
Sparse autoencoders for dense text embeddings reveal
hierarchical feature sub-structure

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sparse autoencoders (SAEs) show promise in extracting interpretable features from1

complex neural networks, enabling examination and causal intervention in the inner2

workings of black-box models. However, the geometry and completeness of SAE3

features is not fully understood, limiting their interpretability and usefulness. In this4

work, we train SAEs to detangle dense text embeddings into highly interpretable5

document-level features. Our SAEs follow precise scaling laws as a function6

of capacity and compute, and exhibit significantly higher interpretability scores7

compared to SAEs trained on language model activations. In embedding SAEs, we8

reproduce qualitative “feature splitting" phenomena previously reported in language9

model SAEs, and demonstrate the existence of universal, cross-domain features.10

Finally, we suggest the existence of “feature families" in SAEs, and develop a11

method to reveal distinct hierarchical clusters of related semantic concepts and12

map feature co-activations to a sparse block diagonal.13

1 Introduction14

Sparse autoencoders (SAEs) have emerged as a promising approach to neural network interpretability15

(Ng et al., 2011; Makhzani et al., 2013). By learning to reconstruct inputs as linear combinations of16

features in a higher-dimensional sparse basis, SAEs can disentangle complex representations into17

individually interpretable components. This approach has previously shown success in analysing and18

steering generation, and has led to new insights on the inner workings of language models, while also19

motivating a number of empirical questions about SAE features and mechanisms (Conmy et al., 2024;20

Cunningham et al., 2023b; Bricken et al., 2023; Lieberum et al., 2024). In this work, we present21

the first application of SAEs to dense text embeddings derived from large language models. We22

empirically examine the interpretability, scalability, and feature structure of SAEs trained over text23

embeddings. Our research makes the following key contributions:24

1. We demonstrate the effectiveness of SAEs in learning document-level features from dense25

representations. We examine their interpretability, scaling behavior, and feature geometry.26

2. We introduce SAE “feature families”, hierarchical clusters of features that allow for multi-27

scale semantic analysis and manipulation, and methodology for finding and verifying28

families. We also examine the proliferation of “split" features across levels of abstraction.29

2 Background and Related work30

Sparse autoencoders In large language models, the superposition hypothesis suggests that dense31

neural networks are highly underparameterised, and perform computations involving many more32

concepts than neurons by representing many sparse concepts, or features, in superposition (Elhage33

et al., 2022a). Distributed representations allows models to efficiently encode a large number of34

Submitted to Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.

Interpreter LLM

Trained decoderDecoder

...

Encoder

Embedding

...

Latents

...

Reconstruction

Activating text Non-activating text

"Arithmetic
operations in
transformers"

Predictor LLM

Feature Label

1 1 0 0

"0.8" "0.9" "-0.2" "-0.5"

Feature Score

Correlation: 0.8

Figure 1: Left: SAE training and labelling. Right: cs.LG feature family; arrows represent C > 0.1.

features in a relatively low-dimensional space, but it also makes model layers challenging to interpret35

directly. Sparse autoencoders (SAEs) address this by learning to reconstruct inputs using a sparse set36

of features in a higher-dimensional space, encouraging disentanglement of distributed representations37

(Elhage et al., 2022b; Donoho, 2006; Olshausen et al., 1997). When applied to language model38

activations, SAEs recover semantically meaningful and human-interpretable sparse features (Gao39

et al., 2024; Bricken et al., 2023; Cunningham et al., 2023b). A number of automated interpretability40

approaches have been proposed and applied, such as Bills et al. (2023) and Foote et al. (2023).41

Structure in SAE features A large volume of interpretable features have been discovered in SAEs42

trained over language models (Cunningham et al., 2023a; Bricken et al., 2023; Lieberum et al., 2024).43

This has motivated work studying the underlying structure of features. Bricken et al. (2023) report44

feature splitting in geometrically close groups of semantically related features, where number of45

learned features in the cluster increases with model size. They also report the existence of universal46

features which re-occur between independent SAEs and which have highly similar activation patterns.47

Templeton (2024) find feature splitting also occurs in SAEs trained over production-scale models,48

with larger SAEs also exhibiting novel features for concepts that are not represented in smaller SAEs.49

Makelov et al., 2024 report over-splitting of binary features with SAE capacity. Engels et al., 202450

find clusters of SAE features that represent inherently multi-dimensional, non-linear subspaces.51

3 Training SAEs and automated labelling52

We trained top-k Sparse Autoencoders (SAEs) on embeddings of arXiv abstracts from astrophysics53

(astro-ph, 272,000 papers) and computer science (cs.LG, 153,000 papers), using OpenAI’s54

text-embedding-3-small model. We experimented with hyperparameters, focusing primarily55

on SAEs with k = 16, 32, and 64 active latents. To interpret learned features, we employed an56

automated two-step process using large language models: an Interpreter to generate feature labels,57

and a Predictor to assess interpretation confidence. We evaluated SAEs based on reconstruction58

ability using normalized mean squared error, and feature interpretability using Pearson correlation.59

Detailed training procedures, hyperparameters, and evaluation metrics are provided in Appendix A.60

Scaling performance: Templeton, 2024 found compute-optimal scaling laws for SAEs over language61

model activations. Similarly, we observe precise (R2 > 0.93) power-law scalings as a function of62

the number of total latents n, active latents k, and compute C used for training. The normalised63

mean squared error (MSE) scales as L(n) = cn−α for fixed k, where α ranges from 0.12 to 0.18 and64

increases with k; cs.LG shows slightly higher α values compared to astro-ph. For compute scaling,65

we calculate the number of training FLOPs C at each step for each SAE. We find L(C) = aCb,66

where a generally increases with k (3.84 for k = 16 to 8.03 for k = 64) and b ranges from -0.11 to67

-0.16, decreasing with k. Figures and detailed fits are provided in Appendix A, Figure 4.68

Interpretability: We find high correlation between predictor model confidence and the ground-truth69

firing, with median Pearson correlations ranging from 0.65 to 0.71 for cs.LG and 0.85 to 0.98 for70

astro-ph; see B for details. Bricken et al. (2023) report a median feature Spearman correlation of71

0.58 from an SAE trained on MLP activations. Scores increase as k and n decrease, likely due to72

models learning coarser-grained features that are easier for the interpreter to identify.73

2

4 Constructing feature families through graph-based clustering74

SAEs trained over arXiv paper embeddings recover a wide range of features covering both scientific75

concepts, from niche to multi-disciplinary, and also abstract semantic artifacts, such as humorous76

writing or critiques of scientific theories; see Appendix B for detailed examples.77

