© ® N O o A~ W N =

o

11

24

25
26

27
28
29

30

31
32
33
34

Sparse autoencoders for dense text embeddings reveal
hierarchical feature sub-structure

Anonymous Author(s)
Affiliation
Address

email

Abstract

Sparse autoencoders (SAEs) show promise in extracting interpretable features from
complex neural networks, enabling examination and causal intervention in the inner
workings of black-box models. However, the geometry and completeness of SAE
features is not fully understood, limiting their interpretability and usefulness. In this
work, we train SAEs to detangle dense text embeddings into highly interpretable
document-level features. Our SAEs follow precise scaling laws as a function
of capacity and compute, and exhibit significantly higher interpretability scores
compared to SAEs trained on language model activations. In embedding SAEs, we
reproduce qualitative “feature splitting" phenomena previously reported in language
model SAEs, and demonstrate the existence of universal, cross-domain features.
Finally, we suggest the existence of “feature families" in SAEs, and develop a
method to reveal distinct hierarchical clusters of related semantic concepts and
map feature co-activations to a sparse block diagonal.

1 Introduction

Sparse autoencoders (SAEs) have emerged as a promising approach to neural network interpretability
(Ng et al., 2011; Makhzani et al., 2013). By learning to reconstruct inputs as linear combinations of
features in a higher-dimensional sparse basis, SAEs can disentangle complex representations into
individually interpretable components. This approach has previously shown success in analysing and
steering generation, and has led to new insights on the inner workings of language models, while also
motivating a number of empirical questions about SAE features and mechanisms (Conmy et al., 2024;
Cunningham et al., 2023b; Bricken et al., 2023; Lieberum et al., 2024). In this work, we present
the first application of SAEs to dense text embeddings derived from large language models. We
empirically examine the interpretability, scalability, and feature structure of SAEs trained over text
embeddings. Our research makes the following key contributions:

1. We demonstrate the effectiveness of SAEs in learning document-level features from dense
representations. We examine their interpretability, scaling behavior, and feature geometry.

2. We introduce SAE “feature families”, hierarchical clusters of features that allow for multi-
scale semantic analysis and manipulation, and methodology for finding and verifying
families. We also examine the proliferation of “split" features across levels of abstraction.

2 Background and Related work

Sparse autoencoders In large language models, the superposition hypothesis suggests that dense
neural networks are highly underparameterised, and perform computations involving many more
concepts than neurons by representing many sparse concepts, or features, in superposition (Elhage
et al., 2022a). Distributed representations allows models to efficiently encode a large number of

Submitted to Workshop on Scientific Methods for Understanding Deep Learning, NeurIPS 2024.

35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50
51

52

53
54
55
56
57
58
59
60

61
62
63
64
65
66
67
68

69
70
71
72
73

i & d Step Size Adaptation in
Reconstruction £ € R Coordinate Descent Optimization
Optimization Techniques

"Arithmetic L
DHHDH EI|:||:||]|:| DeR™™ operations in

" Escaping saddle points in «
transformers' i

“Trained decoder—>> % ''''''' «

Feature Label
ool

Latentsh € R*, Ly = k

Interpreter LLM

»
Derivatives in Machine SAGA algorithm and its
Learming . varian ts

Predictor LLM

)
:
* "
Stochastic Variance
1 Reduced Gradient (SVRG)
L
Coordinate Descent and .
"0.8" "0.9" "0.2" "-0.5" Mi Optimization ¢ Adam and RMSProp.
‘optimization algorithms

D H H DH Correlation: 0.8 Py af

Ol ol " /4 opti

Embedding = € R¢ Feature Score e N
algorithm

o

Activating text

Non-activating text|

Figure 1: Left: SAE training and labelling. Right: cs.LG feature family; arrows represent C' > 0.1.

features in a relatively low-dimensional space, but it also makes model layers challenging to interpret
directly. Sparse autoencoders (SAEs) address this by learning to reconstruct inputs using a sparse set
of features in a higher-dimensional space, encouraging disentanglement of distributed representations
(Elhage et al., 2022b; Donoho, 2006; Olshausen et al., 1997). When applied to language model
activations, SAEs recover semantically meaningful and human-interpretable sparse features (Gao
et al., 2024; Bricken et al., 2023; Cunningham et al., 2023b). A number of automated interpretability
approaches have been proposed and applied, such as Bills et al. (2023) and Foote et al. (2023).

Structure in SAE features A large volume of interpretable features have been discovered in SAEs
trained over language models (Cunningham et al., 2023a; Bricken et al., 2023; Lieberum et al., 2024).
This has motivated work studying the underlying structure of features. Bricken et al. (2023) report
feature splitting in geometrically close groups of semantically related features, where number of
learned features in the cluster increases with model size. They also report the existence of universal
features which re-occur between independent SAEs and which have highly similar activation patterns.
Templeton (2024) find feature splitting also occurs in SAEs trained over production-scale models,
with larger SAEs also exhibiting novel features for concepts that are not represented in smaller SAEs.
Makelov et al., 2024 report over-splitting of binary features with SAE capacity. Engels et al., 2024
find clusters of SAE features that represent inherently multi-dimensional, non-linear subspaces.

3 Training SAEs and automated labelling

We trained top-k Sparse Autoencoders (SAEs) on embeddings of arXiv abstracts from astrophysics
(astro-ph, 272,000 papers) and computer science (cs.LG, 153,000 papers), using OpenAl’s
text-embedding-3-small model. We experimented with hyperparameters, focusing primarily
on SAEs with £ = 16, 32, and 64 active latents. To interpret learned features, we employed an
automated two-step process using large language models: an Interpreter to generate feature labels,
and a Predictor to assess interpretation confidence. We evaluated SAEs based on reconstruction
ability using normalized mean squared error, and feature interpretability using Pearson correlation.
Detailed training procedures, hyperparameters, and evaluation metrics are provided in Appendix A.

Scaling performance: Templeton, 2024 found compute-optimal scaling laws for SAEs over language
model activations. Similarly, we observe precise (R? > 0.93) power-law scalings as a function of
the number of total latents n, active latents k, and compute C' used for training. The normalised
mean squared error (MSE) scales as L(n) = cn™® for fixed k, where « ranges from 0.12 to 0.18 and
increases with k; cs . LG shows slightly higher o values compared to astro-ph. For compute scaling,
we calculate the number of training FLOPs C' at each step for each SAE. We find L(C) = aC®,
where a generally increases with & (3.84 for k = 16 to 8.03 for £ = 64) and b ranges from -0.11 to
-0.16, decreasing with k. Figures and detailed fits are provided in Appendix A, Figure 4.

