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ABSTRACT

Modern deep reinforcement learning (DRL) has been successful in solving a range
of challenging sequential decision-making problems. Most of these algorithms use
an ensemble of neural networks as their backbone structure and benefit from the
diversity among the neural networks to achieve optimal results. Unfortunately, the
members of the ensemble can converge to the same point either the parametric space
or representation space during the training phase, therefore, losing all the leverage
of an ensemble. In this paper, we describe Maximize Ensemble Diversity in
Reinforcement Learning (MED-RL), a set of regularization methods inspired from
the economics and consensus optimization to improve diversity in the ensemble-
based deep reinforcement learning methods by encouraging inequality between
the networks during training. We integrated MED-RL in five of the most common
ensemble-based deep RL algorithms for both continuous and discrete control tasks
and evaluated on six Mujoco environments and six Atari games. Our results show
that MED-RL augmented algorithms outperform their un-regularized counterparts
significantly and in some cases achieved more than 300% in performance gains.

1 INTRODUCTION

Reinforcement learning (RL) agents trained with high capacity function approximators such a deep
neural networks have shown to solve complex sequential decision-making problems, including the
board games of Chess, GO and Shogi (Silver et al., 2016; 2017; 2018), achieving super-human
performance in video games (Mnih et al., 2015; Vinyals et al., 2019) and solving robotic manipulation
tasks (Liu et al., 2021). Despite achieving these tremendous goals, modern deep reinforcement
learning (DRL) algorithms have plethora of limitations. For example, it is well-known that DRL
algorithms are sample-inefficient and require stupendous amount of environment interactions to learn
an optimal policy (Łukasz Kaiser et al., 2020). Additional problems encountered and exacerbates
during training a DRL agent includes the overestimation bias that occurs while estimating the target
values for Q-learning (Fujimoto et al., 2018; Lan et al., 2020; Hado van Hasselt et al., 2016), error
propagation during Bellman backup (Kumar et al., 2019) and trade-off between exploration and
exploitation (Chen et al., 2017).

Recently, the use of ensemble has been a popular choice to address the above mentioned issues. These
methods combine multiple neural networks to model the value functions or (and) the policy (Osband
et al., 2016; Chen et al., 2017; Lan et al., 2020; Lee et al., 2020). For example, TD3 (Fujimoto et al.,
2018) used two critics to address the overestimation bias problem in continuous control problems
while MaxminDQN (Lan et al., 2020) provided a mechanism to use the cardinality of the ensemble to
use as a knob to tune between over and under estimation in deep Q-learning. Similarly, Bootstrapped
DQN (Osband et al., 2016; Chen et al., 2017) used ensemble for effective exploration.

∗Partial work done while being a Ph.D student at University of Central Florida
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The primary insight of this paper is that the performance of ensemble based methods is contingent on
maintaining sufficient diversity between the neural networks of the ensemble. If the neural networks
in the ensembles converge to a common representation (we will show that this is the case in many
scenarios), the performance of these approaches significantly degrades. We note that even with
different representations, the Q-values will still converge towards a shared optimum, but they are
statistically less likely to follow the same learning trajectory elsewhere.

In this paper, we propose Maximize Ensemble Diversity in Reinforcement Learning (MED-RL), a
set of regularization methods inspired from the economics and consensus optimization to improve
diversity and to prevent the collapse of the representations in the ensemble-based deep reinforcement
learning methods by encouraging inequality between the networks during training. The objective
of the regularizers is solely to keep the representations different, while still allowing the models to
converge to the optimal Q-value. The motivation for the regularizers came from topic of income
distribution in economic theory that provides a rich source of mathematical formulations that measure
inequality. While in economics, high inequality is seen as a negative, in our case we used the
inequality metrics to encourage diversity between the neural networks.

To summarize, our contributions are following:

1. We empirically show that high representation similarity between neural network based
Q-functions leads to degradation in performance in ensemble based Q-learning methods.

2. To mitigate this, we propose five regularizers based on inequality measures from economics
theory and consensus optimization that maximize diversity between the neural networks in
ensemble based reinforcement learning methods.