Building off previous work on the structure of SAE features and learned representations, we examine78

two distinct empirical phenomena: feature splitting and feature families. Feature splitting – the79

tendency of features appearing in larger SAEs to “split” the direction spanned by a feature from a80

smaller SAE, and activate on granular sub-topics of the smaller SAE’s feature – has been observed in81

previous work on sparse autoencoders for language model activations (Bricken et al., 2023; Makelov82

et al., 2024; Bussmann et al., 2024). Examples of feature splitting, as well as features recurring across83

SAEs, can be found in Appendix D (Figs. 11 and 12a/12b). In contrast, feature families exist within84

a single SAE. Unlike SAE feature clusters found in other works (Daujotas, 2024; Engels et al., 2024),85

feature families empirically exhibit a clear hierarchical structure with a dense “parent” feature and86

several sparser “child” features. We suggest that the “parent” feature encompasses a broader, more87

abstract concept that is shared among the “child” features; see Figure 1 for an example.88

4.1 Feature splitting89

We study the proliferation of features in small to large SAEs using a nearest neighbour approach.90

For each pair of SAEs, we calculated the similarity matrix S from decoder vectors w, where Sij =91

wT
1,iw2,j/∥w1,i∥∥w2,j∥. Given feature j in the larger SAE, we identified the nearest neighbour in92

the smaller SAE, tracing how features “split” as model capacity increases. We find that increasing93

both active latents k and latent dimension n reduces the similarity between nearest neighbours. This94

matches intuition: larger models with more capacity (higher k and n) may learn more fine-grained95

and specialised features, leading to greater differentiation. See Appendix A.4 (Figure 6).96

Empirically, matching features from small to large SAEs, we detect both recurrent features and97

novel features. Recurrent features exhibit high Sij and activation similarity across model pairs, and98

have highly similar interpretations. These are much more common for lower k; in SAE16, >110099

out of 3216 features match features in both SAE32 and SAE64 at >0.95 similarity (see Figure 11).100

We also find ∼dozens of semantically close features with similar activation patterns appearing in101

both cs.LG and astro-ph SAEs (see C). Novel features span narrower semantic meaning than their102

nearest-neighbour match, and exhibit lower S, activating similarly on a document subset; they split103

the semantic space covered by a single feature from the smaller SAE. Some “novel" features share104

little semantic or activation overlap with their nearest-neighbour feature, as in Fig. 12b, indicating105

smaller SAEs may not sufficiently cover the feature space; see D.1 in the Appendix for more details.106

4.2 Feature families107

Feature family identification We identified feature families using a graph-based approach based108

co-activation patterns. We first compute co-occurrence matrix C and activation similarity matrix109

D. For all data points k, Cij =
∑

k AikAjk and Dij =
∑

k BikBjk where Aik = 1 if feature i is110

active on example k (0 otherwise), and Bik = hk,i if feature i is active on example k with hidden111

vector hk (0 otherwise). We normalise the co-occurrence matrix by feature activation frequencies112

and apply a threshold to focus on significant relationships, obtaining Cthresh
ij (hereafter just C). We113

construct a maximum spanning tree (MST) from C and convert it to a graph directed by density,114

representing a hierarchy from more general to more specific concepts. Feature families F are then115

constructed via depth-first-search in this directed graph, starting from root nodes and recursively116

exploring hierarchical sub-families. This process is then iterated with deduplication, removing parent117

features after each iteration to reveal new families. In practice, we use only highly interpretable118

features (Pearson ≥ 0.8), choose τ = 0.1, and run n = 3 iterations; see D for details. Finally, using119

the method from Section 3, we generated a “superfeature” description for each family, and assessed120

the family’s interpretability using high-activating examples sampled across all child features.121

Matrix structure We conjecture that feature families are equivalent to diagonal blocks in some122

permutation of co-occurrence matrix C and activation similarity matrix D; then when permuted,123

in-block elements should co-activate much more strongly than off-diagonal elements. We also argue124

that due to the hierarchical nature of feature families, matrix “blocks” are highly sparse, since child125

3

M
ac

hin
e lea

rni
ng

Gam
ma ray

bu
rst

s

Blac
k ho

les

Peri
od

ici
ty

de
tec

tio
n

Gas
dy

na
mics

(a)

Rec
urr

en
t N

Ns

Exp
lai

na
bil

ity
in

AI

Rec
om

men
da

tio
n sy

ste
ms

Dee
p lea

rni
ng

for
vis

ion

Dim
en

sio
na

lity
red

uc
tio

n

(b)

Figure 2: Co-occurrence matrix C organised by a subset of feature families; the right-most feature is
the parent, and child features are ordered by increasing density.

features all co-occur with the parent feature but rarely co-occur with one another. Motivated by126

this structure, we compute the parent-child co-occurrence ratio R(p, C) for every family with parent127

feature p and children C, avg(
∑

i∈C Aip)

avg(
∑

i∈C
∑

j∈C,j ̸=i Aij)
. We also permute C and D by greedily selecting128

interpretable families, and compute the in-block to off-diagonal ratios Cdiag/Coff and Ddiag/Doff129

(excluding the diagonal), capturing the clustering strength of the block diagonal. Median values are130

listed in Table 1; subsets of C, permuted by feature family, are shown in 2.131

Dataset (k, n) Size F1 Pearson R(p, C) Cdiag/Coff Ddiag/Doff finc

astro-ph (16, 3072) 6 0.86 0.76 10.99 5.13 5.47 0.36
(32, 6144) 6 0.86 0.73 11.75 4.72 5.87 0.31
(64, 9216) 7 0.80 0.70 6.87 2.00 3.05 0.24

cs.LG (16, 3072) 5 0.73 0.60 2.44 8.35 0.89 0.23
(32, 6144) 5 0.73 0.59 3.50 7.33 1.07 0.30
(64, 9216) 7 0.80 0.71 1.22 1.78 2.57 0.41

Table 1: Feature family metrics. finc is the fraction of features in a clean family (Pearson ≥ 0.8).