Interpretability: We find high correlation between predictor model confidence and the ground-truth
firing, with median Pearson correlations ranging from 0.65 to 0.71 for c¢s.LG and 0.85 to 0.98 for
astro-ph; see B for details. Bricken et al. (2023) report a median feature Spearman correlation of
0.58 from an SAE trained on MLP activations. Scores increase as k and n decrease, likely due to
models learning coarser-grained features that are easier for the interpreter to identify.

74

75
76
77

78
79
80
81
82
83
84
85
86
87
88

89

90
91
92
93
94
95
9%

97
98
99
100
101
102
103
104

106

107

108
109
110
111
112
113
114
115
116
117
118
119
120
121

122
123
124
125

4 Constructing feature families through graph-based clustering

SAEs trained over arXiv paper embeddings recover a wide range of features covering both scientific
concepts, from niche to multi-disciplinary, and also abstract semantic artifacts, such as humorous
writing or critiques of scientific theories; see Appendix B for detailed examples.

Building off previous work on the structure of SAE features and learned representations, we examine
two distinct empirical phenomena: feature splitting and feature families. Feature splitting — the
tendency of features appearing in larger SAEs to “split” the direction spanned by a feature from a
smaller SAE, and activate on granular sub-topics of the smaller SAE’s feature — has been observed in
previous work on sparse autoencoders for language model activations (Bricken et al., 2023; Makelov
et al., 2024; Bussmann et al., 2024). Examples of feature splitting, as well as features recurring across
SAEs, can be found in Appendix D (Figs. 11 and 12a/12b). In contrast, feature families exist within
a single SAE. Unlike SAE feature clusters found in other works (Daujotas, 2024; Engels et al., 2024),
feature families empirically exhibit a clear hierarchical structure with a dense “parent” feature and
several sparser “child” features. We suggest that the “parent” feature encompasses a broader, more
abstract concept that is shared among the “child” features; see Figure 1 for an example.

4.1 Feature splitting

We study the proliferation of features in small to large SAEs using a nearest neighbour approach.
For each pair of SAEs, we calculated the similarity matrix .S from decoder vectors w, where S;; =
w1 ;wa;/||will[[wa,; . Given feature j in the larger SAE, we identified the nearest neighbour in
the smaller SAE, tracing how features “split” as model capacity increases. We find that increasing
both active latents k and latent dimension n reduces the similarity between nearest neighbours. This
matches intuition: larger models with more capacity (higher k and n) may learn more fine-grained
and specialised features, leading to greater differentiation. See Appendix A.4 (Figure 6).

Empirically, matching features from small to large SAEs, we detect both recurrent features and
novel features. Recurrent features exhibit high \S;; and activation similarity across model pairs, and
have highly similar interpretations. These are much more common for lower k; in SAE16, >1100
out of 3216 features match features in both SAE32 and SAE64 at >0.95 similarity (see Figure 11).
We also find ~dozens of semantically close features with similar activation patterns appearing in
both cs.LG and astro-ph SAEs (see C). Novel features span narrower semantic meaning than their
nearest-neighbour match, and exhibit lower S, activating similarly on a document subset; they split
the semantic space covered by a single feature from the smaller SAE. Some “novel" features share
little semantic or activation overlap with their nearest-neighbour feature, as in Fig. 12b, indicating
smaller SAEs may not sufficiently cover the feature space; see D.1 in the Appendix for more details.

4.2 Feature families

Feature family identification We identified feature families using a graph-based approach based
co-activation patterns. We first compute co-occurrence matrix C' and activation similarity matrix
D. For all data points k, C;; = >, AirAjr and D;j = >, B Bj, where A;, = 1 if feature ¢ is
active on example k (0 otherwise), and B;;, = hy ; if feature ¢ is active on example £ with hidden
vector hy (0 otherwise). We normalise the co-occurrence matrix by feature activation frequencies
and apply a threshold to focus on significant relationships, obtaining C’fj}-”“h (hereafter just C'). We
construct a maximum spanning tree (MST) from C and convert it to a graph directed by density,
representing a hierarchy from more general to more specific concepts. Feature families F' are then
constructed via depth-first-search in this directed graph, starting from root nodes and recursively
exploring hierarchical sub-families. This process is then iterated with deduplication, removing parent
features after each iteration to reveal new families. In practice, we use only highly interpretable
features (Pearson > 0.8), choose 7 = 0.1, and run n = 3 iterations; see D for details. Finally, using
the method from Section 3, we generated a “superfeature” description for each family, and assessed
the family’s interpretability using high-activating examples sampled across all child features.

Matrix structure We conjecture that feature families are equivalent to diagonal blocks in some
permutation of co-occurrence matrix C' and activation similarity matrix D; then when permuted,
in-block elements should co-activate much more strongly than off-diagonal elements. We also argue
that due to the hierarchical nature of feature families, matrix “blocks” are highly sparse, since child

126
127

128

129
130
131

132

133
134
135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151

} s} & > %} > &
& & ¥ & & s T &
0N 0 A & & 3 > 43% < »
R & ¥ & N & S
& & ¥ S S & &
S S S ¥ S "
» RS .S N & & .
¢} & Al =
< & K &
¢ o

Figure 2: Co-occurrence matrix C' organised by a subset of feature families; the right-most feature is
the parent, and child features are ordered by increasing density.

features all co-occur with the parent feature but rarely co-occur with one another. Motivated by

this structure, we compute the parent-child co-occurrence ratio R(p, C) for every family with parent
avg(Xiec Aip)

> ave(Xice 2jec i Aid)

interpretable families, and compute the in-block to off-diagonal ratios Cgiag/Cofr and Dyiag / Doft

(excluding the diagonal), capturing the clustering strength of the block diagonal. Median values are

listed in Table 1; subsets of C, permuted by feature family, are shown in 2.

feature p and children C . We also permute C' and D by greedily selecting

Dataset (k, n) Size F1 Pearson R(p,C) Claing/Coft Daiag/Dott fine

astro-ph (16,3072) 6 0.86 0.76 10.99 5.13 5.47 0.36
(32,6144) 6 086 0.73 11.75 4.72 5.87 0.31
(64,9216) 7 0.80 0.70 6.87 2.00 3.05 0.24

cs.LG (16,3072) 5 0.73 0.60 2.44 8.35 0.89 0.23
(32,6144) 5 0.73 059 3.50 7.33 1.07 0.30
(64,9216) 7 0.80 0.71 1.22 1.78 2.57 0.41

Table 1: Feature family metrics. f;,. is the fraction of features in a clean family (Pearson > 0.8).