3. We integrated MED-RL in TD3 (Fujimoto et al., 2018), SAC (Haarnoja et al., 2018) and
REDQ (Chen et al., 2021) for continuous control tasks and in MaxminDQN (Lan et al.,
2020) and EnsembleDQN (Anschel et al., 2017) for discrete control tasks and evaluated on
six Mujoco environments and six Atari games. Our results show that MED-RL augmented
algorithms outperform their un-regularized counterparts significantly and in some cases
achieved more than 300% in performance gains and are up to 75% more sample-efficient.

4. We also show that MED-RL augmented SAC is more sample-efficient than REDQ, an
ensemble based method specifically designed for sample-efficiency, and can achieve similar
performance to REDQ up to 50 times faster on wall-clock time.

2 RELATED WORK

Ensembles in Deep RL: Use of an ensemble of neural networks in Deep RL has been studied in
several recent studies for different purposes. In (Fujimoto et al., 2018; Anschel et al., 2017; Lan et al.,
2020) have used an ensemble to address the overestimation bias in deep Q-learning based methods
for both continuous and discrete control tasks. Similarly, Bootstrapped DQN and extensions (Osband
et al., 2016; Chen et al., 2017) have leveraged ensemble of neural networks for efficient exploration.
The problem of error propagation in Bellman backup was addressed in (Kumar et al., 2019) using
an ensemble of neural networks. Sample efficiency, a notorious problem in RL has taken advantage
from an ensemble (Chen et al., 2021). Recently, SUNRISE (Lee et al., 2020) proposed a unified
framework for ensemble-based deep reinforcement learning.

Diversity in Ensembles: Diversity in neural network ensembles has been studied years before the
resurgence of deep learning (Brown, 2004). Even though diversity is an important topic in neural
networks, most of the studies in this topic revolve around addressing problems in supervised learning
settings. More recently there has been a number of studies that have diversity in ensembles to measure
and improve model uncertainty. Jain et al. (2020) have proposed a diversity regularizer to improve the
uncertainty estimates in out-of-data distribution. Lee et al. (2015) have used Multiple choice Learning
to learn diverse Convolutional Neural Networks for image recognition.

Regularization in Reinforcement Learning: Regularization in reinforcement learning has been
used to perform effective exploration and learning generalized policies. For instance, (Grau-Moya
et al., 2019) uses mutual-information regularization to optimize a prior action distribution for better
performance and exploration, (Cheng et al., 2019) regularizes the policy π(a|s) using a control
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prior, (Galashov et al., 2019) uses temporal difference error regularization to reduce variance in
Generalized Advantage Estimation (Schulman et al., 2016). Generalization in reinforcement learning
refers to the performance of the policy on different environment compared to the training environment.
For example, (Farebrother et al., 2018) studied the effect ofL2 norm on DQN on generalization, (Tobin
et al., 2017) studied generalization between simulations vs. the real world, (Pattanaik et al., 2018)
studied parameter variations and (Zhang et al., 2018) studied the effect of different random seeds in
environment generation.

Diversity in Reinforcement Learning: Diversity in reinforcement learning is active area of re-
search. (Pacchiano et al., 2020) uses Determinantal Point Processes to promote behavioral diver-
sity, Lupu et al. (2021) have used policy diversity to improve zero-shot coordination in multi-agent
setting. (Tang et al., 2021) uses reward randomization for discovering diverse strategic policies in
complex multi-agent games. In (Li et al., 2021) proposed CDS that uses information-theoretical
objective to maximize the mutual information between agents’ identities and trajectories and en-
courage diversity. More recently (An et al., 2021) have used diversified Q-ensembles to address
overestimation in offline reinforcement learning.

Representation Similarity: Measuring similarity between the representations learned by different
neural networks is an active area of research. For instance, (Raghu et al., 2017) used Canonical
Correlation Analysis (CCA) to measure the representation similarity. CCA find two basis matrices
such that when original matrices are projected on these bases, the correlation is maximized. (Raghu
et al., 2017; Mroueh et al., 2015) used truncated singular value decomposition on the activations to
make it robust for perturbations. Other work such as (Li et al., 2015) and (Wang et al., 2018) studied
the correlation between the neurons in the neural networks.