5 Discussion132

In this work, we presented the first application of sparse autoencoders to dense text embeddings, and133

an empirical assessment of the scaling, interpretability, and substructure of learned sparse features.134

Using state-of-the-art automated interpretability and training approaches, we demonstrated that SAEs135

are extremely effective on text embeddings, producing highly interpretable features and exhibiting136

precise scaling laws. Our analysis of different-scale SAEs confirms other empirical observations of137

feature splitting, demonstrating that features may be semantically split, recurrent, or entirely novel.138

Furthermore, our analysis introduces the concept of and search methodology for “families” in SAE139

features, which may allow for multi-scale semantic analysis and causal manipulation. We confirm140

the existence of “feature families" in our SAEs and demonstrate that these hierarchical clusters are141

reflected in the block diagonalization of co-occurrence and activation data. This motivates a number142

of new directions in multi-scale feature discovery, interpretation, and manipulation.143

Limitations: Our work focused only on embeddings from relatively small datasets of scientific144

abstracts; the feature splitting and feature family phenomena differed even between domains cs.LG145

and astro-ph. Future work should investigate how well these methods generalise, and SAEs for146

more diverse embedding datasets would need to be scaled up by at least 2-3 the total number of147

latents. Moreover, the completeness of our learned dictionaries remains an open question; future work148

should evaluate SAE features from text embeddings against some proxy of ground-truth features, as149

proposed by Makelov et al. (2024). Finally, our analysis should be considered complementary to150

other methods that discover non-hierarchical features, such as non-linear manifolds.151

4

References152

Bills, Steven, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya153

Sutskever, Jan Leike, Jeff Wu, and William Saunders (2023). “Language models can explain154

neurons in language models”. In: URL https://openaipublic. blob. core. windows. net/neuron-155

explainer/paper/index. html.(Date accessed: 14.05. 2023) 2.156

Bricken, Trenton, Catherine Olsson, and Neel Nanda (2023). “Towards Monosemanticity: Decompos-157

ing Language Models With Dictionary Learning”. In: arXiv preprint arXiv:2301.05498.158

Bussmann, Bart, Patrick Leask, Joseph Isaac Bloom, Curt Tigges, and Neel Nanda (July 2024). Stitch-159

ing SAEs of Different Sizes. Online. AI Alignment Forum. URL: https://www.alignmentforum.160

org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes.161

Conmy, Arthur and Neel Nanda (2024). Activation Steering with SAEs. Accessed 16-07-2024. URL:162

https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full- post- progress-163

update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs.164

Cunningham, Hoagy, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey (2023a). Sparse165

Autoencoders Find Highly Interpretable Features in Language Models. arXiv: 2309.08600166

[cs.LG]. URL: https://arxiv.org/abs/2309.08600.167

– (2023b). “Sparse autoencoders find highly interpretable features in language models”. In: arXiv168

preprint arXiv:2309.08600.169

Daujotas, Gytis (Aug. 2024). Case Study: Interpreting, Manipulating, and Controlling CLIP With170

Sparse Autoencoders. Online. LessWrong. URL: https://www.lesswrong.com/posts/171

iYFuZo9BMvr6GgMs5/case- study- interpreting- manipulating- and- controlling-172

clip.173

Donoho, David L (2006). “Compressed sensing”. In: IEEE Transactions on Information Theory 52.4,174

pp. 1289–1306.175

Elhage, Nelson, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,176

Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,177

Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah (2022a). Toy Models of178

Superposition. arXiv: 2209.10652 [cs.LG]. URL: https://arxiv.org/abs/2209.10652.179

Elhage, Nelson, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Johnston, Ben Mann,180

Amanda Askell, Danny Hernandez, Dawn Drain, Zac Hatfield-Dodds, et al. (2022b). “Softmax181

Linear Units”. In.182

Engels, Joshua, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark (2024). Not All Language183

Model Features Are Linear. arXiv: 2405.14860 [cs.LG]. URL: https://arxiv.org/abs/184

2405.14860.185

Foote, Alex, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez (2023). “Neuron186

to graph: Interpreting language model neurons at scale”. In: arXiv preprint arXiv:2305.19911.187

Gao, Leo, John Thickstun, Anirudh Madaan, Zach Scherlis, Arush Guha, Sumanth Dathathri, Jared188

Kaplan, Azalia Mirhoseini, and Ilya Sutskever (2024). “Scaling Laws for Neurons in GPT Models”.189

In: arXiv preprint arXiv:2401.02325.190

Jermyn, Adam and Adly Templeton (2023). Ghost Grads: An improvement on resampling. [Accessed191

19-07-2024]. URL: https://transformer- circuits.pub/2024/jan- update/index.192

html#dict-learning-resampling.193

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv194

preprint arXiv:1412.6980.195

Lieberum, Tom, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant196

Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda (2024). Gemma Scope: Open197

Sparse Autoencoders Everywhere All At Once on Gemma 2. arXiv: 2408.05147 [cs.LG]. URL:198

https://arxiv.org/abs/2408.05147.199

Makelov, Aleksandar, George Lange, and Neel Nanda (2024). “Towards principled evaluations of200

sparse autoencoders for interpretability and control”. In: arXiv preprint arXiv:2405.08366.201

Makhzani, Alireza and Brendan Frey (2013). “K-sparse autoencoders”. In: arXiv preprint202

arXiv:1312.5663.203

Nanda, Neel (2023). Open Source Replication & Commentary on Anthropic’s Dictionary Learn-204

ing Paper. [Accessed 22-07-2024]. URL: https : / / www . alignmentforum . org / posts /205

fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s.206

Ng, Andrew et al. (2011). “Sparse autoencoder”. In: CS294A Lecture notes. Vol. 72. 2011, pp. 1–19.207

Olshausen, Bruno A and David J Field (1997). “Sparse coding with an overcomplete basis set: A208

strategy employed by V1?” In: Vision Research 37.23, pp. 3311–3325.209

5

https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s

Rajamanoharan, Senthooran, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, János210

Kramár, Rohin Shah, and Neel Nanda (2024). “Improving dictionary learning with gated sparse211

autoencoders”. In: arXiv preprint arXiv:2404.16014.212

Templeton, Adly (2024). Scaling monosemanticity: Extracting interpretable features from claude 3213

sonnet. Anthropic.214

Wright, Benjamin and Lee Sharkey (2024). Addressing Feature Suppression in SAEs. https://www.215

alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-216

in-saes. [Accessed 16-07-2024].217

6

https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes

Contents218

1 Introduction 1219

2 Background and Related work 1220

3 Training SAEs and automated labelling 2221

4 Constructing feature families through graph-based clustering 3222

4.1 Feature splitting . 3223

4.2 Feature families . 3224

5 Discussion 4225

A Training details 7226

A.1 Training setup . 7227

A.2 Training and automated interpretability methods 8228

A.3 Scaling laws . 9229

A.4 Feature density and similarity . 11230

B Automated interpretability details 11231

B.1 Examples of features . 11232

B.2 Exploring the effectiveness of smaller models . 13233

C Cross-domain features 13234

D Feature family details 15235

D.1 Feature splitting structures . 15236

D.2 Feature family structure . 16237

D.3 Feature family interpretability . 19238

E Exploring learned decoder weight matrices 19239

A Training details240

A.1 Training setup241

Our sparse autoencoder (SAE) implementation incorporates several recent advancements in the field.242