5 Discussion

In this work, we presented the first application of sparse autoencoders to dense text embeddings, and
an empirical assessment of the scaling, interpretability, and substructure of learned sparse features.
Using state-of-the-art automated interpretability and training approaches, we demonstrated that SAEs
are extremely effective on text embeddings, producing highly interpretable features and exhibiting
precise scaling laws. Our analysis of different-scale SAEs confirms other empirical observations of
feature splitting, demonstrating that features may be semantically split, recurrent, or entirely novel.
Furthermore, our analysis introduces the concept of and search methodology for “families” in SAE
features, which may allow for multi-scale semantic analysis and causal manipulation. We confirm
the existence of “feature families" in our SAEs and demonstrate that these hierarchical clusters are
reflected in the block diagonalization of co-occurrence and activation data. This motivates a number
of new directions in multi-scale feature discovery, interpretation, and manipulation.

Limitations: Our work focused only on embeddings from relatively small datasets of scientific
abstracts; the feature splitting and feature family phenomena differed even between domains cs.LG
and astro-ph. Future work should investigate how well these methods generalise, and SAEs for
more diverse embedding datasets would need to be scaled up by at least 2-3 the total number of
latents. Moreover, the completeness of our learned dictionaries remains an open question; future work
should evaluate SAE features from text embeddings against some proxy of ground-truth features, as
proposed by Makelov et al. (2024). Finally, our analysis should be considered complementary to
other methods that discover non-hierarchical features, such as non-linear manifolds.

154

164

174

184

194

204

References

Bills, Steven, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders (2023). “Language models can explain
neurons in language models”. In: URL https://openaipublic. blob. core. windows. net/neuron-
explainer/paper/index. html.(Date accessed: 14.05. 2023) 2.

Bricken, Trenton, Catherine Olsson, and Neel Nanda (2023). “Towards Monosemanticity: Decompos-
ing Language Models With Dictionary Learning”. In: arXiv preprint arXiv:2301.05498.

Bussmann, Bart, Patrick Leask, Joseph Isaac Bloom, Curt Tigges, and Neel Nanda (July 2024). Stitch-
ing SAEs of Different Sizes. Online. Al Alignment Forum. URL: https://www.alignmentforum.
org/posts/balJyjpktzmcmRfosq/stitching-saes-of-different-sizes.

Conmy, Arthur and Neel Nanda (2024). Activation Steering with SAEs. Accessed 16-07-2024. URL:
https ://www . lesswrong . com/posts/C5KAZQib3bzzpeyrg/ full - post - progress -
update-1-from-the-gdm-mech-interp-team#Activation_Steering with_SAEs.

Cunningham, Hoagy, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey (2023a). Sparse
Autoencoders Find Highly Interpretable Features in Language Models. arXiv: 2309 . 08600
[cs.LG]. URL: https://arxiv.org/abs/2309.08600.

— (2023b). “Sparse autoencoders find highly interpretable features in language models”. In: arXiv
preprint arXiv:2309.08600.

Daujotas, Gytis (Aug. 2024). Case Study: Interpreting, Manipulating, and Controlling CLIP With
Sparse Autoencoders. Online. LessWrong. URL: https : //www . lesswrong . com/ posts/
iYFuZo9BMvr6GgMs5/ case - study - interpreting-manipulating- and - controlling-
clip.

Donoho, David L (2006). “Compressed sensing”. In: IEEE Transactions on Information Theory 52.4,
pp.- 1289-1306.

Elhage, Nelson, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah (2022a). Toy Models of
Superposition. arXiv: 2209.10652 [cs.LG]. URL: https://arxiv.org/abs/2209.10652.

Elhage, Nelson, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Johnston, Ben Mann,
Amanda Askell, Danny Hernandez, Dawn Drain, Zac Hatfield-Dodds, et al. (2022b). “Softmax
Linear Units”. In.

Engels, Joshua, Isaac Liao, Eric J. Michaud, Wes Gurnee, and Max Tegmark (2024). Not All Language
Model Features Are Linear. arXiv: 2405 . 14860 [cs.LG]. URL: https://arxiv.org/abs/
2405.14860.

Foote, Alex, Neel Nanda, Esben Kran, Ioannis Konstas, Shay Cohen, and Fazl Barez (2023). “Neuron
to graph: Interpreting language model neurons at scale”. In: arXiv preprint arXiv:2305.19911.
Gao, Leo, John Thickstun, Anirudh Madaan, Zach Scherlis, Arush Guha, Sumanth Dathathri, Jared
Kaplan, Azalia Mirhoseini, and Ilya Sutskever (2024). “Scaling Laws for Neurons in GPT Models”.

In: arXiv preprint arXiv:2401.02325.

Jermyn, Adam and Adly Templeton (2023). Ghost Grads: An improvement on resampling. [Accessed
19-07-2024]. URL: https: //transformer - circuits . pub/2024/ jan-update/index .
html#dict-learning-resampling.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980.

Lieberum, Tom, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Jdnos Kramdr, Anca Dragan, Rohin Shah, and Neel Nanda (2024). Gemma Scope: Open
Sparse Autoencoders Everywhere All At Once on Gemma 2. arXiv: 2408.05147 [cs.LG]. URL:
https://arxiv.org/abs/2408.05147.

Makelov, Aleksandar, George Lange, and Neel Nanda (2024). “Towards principled evaluations of
sparse autoencoders for interpretability and control”. In: arXiv preprint arXiv:2405.08366.

Makhzani, Alireza and Brendan Frey (2013). “K-sparse autoencoders”. In: arXiv preprint
arXiv:1312.5663.

Nanda, Neel (2023). Open Source Replication & Commentary on Anthropic’s Dictionary Learn-
ing Paper. [Accessed 22-07-2024]. URL: https : / /www . alignmentforum . org/ posts /
fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s.

Ng, Andrew et al. (2011). “Sparse autoencoder”. In: CS294A Lecture notes. Vol. 72. 2011, pp. 1-19.

Olshausen, Bruno A and David J Field (1997). “Sparse coding with an overcomplete basis set: A
strategy employed by V17?” In: Vision Research 37.23, pp. 3311-3325.

https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.alignmentforum.org/posts/baJyjpktzmcmRfosq/stitching-saes-of-different-sizes
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://www.lesswrong.com/posts/C5KAZQib3bzzpeyrg/full-post-progress-update-1-from-the-gdm-mech-interp-team#Activation_Steering_with_SAEs
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://www.lesswrong.com/posts/iYFuZo9BMvr6GgMs5/case-study-interpreting-manipulating-and-controlling-clip
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2209.10652
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://arxiv.org/abs/2405.14860
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://transformer-circuits.pub/2024/jan-update/index.html#dict-learning-resampling
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s
https://www.alignmentforum.org/posts/fKuugaxt2XLTkASkk/open-source-replication-and-commentary-on-anthropic-s

210
211
212
2
214
215
216
217

w

Rajamanoharan, Senthooran, Arthur Conmy, Lewis Smith, Tom Lieberum, Vikrant Varma, Janos
Kramar, Rohin Shah, and Neel Nanda (2024). “Improving dictionary learning with gated sparse
autoencoders”. In: arXiv preprint arXiv:2404.16014.

