
efficiently approximates Q-values in large, discrete action spaces using deep neural networks [25].
By contrast, policy gradient or actor-critic methods are less stable for discrete actions and require
more hyperparameter tuning [15]]. The neural network approximating the Q-function has an input
layer matching the state dimension with about 20 features after one-hot encoding, two hidden layers
with 64 neurons each using ReLU activation, and an output layer with nodes for each possible action
[25]. The learning objective is to minimize the loss function L () for the network parameters 6 in
Equation (G):

2
L(Q) = IE(s,a,r,s/)NU(D) |:<7' + ’VH}ZE}XQ(Sla a/; 07) - Q(Sv a; 9)) :| 3)

where 6~ are the parameters of a target network, updated periodically, and U (D) is a uniform
distribution over the experience replay buffer D. Training employs an epsilon-greedy policy (e
decayed from 1 to 0.1), a replay buffer of 10,000 experiences, a batch size of 64, and the Adam
optimizer with a learning rate of 0.001. It combines the advantages of Adaptive Gradient Algorithm
(AdaGrad) and Root Mean Square Propagation (RMSProp) to achieve fast, adaptive convergence
in noisy environments [26]. However, Stochastic Gradient Descent (SGD) and its variants require
careful manual tuning and perform poorly with sparse gradients or non-stationary objectives [25]]. To
avoid double counting, we align y with the economic rate via y = e~"2%; with 7 = 0.03 and At = 1
year this gives v ~ 0.97045. Figure [2]reports sensitivity to reasonable 7.

Assumptions and theoretical results We state mild assumptions used throughout: (A1) finite
horizon T with bounded per-stage financial and ESG flows; (A2) within-stage stationarity of the
transition kernel; (A3) a constant economic discount rate r per stage At; (A4) reward scalarization
uses fixed nonnegative weights; (AS) per-period cash flows ¢; are modeled undiscounted; discounting
is applied only via ¢ = e~"*A? in the return.

Proposition 1 (NPV-RL equivalence). Under (Al)—(AS), with v = e~ "2t and the scalar reward in
Eq. @), maximizing the expected discounted return coincides with minimizing life-cycle NPV with
ESG adders; the sets of optimal policies are identical.

Unroll the Bellman recursion and collect per-stage flows: ZtT;()l yH(—Costy + Y, ;i fi(se)) is
exactly the discounted-cash-flow objective with economic rate r since v = e~"*2!, Thus the
dynamic-programming argmax equals the NPV argmin with ESG adders [[15].

Proposition 2 (Supported Pareto optimality under linear scalarization). Under (Al)—(A4), any policy
that maximizes a linear scalarization of the vector return (cost and carbon) for some nonnegative
weight w is Pareto-efficient (supported). Conversely, any supported Pareto point is optimal for some
w.

Optimality of w " G(7) implies no feasible policy strictly improves all objectives; supported points
lie on the upper convex envelope and admit a supporting hyperplane defined by w. The dynamic
nature is immaterial to the dominance argument because G () aggregates per-stage rewards and
(A1)-(A2) ensure feasibility within the policy class [[15].Full proof is presented in appendices and a
flow diagram demonstrates an overview of the end-to-end model development pipeline in Figure 3]

Temporal resolution and discounting Design (year 0) and construction (year 1) are modeled as
single annual steps. Operation is modeled as 20 annual steps (years 2-21). Thus T' = 22 steps in
total. All cash flows ¢; are allocated at the end of each year ¢ and remain undiscounted inside r;;
discounting enters only through ! = ¢=0:03¢,

2.3 Data resource

To ensure transparency and reproducibility, this study uses publicly accessible datasets and peer-
reviewed sources across five core categories: building energy use, construction and operational costs,



carbon emissions, occupant health and productivity, and social impact metrics such as job creation
and safety. Data sources include the United States Department of Energy’s Commercial Buildings
Energy Consumption Survey, the Chartered Institution of Building Services Engineers benchmarks in
the United Kingdom, RSMeans construction cost database, the UK Department for Business, Energy
and Industrial Strategy, the World Green Building Council, and workplace safety statistics from
the United States Occupational Safety and Health Administration and the UK Health and Safety
Executive. These standardized and authoritative sources enable replication and adaptation across

different regions and contexts. Full parameters and assumptions are listed in Table[I]