Following Bricken et al. (2023), we initialise the bias bpre using the geometric median of a data243

point sample and set encoder directions parallel to decoder directions. Decoder latent directions are244

normalised to unit length at initialisation and after each training step. For our top-k models, based on245

Gao et al. (2024), we set initial encoder magnitudes to match input vector magnitudes, though our246

analyses indicate minimal impact from this choice.247

Let x ∈ Rd be an input vector, and h ∈ Rn be the hidden representation, where typically n ≫ d.248

The encoder and decoder functions are defined as:249

Encoder : h = fθ(x) = σ(Wex+ be) (1)
Decoder : x̂ = gϕ(h) = Wdh+ bd (2)

7

0 2000 4000 6000 8000 10000
Training Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

De
ad

 L
at

en
ts

0

2000

4000

6000

8000

10000

12000

Hi
dd

en
 D

im
en

sio
n

(n
)

Figure 3: The proportion of dead latents, defined as features that haven’t fired in the last epoch of
training, for our k = 16 SAEs on the astro-ph abstract embeddings. All dead latents were gone by
the end of training. We found that dead latents only occurred in k = 16 autoencoders.

where We ∈ Rn×d and Wd ∈ Rd×n are the encoding and decoding weight matrices, be ∈ Rk and250

bd ∈ Rd are bias vectors, and σ(·) is a non-linear activation function (e.g., ReLU or sigmoid). The251

parameters θ = {We,be} and ϕ = {Wd,bd} are learned during training.252

The training objective of our SAE combines three main components: a reconstruction loss, a sparsity
constraint, and an auxiliary loss. The overall loss function is given by:

L(θ, ϕ) = 1

d
∥x− x̂∥22 + λLsparse(h) + αLaux(x, x̂)

where λ > 0 and α > 0 are hyperparameters controlling the trade-off between reconstruction fidelity,253

sparsity, and the auxiliary loss.254

For the sparsity constraint, we use a k-sparse constraint: only the k largest activations in h are255

retained, while the rest are set to zero (Makhzani et al., 2013; Gao et al., 2024). This approach avoids256

issues such as shrinkage, where L1 regularisation can cause feature activations to be systematically257

lower than their true values, potentially leading to suboptimal representations shrinkage, (Wright258

et al., 2024; Rajamanoharan et al., 2024). We augment the primary loss with an auxiliary component259

(AuxK), inspired by the “ghost grads” approach of Jermyn et al. (2023). This auxiliary term considers260

the top-kaux inactive latents (typically kaux = 2k), where inactivity is determined by a lack of261

activation over a full training epoch. The total loss is formulated as L+ αLaux, with α usually set to262

1/32. This mechanism reduces the number of dead latents with minimal computational overhead (Gao263

et al., 2024). We found that dead latents only occurred during training the k = 16 models, and all264

dead latents had disappeared by the end of training. We show how dead latents evolved over training265

the k = 16 SAEs for the astro-ph abstracts in Figure 3.266

For optimisation, we employ Adam (Kingma et al., 2014) with β1 = 0.9 and β2 = 0.999, maintaining267

a constant learning rate. We use gradient clipping. Our training uses batches of 1024 abstracts, with268

performance metrics showing robustness to batch size variations under appropriate hyperparameter269

settings.270

The primary MSE loss uses a global normalisation factor computed at training initiation, while271

the AuxK loss employs per-batch normalisation to adapt to evolving error distributions. Following272

Bricken et al. (2023), we apply a gradient projection technique to mitigate interactions between the273

Adam optimiser and decoder normalisation.274

A.2 Training and automated interpretability methods275

Data: We train our top-k SAEs on the embeddings of abstracts from papers on arXiv with the276

astro-ph tag (astrophysics, 272,000 papers) and the cs.LG tag (computer science, 153,000 papers).277

The embeddings were generated with OpenAI’s text-embedding-3-small model.1 We train our278

SAEs on these collections of embeddings separately. We normalised the embeddings to zero mean279

and unit variance before passing them to the SAE as inputs. Our trained SAEs are available for280

download here.281

1https://openai.com/index/new-embedding-models-and-api-updates/

8

https://huggingface.co/charlieoneill/embedding-saes
https://openai.com/index/new-embedding-models-and-api-updates/

Hyperparameters: Notable hyperparameters include the number of active latents k, the total number282

of latents n, the number of auxiliary latents kaux, the learning rate, and the auxiliary loss coefficient283

α. We found learning rate and auxiliary loss coefficient to not have a significant effect on final284

reconstruction loss; we set the former to 1e-4 and the latter to 1/32. We vary k between 16 and 128,285

and n between two to nine times the embedding dimension dinput. Whilst we train SAEs with many286

different combinations of these hyperparameters, we largely focus on what we hereon refer to as287

SAE16 (k = 16, n = 2dinput = 3072), SAE32 (k = 32, n = 4dinput = 6144) and SAE64 (k = 64,288

n = 6dinput = 9216). We train each model for approximately 13.2 thousand steps.289

Automated interpretability: Following the training of a Sparse Autoencoder (SAE), it becomes290

necessary to interpret its features, each corresponding to a column in the learned decoder weight291

matrix. To facilitate feature interpretation and quantify interpretation confidence, we employ two292

Large Language Model (LLM) instances: the Interpreter and the Predictor. The Interpreter is293

tasked with generating labels for each feature. It is provided with the abstracts that produce the top294

5 activations of the feature across the dataset, along with randomly selected abstracts that do not295

activate the feature. The Interpreter then generates a label for the feature based on this input (for the296

complete prompt, refer to Appendix B). Subsequently, the generated label is passed to the Predictor.297

The Predictor is presented with three randomly sampled abstracts where the feature was activated and298

three where it was not. It is then instructed to predict whether a given abstract should activate the299

feature, expressing its confidence as a score ranging from −1 (absolute certainty of non-activation) to300

+1 (absolute certainty of activation).2 We measure the Pearson correlation between this confidence301

and the true activation (binary; +1 or -1). We also measure the F1 score, when framing the confidence302

as a binary classification (active if confidence is above 0, inactive otherwise).303

Evaluation metrics: In order to compare SAEs, we evaluate both their ability to reconstruct the304

embeddings, as well as the interpretability of the learned features. For the former, we examine the305

normalised mean squared error (MSE), where we divide MSE by the error when predicting the mean306

activations. We also report the log density of the activation of features across all papers. We do not307

report dead latents (those not firing on any abstract) as all models contained zero dead latents at the308

end of training. We also report the mean activation of features, when their activation is non-zero.309