Templeton, Adly (2024). Scaling monosemanticity: Extracting interpretable features from claude 3
sonnet. Anthropic.

Wright, Benjamin and Lee Sharkey (2024). Addressing Feature Suppression in SAEs. https://www.
alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-
in-saes. [Accessed 16-07-2024].

https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes
https://www.alignmentforum.org/posts/3JuSjTZyMzaSeTxKk/addressing-feature-suppression-in-saes

218 Contents

219 1 Introduction 1
220 2 Background and Related work 1
221 3 Training SAEs and automated labelling 2
222 4 Constructing feature families through graph-based clustering 3
223 4.1 Feature splitting

224 4.2 Feature families 3
225 5 Discussion 4
226 A Training details 7
227 Al Training setup o oo e e e 7
228 A.2 Training and automated interpretability methods 8
229 A3 Scalinglaws 9
230 A.4 Feature density and similarity L L. 11
231 B Automated interpretability details 11
232 B.1 Examplesof features 11
233 B.2 Exploring the effectiveness of smallermodels 13
23¢ C Cross-domain features 13
235 D Feature family details 15
236 D.1 Feature splitting Structures v v v i i e e e e 15
237 D.2 Feature family structure oL 16
238 D.3 Feature family interpretability oL 19
239 E Exploring learned decoder weight matrices 19

20 A Training details

241 A.1 Training setup

242 Our sparse autoencoder (SAE) implementation incorporates several recent advancements in the field.
243 Following Bricken et al. (2023), we initialise the bias by,.. using the geometric median of a data
244 point sample and set encoder directions parallel to decoder directions. Decoder latent directions are
245 normalised to unit length at initialisation and after each training step. For our top-k models, based on
246 Gao et al. (2024), we set initial encoder magnitudes to match input vector magnitudes, though our
247 analyses indicate minimal impact from this choice.

248 Let x € R? be an input vector, and h € R" be the hidden representation, where typically n > d.
249 The encoder and decoder functions are defined as:

Encoder: h = fy(x) = oc(W.x+ b,.) (1)
Decoder : % = gy(h) = Wyh + by 2)

250
251
252

254

264

274

275

276
277
278
279
280
281

0.35 12000
=
0.30 10000 7
Bo.25 o
5 8000
420.20 S
= 0.15 6000 £
® a
@ 0.10 4000 <
()
a o
0.05 2000 B
L T

0.00 — . 0
0 2000 4000 6000 8000 10000

Training Step

Figure 3: The proportion of dead latents, defined as features that haven’t fired in the last epoch of
training, for our £ = 16 SAEs on the astro-ph abstract embeddings. All dead latents were gone by
the end of training. We found that dead latents only occurred in & = 16 autoencoders.

where W, € R"*? and W, € R4*™ are the encoding and decoding weight matrices, b, € R* and
b, € R? are bias vectors, and o(+) is a non-linear activation function (e.g., ReLU or sigmoid). The
parameters 6 = {W,,b.} and ¢ = {W,, b} are learned during training.

The training objective of our SAE combines three main components: a reconstruction loss, a sparsity
constraint, and an auxiliary loss. The overall loss function is given by:

1 . N
L(0,¢) = 8Hx — %%+ ALl gparse (D) + aLaux (%, X)

where A > 0 and o > 0 are hyperparameters controlling the trade-off between reconstruction fidelity,
sparsity, and the auxiliary loss.

For the sparsity constraint, we use a k-sparse constraint: only the k largest activations in h are
retained, while the rest are set to zero (Makhzani et al., 2013; Gao et al., 2024). This approach avoids
issues such as shrinkage, where L1 regularisation can cause feature activations to be systematically
lower than their true values, potentially leading to suboptimal representations shrinkage, (Wright
et al., 2024; Rajamanoharan et al., 2024). We augment the primary loss with an auxiliary component
(AuxK), inspired by the “ghost grads” approach of Jermyn et al. (2023). This auxiliary term considers
the top-kg.. inactive latents (typically k.., = 2k), where inactivity is determined by a lack of
activation over a full training epoch. The total loss is formulated as £ + a.L ., with v usually set to
1/32. This mechanism reduces the number of dead latents with minimal computational overhead (Gao
et al., 2024). We found that dead latents only occurred during training the £ = 16 models, and all
dead latents had disappeared by the end of training. We show how dead latents evolved over training
the k = 16 SAEs for the astro-ph abstracts in Figure 3.

For optimisation, we employ Adam (Kingma et al., 2014) with 8; = 0.9 and B2 = 0.999, maintaining
a constant learning rate. We use gradient clipping. Our training uses batches of 1024 abstracts, with
performance metrics showing robustness to batch size variations under appropriate hyperparameter
settings.

The primary MSE loss uses a global normalisation factor computed at training initiation, while
the AuxK loss employs per-batch normalisation to adapt to evolving error distributions. Following
Bricken et al. (2023), we apply a gradient projection technique to mitigate interactions between the
Adam optimiser and decoder normalisation.

A.2 Training and automated interpretability methods

Data: We train our top-k SAEs on the embeddings of abstracts from papers on arXiv with the
astro-ph tag (astrophysics, 272,000 papers) and the cs.LG tag (computer science, 153,000 papers).
The embeddings were generated with OpenAI’s text-embedding-3-small model.! We train our
SAEs on these collections of embeddings separately. We normalised the embeddings to zero mean
and unit variance before passing them to the SAE as inputs. Our trained SAEs are available for
download here.

'https://openai.com/index/new-embedding-models-and-api-updates/

https://huggingface.co/charlieoneill/embedding-saes
https://openai.com/index/new-embedding-models-and-api-updates/

284

294

304

311

314

315
316

317
318

319

Hyperparameters: Notable hyperparameters include the number of active latents k, the total number
of latents n, the number of auxiliary latents k,,, the learning rate, and the auxiliary loss coefficient
o. We found learning rate and auxiliary loss coefficient to not have a significant effect on final
reconstruction loss; we set the former to 1e-4 and the latter to 1/32. We vary k between 16 and 128,
and n between two to nine times the embedding dimension djypy. Whilst we train SAEs with many
different combinations of these hyperparameters, we largely focus on what we hereon refer to as
SAEL6 (k = 16, n = 2dinpue = 3072), SAE32 (k = 32, n = 4dippu = 6144) and SAE64 (k = 64,
n = 6dippur = 9216). We train each model for approximately 13.2 thousand steps.

