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Abstract

As the scale of Large Language Models001
(LLMs) increases, it is necessary to compress002
the models to reduce the substantial demand on003
computational resources. Network pruning sig-004
nificantly reduces the model size by converting005
the weight matrix from dense to sparse data for-006
mat. Current methodologies advocate for one-007
shot pruning to avoid the expense of retrain-008
ing, ensuring the maintenance of model perfor-009
mance under conditions of 50%-60% unstruc-010
tured pruning. Nevertheless, matrices charac-011
terized by this level of sparsity could not be012
treated as sparse matrices, because the indices013
would incur significant costs. To mitigate this014
problem, NVIDIA introduced the 2:4 struc-015
tured sparsity. However, we observe a notable016
decline in model performance when adopting017
2:4 structured sparsity due to group constraints.018
In this paper, we introduce the Weight Recover019
Prune (WRP) approach. By recovering a min-020
imal set of critical weights, WRP aims to en-021
hance model performance while maintaining022
the efficiency of the compression. Our evalua-023
tion of the WRP method on the LLAMA2 and024
OPT models shows that it outperforms other025
2:4 pattern one-shot pruning methods. Mean-026
while, WRP can guarantee a compression rate027
of about 60% compared to the dense model.028
Our code is available at: https://anonymous.029
4open.science/r/WRP-0A5F.030

1 Introduction031

Nowadays, many Large Language Models (LLMs)032

have been developed, based on the transformer033

architecture (Zhang et al., 2022; Touvron et al.,034

2023a; Achiam et al., 2023). These models have035

demonstrated astonishing capabilities across a va-036

riety of tasks. However, the deployment of LLMs,037

characterized by their billions of parameters, de-038

mands substantial hardware resources. For in-039

stance, the LLAMA2-70B model, with a size of040

129GB, necessitates at least two A100-80GB GPUs041

for inference. To mitigate the extensive resource 042

requirements for model deployment, pruning and 043

quantization algorithms emerge as two prevalent 044

strategies. Existing quantization algorithms could 045

compress LLMs to 4 bits without retraining (Fran- 046

tar et al., 2022; Lin et al., 2023; Dettmers et al., 047

2023), which could significantly reduce the size of 048

the models. 049

Network pruning is a model compression ap- 050

proach orthogonal to quantization algorithms. 051

Based on the granularity of the pruning algorithm, 052

it is principally categorized into unstructured prun- 053

ing and structured pruning. Unstructured prun- 054

ing offers higher flexibility and typically results 055

in less precision loss. It converts dense matrices 056

into sparse matrices by setting certain values in 057

the weight matrix to zero, thereby achieving model 058

compression and acceleration. Considering the sig- 059

nificant training overhead of LLMs, some pruning 060

algorithms pursue one-shot pruning— that is, they 061

avoid retraining to recover accuracy(Frantar and 062

Alistarh, 2023; Sun et al., 2023). Such pruning 063

methods have demonstrated minimal accuracy loss 064

but generally could not achieve high levels of spar- 065

sity, with an optimal sparsity between 50%-60%. 066

As for the compression of sparse matrices, taking 067

the Compressed Sparse Row (CSR) data format as 068

an example, as shown in Figure 1, a sparsity level 069

of over 70% is usually required to realize compres- 070

sion benefits. In this context, matrices couldn’t be 071

treated as sparse for compression and computation 072

if they do not meet this level of sparsity. 073

NVIDIA has introduced a solution known as 074

structured sparsity, or 2:4 sparsity (Mishra et al., 075

2021). This pattern mandates that within every 076

group of 4 values, at most 2 values can be re- 077

tained. Firstly, this leads to a 50% degree of spar- 078

sity, which is beneficial for the performance of 079

models following one-shot pruning. Moreover, by 080

compressing the indices, it ensures efficient com- 081

pression under 50% sparsity. Additionally, this 082
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approach could achieve a 2x math throughput in-083