3 BACKGROUND

Reinforcement learning: We consider an agent as a Markov Decision Process (MDP) defined as a
five element tuple (S,A, P, r, γ), where S is the state space,A is the action space, P : S ×A×S →
[0, 1] are the state-action transition probabilities, r : S × A × S → R is the reward mapping and
γ → [0, 1] is the discount factor. At each time step t the agent observes the state of the environment
st ∈ S and selects an action at ∈ A. The effect of the action triggers a transition to a new state
st+1 ∈ S according to the transition probabilities P , while the agent receives a scalar reward
Rt = r (st, at, st+1). The goal of the agent is to learn a policy π that maximizes the expectation of
the discounted sum of future rewards.

Representation Similarity Measure: LetX ∈ Rn×p1 denote a matrix of activations of p1 neurons
for n examples and Y ∈ Rn×p2 denote a matrix of activations of p2 neurons for the same n examples.
Furthermore, we consider Kij = k (xi, xj) and Lij = l (yi, yj) where k and l are two kernels.

Centered Kernel Alignment (CKA) (Kornblith et al., 2019; Cortes et al., 2012; Cristianini et al.,
2002) is a method for comparing representations of neural networks, and identifying correspondences
between layers, not only in the same network but also on different neural network architectures.
CKA is a normalized form of Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005).
Formally, CKA is defined as:

CKA (K,L) =
HSIC (K,L)√

HSIC (K,K) · HSIC (L,L)

HSIC is a test statistic for determining whether two sets of variables are independent. The empirical
estimator of HSIC is defined as:

HSIC (K,L) =
1

(n− 1)2
tr (KHLH)

where H is the centering matrix Hn = In −
1

n
11T .
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Figure 1: The training graph and CKA similarity heatmaps of a MaxminDQN agent with 2 neural
networks. The letters on the plot show the time when CKA similarities were calculated. Heatmaps at
A and C have relatively low CKA similarity and have relatively higher average return as compared to
heatmaps at point B and D that have extremely high similarity across all the layers. See diagonal
values from bottom left to top right.

4 MAXIMIZE ENSEMBLE DIVERSITY IN REINFORCEMENT LEARNING

In this section, we propose MED-RL: Maximize Ensemble Diversity in Reinforcement Learning,
a set of regularizers inspired from the Economics and consensus optimization to improve diversity
and to prevent the collapse of the representations in the ensemble-based deep reinforcement learning
methods by encouraging inequality between the networks during training. This section is organized
as follows:

1. We empirically show that high representation similarity between neural network based
Q-functions leads to degradation in performance in ensemble based Q-learning methods.

2. we present the Economics theory and consensus optimization inspired regularizers with
their mathematical formulation.

4.1 EMPIRICAL EVIDENCE TO CORRELATE PERFORMANCE AND REPRESENTATION
SIMILARITY

The work in this paper starts from the conjecture that high representation similarity between neural
networks in an ensemble-based Q-learning technique correlates to poor performance. To empirically
verify our hypothesis, we trained a MaxminDQN (Lan et al., 2020) agent with two neural networks
on the Catcher environment (Qingfeng, 2019) for about 3000 episodes (5× 106 training steps) and
calculated the CKA similarity with a linear kernel after every 500 episodes. The training graph along
with the CKA similarity heatmaps are shown in Figure 1. Notably at episode 500 (heatmap A) and
episode 2000 (heatmap C), the representation similarity between neural networks is low but the
average return is relatively high. In contrast, at episode 1000 (heatmap B) and episode 3000 (heatmap
D) the representation similarity is highest but the average return is lowest.
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4.2 REGULARIZATION FOR MAXIMIZING ENSEMBLE DIVERSITY

In order to maximize the ensemble diversity, we propose to regularize the training algorithm with an
additional criteria that favors diversity between the ensembles. In the following, N is the number of
neural networks in the ensemble, `i is the L2 norm of the i-th neural network’s parameters, ¯̀ is the
mean of all the L2 norms and ` is the list of all the L2 norms.