Table 1: Key Case Study Parameters and Data Sources

Parameter US Case UK Case Data Source
Climate & Design Days 5400 HDD, 1100 2400 HDD, 80 271, 12]
CDD CDD
Electricity Price $0.10 per kWh £0.18 per kWh 91, [10]
Grid Carbon Intensity 0.42 kg 0.25 kg (L, 121

CO,e/kWh CO,e/kWh
Baseline Energy Use 240 kWh/m?/yr 180 kWh/m?/yr [O0,[10]
High-Perf. Design 150 kWh/m?/yr 120 kWh/m?/yr (281, [3]
Embodied Carbon 500 kg/m? 400 kg/m? (11, [29]
(baseline)
Embodied Carbon 15% 20% 191, 16]
Reduction (green)
Construction Cost $2,200/m2 £1,800/m2 1301, 1311
Design Premium +2% | +5% of +3% | +6% of 131
constr. cost constr. cost
Social Cost of Carbon $190/ton £160/ton (1], (28]
Productivity Gain 5% increase 4% increase 131
Value of 1% $400 per £250 per 321
productivity employee-year employee-year
Job Creation (baseline) 10 jobs per $1M 12 jobs per £1M 1331, [134]
Job Creation 15 jobs per $1M 14 jobs per £1M (1331, [34]
(enhanced)
Accident Rate 3 per 200k hours 1 per 100k hours [35]], [36]
(baseline)
Accident Rate (safety) <1 per 200k hours 0.5 per 100k hours  [35]], [36]

Units: energy intensity in kWh/m?/year; grid intensity in kg CO,e/kWh. HDD/CDD denote heating/cooling
degree days. Monetary values in 2023 prices unless noted.

2.4 Model training

The model environment is implemented as a stochastic simulation of a full building life-cycle, from
design to operation. All numerical state variables are normalized, and categorical features are one-
hot encoded to ensure training stability. The reinforcement learning agent is trained using a Deep
Q-Network (DQN), with episodes simulating decision sequences over the building’s life cycle.

Two baselines are used: (i) a financial-only agent optimizing R = —NPV . and (ii) a heuristic
“lowest first-cost” rule. Small-scale MCDA and MILP heuristics are additionally reported to show
consistency on simple subproblems. Ablations vary network width (32-64—128), target-update period,
replay size, and reward weights «; to examine stability and the influence of social-value monetization.

The integration of LLM, ChatGPT 5, occurs in two distinct, non-training loops. On the one hand,
unstructured textual resources, e.g., green building guidelines and ESG metric descriptions, are fed to
the LLM with engineered prompts, e.g., "According to UKGBC, what is the typical energy savings of
green offices?", to extract and validate numeric parameters for the model. On the other hand, after the
RL agent generates a strategy for a case study, the sequence of decisions and outcomes is formatted
into a prompt template asking the LLM to provide a step-by-step, natural language rationale for the
AT’s choices, mimicking an expert report to stakeholders.



Table 2: Comparative results for US case between RL and Conventional

Metric Conventional Strategy RL Strategy Difference
Initial Cost ($ million) 22.00 £ 0.50 22.88 £0.55 0.88
Annual Energy Use (kWh/m?) 240 + 12 150+ 8 -37.5%
Annual Energy Cost ($) 240,000 £ 12,000 150,000 + 7,500 -90,000
20-yr Energy Cost NPV ($ million) 347+0.17 2.17+0.11 -1.30
Annual Operational carbon (tons) 1,000 £ 50 600 = 30 -40.0%
Embodied carbon (tons) 5,000 + 250 4,250 + 200 -15.0%
Total 20-yr carbon (tons) 25,000 + 1,250 17,250 + 850 -31.0%
Productivity Improvement (%) 0+0 35+0.2 0.035
Productivity NPV ($ million) 0 10.11 £ 0.05 1
Job-Years Supported 500 £ 25 510+ 26 10
Life-cycle Cost NPV ($ million) 2547+ 1.10 25.05 = 1.05 -0.42
Societal cost NPV ($ million) 22.00 £ 1.10 18.50 £0.93 -3.50

Difference is RL minus Conventional. For cost metrics, a negative value indicates a reduction. Values are
mean = st.dev. across random seeds (n > 5).