Automated interpretability: Following the training of a Sparse Autoencoder (SAE), it becomes
necessary to interpret its features, each corresponding to a column in the learned decoder weight
matrix. To facilitate feature interpretation and quantify interpretation confidence, we employ two
Large Language Model (LLM) instances: the Interpreter and the Predictor. The Interpreter is
tasked with generating labels for each feature. It is provided with the abstracts that produce the top
5 activations of the feature across the dataset, along with randomly selected abstracts that do not
activate the feature. The Interpreter then generates a label for the feature based on this input (for the
complete prompt, refer to Appendix B). Subsequently, the generated label is passed to the Predictor.
The Predictor is presented with three randomly sampled abstracts where the feature was activated and
three where it was not. It is then instructed to predict whether a given abstract should activate the
feature, expressing its confidence as a score ranging from —1 (absolute certainty of non-activation) to
+1 (absolute certainty of activation).> We measure the Pearson correlation between this confidence
and the true activation (binary; +1 or -1). We also measure the F1 score, when framing the confidence
as a binary classification (active if confidence is above 0, inactive otherwise).

Evaluation metrics: In order to compare SAEs, we evaluate both their ability to reconstruct the
embeddings, as well as the interpretability of the learned features. For the former, we examine the
normalised mean squared error (MSE), where we divide MSE by the error when predicting the mean
activations. We also report the log density of the activation of features across all papers. We do not
report dead latents (those not firing on any abstract) as all models contained zero dead latents at the
end of training. We also report the mean activation of features, when their activation is non-zero.
To measure interpretability, we use Pearson correlation, as outlined above. Table 2 shows the final
training metrics for all combinations of SAEs trained. We note clear trends in normalised MSE, log
feature density and activation mean as we vary the number of active latents k and the overall number
of latents n.

A.3 Scaling laws

For the left panel of Figure 4, which shows the scaling of normalised MSE with the number of total
latents n, we observe the following power-law relationships:

k=16 : L(n) = 0.61n"'2 (astro.ph); L(n) = 0.67n""'? (cs.LG)
k=32:L(n) = 0.49n"'3 (astro.ph); L(n) = 0.56n"" (cs.LG)
k =64 : L(n) = 0.46n" "' (astro.ph); L(n) = 0.60n""'7 (cs.LG)
k=128 : L(n) = 0.31n~ %3 (astro.ph); L(n) = 0.51n%!% (cs.LG)

For the right panel of Figure 4, which shows the scaling of normalised MSE with the amount of
compute C' (in FLOPs), we observe the following power-law relationships:

k=16:L(C) = 3.84C !
k=32:L(C)=5250"913
k=64:L(C)=8.03C %16
k=128:L(C)=280C" 13

These equations demonstrate the consistent power-law scaling behaviour of sparse autoencoders
across different values of k, n, and compute C.

We use 3 activating and 3 non-activating abstracts for the Predictor, rather than 5, due to LLM costs. We
used gpt-4o as the Interpreter and gpt-4o-mini as the Predictor. Notably, we predict each abstract separately,
rather than batching abstracts like Bricken et al. (2023).

Table 2: Metrics for our top-k sparse autoencoders with varying k and hidden dimensions, across
both astronomy and computer science papers. MSE is normalised mean squared error, Log FD is
the mean log density of feature activations, and activation mean is the mean activation value across
non-zero features. Note that MSE is normalised.

astro.ph cs.LG
k n MSE LogFD ActMean MSE LogFD Act Mean

3072 0.2264 -2.7204 0.1264 0.2284 -2.7314 0.1332
4608 0.2246 -4.7994 0.1350 0.2197 -3.0221 0.1338
16 6144 0.2128 -3.1962 0.1266 0.2089 -3.2299 0.1342
9216 0.1984 -3.4206 0.1264 0.1962 -3.4833 0.1343
12288 0.1957 -6.2719 0.1274 0.1897 -3.6448 0.1347

3072 0.1816 -2.3389 0.0847 0.1831 -2.3008 0.0885
4608 0.1691 -3.6091 0.0882 0.1697 -2.5152 0.0876
32 6144 0.1604 -2.7761 0.0841 0.1641 -2.6687 0.0873
9216 0.1554 -3.0227 0.0842 0.1540 -2.9031 0.0875
12288 0.1520 -4.9505 0.0843 0.1457 -3.0577 0.0877

3072 0.1420 -1.9538 0.0566 0.1485 -1.8875 0.0584
4608 0.1331 -2.7782 0.0622 0.1370 -2.0637 0.0570
64 6144 0.1262 -2.2828 0.0545 0.1310 -2.1852 0.0558
9216 0.1182 -2.4682 0.0539 0.1240 -2.3536 0.0545
12288 0.1152 -3.4787 0.0583 0.1162 -2.4847 0.0548

3072 0.1111 -1.8876 0.0483 0.1206 -1.5311 0.0399
4608 0.1033 -2.1392 0.0457 0.1137 -1.6948 0.0376
128 6144 0.1048 -2.2501 0.0438 0.1076 -1.8079 0.0366
9216 0.0975 -2.5352 0.0409 0.0999 -1.9701 0.0348
12288 0.0936 -2.7025 0.0399 0.0942 -2.0858 0.0342

128

100 128
astro.ph n=3072
== == n=6144
2x107 i <= n=9216
= N=12288
w L
g 66><410‘ "£ 64
° °
& « 3 . N
s = .
g 4x10 © ¥ IS~ ~
s € ‘\\\ e =384 x 0N
=4 32] AR T — —— 32
3x10 =2 LR ~ 7‘-}, y =525 x x013
\(‘.,_,\ Y -
~ eV =8.03 x x7016
10-1] — Q R T ey e Lo
*~\\ 2x10 10-14 -——__’____
T 16 I : ; : 16
3x10° 4x10° 6x10° 104 0 2 3 4 5.,
N (Hidden Dimensions) FLOPS

Figure 4: Scaling laws for sparse autoencoder performance. Left: Normalised mean squared error
(MSE) as a function of the number of total latents n for different values of active latents k. The
power-law scaling is evident for each k. Right: Reconstruction loss as a function of compute (FLOPs)
for different k£ values, demonstrating the compute-optimal model size scaling.

10

321

322
323
324
325

326
327
328
329
330
331
332

333

334

335
336

4000- mmm SAE16
3500- HEEE SAE32
I SAE64

> .

CTZOOO I I
T)

L

500- II“ II"
| .l.llllllll 1' llllllllll-____7
5 _‘4 —‘3 —‘2

0- T)
- -1 0
Log Feature Density

Figure 5: Log feature density for features in our three SAEs as a stacked histogram, showing the
distribution of how often features fire across all paper abstacts (cs.LG and astro-ph). The larger
SAE has a higher mean feature density than the smaller SAEs.