crease on the NVIDIA Ampere GPU architecture.084

As a result, this pattern and compressed format are085

more hardware-friendly than unstructured sparsity086

at 50%. However, due to its grouping constraints,087

there is a notable decline in accuracy compared to088

unstructured pruning at 50%. For instance, when089

applying Wanda pruning (Sun et al., 2023) to the090

LLAMA-7B model, the resulting perplexity on the091

WikiText dataset under unstructured 50% and 2:4092

pattern conditions are 7.26 and 11.53, respectively.093

This indicates that there is still room for improve-094

ment in performance of 2:4 pattern.095

In this work, we observe a performance gap be-096

tween the 2:4 pattern and unstructured 50% prun-097

ing. Consequently, our primary objective is to en-098

hance the model performance of the one-shot 2:4099

pattern pruning, while ensuring the model compres-100

sion is achieved. In section 3.1, we observed that101

some crucial weights might be incorrectly pruned102

in the 2:4 pattern pruning. Based on this phe-103

nomenon, we propose the Weight Recover Prune104

(WRP) approach, which aims to improve model105

accuracy by restoring a minor portion of critical106

weights, while for the majority of the matrix is still107

adopting a 2:4 pattern. To safeguard the compres-108

sion efficacy, we partition the weight matrix into109

two separately stored entities: one is the 2:4 pat-110

tern and the other is high sparsity matrix, as shown111

in Figure 1. This approach allows us to achieve112

a balance between model size and performance,113

addressing the challenge inherent in the structured114

2:4 sparsity pattern.115

The main contributions of this work are:116

• We explore the differences in mask selection117

between 2:4 pruning and unstructured 50%118

pruning. The results indicate that 2:4 pruning119

might incorrectly prune a small number of120

values with larger metrics.121

• We propose the Weight Recover Prune (WRP)122

approach, which enhances the model perfor-123

mance after 2:4 pruning by recovering the cru-124

cial weights.125

• We evaluate our approach on the LLAMA2126

and OPT models. The results indicate that our127

approach can recover the model performance128

while ensuring the model compression effect.129

2 Related Work 130

Network Pruning. Network pruning is a com- 131

monly used method for model compression. It 132

typically results in a loss of model accuracy, ne- 133

cessitating the adoption of various techniques for 134

its restoration. Training is a common method for 135

recovering accuracy. Based on the relationship be- 136

tween training and pruning, this process could be 137

categorized into three distinct approaches: pruning 138

before (re)training, pruning during training, and 139

pruning without retraining. 140

Han et al. (2015) introduced Deep Compres- 141

sion, which designed a three-stage pipeline: prun- 142

ing, trained quantization, and Huffman coding. 143

This approach is considered a milestone in the 144

field of model compression. Additionally, the 145

Lottery Ticket Hypothesis shows that pruning 146

could be conducted at the network initialization 147

phase(Frankle and Carbin, 2018; Wang et al., 148

2020). Pruning during training typically needs 149

to design a weight importance estimation to ac- 150

curately remove non-essential weights during the 151

training process(Molchanov et al., 2019; Evci et al., 152

2020). Finally, the second-order information is 153

commonly used for restoring accuracy without re- 154

training(LeCun et al., 1989; Hassibi et al., 1993; 155

Frantar and Alistarh, 2022). 156

Structured 2:4 Sparsity. NVIDIA proposed the 157

2:4 sparsity pattern, which typically requires re- 158

training to recover model accuracy(Mishra et al., 159

2021). Channel permutations could be utilized to 160

enhance model accuracy and alleviate the limita- 161

tions of group constraints(Pool and Yu, 2021). For 162

the 2:4 sparse matrix format, cuSparseLt provides 163

the corresponding operators(NVIDIA, 2020). Py- 164

Torch has also implemented support for 2:4 Spar- 165

sity(Cai, 2023). 166

LLMs Pruning. Due to the substantial resources 167

required for training LLMs, LLMs pruning aims to 168

restore accuracy with minimal overhead, primarily 169

through fine-tuning or one-shot pruning. 170

LLM-Pruner(Ma et al., 2023) implements struc- 171

tured pruning by identifying dependencies and re- 172

moving some of them. LoRAPrune(Zhang et al., 173

2023) designs a LoRA-guided pruning criterion, in- 174

tegrating LLM pruning with LoRA(Hu et al., 2021). 175

These approaches typically rely on fine-tuning to 176

achieve improved accuracy, which might necessi- 177

tate high-quality fine-tuning datasets and additional 178

computational resources. 179
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Figure 1: Illustration of the Weight Recover Prune (WRP) approach: we respectively store the sparse matrix in a 2:4
pattern and the recover weights. Indices storage is the primary additional overhead.