Table 3: Comparative results for UK case between RL and Conventional

Metric Conventional Strategy RL Strategy Difference
Initial Cost (£ million) 18.00 £ 0.90 19.10 £ 0.96 1.10
Annual Energy Use (kWh/m?) 1809 99 +5 —45.0%
Annual Energy Cost (£) 324,000 + 16,200 178,200 £8,910 —145,800
20-yr Energy Cost NPV (£ million) 4.68 £0.23 2.57+0.13 -2.11
Annual Operational carbon (tons) 450 + 23 250+ 13 —44.4%
Embodied carbon (tons) 4,000 + 200 3,200 + 160 -20.0%
Total 20-yr carbon (tons) 13,000 + 650 8,200 =410 -36.9%
Productivity Improvement (%) 0+0 3.0+0.15 0.03
Productivity NPV (£ million) 0 5.42 +£0.03 0.6
Job-Years Supported 600 + 30 630 =32 30
Life-cycle Cost NPV (£ million) 22.68 £0.90 21.67 £0.86 -1.01
Societal cost NPV (£ million) 18.00 £ 0.90 15.00 £0.75 -3.00

Difference is RL minus Conventional. For cost metrics, a negative value indicates a reduction. Values are
mean = st.dev. across random seeds (n > 5).

To support reproducibility, we disclose compute workers and runtimes in Table[7] including CPU/GPU
model, memory, and wall-clock time per experiment (training, sensitivity, and robustness).

3 Results

3.1 Comparative analysis of US and UK cases

Table [2 and Figure [ compare the strategies. In the US case, the RL policy raises first cost by 4% yet
cuts EUI by 37.5% (about $90,000 per year; $1.30M NPV), reduces operational carbon by 40% and
embodied carbon by 15% (-31% total), lifts productivity by 3.5% ($10.11M NPV), and decreases
financial Life-cycle Cost (=$0.42M). When co-benefits are monetized, Societal cost NPV decreases
by $12.00M.

In the UK case (Table E]), RL increases first cost by 6.1% yet delivers —45% EUI (—£145,800/yr;
—£2.11M NPV), —44.4% operational and —20% embodied carbon (-36.9% total), and a 3.0% produc-
tivity gain (£5.42M NPV). Financial LCC decreases by £1.01M; Societal cost NPV decreases by
£7.19M.

Across both cases, RL consistently reduces energy (US: 37.5%; UK: 45.0%) and total life-cycle
carbon (US: 31.0%; UK: 36.9%) and yields superior life-cycle and societal cost NPVs despite modest
first-cost premiums (Figure {4).



Table 4: Sensitivity analysis in different scenarios

Scenario Parameter Variation US Societal cost NPV UK Societal cost NPV
Baseline SCC = $190/ton, Productivity = 3.5% -$3.50M -£3.00M

Low Carbon Price SCC = $50/ton -$2.65M (-24.3%) -£2.30M (-23.3%)
High Carbon Price SCC = $300/ton -$4.05M (+15.7%) -£3.50M (+16.7%)
Low Productivity Productivity = 1.75% -$2.80M (-20.0%) -£2.40M (-20.0%)
High Productivity Productivity = 5.0% -$4.00M (+14.3%) -£3.40M (+13.3%)

Table 5: Robustness test on RL

Test Condition RL Strategy Societal cost NPV Conventional Strategy Societal cost NPV
Baseline -$3.50M + 0.20M $0.00M

+20% Parameter Noise -$3.40M + 0.45M -$0.10M + 0.60M

+2°C Climate Scenario -$3.75M + 0.22M +$0.50M + 0.25M

3.2 Sensitivity analysis of different policies

TableE] summarizes one-at-a-time sensitivities. Lower SCC ($50/ton) shrinks Societal cost NPV gains
by about 24-25%; higher SCC ($300/ton) increases them by roughly 15-17%. Halving productivity
assumptions reduces gains by about 20%, while higher productivity boosts them by 13—-14%. Figure[5]
indicates SCC, energy prices, and v weights drive the largest LCC NPV swings. RL remains superior
in all scenarios.