The first four metrics we consider are based on inequality measures from economic theory. While in
economics, inequality is usually considered something to be avoided, in our case we aim to increase
inequality (and thus, ensemble diversity).

The Atkinson Index (Atkinson et al., 1970) measures income inequality and is useful in identifying
the end of the distribution that contributes the most towards the observed inequality. Formally, it is
defined as

Aε =


1− 1

¯̀

(
1

N

N∑
i=1

`1−εi

) 1
1−εat

, for 0 ≤ εat 6= 1,

1− 1
¯̀

(
1

N

N∏
i=1

`i

) 1
N

, for εat = 1,

(1)

where εat is the inequality aversion parameter used to tune the sensitivity of the measured change.
When εat = 0, the index is more sensitive to the changes at the upper end of the distribution, while it
becomes sensitive towards the change at the lower end of the distribution when εat approaches 1.

The Gini coefficient (Allison, 1978) is a statistical measure of the wealth distribution or income
inequality among a population and defined as the half of the relative mean absolute difference:

G =

∑N
i=1

∑N
j=1 |`i − `j |

2N2 ¯̀ (2)

The Gini coefficient is more sensitive to deviation around the middle of the distribution than at the
upper or lower part of the distribution.

The Theil index (Johnston, 1969) measures redundancy, lack of diversity, isolation, segregation
and income inequality among a population. Using the Theil index is identical to measuring the
redundancy in information theory, defined as the maximum possible entropy of the data minus the
observed entropy:

TT =
1

N

N∑
i=1

`i
¯̀ ln

`i
¯̀ (3)

The variance of logarithms (Ok & Foster, 1997) is a widely used measure of dispersion with natural
links to wage distribution models. Formally, it is defined as:

VL(`) =
1

N

N∑
i=1

[ln `i − ln g(`)]2 (4)

where g(`) is the geometric mean of ` defined as (
∏N
i=1 `i)

1/N .

The final regularization method we use is inspired from consensus optimization. In a consensus
method (Boyd et al., 2011), a number of models are independently optimized with their own task-
specific parameters, and the tasks communicate via a penalty that encourages all the individual
solutions to converge around a common value. Formally, it is defined as

M = ‖θ̄ − θi‖2 (5)

Where θ̄ is the mean of the parameters of all the neural networks and θi represents the parameters of
the i− th neural network. We will refer this regularizer as MeanVector throughout this paper. For
completeness, the algorithm shown in Algorithm 1. Notice that the regularization term appears with
a negative sign, as the regularizers are essentially inequality metrics that we want to maximize.
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4.3 TRAINING ALGORITHM

Using the regularization functions defined above, we can develop diversity-regularized variants of the
the ensemble based algorithms. The training technique is identical to the algorithms described in (Lan
et al., 2020; Anschel et al., 2017; Fujimoto et al., 2018; Haarnoja et al., 2018; Chen et al., 2021), with
a regularization term added to the loss of the Q-functions. The loss term for i-th Q-function with
parameters ψi is:

L (ψi) = Es,a,r,s′
[(
Qiψ (s, a)− Y

)2]− λI (`i, `) ,

where Y is the target value depending on the algorithm, I is the regularizer of choice from the list
above and λ is the regularization weight. Notice that the regularization term appears with a negative
sign, as the regularizers are essentially inequality metrics that we want to maximize. As a reference
the modified algorithm for MaxminDQN is shown in Algorithm 1.

5 EXPERIMENTS

5.1 ISN’T RESAMPLING AND DIFFERENT INITIALIZATION OF WEIGHTS ENOUGH?

The most common question that comes to mind to address the diversity issue is why not initialize the
neural networks with different weights and train each network with a different sample from the buffer?
This approach has been thoroughly discussed in (Brown, 2004) and have been shown to be ineffective.
To re-iterate the findings in (Brown, 2004), we performed a regression experiment in which we
learnt a sine function using two different three layered fully connected neural networks with 64 and
32 neurons in each hidden layer with ReLU. The neural networks were initialized using different
weights and were trained using different batch sizes (512, 128) and learning rates (1e−4, 1e−3).
The Figure 2a shows the learnt functions while Figure 2b represents their CKA similarity heatmap
before and after training. The odd numbered layers represent pre-ReLU activations while the even
numbered layers represent post-ReLU activations. It can be seen that before training, the CKA
similarity between the two neural networks from layer 4 and onward is relatively low and the output
being 0% similar while after training, the trained networks have learnt highly similar representation
while their output being 98% similar.