SparseGPT(Frantar and Alistarh, 2023) is an180

approach based on second-order information, en-181

hancing accuracy through weight reconstruction.182

Dettmers et al. (2022, 2023) demonstrates the pres-183

ence of outliers in LLMs during model quantiza-184

tion. Building on this observation, Sun et al. (2023)185

introduced the Wanda metric, which not only per-186

forms superiorly on LLMs but also achieves faster187

pruning speeds. These methods typically exhibit188

great performance in unstructured pruning; how-189

ever, they fall short of achieving higher levels of190

sparsity, such as 70%. When adopting a 2:4 pat-191

tern, their accuracy suffers due to group constraints.192

Inspired by these challenges, we focus on improv-193

ing the accuracy of the 2:4 pattern with minimal194

overhead.195

3 Weight Recover Prune196

3.1 2:4 Pattern vs. Unstructured 50%197

In Section 1, we have discussed the benefits and198

drawbacks of the 2:4 pattern compared to an un-199

structured 50% approach. It is obvious that the200

2:4 pattern is more practical than the unstructured201

50% pruning. In this part, we will focus on: what202

distinguishes the choice of pruning masks between203

the 2:4 pattern and the unstructured 50% pruning204

when using the same metric?205

First of all, we must clarify that in implement-206

ing unstructured 50% pruning, we typically do not207

prune the 50% of weights with the lower metrics208

across the entire weight matrix. Instead, the ap-209

proach targets each row individually. This means210

sorting the weights within each row of the weight211

matrix and pruning the 50% with lower metrics.212

Figure 2: Three patterns of X:4. represents different
weight choices of 50% unstructured and a 2:4 pattern.

To understand different mask choice between
the 2:4 pattern and unstructured 50% pruning, we
divide unstructured pruning matrix into three pat-
terns, as shown in Figure 2. Figure 2 depicts
a weight matrix that has been unstructured 50%
pruned. We consider every four elements as a
group, resulting in five possible scenarios: X:4,
where X denotes the quantity of remaining ele-
ments ranging from 0 to 4. Regarding pattern A
(1:4 or 3:4), when applying 2:4 pattern pruning, ex-
actly one weight is incorrectly removed. Taking the
3:4 case of pattern A as an example, let’s assume
these four values are a1, a2, a3, and a4. If during
the unstructured 50% pruning, a2 is pruned, then
the following is observed:

a2 ∈ Sm≤50% ≤ a1, a3, a4 ∈ Sm≥50%

where m represents the metric used for pruning. 213

Consequently, when applying the 2:4 pattern, a2 214

would definitely be pruned again, and additionally, 215

the smallest among a1, a3, and a4 would also be 216

incorrectly pruned. Similarly, for pattern B, there 217

would not be any weights incorrectly pruned. For 218

pattern C, there would be two weights incorrectly 219

pruned. 220
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layer 0:4 1:4 2:4 3:4 4:4
0.q 6.16 25.05 37.66 24.92 6.22
0.k 6.16 25.09 37.59 24.94 6.23
0.v 6.18 25.04 37.59 24.97 6.22
16.q 6.25 25.00 37.52 24.98 6.26
16.k 6.23 25.01 37.53 25.01 6.23
16.v 6.24 24.99 37.53 25.00 6.24
30.q 6.25 24.99 37.52 24.99 6.25
30.k 6.23 25.01 37.53 24.98 6.24
30.v 6.24 24.99 37.54 25.00 6.24