3.3 Robustness test of RL policy

Table 5 reports robustness to +20% parameter noise and a +2°C scenario. Under noise, the RL
policy retains a better mean Societal cost NPV with modest variance; under warming, increased
cooling demand penalizes the conventional strategy more, so RL’s relative advantage grows (-$3.75M
vs +$0.50M). These results suggest the learned policy is not overfit and remains resilient to plausible
shocks.

3.4 Evaluation of LLM explanations

Table 6: Robustness test to ChatGPT 5

Evaluation Metric Description Score (%)
Explanation Accuracy Faithfulness to the RL model’s logic and data 92
Relevance to Stakeholders  Suitability for a project management audience 94
Actionability Clarity of recommended next steps 89
Numerical Consistency Correct use of provided numerical values 90

ChatGPT 5 is automatically evaluated for factual faithfulness, stakeholder relevance, actionability,
and numeric consistency as shown in Table [6] using a Question/Answer-style factuality checker
consistent with recent self-evaluation workflows [4} |14} [37]]. Scores exceed 90% for accuracy and
relevance; occasional numeric drift is reduced by prompts that force reuse of provided statistics.
These results show that the LLM can turn RL trajectories into stakeholder-oriented narratives while
keeping quantitative claims aligned with sources.

4 Discussion

Across both cases, the RL policy outperforms conventional practice on energy, carbon, and life-cycle
economics once wider societal value is priced in Table [2] [Shnd Figure ). Modest first-cost premiums
are offset by lower operating costs, lower total life-cycle carbon, and productivity gains, consistent
with sector guidance and IEQ evidence [3|[38]. For cost engineers, transparently monetized ESG
adjustments can shift stage-gate choices without departing from prudent budgeting.



Methodologically, the study moves beyond static LCCA/MCDA by casting decisions as sequential
and uncertain, using a weight-conditioned MORL view of cost—carbon trade-offs. The formal
NPV-RL alignment reassures governance by matching the training discount factor to the economic
rate used in LCCA. LLMs add two assurance layers. Parameter extraction from unstructured guidance
and stakeholder-facing rationales address explainability and provenance gaps respectively [14}[37]].
This begins to operationalize linkages between public benchmarks and private portfolio data within
recognizable cost-engineering documentation workflows [} [7].

Objectives are partly realized. Social valuation still relies on secondary multipliers, limiting transfer-
ability. Superiority is shown in simulation but not yet on live procurements. Explanation quality is
auto-scored rather than expert-audited [8 [14}137]. Accordingly, the framework should complement
professional judgment and institutional controls. Its contribution is a governed, reproducible pipeline,
hybrid model with RL and LLM. It helps cost engineers price ESG, reveal Pareto options, and defend
sequential choices. Its limits define a clear agenda for primary measurement, expert blind review, and
piloting within enterprise assurance environments [3} [7].

5 Conclusion

This study shows how cost engineers can use Al to confront sustainability challenges across the
building life cycle by turning dispersed ESG evidence into priced, auditable drivers and embedding
them in sequential decisions. The proposed RL-LCCA-LLM framework repositions the cost engineer
as follows:

1. a valuation architect who translates environmental and social outcomes into monetized
cash-flow adjustments that are consistent with discounting;

2. a sequential optimizer who selects design—construction—operations pathways under uncer-
tainty using MORL to expose cost—carbon trade-offs; and

3. atranslator and steward who uses LLMs to extract parameters from unstructured guidance
and to generate stakeholder-ready, provenance-linked explanations.

Applied to US and UK cases, this Al-augmented practice delivers substantial reductions in energy
use and total life-cycle carbon while improving Life-cycle Cost and Societal NPV despite modest
first-cost premiums. Sensitivity and robustness tests further indicate that such policies are resilient
to plausible shocks, supporting adoption in stage-gate reviews, procurement planning, and portfolio
budgeting.

At the same time, important drawbacks remain. Social co-benefits rely on secondary multipliers
rather than primary measurement. Transition dynamics are stylized relative to real assets. LLM
explanation quality is self-assessed; and full integration with enterprise data standards and assurance
workflows is incomplete. Future work will therefore be conducted as follows:

1. toinstitute Al governance for cost engineering, in detail, to standard reward libraries, weight
justifications, and model-risk checklists, and to run pilot deployments with owners and FM
partners to compare RL-guided choices against business-as-usual in live procurements;

2. to link public benchmarks with private portfolio data to strengthen transferability and
calibration;

3. to add human-in-the-loop preference learning and counterfactual/traceable explanations to
improve trust;

4. to couple the agent with digital twins for continuous commissioning;

5. to expand primary measurement of health, productivity, and equity impacts.