(a) Regression using two different
neural networks

(b) CKA similarity heatmap between different layers of the two neural
networks used for the regression experiment.

Figure 2: Left: Fitting a sine function using two different neural network architectures. The upper
function was approximated using 64 neurons in each hidden layer while the lower function used
32 neurons in each hidden layer. Right: Represents the CKA similarity heatmap between different
layers of both neural networks before and after training. The right diagonal (bottom left to top right)
measures representation similarity of the corresponding layers of both neural networks. The trained
networks have learnt similar representations while their output was 98% similar. See diagonal values
from bottom left to top right.

This example shows that neural networks can learn similar representation while trained on differ-
ent batches. This observation is important because in MaxminDQN and EnsembleDQN training,
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each neural network is trained on a separate batch from the replay buffer but still learns similar
representations.
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Figure 3: Training curves and 95% confidence interval (shaded area) for the MED-RL augmented
variants for SAC
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Figure 4: Training curves and 95% confidence interval (shaded area) for the MED-RL augmented
variants for TD3
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5.2 EXPERIMENTAL SETUP

Continuous control tasks: We evaluated MED-RL augmented continuous control algorithms such
as TD3, SAC and REDQ on the Mujoco continuous control benchmark environments. We compared
the results of MED-RL with un-regularized counterparts. We report the mean and standard deviation
across five runs after 1M timesteps on six complex environments: Cheetah, Walker, Hopper, Ant,
Humanoid and Humanoid-Standup. For REDQ, we evaluated on Cheetah, Walker, Hopper and Ant
for 300K timesteps only.

5.3 COMPARATIVE EVALUATION

Continuous control tasks: Tables 1 to 3 show the average returns of evaluation roll-outs for all
the continuous control methods. MED-RL consistently improves the performance of SAC, TD3 and
REDQ in all the experiments. Even though the focus of this work is to maximize the average return,
we find that MED-RL augmented algorithms are more sample-efficient than their un-regularized
counterparts (see Figures 3, 4 and 5). For example, it can be seen Figure 3b that baseline SAC reaches
the average return of 10K in about 1M environment interactions while all MED-RL variants reach the
same average return in approximately 250K environment interaction, therefore, being approximately
75% more sample efficient than the baseline SAC. This improvement in sample-efficiency can be
noted in all nearly all the experiments except SAC-Humanoid and TD3-Walker experiments. The
training plots for REDQ are shown in Appendix.

Table 1: Max Average Return for MED-RL SAC over 5 trials of 1 million time steps. Maximum
value for each task is bolded. ± corresponds to a single standard deviation over trials

Environment Baseline MeanVector Gini Atkinson Theil VOL

HalfCheetah 10380.3± 681.8 12278.1± 160.3 11691.2± 715.6 12117.2± 304.7 12212.7± 216.7 12339.5± 284.9

Ant 4802.4± 605.1 6298.7± 101.8 6047.8± 167.4 6163.2± 207.6 6091.5± 222.3 5965.1± 196.4

Hopper 2882.5± 738.3 3604.3± 27.8 3552.9± 60.5 3560.4± 82.2 3596.6± 57.7 3587.7± 42.9

Walker2d 3954.9± 356.7 4525.7± 340.9 4523.0± 440.1 4659.8± 253.0 4753.8± 394.7 4653.4± 391.2

Humanoid 4582.2± 592.4 5359.1± 42.0 5224.6± 105.1 5275.1± 40.4 5355.2± 137.3 5311.7± 49.1

Humanoid- 153633.2 177666.5 170592.6 164967.6 180268.1 179645.1

Standup ± 8256.6 ± 30044.1 ± 29346.3 ± 19464.6 ± 33080.4 ± 29980.4

Table 2: Max Average Return for MED-RL TD3 over 5 trials of 1 million time steps. Maximum
value for each task is bolded. ± corresponds to a single standard deviation over trials