A.4 Feature density and similarity

We find an intuitive relationship between k and n and the log feature density (essentially, how often a
given feature fires). As k increases, we get a sharper peak of log feature density, shifted to the right,
suggesting features fire in a tighter range as we increase the instantaneous LO of the SAE’s encoder
(Figure 5).

To compare features across different SAEs trained on the same input data, we analyse the cosine
similarity between the decoder weight vectors corresponding to each feature; see 6. Decoder weights,
represented by columns in the decoder matrix, directly encode each feature’s contribution to input
reconstruction. Encoder weights, on the other hand, are optimised to extract feature coefficients
while minimising interference between non-orthogonal features. This separation is important in the
context of superposition, where we have more features than input dimensions, precluding perfect
orthogonality.

B Automated interpretability details

B.1 Examples of features

Most SAE features are highly interpretable; see 7. We show some examples of perfectly interpretable
features (Pearson correlation > 0.99) in Table 3. The strength of the activation of the feature on its
top 3 activating abstracts is shown in parentheses next to the abstract title.

11

I SAE32-SAE64 N SAE16-SAE32 Emm SAE16-SAE64

n=3072II . n= 6144 n=9216

1.00 0.00 0.25 0.50 0.75 1.00

0850 025 050 075 100000 025 050 075

Max Cosine Similarity

(a) k fixed, varying n. As n increases, the features between across SAEs with
varying k become more disparate.

s n=3072-n=6144 mmm n=3072-n=9216

k=16 k=32 k=64

B n=6144-n=9216

0. —
800 025 050 075 100000 0325 050 075 100000
Max Cosine Similarity

(b) n fixed, varying k. Higher values of k lead to less similarity regardless of
n.

Figure 6: Nearest-neighbour cosine similarity distributions for SAE features. To find features in an
SAE with a lower k that are most similar to those in an SAE with a larger k£, we compute the cosine
similarity between each feature in the larger model and each feature in the smaller model. We do this
for several values of n, and combine the distributions for astro.ph and cs.LG.

astroPH
4000-
W SAE16 -:
Jo0o. ™M SAE32
m SAE64] |
[|
0- == . #
4000- I
2000- . I
5
0- ___===__====!_-.‘E.‘g
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Pearson Correlation

Figure 7: Pearson correlations between the ground-truth and predicted feature
activation, using GPT-4o as the Interpreter and GPT-40-mini as the Predictor.

12

338

339
340
341
342
343
344
345

347
348

349
350
351
352
353
354

355

356
357
358
359
360
361
362

Feature

Astronomy

Cosmic Microwave Background

How to calculate the CMB
spectrum (0.1598)

CMB data analysis and spar-
sity (0.1581)

Periodicity in astronomical data

Generalized Lomb-Scargle
analysis of decay rate
measurements from the
Physikalisch-Technische
Bundesanstalt (0.1027)

Multicomponent power-
density spectra of Kepler
AGNs, an instrumental
artefact or a physical origin?
(0.0806)

RXTE observation of the X-
ray burster 1E 1724-3045. L.
Timing study of the persistent
X-ray emission with the PCA
(0.0758)

X-ray reflection spectra

Relativistic reflection: Re-
view and recent develop-
ments in modeling (0.3698)

No evidence of mass segrega-
tion in massive young clusters

Ruling Out Initially Clustered
Primordial Black Holes as

(0.2051) Dark Matter (0.2029)

Critique or refutation of theories _

Computer Science
A Framework for Neural Net-
work Pruning Using Gibbs
Distributions (0.2843)

Sparsity in Neural Networks

Gibbs Sampling and Variants

Understanding Addition in
Transformers (0.1792)

Arithmetic operations in transformers

Table 3: Activation strengths and titles for abstracts related to Astronomy and Computer Science
features.

B.2 Exploring the effectiveness of smaller models

Although we eventually used gpt-4o0-mini as the Predictor model, we initially did some ablations
to understand how effective gpt-4o0 and gpt-3.5-turbo would be as different combinations of the
Interpreter and Predictor models. We measured this by randomly sampling 50 features from our
SAEG64 (trained on astro-ph abstracts) and measuring the interpretability scores of different model
combinations, in terms of both F1 score (does the model’s binary classification of a feature firing on
an abstract agree with the ground-truth) and the Pearson correlation (described in the main body).
Interestingly, we observe that using gpt-4o as the Interpreter and gpt-3.5-turbo as the Predictor
leads to similar scores as using gpt-3.5-turbo for both, as shown in Figures 8 and Figures 9. This
suggests that the challenging task in the autointerp is not necessarily labelling but rather predicting
the activation of a feature on unseen abstracts.

Another observation is that using gpt-3.5-turbo as the Predictor only leads to a moderate degrada-
tion of F1 score, it leads to a significant degradation of Pearson correlation. This is likely because
we only use 6 abstracts for each feature prediction (3 positive, 3 negative) and thus there are only a
few discrete F1 scores possible. Additionally, it appeared that gpt-3.5-turbo was generally less
likely to assign higher confidence scores in either direction, with a much lower variance in assigned
confidence than when gpt-4o was the Predictor. This affects Pearson correlation but not F1.

C Cross-domain features

The intersection between our cs.LG (n = 153, 146) and astro.PH (n = 271, 492) corpora contains
n = 330 cross-posted papers. Motivated by these papers, as well as the observation of similar
features re-occurring in models of different sizes (see Section 4), we search for the max cosine
similarity feature between cs.LG and astro.PH SAEs at a fixed k and ng;,.. As expected, we find
significant mis-alignment between the vast majority of feature vectors between SAEs trained on
different domains, with mis-alignment increasing with k and ng;, (see Figure 10; this is unsurprising
given how k and ny;,.s correlate with feature granularity).

13

F1 Score Correlation Pearson Correlation

GPT-4o, GPT-4o] 0.43 08
0.6
GPT-4o, GPT-3.5
04
0.2
GPT-3.5, GPT-3.5 0.43
0
G (&) G
n “ %
% % E2N
o 2 5
2 C)») OA)
% 2N RN

Figure 8: Correlation between F1 scores and Pearson correlation scores of different combinations of
(labeller, predictor) models. Interestingly, using GPT-3.5 as the predictor appears to degrade
performance similarly regardless of whether the feature was labelled by GPT-40 or GPT-3.5.

B F1 Score

B Pearson Correlation

Average Score

Figure 9: Mean F1 scores and Pearson correlations (according to ground-truth feature activations)
across 50 randomly sampled features, for different combinations of (Interpreter, Predictor)
models.