To measure interpretability, we use Pearson correlation, as outlined above. Table 2 shows the final310

training metrics for all combinations of SAEs trained. We note clear trends in normalised MSE, log311

feature density and activation mean as we vary the number of active latents k and the overall number312

of latents n.313

A.3 Scaling laws314

For the left panel of Figure 4, which shows the scaling of normalised MSE with the number of total315

latents n, we observe the following power-law relationships:316

k = 16 : L(n) = 0.61n−0.12 (astro.ph); L(n) = 0.67n−0.13 (cs.LG)

k = 32 : L(n) = 0.49n−0.13 (astro.ph); L(n) = 0.56n−0.14 (cs.LG)

k = 64 : L(n) = 0.46n−0.15 (astro.ph); L(n) = 0.60n−0.17 (cs.LG)

k = 128 : L(n) = 0.31n−0.13 (astro.ph); L(n) = 0.51n−0.18 (cs.LG)

For the right panel of Figure 4, which shows the scaling of normalised MSE with the amount of317

compute C (in FLOPs), we observe the following power-law relationships:318

k = 16 : L(C) = 3.84C−0.11

k = 32 : L(C) = 5.25C−0.13

k = 64 : L(C) = 8.03C−0.16

k = 128 : L(C) = 2.80C−0.13

These equations demonstrate the consistent power-law scaling behaviour of sparse autoencoders319

across different values of k, n, and compute C.320

2We use 3 activating and 3 non-activating abstracts for the Predictor, rather than 5, due to LLM costs. We
used gpt-4o as the Interpreter and gpt-4o-mini as the Predictor. Notably, we predict each abstract separately,
rather than batching abstracts like Bricken et al. (2023).

9

Table 2: Metrics for our top-k sparse autoencoders with varying k and hidden dimensions, across
both astronomy and computer science papers. MSE is normalised mean squared error, Log FD is
the mean log density of feature activations, and activation mean is the mean activation value across
non-zero features. Note that MSE is normalised.

astro.ph cs.LG

k n MSE Log FD Act Mean MSE Log FD Act Mean

16

3072 0.2264 -2.7204 0.1264 0.2284 -2.7314 0.1332
4608 0.2246 -4.7994 0.1350 0.2197 -3.0221 0.1338
6144 0.2128 -3.1962 0.1266 0.2089 -3.2299 0.1342
9216 0.1984 -3.4206 0.1264 0.1962 -3.4833 0.1343

12288 0.1957 -6.2719 0.1274 0.1897 -3.6448 0.1347

32

3072 0.1816 -2.3389 0.0847 0.1831 -2.3008 0.0885
4608 0.1691 -3.6091 0.0882 0.1697 -2.5152 0.0876
6144 0.1604 -2.7761 0.0841 0.1641 -2.6687 0.0873
9216 0.1554 -3.0227 0.0842 0.1540 -2.9031 0.0875

12288 0.1520 -4.9505 0.0843 0.1457 -3.0577 0.0877

64

3072 0.1420 -1.9538 0.0566 0.1485 -1.8875 0.0584
4608 0.1331 -2.7782 0.0622 0.1370 -2.0637 0.0570
6144 0.1262 -2.2828 0.0545 0.1310 -2.1852 0.0558
9216 0.1182 -2.4682 0.0539 0.1240 -2.3536 0.0545

12288 0.1152 -3.4787 0.0583 0.1162 -2.4847 0.0548

128

3072 0.1111 -1.8876 0.0483 0.1206 -1.5311 0.0399
4608 0.1033 -2.1392 0.0457 0.1137 -1.6948 0.0376
6144 0.1048 -2.2501 0.0438 0.1076 -1.8079 0.0366
9216 0.0975 -2.5352 0.0409 0.0999 -1.9701 0.0348

12288 0.0936 -2.7025 0.0399 0.0942 -2.0858 0.0342

1043 × 103 4 × 103 6 × 103

N (Hidden Dimensions)

10 1

2 × 10 1

No
rm

al
ise

d
M

SE

astro.ph
cs.LG

16

32

64

128

2 × 101

3 × 101

4 × 101

6 × 101

k

0 1 2 3 4 5
FLOPS 1e11

10 1

100

No
rm

al
ise

d
M

SE

y = 3.84 × x 0.11

y = 5.25 × x 0.13

y = 8.03 × x 0.16

y = 2.8 × x 0.13

n=3072
n=6144
n=9216
n=12288

16

32

64

128
k

Figure 4: Scaling laws for sparse autoencoder performance. Left: Normalised mean squared error
(MSE) as a function of the number of total latents n for different values of active latents k. The
power-law scaling is evident for each k. Right: Reconstruction loss as a function of compute (FLOPs)
for different k values, demonstrating the compute-optimal model size scaling.

10

5 4 3 2 1 0
Log Feature Density

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y

SAE16
SAE32
SAE64

Figure 5: Log feature density for features in our three SAEs as a stacked histogram, showing the
distribution of how often features fire across all paper abstacts (cs.LG and astro-ph). The larger
SAE has a higher mean feature density than the smaller SAEs.

A.4 Feature density and similarity321

We find an intuitive relationship between k and n and the log feature density (essentially, how often a322

given feature fires). As k increases, we get a sharper peak of log feature density, shifted to the right,323

suggesting features fire in a tighter range as we increase the instantaneous L0 of the SAE’s encoder324

(Figure 5).325

To compare features across different SAEs trained on the same input data, we analyse the cosine326

similarity between the decoder weight vectors corresponding to each feature; see 6. Decoder weights,327

represented by columns in the decoder matrix, directly encode each feature’s contribution to input328

reconstruction. Encoder weights, on the other hand, are optimised to extract feature coefficients329

while minimising interference between non-orthogonal features. This separation is important in the330

context of superposition, where we have more features than input dimensions, precluding perfect331

orthogonality.332

B Automated interpretability details333

B.1 Examples of features334

Most SAE features are highly interpretable; see 7. We show some examples of perfectly interpretable335

features (Pearson correlation > 0.99) in Table 3. The strength of the activation of the feature on its336

top 3 activating abstracts is shown in parentheses next to the abstract title.337

11

0.00 0.25 0.50 0.75 1.000.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

n=3072

0.00 0.25 0.50 0.75 1.00

n=6144

0.00 0.25 0.50 0.75 1.00

n=9216

Max Cosine Similarity

SAE32-SAE64 SAE16-SAE32 SAE16-SAE64

(a) k fixed, varying n. As n increases, the features between across SAEs with
varying k become more disparate.

0.00 0.25 0.50 0.75 1.000.0

0.5

1.0

1.5

De
ns

ity

k=16

0.00 0.25 0.50 0.75 1.00

k=32

0.00 0.25 0.50 0.75 1.00

k=64

Max Cosine Similarity

n=3072-n=6144 n=3072-n=9216 n=6144-n=9216

(b) n fixed, varying k. Higher values of k lead to less similarity regardless of
n.