Table 1: LLAMA2-7B proportions of X:4 with Wanda
pruning (%)

To analyze the proportions of three patterns221

within unstructured pruning, we use the Wanda222

metric (Sun et al., 2023) to prune the LLAMA2-7B223

model. The results are summarized in Table 1. In224

total, approximately 40% of the groups conform to225

a 2:4 pruning pattern, around 25% of the groups226

probably would prune one crucial weight element,227

and roughly 6.25% of groups might prune two cru-228

cial weight elements. This results in suboptimal229

accuracy. Consequently, a natural thought arises:230

we could recover those values that were potentially231

incorrectly pruned in 2:4 pattern to enhance the232

model performance.233

3.2 Determining the Weights for Recover234

In this section, we focus on the process of recover-235

ing those values that were potentially incorrectly236

pruned in a 2:4 pattern. To address this issue, we237

need to determine the following two aspects:238

1. How can we identify the weights that need to239

be recovered?240

2. How many weights need to be recovered to241

enhance the model performance?242

The primary pruning metrics contain three243

main types: magnitude, second-order informa-244

tion(Hassibi et al., 1993), and Wanda. Within the245

framework of a one-shot pruning, we typically cal-246

culate metrics for each element first. Then, prune247

masks are selected based on the magnitude of these248

metrics. Generally, the larger the metric, the more249

important that weight element is considered. Sim-250

ilarly, we believe that these metrics could effec-251

tively reflect the impact of the elements on model252

accuracy. Therefore, we introduce a ratio factor253

α, indicating that the elements with the highest α254

metrics are referred to as crucial weights, which 255

should not be pruned in 2:4 pattern. 256

In this case, the elements that need to be recov-
ered are those crucial weights that were pruned by
the 2:4 pattern. We formalize the recover elements
as follows:

Wrecover = Wα ∩W2:4

Furthermore, the linear layer in the model could be
modified as:

xW T + b = xW T
2:4 + xW T

recover + b

By adjusting the value of α, we could control 257

the proportion of elements to recover. Typically, 258

an increase in the value of α would make more 259

elements recovered. This would reduce the sparsity 260

of Wrecover, but improve more in model accuracy. 261

We provide the pseudo code of our approach in 262

algorithm 1.

Algorithm 1 Weight Recover Prune

Ensure: W2:4, Wrecover

Require: W, M(metrics), α
1: mask2:4=prune(W, M, "2:4")
2: maskα = topk(W, M, α)
3: maskrecover = maskα ∩mask2:4
4: W2:4 = to_sparse_semi_structured(W [mask2:4])

5: Wrecover = to_sparse_csr(W [maskrecover])

263

3.3 Recover with Block 264

The sparse format of unstructured matrix com- 265

monly poses challenges in exploiting Tensor Cores, 266

resulting in suboptimal performance during large- 267

scale Sparse Matrix Multiplication (SpMM), even 268

with a high degree of sparsity. A potential solution 269

to this issue is the adoption of the Blocked-ELL 270

sparse matrix format(NVIDIA, 2022; Yamaguchi 271

and Busato, 2021). As a result, we extend the WRP 272

to accommodate block sparse formats, thereby mit- 273

igating the impact on performance. 274

Unlike Section 3.2, we couldn’t directly compute
the recovered weights for each element. Instead,
the weight matrix must be processed in blocks. Ac-
cordingly, we introduce two additional hyperpa-
rameters: b and k. Here, b represents the block size
for matrix, and k denotes the number of blocks to
be recovered in each row. Following the applica-
tion of a 2:4 pattern pruning, we calculate the sum
of the metrics for the pruned weights within each
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block, serving as the metric for the entire block.
This is expressed as follows:

Mblock =
i0+b∑
i=i0

j0+b∑
j=j0

mij , (maskij ̸= 1)