14

363
364
365
366
367
368
369
370

371
372
373
374

375

376

377
378

380
381
382
383
384
385
386

387
388
389
390

k=16 N k=32 s k=64

n = 3072 n=6144 n=9216
1.5 1 1 1
| | |
| | |
21.0
'E | | |
5 I I II
0.5 l.l | 1 | 'R
1
0850 025 050 075 100000 035 050 075 100000 025 050 075 100
Max Cosine Similarity Max Cosine Similarity Max Cosine Similarity

Figure 10: Maximum pair-wise cosine similarity of feature vectors between SAEs trained on different

domains.
Feature Name (astro-ph) Best Match (cs.LG) Cosine Sim. Activation Sim. A Fl A Pearson
Deep learning CNNs and Applications 0.39 0.33 -0.2 -0.17
Generative Adversarial Networks Generative Adversarial Networks (GANs) 0.61 0.26 0 0
Transformers Transformer architectures and applications 0.5 0.33 0 -0
Artificial Neural Networks Artificial Neural Networks (ANNs) 0.64 0.02 0 0
Artificial Intelligence Al applications in diverse domains 0.61 0.45 0 0.02
Automation and Machine Learning ~ Automation in computational processes 0.9 0.77 -0.25 0.47
Gaussian Processes Gaussian Processes in Machine Learning 0.59 0.54 0 0.03
Regression analysis Regression techniques and applications 0.81 0.53 0 0.01

Table 4: Feature matches from the "Machine Learning" family (astroPH); k = 64, ng4;» = 9216.

However, a small subset of features appear in both sets of SAEs, with relatively high max cosine
similarity. For example, Table 4 shows the nearest cs.LG neighbours for every feature in the
astro.PH “Machine Learning” feature family (average cosine similarity = 0.59, average activation
similarity = 0.40). To test whether the features represent the same semantic concepts, we substitute the
natural language description of the best-match cs.LG feature for each listed astro.PH feature and
test the interpretability of the substituted descriptions; we find Apeyrson = —0.07 and Ap; = —0.06.
The existence of these features suggests that both sets of SAEs learn a semi-universal set of features
that span the domain overlap between astro.PH and cs.LG.

Interestingly, we find a number of near-perfectly aligned pairs (cosine similarity > 0.95) of highly
interpretable features with little semantic overlap. A number of these features share similar wording
but not meaning, such as “Substructure in dark matter and galaxies" (astro-ph) and “Subgraphs and
their representations”. Of these 10 feature pairs, the average activation similarity is 0.91.

D Feature family details

D.1 Feature splitting structures

Figure 11 shows an example of a recurrent feature across SAE sizes that does not exhibit feature
splitting. While the feature has extremely high activation and cosine similarity across every model
pair, each model only learns 1 feature in this direction. In Figures 12a and 12b we show two ex-
amples of feature splitting across SAE16 — SAE32 — SAE64 trained on astro-ph. 12a appears to
show canonical feature splitting as originally described in Bricken et al., 2023, with an increasing
number of features splitting the semantic space at each SAE size. There exists a top-level “period-
icity”/*“periodicity detection” feature universal to all three SAEs, with relatively high similarity to
all other features, as well as novel, more granular features appearing in smaller SAEs, i.e. “Quasi-
periodic oscillations in blazars”, which only appears in SAE64 and is highly dissimilar from other
split features.

In contrast, 12b demonstrates nearest-neighbour features across models that do not exhibit semanti-
cally meaningful feature splitting. While the top-level “Luminous Blue Variables (LBVs)" feature
occurs at every model size, SAE64 also exhibits two additional features, “Lemaitre-Tolman-Bondi
(LTB) Models" and “Lyman Break Galaxies (LBGs)", that are highly dissimilar to each other, the

15

391
392
393
394

395
396

398
399

400
401
402
403
404
405
406

407

408

409
410

411
412

413
414
415
416
417
418

419
420
421

O-type stars and their properties

X
d
(9\;0 0.8
0.6
&
o 0.4
0.2
o
N
%v@
0
8 8 8
S S R
JG‘ \}v’ 6‘7

Figure 11: Recurrent features across SAEs trained on astro-ph; heatmap colored by activation
similarity D; all feature vector cosine similarities are > 0.98.

LBVs feature, and every other feature in the smaller models. We claim these are novel features,
occurring for the first time in SAE64, and that SAE16/SAE32 do not learn features for any related
higher-level concepts; instead, this grouping could be a spurious token-level correlation (LB V/LT-
B/LBG as similar acronyms).

Feature triplets In Figure 13a, we search for features that occur in n4;.s = 3072 models and have
highly aligned features in larger (ng4;s = 6144, 9216) models; we use this as a rough proxy for the
number of re-occurring features. We find that significantly more features re-occur between models
for higher k, with over 1100 feature triplets at > 0.95 cosine similarity for kK = 16; as k increases,
the number of triplets drops sharply.

Self-consistency In 13b we show the set overlap between nearest-neighbour matches between
SAE16 and SAE64 found directly, and nearest-neighbour matches between SAE16 and SAE64 found
via nearest-neighbour matches to SAE32. If features exhibit perfectly clean splitting geometry, then
these two sets of SAE64 features should be consistent. However, we find that the distribution of set
overlap is roughly bimodal; other than triplet features with perfect overlap, overlap generally ranges
from 0O to 0.6. The vast majority of intersection = 1 sets are < 3 features in size. This corroborates
findings in 6 which suggests features across models with different &k are not well-aligned.

D.2 Feature family structure

| Fi1NFy I
| F1UFy |
(including the parent), co-occurrence ratios (R(p, C), see section 4), and activation similarity ratios
(computed identically to R(p,C), just using activation similarities). Statistics for variants of c¢s.LG

and astro-ph are shown in 14. We find a positive correlation (Spearman = 0.22) between R(p,C)
and feature family interpretability.

We de-duplicate families with high set overlap (

> 0.6). We compute feature family sizes

We reproduce the projection method of Engels et al., 2024, running all documents through the SAE
and ablating features not in the feature family, to produce Figure 15. Visualizing the resulting principal
components confirms that the feature families we find do not represent manifolds or irreducible
multi-dimensional structures. We can instead think of feature families as linear subspaces in the
high-dimensional latent space; in fact, the component vectors can be seen in the lines of points
representing documents only activating on one feature in the family.

In 4 we use n = 3 iterations of feature family construction. We select this hyper-parameter based off
Figure 16. In the first 2-3 iterations, removing parent nodes and re-constructing features preferentially
creates additional smaller families, suggesting iterations are necessary to fully explore the graph.

16

appears starting w/
SAE64 s

appears starting w/ SAE32 ,)7

appears in all SAEs

(a) We find both recurrent features and novel features at every level (i.e. the
top-level “periodicity detection"/“periodicity" feature); heatmap colored by

pairwise cosine similarity.

appears starting w/ 0&‘(\0
SAE64 >

8 " é%
$ (X
. <, [% s
appears in all SAEs %G, %, Y Y, %,
/) /9 oy,
06,
%

(b) While “Luminous Blue Variables" is a recurrent feature in each SAE, SAE64 also
exhibits 2 other nearest-neighbour features to “Luminous Blue Variables" that are not
semantically related; heatmap colored by pairwise cosine similarity.