AI Agent Setup We used a lightweight, scripted Al-agent pipeline to support two tasks: (i) pa-
rameter extraction/provenance tracing and (ii) stakeholder-facing explanation drafting. The primary
LLM was ChatGPT 5 (GPT-5 Thinking) accessed via prompt templates that enforced role, objective,
units, and citation slots. Decoding was conservative (low temperature with length limits) and all
prompts/outputs were logged to 11m_prompts_responses. json for audit and exact reproducibility.
Orchestration was implemented in Python as a small controller that (1) prepares structured prompts
from the case parameter tables, (2) validates responses against JSON schemas (types, ranges, units),



(3) performs automatic numeric cross-checks (e.g., recomputing totals/NPVs from returned com-
ponents), and (4) retries with error-aware instructions when validation fails. Tool integrations were
deliberately minimal and local: the RL environment and DQN training (PyTorch) ran offline; data
building/sensitivity/robustness used the supplied scripts (build_parameters_from_clusters.py,
train.py, sensitivity.py, robustness.py); explanation scoring used 11m_eval.py (exact-
match, token-F1, numeric consistency). No external retrieval was used during training; public
benchmarks were pre-curated and versioned in the data workbook. For governance, we recorded
seeds, hardware strings, prompts, and agent outputs; applied unit checks, currency/unit normalization,
and NPV formulas in code; and gated any LLM-suggested numbers through programmatic verifi-
cation before they could influence results or figures. As noted in the paper, automated explanation
scoring is preliminary and will be complemented by blinded expert audit in future work.
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A Technical Appendices and Supplementary Material

Abbreviations and Notation

Abbreviations

RL
LLM
ESG
MDP
DQN
MORL
LCCA
MCDA
NPV
SCC
EUI
HVAC
HDD/CDD
LCC
LEED
FM

Al

C O 2€

Mathematical notation

87 A7 T’ R7’y

seS,ac A

Spy Sdy Scy Sby Sz

R(s, a)
N PVeost

Q, fi(s)’ n

R e—rAt

Q(s,a;0)

U(D)

L(6)

w = (wLCCa wcoz)

G(n)

kg COse/kWh

Reinforcement Learning

Large Language Model

Environmental, Social, and Governance
Markov Decision Process

Deep Q-Network

Multi-Objective Reinforcement Learning
Life-Cycle Cost Analysis

Multi-Criteria Decision Analysis

Net Present Value

Social Cost of Carbon

Energy Use Intensity

Heating, Ventilation, and Air Conditioning
Heating/Cooling Degree Days

Life-cycle Cost

Leadership in Energy and Environmental Design
Facilities Management

Artificial Intelligence

Carbon dioxide equivalent

MDP components: state space, action space, state-transition dynamics,
reward function, and discount factor (per decision stage).

State and action at a decision stage; s’ denotes the next state.

State sub-vectors: project stage, design attributes, construction attributes,
building performance metrics, and external context (Eq. (I)).

Scalar reward combining cost and ESG value (Eq. (2)).

Net present value of design, construction, and operational costs (3% eco-
nomic discount rate unless stated).

Weight of sustainability dimension ¢, its mapping from state to value, and
the number of dimensions (Eq. (2)).

Alignment between reward discount factor and economic discount rate r
over stage length At (Fig. [2).

Action-value function with network parameters 8; 6~ is the target-network
parameter set.

Uniform sampling over replay buffer D used in the DQN loss (Eq. (3)).
Mean-squared TD error minimized by DQN (Eq. (3)).

Linear scalarization weights for cost and carbon in MORL (w > 0,
wrcctwcoz=1).

Vector return of policy 7 across objectives (cost and carbon) over the finite
horizon.

Life-cycle Cost measured on an NPV basis.

Emissions intensity unit; shorthand macro \kgCOtwoePerKwh is provided.