Figure 6: Nearest-neighbour cosine similarity distributions for SAE features. To find features in an
SAE with a lower k that are most similar to those in an SAE with a larger k, we compute the cosine
similarity between each feature in the larger model and each feature in the smaller model. We do this
for several values of n, and combine the distributions for astro.ph and cs.LG.

0

2000

4000
astroPH

SAE16
SAE32
SAE64

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.000

2000

4000
csLG

Pearson Correlation
Figure 7: Pearson correlations between the ground-truth and predicted feature
activation, using GPT-4o as the Interpreter and GPT-4o-mini as the Predictor.

12

Feature

Astronomy

Cosmic Microwave Background CMB map-making and power
spectrum estimation (0.1708)

How to calculate the CMB
spectrum (0.1598)

CMB data analysis and spar-
sity (0.1581)

Periodicity in astronomical data Generalized Lomb-Scargle
analysis of decay rate
measurements from the
Physikalisch-Technische
Bundesanstalt (0.1027)

Multicomponent power-
density spectra of Kepler
AGNs, an instrumental
artefact or a physical origin?
(0.0806)

RXTE observation of the X-
ray burster 1E 1724-3045. I.
Timing study of the persistent
X-ray emission with the PCA
(0.0758)

X-ray reflection spectra X-ray reflection spectra from
ionized slabs (0.3859)

The role of the reflection
fraction in constraining black
hole spin (0.3803)

Relativistic reflection: Re-
view and recent develop-
ments in modeling (0.3698)

Critique or refutation of theories What if string theory has no
de Sitter vacua? (0.2917)

No evidence of mass segrega-
tion in massive young clusters
(0.2051)

Ruling Out Initially Clustered
Primordial Black Holes as
Dark Matter (0.2029)

Computer Science

Sparsity in Neural Networks Two Sparsities Are Better
Than One: Unlocking the Per-
formance Benefits of Sparse-
Sparse Networks (0.3807)

Truly Sparse Neural Net-
works at Scale (0.3714)

Topological Insights into
Sparse Neural Networks
(0.3689)

Gibbs Sampling and Variants Herded Gibbs Sampling
(0.2990)

Characterizing the General-
ization Error of Gibbs Algo-
rithm with Symmetrized KL
information (0.2858)

A Framework for Neural Net-
work Pruning Using Gibbs
Distributions (0.2843)

Arithmetic operations in transformers Arbitrary-Length Generaliza-
tion for Addition in a Tiny
Transformer (0.1828)

Carrying over algorithm in
transformers (0.1803)

Understanding Addition in
Transformers (0.1792)

Table 3: Activation strengths and titles for abstracts related to Astronomy and Computer Science
features.

B.2 Exploring the effectiveness of smaller models338

Although we eventually used gpt-4o-mini as the Predictor model, we initially did some ablations339

to understand how effective gpt-4o and gpt-3.5-turbo would be as different combinations of the340

Interpreter and Predictor models. We measured this by randomly sampling 50 features from our341

SAE64 (trained on astro-ph abstracts) and measuring the interpretability scores of different model342

combinations, in terms of both F1 score (does the model’s binary classification of a feature firing on343

an abstract agree with the ground-truth) and the Pearson correlation (described in the main body).344

Interestingly, we observe that using gpt-4o as the Interpreter and gpt-3.5-turbo as the Predictor345

leads to similar scores as using gpt-3.5-turbo for both, as shown in Figures 8 and Figures 9. This346

suggests that the challenging task in the autointerp is not necessarily labelling but rather predicting347

the activation of a feature on unseen abstracts.348

Another observation is that using gpt-3.5-turbo as the Predictor only leads to a moderate degrada-349

tion of F1 score, it leads to a significant degradation of Pearson correlation. This is likely because350

we only use 6 abstracts for each feature prediction (3 positive, 3 negative) and thus there are only a351

few discrete F1 scores possible. Additionally, it appeared that gpt-3.5-turbo was generally less352

likely to assign higher confidence scores in either direction, with a much lower variance in assigned353

confidence than when gpt-4o was the Predictor. This affects Pearson correlation but not F1.354

C Cross-domain features355

The intersection between our cs.LG (n = 153, 146) and astro.PH (n = 271, 492) corpora contains356

n = 330 cross-posted papers. Motivated by these papers, as well as the observation of similar357

features re-occurring in models of different sizes (see Section 4), we search for the max cosine358

similarity feature between cs.LG and astro.PH SAEs at a fixed k and ndir. As expected, we find359

significant mis-alignment between the vast majority of feature vectors between SAEs trained on360

different domains, with mis-alignment increasing with k and ndir (see Figure 10; this is unsurprising361

given how k and ndirs correlate with feature granularity).362

13

1.00 0.51 0.43

0.51 1.00 0.41

0.43 0.41 1.00

GPT-4o, GPT-4o

GPT-4o, GPT-3.5

GPT-3.5, GPT-3.5

GPT-3.5, GPT-3.5

GPT-4o, GPT-3.5

GPT-4o, GPT-4o 1.00 0.68 0.68

0.68 1.00 0.51

0.68 0.51 1.00

GPT-4o, GPT-4o

GPT-4o, GPT-3.5

GPT-3.5, GPT-3.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1
F1 Score Correlation Pearson Correlation

Figure 8: Correlation between F1 scores and Pearson correlation scores of different combinations of
(labeller, predictor) models. Interestingly, using GPT-3.5 as the predictor appears to degrade
performance similarly regardless of whether the feature was labelled by GPT-4o or GPT-3.5.

GPT-4o, GPT-4o

GPT-4o, GPT-3.5

GPT-3.5, GPT-3.5

0

0.2

0.4

0.6

0.8

1
F1 Score
Pearson Correlation

Av
er

ag
e

Sc
or

e

Figure 9: Mean F1 scores and Pearson correlations (according to ground-truth feature activations)
across 50 randomly sampled features, for different combinations of (Interpreter, Predictor)
models.

14

0.00 0.25 0.50 0.75 1.00
Max Cosine Similarity

0.0

0.5

1.0

1.5

De
ns

ity

n = 3072

0.00 0.25 0.50 0.75 1.00
Max Cosine Similarity

n = 6144

0.00 0.25 0.50 0.75 1.00
Max Cosine Similarity

n = 9216

k=16 k=32 k=64

Figure 10: Maximum pair-wise cosine similarity of feature vectors between SAEs trained on different
domains.