17

1600

1400

—k=16
—k=32
—k =64

Feature splitting (16-64 vs. 16-32-64)

—k =128
1200

1000

800

600

recurrent features

400

200
0.8 0.85 0.9 0.95 1
min. cosine similarity

(a) Number of features from the smallest SAE that re-occur
in all SAEs, by cosine similarity threshold.

0 0.2 0.4 0.6 0.8 1
set intersection fraction

(b) Overlap in the recovered SAE64 features,
propagating nearest neighbors from SAE16-
SAE64 vs. SAE16-SAE32-SAE64.

k=64, ngis = 9216

k=64, ngrs = 9216

k=32,ng,5=6144
k=16, ngis = 3072

125 150 175 200
logyo size

(a)

k=64, ngps = 9216
k=32, ng;s = 6144
k=16, ngys = 3072

0.5 10 15 20 25 30
logo activation similarity ratio

(b)

k=32, ngrs = 6144
k=16, ngis = 3072

1.0 15 2.0
10g1o co-occurrence ratio

(©)

k=64, s = 9216
k=32,n4s=6144
k=16, ngys = 3072

k=64, ngis = 9216
k=32,n4s = 6144
k=16, ngis = 3072

0.5 1.0 15 2.0 2.5

0.
logyo size logso activation similarity ratio

(d €

k=64, ngrs = 9216
k=32, n0s = 6144
k=16, ngrs = 3072

-0.50 -0.25 000 025 050 075 100 125 150
logso co-occurrence ratio

®

Figure 14: Feature families statistics (left: size; middle: activation similarity ratio; right: co-

occurrence ratio, R(p,C)); k = 64, ng;- = 9216.

PC2

0.025

0.020

0.015

0.010

0.005

PC1 PC1

PC1

Figure 15: PCA projections of 3 example feature families from SAE64; points are latent representa-
tions of activating examples, colored by average activation for in-family features in the top k.

18

422
423

424

425

426

427
428
429
430
431
432
433

434

436
437
438
439
440
441
442

443
444
445
446
447

400

350

300

250

n new subtrees

200
150
100

50

1 2 3 4 5 6 7 8

iteration

Figure 16: New feature families as a function of iteration; no deduplication is performed.

But given the sparse co-occurrences (C; ; > 0.1) used to build the graph, the number of additional
feature families found at each iteration drops off steeply after n = 3.

D.3 Feature family interpretability

We show example feature families and their interpretability scores in Figure 17.

E Exploring learned decoder weight matrices

Encoder and decoder representations Figure 18 reveals an intriguing relationship between feature
distinctiveness and the similarity of encoder and decoder representations in our sparse autoencoder.
In an ideal scenario with orthogonal features, encoder and decoder vectors would be identical, as the
optimal detection direction (encoder) would align perfectly with the representation direction (decoder).
This is because orthogonal features can be uniquely identified without interference. However, in our
high-dimensional space with more features than dimensions, perfect orthogonality is impossible due
to superposition.

The right panel of Figure 18 shows a negative correlation between a feature’s decoder-encoder cosine
similarity and its maximum similarity with other features. Features more orthogonal to others (lower
maximum similarity) tend to have more similar encoder and decoder representations. This aligns
with intuition: for more isolated features, the encoder’s detection direction can closely match the
decoder’s representation direction. Conversely, features with higher similarity to others require
the encoder to adopt a more differentiated detection strategy to minimise interference, resulting in
lower encoder-decoder similarity. The left panel, showing a mean cosine similarity of 0.57 between
corresponding encoder and decoder vectors, further emphasises this departure from orthogonality.
This phenomenon points to the importance of untied weights in sparse autoencoders.

Clustering feature vectors Motivated by structure in the feature activation graph, we explore whether
similar structure can be found in the decoder weight matrix W itself. Gao et al., 2024 find 2 such
clusters; we reproduce their method across our embeddings and SAEs, permuting the left singular
vectors U of W using a one-dimensional UMAP. We also experiment with permuting U and W using
reverse Cuthill-McKee. We do not find any meaningful block diagonal structure or clustering in W.

19

~Individual Features = Family F1 (base)

Astrobiology Pulsar astrophysics

Probabilty of e emergence SAX J1805.4-3658

Black widow pulsars and dynamics, . = =
e,

Five-hundred-meter Aperture Spherical Telscope (FAST)

Detection of gy

Breakihrough Listen technosignature search Detection of extraterrestral biosignatures Pular glitches and their ‘Cyclotron Resonance Scattering Features

wa-ray sources (PN/SNR)

Source detection techniques Dynamical systems in astrophysics

Mexican Hat Waselet Family (MWE) Selfsimilaity,

4 Critcality

Gigahertz Peaked Spectrum (GPS) sources

 Compact Stcep Specteum (CS5) sources

el nteracing g Dark Matter SIDM)

Xeray surveys and AGN propertcs

g astrophysical phenomena

Poissan equation

Figure 17: High-quality (top) and low-quality (bottom) feature families, scored through automated
interpretability; radar charts show Pearson correlation scores for individual features (vertices) and
the overall family (dashed line). While high-quality feature families truly have shared meaning,
low-quality families appear to be mostly spurious and are not interpretable through short descriptions.

-
T o8 .
700 3 . .
600 2 0.75
w
500 g 07
200 5 0.65
>
300 £ 0
200 S 055
.g 0.5
100 ®
v 0.45
0 - £
0.4 045 0.5 0.55 0.6 0.65 0.7 0.75 0.8 @ 04 .
Cosine Similarity © 02 03 04 05 06

Max Decoder Cosine Similarity

Figure 18: (Left) Cosine similarities between the encoder row and corresponding decoder column for
SAE64 (cs.LG). The mean cosine similarity is 0.57, suggesting that encoder and decoder features
are rather different, agreeing with Nanda (2023). (Right) We notice a slight negative correlation
between a feature’s decoder-encoder cosine similarity, and its maximum similarity with other features,
possibly suggesting that features that are furthest removed from all other features in embedding space
can have more similar corresponding decoders and encoder projections.

20

	Introduction
	Background and Related work
	Training SAEs and automated labelling
	Constructing feature families through graph-based clustering
	Feature splitting
	Feature families

	Discussion
	Training details
	Training setup
	Training and automated interpretability methods
	Scaling laws
	Feature density and similarity

	Automated interpretability details
	Examples of features
	Exploring the effectiveness of smaller models

	Cross-domain features
	Feature family details
	Feature splitting structures
	Feature family structure
	Feature family interpretability

	Exploring learned decoder weight matrices