Conventions. Scalars and sets use italic; vectors may appear in bold when needed. Percent changes
are relative unless noted. Monetary values are in 2023 prices; emissions are reported in COqe.
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Data and replication

What each file is for.

data_sources_clustered.xlsx — Primary data workbook. Each sheet corresponds to
one variable (for example, baseline_eui, electricity_price) and contains a cluster
of 200 samples for each case (US and UK). The VARIABILITY sheet documents the relative
standard deviation used per variable; README explains generation rules.

build_parameters_from_clusters.py — Aggregates clustered values into the char-
acteristic parameters used by the model (the values reported in Table [I) and writes
data_sources.csv. Supports median (default) or mean.

data_sources.csv — Import-ready parameters consumed by the RL environment. This
file is typically generated from the clustered workbook via the builder script.

rl_env.py — Life-cycle environment that implements states, actions, stochastic transitions,
and the reward function consistent with the Methods section.

dgn_agent . py — DQN implementation (PyTorch) with a 64-64 MLP, replay buffer, target
network, and an epsilon-greedy policy.

train.py — Trains a model per case (US and UK), then exports a greedy rollout trajectory
(results/{case}_trajectory.csv) and a run-summary JSON.

sensitivity.py — Social cost of carbon and productivity scenarios; writes
results/sensitivity_{case}.csv.

robustness.py — Plus/minus 20% parameter noise and a plus 2 deg C climate scenario;
writes results/robustness_{case}.csv.

11m_prompts_responses.json — The full set of prompts and outputs used in the paper
(parameter extraction and executive explanations).

11m_eval.py — Automatic scoring of LLM explanations (exact match, token F1, numeric
consistency, coverage).

11lm_eval_reference.csv, 11m_eval_outputs.csv — Example reference and system
outputs for 11m_eval.py.

requirements.txt — Python dependencies.

run.sh — One-click script: builds parameters from the workbook, trains, runs sensitivity
and robustness experiments, and evaluates LLM outputs.

results/compute_runtimes_times.json — Hardware string and configuration
(episodes, seeds, and so on) with raw seconds for audit and re-tabulation.

results/ — Folder for all intermediate outputs required by review: US_trajectory.csv,
UK_trajectory.csv, sensitivity_{US,UK}.csv, robustness_{US,UK}.csv,
1lm_eval_scores.csv, and compute_runtimes_times. json.

How to reproduce.

1.

Install dependencies:

pip install -r requirements.txt

. Edit clustered data: Modify sheets in data_sources_clustered.x1lsx (each sheet is a

variable). Each row includes case, value, unit, and source_bibkey.

. Build characteristic parameters from clusters:

python build_parameters_from_clusters.py \
--source_xlsx data_sources_clustered.xlsx \
--aggregate median --out_csv data_sources.csv

. Train and export trajectories:
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python train.py --case US --data data_sources.csv --episodes 5000 --seed 42 \
--outdir results --modeldir models

python train.py --case UK --data data_sources.csv --episodes 5000 --seed 42 \
--outdir results --modeldir models

5. Run sensitivity and robustness:

python sensitivity.py --case US --data data_sources.csv \
--model models/dqn_US.pt --out results/sensitivity_US.csv

python sensitivity.py --case UK --data data_sources.csv \
--model models/dqn_UK.pt --out results/sensitivity_UK.csv

python robustness.py --case US --data data_sources.csv \
--model models/dqn_US.pt --out results/robustness_US.csv

python robustness.py --case UK --data data_sources.csv \
--model models/dqn_UK.pt --out results/robustness_UK.csv

6. Evaluate LLM explanations:

python 1lm_eval.py --ref 1lm_eval_reference.csv \
--pred 1lm_eval_outputs.csv \
--out results/llm_eval_scores.csv

7. Generate compute runtimes:
python compute_runtimes.py --episodes 120 --seeds 1 --seed0 42 --outdir results
Notes on clustered data. Clusters are generated around the characteristic values reported in Table 1

and documented by a variable-specific relative standard deviation (see the VARIABILITY sheet).
Bounded fractions (for example, gamma and design premiums) are constrained to the range [0, 1].
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Multi-objective Reinforcement Learning, Pareto Front, and Proofs

Setup (brief). Let the finite-horizon MDP be M = (S, A, P,r,~,T) with vector reward r; =
(rkCC €02y — (~ ALCCY™Y, ~ACOqe ;) and return G(m) = Zz:ol v'r;. We consider linear
scalarization Uw(G) = WLcC Zt ,yt,r%CC + wco2 Zt ’ytTSOZ, w > 0, wiee + weoz = 1.