In computation, the metric of the retained275

weights within the 2:4 pattern should be set to zero.276

Then, for each block, calculate the sum of the met-277

rics. We recover the k blocks with the highest278

metrics in each row after tiled. Parameters b and k279

jointly control the sparsity of the recovery matrix,280

with its sparsity increasing as values of b increase281

and k decrease. To achieve better performance, b282

is typically chosen as a power of 2. Overall, the283

method of block recovery could achieve better com-284

putational efficiency, while the recovery of weights285

in an unstructured manner showcases the best trade-286

off between compression effects and improvement287

in model performance. We provide the pseudocode288

for block recovery in Algorithm 2.289

Algorithm 2 Weight Recover Prune for Block

Ensure: W2:4, Wrecover

Require: W, M(metrics), b(blocksize), k
1: mask2:4=prune(W, M, "2:4")
2: M [mask2:4] = 0
3: M_block = block_sum(M, b)
4: maskrecover = topn(M_block, k)
5: W2:4 = to_sparse_semi_structured(W [mask2:4])

6: Wrecover = to_blocked_ELL(W [maskrecover])

4 Experiment290

4.1 Setup291

Models. We evaluate our approach using the292

LLAMA2(Touvron et al., 2023b) and OPT(Zhang293

et al., 2022) model families. LLAMA2 is a suite of294

pre-trained and fine-tuned generative text models,295

comprising models of 7 B, 13 B, and 70 B param-296

eters, respectively. We apply the WRP to each of297

these configurations. In contrast, OPT is GPT-3298

style, with a more classical Transformer decoder-299

only architecture. Compared to LLAMA2, it offers300

more selection of model sizes, thereby facilitating301

our exploration into the scaling trends of LLMs.302

Evaluation. We evaluate the performance of the303

model on language capabilities: perplexity, a met-304

ric also utilized by prior works(Frantar et al.,305

2022; Frantar and Alistarh, 2023; Sun et al., 2023).306

We conducted tests on the perplexity metric us- 307

ing WikiText(Merity et al., 2016) and the c4 308

dataset(Raffel et al., 2019). To enhance the evalu- 309

ation of LLMs, we use the Language Model Eval- 310

uation Harness(Gao et al., 2023) to assess per- 311

formance on 5 zero-shot tasks of models: Hel- 312

laSwag(Zellers et al., 2019), PIQA(Bisk et al., 313

2020), WinoGrande(Sakaguchi et al., 2019), Open- 314

BookQA(Mihaylov et al., 2018), RTE(Wang et al., 315

2018). 316

Baselines. We compare our method WRP against 317

two prior pruning methods which could readily 318

adopt a 2:4 pattern: 319

• Wanda(Sun et al., 2023) is a pruning metric 320

that is simple and effective on LLMs. Fur- 321

thermore, we use Wanda as the 2:4 pattern 322

pruning for WRP, which implies that Wanda 323

2:4 could be considered as a scenario of WRP 324

without recovering. 325

• SparseGPT(Frantar and Alistarh, 2023) is a 326

pruning method based on second-order infor- 327

mation and uses weight reconstruction to re- 328

store model performance. Through compar- 329

ison, we aim to verify the effectiveness of 330

crucial weights in recovering model accuracy. 331

Both approaches adopt a 2:4 pattern. Re- 332

garding calibration data, as recommended by 333

SpQR(Dettmers et al., 2023), we utilize the RedPa- 334

jama dataset(Computer, 2023) for LLAMA2 and 335

the c4 dataset for OPT. The length of the samples 336

is uniformly set at 128. 337

Pruning what? Following the approaches of 338

SparseGPT and Wanda, we skip pruning the em- 339

bedding layer and the final classification head layer. 340

For the remaining layers in the Transformers archi- 341

tecture, which are all Linear layers, we uniformly 342

apply the 2:4 pattern pruning to all weight matrices. 343

4.2 Model Perplexity 344

Recover Effect. We use SparseGPT, Wanda and 345

WRP to prune the LLAMA2 model family sepa- 346

rately. We select the recover ratio α of 0.25. And 347

the average density of recover matrix is approxi- 348

mately 1.5%. The perplexity results are summa- 349

rized in Table 2. 350

Compared to weight reconstruction, WRP 351

demonstrate a more effective capability in recover- 352

ing the perplexity of the LLAMA2 model family 353

during 2:4 pattern. Due to the group constraints, 354
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Size Method PPL(wikitext2) PPL(c4)