Environment Baseline MeanVector Gini Atkinson Theil VOL

HalfCheetah 9583.1± 682.6 11539.4± 278.1 11477.9± 405.2 11442.5± 187.8 11232.7± 323.6 11393.6± 532.7

Ant 3829.1± 675.7 4829.6± 1036.9 4611.5± 781.9 4565.7± 908.4 4810.7± 347.9 4881.1± 831.6

Hopper 2965.3± 423.5 3651.3± 57.7 3629.5± 92.8 3582.3± 153.9 3649.1± 62.7 3614.1± 89.2

Walker2d 4140.6± 334.2 4396.3± 837.5 4666.3± 319.7 4652.7± 310.0 4528.5± 507.1 4630.0± 405.1

Humanoid 4347.4± 456.2 5060.5± 127.4 5048.8± 199.3 5116.3± 278.5 5096.1± 98.1 5040.0± 112.7

Humanoid- 135176.6 160293.8 151123.1 154652.2 160481.5 146970.3

Standup ± 7991.2 ± 19657.2 ± 12712.8 ± 5607.7 ± 15229.6 ± 13199.6

Table 3: Max Average Return for MED-RL REDQ over 5 trials of 300K time steps. Maximum value
for each task is bolded. ± corresponds to a single standard deviation over trials

Environment Baseline MeanVector Gini Atkinson Theil VOL

HalfCheetah 8368.3± 56.3 10067.9± 360.7 10234.4± 74.4 9926.9± 319.0 10161.6± 461.7 9664.8± 1975.2

Ant 3001.3± 2083.5 5446.8± 186.7 5801.7± 42.3 5616.2± 86.3 5885.6± 181.0 5897.4± 16.7

Hopper 2876.9± 584.7 3477.3± 43.6 3565.9± 40.9 3524.8± 2.8 3596.6± 72.1 3550.8± 50.1

Walker2d 3722.3± 52.6 4282.7± 414.5 4217.1± 150.6 4133.9± 145.9 5028.4± 205.6 4249.2± 201.3
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5.4 SAMPLE EFFICIENCY AND COMPUTE TIME

Tables 1 to 3 show that MED-RL augmented continuous control algorithms outperform the baseline
versions significantly and a visual inspection of Figures 3, 4 and 5 show that MED-RL augmented
algorithms are more sample-efficient as well. But are they more sample-efficient than algorithms
that are specifically designed for sample-efficiency such as REDQ? To answer this question, we
took the bolded results from Table 1, referred as MED-RL in this section, and evaluated the number
of environment interactions and wall-clock time it took for MED-RL to reach similar performance
as that of baseline REDQ. As shown in Table 4, MED-RL achieves similar performance to REDQ
in 50% and 20% few environment interactions on Ant and HalfCheetah environment respectively
and have significantly surpassed REDQ on 300K environment interactions. MED-RL does not only
improve sample-efficiency but significantly improves compute time. As shown in Table 4, MED-RL
achieves similar performance to REDQ up to 50 times faster on wall-clock time. Note it can be argued
that REDQ can be parallelized to achieve faster wall-clock time but here we are only comparing
standard sequential implementations but that will not address the sample-efficiency issue.

Table 4: Comparison of MED-RL augmented SAC with baseline REDQ on sample-efficiency and
wall-clock time.

HalfCheetah Ant Hopper Walker2d

REDQ average reward 8368.6± 56.3 3001.3± 2083.5 2876.9± 584.7 3722.3± 52.6

Environment interactions taken
by MED-RL to reach REDQ performance 232K± 36.5K 254K± 24K 152K± 40.9K 283.15K± 77.8K

Wall clock time REDQ
(in mins) 1670.54± 188.66 1853.17± 66.26 1647.97± 202.57 1690.27± 245.1

Wall clock time taken
by MED-RL to reach REDQ
performance (in mins)

49.61± 9.25 43.81± 9.42 32.23± 10.3 65.2± 16.2

MED-RL average reward
after 300K environment interactions 9369.23± 509.68 4095.38± 433.24 3482.74± 95.30 3487.751± 874.14