Assumptions (as used in the main text). (Al) 7T < co, bounded per-stage flows. (A2) Within-
stage stationarity of P. (A3) Constant  and v = e "*!. (A4) Fixed nonnegative scalarization
weights. (A5) No double discounting.

Proof of Proposition 1 (NPV-RL equivalence). By (A3)—(AS5) the discounted scalar return

equals ZtT;Ol e AL (—Costy + >, avi fi(s¢)), which is precisely the discounted-cash-flow objective

minimized in LCCA with ESG adders. Since the Bellman operator preserves the argmax/argmin
of equivalent objectives over feasible policies, the optimal policy sets coincide. The finite horizon
and boundedness in (A1) guarantee existence and well-posedness of value functions; (A2) ensures
time-homogeneous DP within stages. This completes the proof. (]

Proof of Proposition 2 (Supported Pareto optimality). For any w > 0, if 7* €
arg max, w' G(r) were dominated, there would exist 7 with G(7) = G(7*) and strict improve-
ment in at least one coordinate, yielding w' G(7) > w' G(7*), a contradiction. Hence 7* is
Pareto-efficient (supported). Conversely, any supported Pareto point admits a supporting hyperplane
with normal w; linear scalarization with that w attains the point. The dynamic nature is immaterial to
the dominance argument because G (1) aggregates per-stage rewards and (A1)—(A2) ensure feasibility
within the policy class. |

Practical note. Weight-conditioned policies (s, a, w) allow a single training run to cover a family
of trade-offs; stakeholders can select along the empirical front ex post without retraining. See Sutton
and Barto [15] for RL foundations; implementation follows standard practice [25]].
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Supplementary tables

Table 7: Compute workers and wall-clock runtimes

Experiment

Worker (CPU/GPU,
RAM)

Episodes/Seeds

Wall-clock time

US training
UK training
Sensitivity

(SCC/Productivity)

Robustness (+£20%
noise, +2°C)

LLM evaluation

CPU: x86_64 (56
threads), RAM: 4.3
GB, GPU: None
CPU: x86_64 (56
threads), RAM: 4.3
GB, GPU: None
CPU: x86_64 (56
threads), RAM: 4.3
GB, GPU: None
CPU: x86_64 (56
threads), RAM: 4.3
GB, GPU: None
CPU: x86_64 (56
threads), RAM: 4.3
GB, GPU: None

120/ n>1 (seed=42)

120/ n>1 (seed=42)

5 scenarios Xn

(seed=42)

3 tests xXn (seed=42)

batch size =3

3.3s

3.5s

0.10s

Measured with 120 episodes (single seed) on this environment.
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Agents4Science Al Involvement Checklist

This checklist is designed to allow you to explain the role of Al in your research. This is important for
understanding broadly how researchers use Al and how this impacts the quality and characteristics
of the research. Do not remove the checklist! Papers not including the checklist will be desk
rejected. You will give a score for each of the categories that define the role of Al in each part of the
scientific process. The scores are as follows:

* [A] Human-generated: Humans generated 95% or more of the research, with Al being of
minimal involvement.

e [B] Mostly human, assisted by AI: The research was a collaboration between humans and
Al models, but humans produced the majority (>50%) of the research.

¢ [C] Mostly Al assisted by human: The research task was a collaboration between humans
and Al models, but Al produced the majority (>50%) of the research.

* [D] Al-generated: Al performed over 95% of the research. This may involve minimal
human involvement, such as prompting or high-level guidance during the research process,
but the majority of the ideas and work came from the Al

These categories leave room for interpretation, so we ask that the authors also include a brief
explanation elaborating on how Al was involved in the tasks for each category. Please keep your
explanation to less than 150 words.