7B

Dense 5.47 6.97
SparseGPT 10.58 13.32

Wanda 11.97 14.22
WRP 8.69 10.58

13B

Dense 4.88 6.47
SparseGPT 8.54 11.29

Wanda 8.87 11.28
WRP 7.01 9.02

70B

Dense 3.32 5.52
SparseGPT 5.63 8.15

Wanda 5.47 7.50
WRP 4.78 6.74

Table 2: WRP (α = 0.25) could recover the model
perplexity of 2:4 pattern pruning on LLAMA2-family.

Size Dense 2:4 WRP
1.3B 2.5GB 1.5GB 1.6GB
2.7B 5.0GB 2.9GB 3.2GB
6.7B 13GB 7.2GB 7.7GB
13B 24GB 14GB 15GB
30B 56GB 32GB 35GB

Table 3: The compressed model size for the OPT-family
with α = 0.25.

Wanda’s performance demonstrate a significant de-355

cline in the 2:4 pattern compared to the unstruc-356

tured 50% pruning. Considering that WRP utilize357

the Wanda metric, this result confirm that Wanda358

could identify the crucial weights efficiently. Fur-359

thermore, it is observed that with only a minimal360

set of these crucial weights (approximately 1.5%),361

a significant reduction in model perplexity could362

be achieved.363

the Impact of α. To explore the influence of the364

recover ratio α, we execute WRP on LLAMA2-7B365

model with varying α values. The results are shown366

in Figure 3. As α increases, a notable decrease in367

the model perplexity is observed, alongside a grad-368

ual increase in the average sparsity of the recover369

matrix. Overall, with an additional weight of less370

than 2%, the model’s perplexity on the Wikitext2371

dataset decreased from 11.97 to 8.69. We recom-372

mend selecting an α value between 0.2 and 0.3 to373

achieve an optimal trade-off between model per-374

plexity and size. Furthermore, we provide results of375

block recovery, with details presented in Appendix376

B.377

Figure 3: Exploring the impact of factor α on model
perplexity and the average sparsity of recover weight in
LLAMA2-7B.

4.3 Zero-shot Tasks 378

We evalute pruned LLAMA2 and OPT models on 379

5 zero-shot tasks. Resuls are shown in Table 4 and 380

Appendix A respectively. For HellaSwag, PIQA, 381

and OpenBookQA tasks, we present the normal- 382

ized accuracy. 383

For the OPT models, we choose more model 384

sizes, from 2.7B to 30B parameters. As the scale 385

increases, we observe that the accuracy on some 386

datasets does not improve and even declines. For 387

instance, the accuracy of OPT-30B on the RTE 388

dataset is 57.8%, whereas for OPT-13B, it is 58.1%. 389

We speculate that this instability in performance 390

across different model scales might be attributable 391

to factors inherent to the models or the evalua- 392

tion tasks themselves. WRP is capable of outper- 393

forming Wanda for most tasks, while SparseGPT 394

achieves better results in certain cases such as OPT- 395

13B. However, for the LLAMA2 model, an in- 396

crease in scale consistently leads to improvements 397

in accuracy across all tasks. WRP significantly en- 398

hances the 2:4 pattern accuracy of Wanda and also 399

surpasses SparseGPT in most tasks. 400

4.4 Model Size 401

To explore the efficacy of WRP on model compres- 402

sion, we prune the OPT model and compress the 403

2:4 pattern and recover weight matrix with the data 404

format illustrated in Figure 1. Additionally, we di- 405

rectly use Wanda to perform a 2:4 pattern pruning 406

to verify the additional overhead associated with 407

the recover matrix. The results are presented in 408

Table 3. 409

We select the recover ratio α to be 0.25, with 410
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Size Method HellaSwag PIQA WinoGrande OpenBookQA RTE Average