Wall clock time taken by
MED-RL for 300K environment interactions 64.17± 9.71 51.29± 6.75 62.94± 6.71 69.44± 1.86

Discrete control tasks: We evaluated MED-RL augmented discrete control algorithms such as
MaxminDQN and EnsembleDQN on the PyGames (Qingfeng, 2019) and MinAtar (Young & Tian,
2019). We chose these environments to have a fair comparison since we used the source code
provided by MaxminDQN authors. We reused all the hyperparameter settings from (Lan et al., 2020)
except the number of neural networks, which we limited to four and trained each solution for five
fixed seeds. The results on the discrete control tasks are shown in the Appendix.

6 CONCLUSION

In this paper, we proposed Maximize Ensemble Diversity in Reinforcement Learning (MED-RL), a
set of regularization methods inspired from the economics and consensus optimization to improve
diversity in the ensemble-based deep reinforcement learning methods by encouraging inequality
between the networks during training. We also empirically showed that high representation similarity
between the networks of the ensemble could cause degradation in the performance. Our experiments
have shown that MED-RL not only improves the average return of ensemble based reinforcement
learning algorithms but can increase their sample-efficiency by approximately 75% when compared
to their un-regularized counterparts. Additionally we have shown the SAC when augmented with
MED-RL can outperform REDQ, an algorithm specifically designed for sample-efficiency, in both
sample-efficiency and compute time.

Acknowledgement: This work had been supported in part by the National Science Foundation under
grant number CNS-1932300
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Algorithm 1: MED-RL: MaxminDQN version
The differences between the baseline MaxminDQN and MEDRL-MaxminDQN are highlighted
Initialize N Q-functions {Q1, . . . , QN} parameterized by {ψ1, . . . , ψN}
Initialize empty replay buffer D
Observe initial state s
while Agent is interacting with the Environment do

Qmin(s, a)← mink∈{1,...,N}Q
k(s, a), ∀a ∈ A

Choose action a by ε-greedy based on Qmin
Take action a, observe r, s′
Store transition (s, a, r, s′) in D
Select a subset S from {1, . . . , N} (e.g., randomly select one i to update)
for i ∈ S do

Sample random mini-batch of transitions (sD, aD, rD, s
′
D) from D

Get update target: YM ← rD + γmaxa′∈AQ
min(s′D, a

′)

Generate list of L2 norms : ` =
[
‖ψ1‖2, . . . , ‖ψN‖2

]
Update Qi by minimizing EsD,aD,rD,s′D

(
Qiψi (sD, aD)− YM

)2
−λI (`i, `)

end
s← s′

end
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A TRAINING PLOTS OF REDQ
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Figure 5: Training curves and 95% confidence interval (shaded area) for the augmented variants for
REDQ together with baseline REDQ.
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B RESULTS ON DISCRETE CONTROL TASKS USING MAXMINDQN

0 1 2 3
Environment Interactions (×106)

10

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Atkinson N=2
Atkinson N=3
Atkinson N=4

0 0.5 1 1.5 2
Environment Interactions (×106)

0

20

40

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Atkinson N=2
Atkinson N=3
Atkinson N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Atkinson N=2
Atkinson N=3
Atkinson N=4

0 1 2 3
Environment Interactions (×106)

10

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Gini N=2
Gini N=3
Gini N=4

0 0.5 1 1.5 2
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Gini N=2
Gini N=3
Gini N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Gini N=2
Gini N=3
Gini N=4

0 1 2 3
Environment Interactions (×106)

10

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
MeanVector N=2
MeanVector N=3
MeanVector N=4

0 0.5 1 1.5 2
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
MeanVector N=2
MeanVector N=3
MeanVector N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
MeanVector N=2
MeanVector N=3
MeanVector N=4

0 1 2 3
Environment Interactions (×106)

10

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Theil N=2
Theil N=3
Theil N=4

0 0.5 1 1.5 2
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Theil N=2
Theil N=3
Theil N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

10

20

30

40

50

60

70

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Theil N=2
Theil N=3
Theil N=4

0 1 2 3
Environment Interactions (×106)