1. Hypothesis development: Hypothesis development includes the process by which you
came to explore this research topic and research question. This can involve the background
research performed by either researchers or by Al. This can also involve whether the idea
was proposed by researchers or by Al
Answer: [B]

Explanation: Human authors proposed the life-cycle ESG-aware investment problem and ob-
jectives; Al (ChatGPT 5) assisted with rapid literature scanning, contrasting LCCA/MCDA
with RL framing, and refining the final research questions.

2. Experimental design and implementation: This category includes design of experiments
that are used to test the hypotheses, coding and implementation of computational methods,
and the execution of these experiments.

Answer: [B]

Explanation: Humans specified the MDP, state/action spaces, reward, and evaluation proto-
cols; AT helped draft boilerplate code and scripts (DQN, sensitivity/robustness), which were
then verified and adapted by the authors.

3. Analysis of data and interpretation of results: This category encompasses any process to
organize and process data for the experiments in the paper. It also includes interpretations of
the results of the study.

Answer: [B]

Explanation: Humans led data selection/cleaning and core analyses; Al supported table
generation, cross-checks, and preliminary narratives that were corrected and balanced against
calculations by the authors.

4. Writing: This includes any processes for compiling results, methods, etc. into the final
paper form. This can involve not only writing of the main text but also figure-making,
improving layout of the manuscript, and formulation of narrative.

Answer: [B]

Explanation: Draft text (Methods, Results summaries, appendices) and figure/table captions
were Al-assisted; humans structured the manuscript, ensured technical accuracy, curated
citations, and finalized wording and layout.

5. Observed AI Limitations: What limitations have you found when using Al as a partner or
lead author?

Description: Occasional numerical drift when re-computing provided values, over-confident
tone, and risk of citation hallucinations without strict source control. Domain assumptions
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can be oversimplified unless tightly constrained. All outputs required human verification
and prompt iteration.
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Agents4Science Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract/Introduction claim life-cycle RL with LLM explanations and
report energy/carbon and Societal cost NPV gains; Results/Discussion present consistent
US/UK outcomes and explicitly note assumptions and limits.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Discussion/Conclusion acknowledge reliance on secondary social multipliers,
lack of real-project validation, and automated self-evaluation of explanations, with proposed
mitigation.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. Reviewers will be specifically
instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The paper states explicit assumptions (A1-AS5) and provides complete proofs in
Appendix S.1 for two results: (i) NPV-RL equivalence under v = =", and (ii) supported
Pareto optimality under linear scalarization in the MORL setup. Brief proof sketches are
included in Methods; full proofs are in the appendix with cross-references to equations.

Guidelines:

* All theorems, formulas, and proofs are numbered and cross-referenced.
» Assumptions are clearly stated alongside the results.
 Sketches appear in the main paper; full proofs appear in the supplemental material.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Methods detail MDP, hyperparameters, datasets, and evaluation; Appendix
lists files/scripts and step-by-step commands (e.g., run. sh, builders, sensitivity/robustness).

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
(e.g., to registered users), but it should be possible for other researchers to have some
path to reproducing or verifying the results.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:  Supplementary materials enumerate datasets/workbooks and scripts
(train.py, sensitivity.py, robustness.py) with clear reproduce commands.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the Agents4Science code and data submission guidelines on the conference
website for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the

results?

Answer: [Yes]

Justification: The DQN architecture, optimizer (Adam), LR, batch size, replay/target settings,
and epsilon schedule are in Methods; scenario setups are described for sensitivity/robustness.
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10.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Tables report means with =+ variability and scenario deltas; robustness includes
parameter noise and climate shocks to characterize uncertainty.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

» The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, or overall run with given experimental
conditions).

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Table A1 discloses CPU/GPU, memory, and wall-clock time per experiment
(training, sensitivity, robustness), satisfying reproducibility guidance.
Guidelines:
* The answer NA means that the paper does not include experiments.
* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
Agents4Science Code of Ethics (see conference website)?

Answer: [Yes]

Justification: Public/official datasets, stated assumptions, and explicit limitations are used;
no human subjects or sensitive personal data are involved.

Guidelines:

* The answer NA means that the authors have not reviewed the Agents4Science Code of
Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive (energy/carbon reduction, transparent decision support) and nega-
tive (possible misuse/over-reliance on estimated social values) impacts are discussed with
mitigations in Discussion/Conclusion.
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Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations,
privacy considerations, and security considerations.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies.
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