Feature Name (astro-ph) Best Match (cs.LG) Cosine Sim. Activation Sim. ∆ F1 ∆ Pearson
Deep learning CNNs and Applications 0.39 0.33 -0.2 -0.17
Generative Adversarial Networks Generative Adversarial Networks (GANs) 0.61 0.26 0 0
Transformers Transformer architectures and applications 0.5 0.33 0 -0
Artificial Neural Networks Artificial Neural Networks (ANNs) 0.64 0.02 0 0
Artificial Intelligence AI applications in diverse domains 0.61 0.45 0 0.02
Automation and Machine Learning Automation in computational processes 0.9 0.77 -0.25 -0.47
Gaussian Processes Gaussian Processes in Machine Learning 0.59 0.54 0 0.03
Regression analysis Regression techniques and applications 0.81 0.53 0 -0.01

Table 4: Feature matches from the "Machine Learning" family (astroPH); k = 64, ndir = 9216.

However, a small subset of features appear in both sets of SAEs, with relatively high max cosine363

similarity. For example, Table 4 shows the nearest cs.LG neighbours for every feature in the364

astro.PH “Machine Learning” feature family (average cosine similarity = 0.59, average activation365

similarity = 0.40). To test whether the features represent the same semantic concepts, we substitute the366

natural language description of the best-match cs.LG feature for each listed astro.PH feature and367

test the interpretability of the substituted descriptions; we find ∆Pearson = −0.07 and ∆F1 = −0.06.368

The existence of these features suggests that both sets of SAEs learn a semi-universal set of features369

that span the domain overlap between astro.PH and cs.LG.370

Interestingly, we find a number of near-perfectly aligned pairs (cosine similarity > 0.95) of highly371

interpretable features with little semantic overlap. A number of these features share similar wording372

but not meaning, such as “Substructure in dark matter and galaxies" (astro-ph) and “Subgraphs and373

their representations". Of these 10 feature pairs, the average activation similarity is 0.91.374

D Feature family details375

D.1 Feature splitting structures376

Figure 11 shows an example of a recurrent feature across SAE sizes that does not exhibit feature377

splitting. While the feature has extremely high activation and cosine similarity across every model378

pair, each model only learns 1 feature in this direction. In Figures 12a and 12b we show two ex-379

amples of feature splitting across SAE16 – SAE32 – SAE64 trained on astro-ph. 12a appears to380

show canonical feature splitting as originally described in Bricken et al., 2023, with an increasing381

number of features splitting the semantic space at each SAE size. There exists a top-level “period-382

icity”/“periodicity detection” feature universal to all three SAEs, with relatively high similarity to383

all other features, as well as novel, more granular features appearing in smaller SAEs, i.e. “Quasi-384

periodic oscillations in blazars”, which only appears in SAE64 and is highly dissimilar from other385

split features.386

In contrast, 12b demonstrates nearest-neighbour features across models that do not exhibit semanti-387

cally meaningful feature splitting. While the top-level “Luminous Blue Variables (LBVs)" feature388

occurs at every model size, SAE64 also exhibits two additional features, “Lemaitre-Tolman-Bondi389

(LTB) Models" and “Lyman Break Galaxies (LBGs)", that are highly dissimilar to each other, the390

15

SAE16

SAE32

SAE64

SA
E1
6

SA
E3
2

SA
E6
4

0

0.2

0.4

0.6

0.8

1

O-type stars and their properties

Figure 11: Recurrent features across SAEs trained on astro-ph; heatmap colored by activation
similarity D; all feature vector cosine similarities are > 0.98.

LBVs feature, and every other feature in the smaller models. We claim these are novel features,391

occurring for the first time in SAE64, and that SAE16/SAE32 do not learn features for any related392

higher-level concepts; instead, this grouping could be a spurious token-level correlation (LBV/LT-393

B/LBG as similar acronyms).394

Feature triplets In Figure 13a, we search for features that occur in ndirs = 3072 models and have395

highly aligned features in larger (ndirs = 6144, 9216) models; we use this as a rough proxy for the396

number of re-occurring features. We find that significantly more features re-occur between models397

for higher k, with over 1100 feature triplets at > 0.95 cosine similarity for k = 16; as k increases,398

the number of triplets drops sharply.399

Self-consistency In 13b we show the set overlap between nearest-neighbour matches between400

SAE16 and SAE64 found directly, and nearest-neighbour matches between SAE16 and SAE64 found401

via nearest-neighbour matches to SAE32. If features exhibit perfectly clean splitting geometry, then402

these two sets of SAE64 features should be consistent. However, we find that the distribution of set403

overlap is roughly bimodal; other than triplet features with perfect overlap, overlap generally ranges404

from 0 to 0.6. The vast majority of intersection = 1 sets are ≤ 3 features in size. This corroborates405

findings in 6 which suggests features across models with different k are not well-aligned.406

D.2 Feature family structure407

We de-duplicate families with high set overlap (|F1∩F2|
|F1∪F2| > 0.6). We compute feature family sizes408

(including the parent), co-occurrence ratios (R(p, C), see section 4), and activation similarity ratios409

(computed identically to R(p, C), just using activation similarities). Statistics for variants of cs.LG410

and astro-ph are shown in 14. We find a positive correlation (Spearman = 0.22) between R(p, C)411

and feature family interpretability.412

We reproduce the projection method of Engels et al., 2024, running all documents through the SAE413

and ablating features not in the feature family, to produce Figure 15. Visualizing the resulting principal414

components confirms that the feature families we find do not represent manifolds or irreducible415

multi-dimensional structures. We can instead think of feature families as linear subspaces in the416

high-dimensional latent space; in fact, the component vectors can be seen in the lines of points417

representing documents only activating on one feature in the family.418

In 4 we use n = 3 iterations of feature family construction. We select this hyper-parameter based off419

Figure 16. In the first 2-3 iterations, removing parent nodes and re-constructing features preferentially420

creates additional smaller families, suggesting iterations are necessary to fully explore the graph.421

16

(a) We find both recurrent features and novel features at every level (i.e. the
top-level “periodicity detection"/“periodicity" feature); heatmap colored by
pairwise cosine similarity.

(b) While “Luminous Blue Variables" is a recurrent feature in each SAE, SAE64 also
exhibits 2 other nearest-neighbour features to “Luminous Blue Variables" that are not
semantically related; heatmap colored by pairwise cosine similarity.

17

0.8 0.85 0.9 0.95 1

0

200

400

600

800

1000

1200

1400

1600
k = 16
k = 32
k = 64
k = 128

min. cosine similarity

#
 r

ec
ur

re
nt

 f
ea

tu
re

s

(a) Number of features from the smallest SAE that re-occur
in all SAEs, by cosine similarity threshold.