7B

Dense 75.9 79.0 69.1 44.0 63.2 66.2
SparseGPT 56.7 70.8 64.5 35.4 55.2 56.5

Wanda 54.5 70.9 61.9 37.4 53.4 55.6
WRP 63.1 74.2 66.1 38.8 54.2 59.3

13B

Dense 79.4 80.6 72.2 45.4 65.0 68.5
SparseGPT 62.7 73.8 69.6 36.6 58.8 60.3

Wanda 62.1 74.0 65.7 35.6 57.0 58.9
WRP 69.9 77.3 69.1 41.2 61.0 63.7

Table 4: Accuracies (%) for 5 zero-shot tasks with 2:4 pattern on LLAMA2-family. For HellaSwag, PIQA, and
OpenBookQA tasks, we present the normalized accuracy (acc_norm).

Device Hidden State 2:4(ms) Blocked-ELL(ms) Dense(ms) Speedup
A100 4096 0.274 0.064 0.324 0.95×
A100 7168 0.733 0.147 0.971 1.1×

RTX 4090 4096 0.276 0.081 0.412 1.15×
RTX 4090 7168 0.718 0.230 1.377 1.45×

Table 5: Kernel test of WRP, including 2:4 and blocked-ELL matmul. The density of blocked-ELL is 6.25%.

an average density of the recover matrix of 1.5%.411

We use 32 bits for storing CSR indices, which is412

the main additional overhead of a sparse matrix.413

Given that the actual proportion of recover cru-414

cial weights varies across different layers, the com-415

pression ratio of the model exhibits some degree416

of fluctuation. Overall, the compression ratio for417

WRP is approximately 62%, while that for the 2:4418

pattern compression is about 58%. Consequently,419

WRP demonstrates little addtional overhead com-420

pared to 2:4 pattern. Furthermore, we provide the421

model size results of Blocked-ELL data format in422

Appendix C.423

4.5 Inference Kernel424

PyTorch has supported the 2:4 pattern SpMM using425

either CUTLASS or cuSparseLt libraries. Conse-426

quently, we directly use PyTorch to evaluate the427

2:4 pattern latency. Considering that PyTorch does428

not support the Blocked-ELL data format, we im-429

plement a SpMM kernel for the Blocked-ELL for-430

mat as a PyTorch Extension using cuSparse. The431

performance of sparse matrix computations is gen-432

erally influenced by the matrix sparsity, computing433

hardware, and the scale of the problem. We as-434

sume a density level of 6.25% for Blocked-ELL,435

which is enough to offer a balance between recover-436

ing model performance and achieving acceleration.437

Furthermore, we set the batch size to 1 and the438

sequence length to 2K, controlling problem scales439

through hidden states. These tests were conducted440

on both A100 and RTX 4090 GPUs, with the re- 441

sults detailed in Table 5. 442

For A100 GPUs, we observe that acceleration is 443

not guaranteed and depend on the scale of the prob- 444

lem. Specifically, for the acceleration using a 2:4 445

pattern on A100 GPUs, we were able to achieve a 446

speedup of approximately 1.3×, which aligns with 447

(Cai, 2023). Compared to the theoretical maximum 448

of a 2× increase in mathematical throughput, there 449

is still room for improvement. Typically, signif- 450

icant acceleration is observed when dealing with 451

larger matrices. For the RTX 4090 GPUs, a more 452

pronounced acceleration effect could be achieved, 453

with speedup ratios generally exceeding 1.1×. We 454

speculate that different GPU architectures might 455

result in different capabilities to process sparse and 456

dense matrices. As a result, the actual acceleration 457

achieved is dependent on the specific application 458

context. 459

5 Conclusions 460

In this work, we propose the Weight Recover Prune 461

(WRP) methodology for achieving structured spar- 462

sity in LLMs. Observing the notable performance 463

gap between the 2:4 pruning pattern and the un- 464

structured 50% pruning, our WRP technique en- 465

hances the model performance associated with the 466

2:4 pattern by recovering a minimal set of crucial 467

weights, thereby ensuring the efficiency of model 468

compression. With the recovery of approximately 469

7



1.5% of these crucial weights, the WRP approach470

could significantly improve the perplexity of mod-471

els, while the compressed models are approxi-472

mately 60% of their original size. We hope that473

our work could contribute to the semi-structured474

pruning for LLMs.475

6 Limitations476

WRP achieves a good trade-off between model477

performance and compression effectiveness. How-478

ever, due to the fact that sparse matrices in CSR479

format typically couldn’t utilize NVIDIA Tensor480

Cores for acceleration, our recover matrix is unable481

to achieve enhanced inference speed even if very482

high sparisty. If, in the future, it becomes feasible483

to implement SpMM kernels for high-sparsity un-484

structured sparse matrices, we believe WRP might485

offer a certain level of speedup.486

Blocked-ELL could be a potential solution for487

acceleration. Therefore, we extend our method488

to block recovery. However, we discover that, al-489

though block recovery offers some restoration of490

model accuracy, it results in a notable decline in per-491

formance compared to the effects of unstructured492

recover weights format. As a result, we believe that493

block recovery does not achieve the optimal trade-494

off between accuracy and compression. Overall,495

in pursuit of hardware acceleration, we introduce496

additional constraints, which adversely affect the497

model’s performance.498
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Size Method HellaSwag PIQA WinoGrande OpenBookQA RTE Average

2.7B

Dense 60.6 74.8 61.0 35.2 55.2 57.4
SparseGPT 49.2 70.5 58.1 31.6 51.6 52.2

Wanda 45.7 68.9 55.6 32.4 52.7 51.1
WRP 49.7 70.8 59.0 32.0 54.2 53.1

6.7B

Dense 67.2 76.6 65.4 37.4 55.2 60.4
SparseGPT 57.0 73.5 61.8 36.6 54.2 56.6

Wanda 54.2 71.8 58.8 34.4 52.3 54.3
WRP 58.1 73.5 62.0 35.4 52.7 56.3

13B

Dense 72.3 76.8 65.0 39.0 58.1 62.2
SparseGPT 59.5 73.8 62.5 37.2 53.8 57.4

Wanda 58.0 72.4 61.6 33.2 53.8 55.8
WRP 60.7 73.7 62.8 34.4 54.5 57.2

30B

Dense 72.3 78.1 68.2 40.4 57.8 63.4
SparseGPT 64.8 77.1 65.3 36.8 54.2 59.6

Wanda 63.4 75.5 63.5 36.2 54.9 58.7
WRP 66.7 76.2 65.3 37.6 56.3 60.4

Table 6: Accuracies (%) for 5 zero-shot tasks with 2:4 pattern on OPT-family. For HellaSwag, PIQA, and
OpenBookQA tasks, we present the normalized accuracy (acc_norm).

Average Density OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B
6.25% 1.6GB 3.2GB 7.8GB 15GB 35GB
12.5% 1.7GB 3.4GB 8.3GB 16GB 37GB

Table 7: OPT model size for block recovery, where block size = 32.

Block Column PPL(wikitext2) PPL(c4)
64 4 10.72 12.84
64 8 9.86 11.86
32 8 10.66 12.80
32 16 9.74 11.78
16 16 10.60 12.7
16 32 9.57 11.58

Table 8: Perplexity of Block recover on LLAMA2-7B

Block Column PPL(wikitext2) PPL(c4)
64 5 8.20 10.49
64 10 7.62 9.81
32 10 8.18 10.46
32 20 7.57 9.74
16 20 8.05 10.33
16 40 7.48 9.59

Table 9: Perplexity of Block recover on LLAMA2-13B

equivalent sparsity levels, an unstructured recovery 678

matrix format demonstrates superior performance 679

compared to block recovery. 680

C Model Size of Block Recover 681

We evaluate the compression efficacy on OPT mod- 682

els. The results are presented in Table 7. De- 683

spite the Blocked-ELL data format typically stor- 684

ing more non-zero values, its requirement for fewer 685

indices results in great compression performance. 686
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