0 0.2 0.4 0.6 0.8 1

Feature splitting (16-64 vs. 16-32-64)

set intersection fraction

(b) Overlap in the recovered SAE64 features,
propagating nearest neighbors from SAE16-
SAE64 vs. SAE16-SAE32-SAE64.

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
log10 size

k = 64, ndirs = 9216
k = 32, ndirs = 6144
k = 16, ndirs = 3072

(a)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log10 activation similarity ratio

k = 64, ndirs = 9216
k = 32, ndirs = 6144
k = 16, ndirs = 3072

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
log10 co-occurrence ratio

k = 64, ndirs = 9216
k = 32, ndirs = 6144
k = 16, ndirs = 3072

(c)

0.5 1.0 1.5 2.0 2.5
log10 size

k = 64, ndirs = 9216
k = 32, ndirs = 6144
k = 16, ndirs = 3072

(d)

1.5 1.0 0.5 0.0 0.5
log10 activation similarity ratio

k = 64, ndirs = 9216
k = 32, ndirs = 6144
k = 16, ndirs = 3072

(e)

0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
log10 co-occurrence ratio

k = 64, ndirs = 9216
k = 32, ndirs = 6144
k = 16, ndirs = 3072

(f)

Figure 14: Feature families statistics (left: size; middle: activation similarity ratio; right: co-
occurrence ratio, R(p, C)); k = 64, ndir = 9216.

Figure 15: PCA projections of 3 example feature families from SAE64; points are latent representa-
tions of activating examples, colored by average activation for in-family features in the top k.

18

1 2 3 4 5 6 7 8

50

100

150

200

250

300

350

400

iteration

n
ne

w
 s

ub
tr

ee
s

Figure 16: New feature families as a function of iteration; no deduplication is performed.

But given the sparse co-occurrences (Ci,j > 0.1) used to build the graph, the number of additional422

feature families found at each iteration drops off steeply after n = 3.423

D.3 Feature family interpretability424

We show example feature families and their interpretability scores in Figure 17.425

E Exploring learned decoder weight matrices426

Encoder and decoder representations Figure 18 reveals an intriguing relationship between feature427

distinctiveness and the similarity of encoder and decoder representations in our sparse autoencoder.428

In an ideal scenario with orthogonal features, encoder and decoder vectors would be identical, as the429

optimal detection direction (encoder) would align perfectly with the representation direction (decoder).430

This is because orthogonal features can be uniquely identified without interference. However, in our431

high-dimensional space with more features than dimensions, perfect orthogonality is impossible due432

to superposition.433

The right panel of Figure 18 shows a negative correlation between a feature’s decoder-encoder cosine434

similarity and its maximum similarity with other features. Features more orthogonal to others (lower435

maximum similarity) tend to have more similar encoder and decoder representations. This aligns436

with intuition: for more isolated features, the encoder’s detection direction can closely match the437

decoder’s representation direction. Conversely, features with higher similarity to others require438

the encoder to adopt a more differentiated detection strategy to minimise interference, resulting in439

lower encoder-decoder similarity. The left panel, showing a mean cosine similarity of 0.57 between440

corresponding encoder and decoder vectors, further emphasises this departure from orthogonality.441

This phenomenon points to the importance of untied weights in sparse autoencoders.442

Clustering feature vectors Motivated by structure in the feature activation graph, we explore whether443

similar structure can be found in the decoder weight matrix W itself. Gao et al., 2024 find 2 such444

clusters; we reproduce their method across our embeddings and SAEs, permuting the left singular445

vectors U of W using a one-dimensional UMAP. We also experiment with permuting U and W using446

reverse Cuthill-McKee. We do not find any meaningful block diagonal structure or clustering in W .447

19

Phosphorus detection

Nucleobases, RNA/DNA origin, prebiotic chemistry

Probability of life emergence

Habitability classification of exoplanets

Detection of glycine in space

Breakthrough Listen technosignature search

Anthropic principle in cosmology

Detection of extraterrestrial biosignatures

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Anomalous X-ray Pulsars (AXPs)

Geminga pulsar

Detection of streaks

Five-hundred-meter Aperture Spherical Telescope (FAST)
SAX J1808.4-3658

Black widow pulsars and dynamics

Interstellar scintillation in pulsars/quasars

Downsizing in galaxy formation

Pulsar conal emission geometry and altitude

Pulsars in binary systems

Pulsar glitches and their analysis

X-ray pulsars in SMC
Parkes Observatory and related research

High-energy gamma-ray sources (PWN/SNR)

Cyclotron Resonance Scattering Features

Pulsar timing and applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Compact Steep Spectrum (CSS) sources

Mexican Hat Wavelet Family (MHWF)

Gigahertz Peaked Spectrum (GPS) sources

X-ray surveys and AGN properties

Source extraction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Self-Interacting Dark Matter (SIDM)

Self-Organized Criticality

Self-similarity

Distribution functions in stellar dynamics

Consistency relations in cosmology

Poisson equation

Self-interacting astrophysical phenomena

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Individual Features Family F1 (base)

Astrobiology Pulsar astrophysics

Source detection techniques Dynamical systems in astrophysics

Figure 17: High-quality (top) and low-quality (bottom) feature families, scored through automated
interpretability; radar charts show Pearson correlation scores for individual features (vertices) and
the overall family (dashed line). While high-quality feature families truly have shared meaning,
low-quality families appear to be mostly spurious and are not interpretable through short descriptions.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0

100

200

300

400

500

600

700

Cosine Similarity 0.2 0.3 0.4 0.5 0.6

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Max Decoder Cosine Similarity

C
os

in
e

S
im

ila
ri
ty

 w
it
h

En
co

de
r

Figure 18: (Left) Cosine similarities between the encoder row and corresponding decoder column for
SAE64 (cs.LG). The mean cosine similarity is 0.57, suggesting that encoder and decoder features
are rather different, agreeing with Nanda (2023). (Right) We notice a slight negative correlation
between a feature’s decoder-encoder cosine similarity, and its maximum similarity with other features,
possibly suggesting that features that are furthest removed from all other features in embedding space
can have more similar corresponding decoders and encoder projections.

20

	Introduction
	Background and Related work
	Training SAEs and automated labelling
	Constructing feature families through graph-based clustering
	Feature splitting
	Feature families

	Discussion
	Training details
	Training setup
	Training and automated interpretability methods
	Scaling laws
	Feature density and similarity

	Automated interpretability details
	Examples of features
	Exploring the effectiveness of smaller models

	Cross-domain features
	Feature family details
	Feature splitting structures
	Feature family structure
	Feature family interpretability

	Exploring learned decoder weight matrices