10

0

10

20

30

40

50

60

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
VOL N=2
VOL N=3
VOL N=4

Catcher

0 0.5 1 1.5 2
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
VOL N=2
VOL N=3
VOL N=4

PixelCopter

0 1 2 3 4 5
Environment Interactions (×106)

0

10

20

30

40

50

60

70

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
VOL N=2
VOL N=3
VOL N=4

Asterix

16



Published as a conference paper at ICLR 2022

0 1 2 3 4 5
Environment Interactions (×106)

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Atkinson N=2
Atkinson N=3
Atkinson N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Atkinson N=2
Atkinson N=3
Atkinson N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

100

200

300

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Atkinson N=2
Atkinson N=3
Atkinson N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Gini N=2
Gini N=3
Gini N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

20

40

60

80
Av

er
ag

e 
Re

tu
rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Gini N=2
Gini N=3
Gini N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

100

200

300

400

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Gini N=2
Gini N=3
Gini N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

5

10

15

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
MeanVector N=2
MeanVector N=3
MeanVector N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
MeanVector N=2
MeanVector N=3
MeanVector N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

50

100

150

200

250

300

350

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
MeanVector N=2
MeanVector N=3
MeanVector N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Theil N=2
Theil N=3
Theil N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

20

40

60

80

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Theil N=2
Theil N=3
Theil N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

50

100

150

200

250

300

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
Theil N=2
Theil N=3
Theil N=4

0 1 2 3 4 5
Environment Interactions (×106)

0

5

10

15

20

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
VOL N=2
VOL N=3
VOL N=4

Breakout

0 1 2 3 4 5
Environment Interactions (×106)

0

20

40

60

80

100

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
VOL N=2
VOL N=3
VOL N=4

SeaQuest

0 1 2 3 4 5
Environment Interactions (×106)

0

50

100

150

200

250

300

Av
er

ag
e 

Re
tu

rn

Maxmin N=2
Maxmin N=3
Maxmin N=4
VOL N=2
VOL N=3
VOL N=4

SpaceInvader

Figure 6: All MaxminDQN Results. Top to Bottom: Atkinson, Gini, MeanVector, Theil, Variance of
Logarithms
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B.1 RESULTS IN TABULAR FORM

Table 5: Max Average Return for MED-RL MaxminDQN with two neural networks on PyGames and
MinAtar environments. Maximum value for each task is bolded. ± corresponds to a single standard
deviation over trials.

Environment Baseline MeanVector Gini Atkinson Theil VOL

Asterix 35.51± 8.81 59.20± 5.60 54.37± 8.32 52.61± 11.86 58.42± 13.00 56.82± 18.54

Catcher 54.72± 4.73 57.52± 2.31 57.88± 1.80 58.00± 1.00 58.58± 0.34 56.16± 2.96

Copter 37.83± 3.30 67.36± 8.23 68.08± 4.28 65.20± 5.86 71.80± 5.34 71.85± 8.64

Breakout 12.75± 1.67 14.32± 1.63 16.19± 1.49 14.93± 1.53 16.09± 3.05 15.56± 3.75

Seaquest 14.60± 9.69 43.67± 28.75 62.87± 21.68 56.28± 30.32 58.83± 26.80 46.04± 29.03

SpaceInvader 135.63± 14.10 289.64± 66.49 350.00± 108.27 252.02± 43.85 261.86± 29.00 251.64± 80.36

Table 6: Max Average Return for MED-RL MaxminDQN with three neural networks on PyGames
and MinAtar environments. Maximum value for each task is bolded. ± corresponds to a single
standard deviation over trials.

Environment Baseline MeanVector Gini Atkinson Theil VOL

Asterix 28.34± 4.91 54.17± 8.68 45.85± 7.6 47.54± 9.23 51.71± 9.59 54.50± 11.81

Breakout 8.10± 1.49 8.78± 1.38 11.44± 1.34 10.78± 2.36 12.54± 3.46 12.66± 2.49

Catcher 44.07± 6.10 58.79± 0.17 58.81± 0.20 58.68± 0.17 58.55± 0.61 57.97± 1.54

Copter 36.80± 5.75 68.81± 4.78 73.20± 3.63 67.55± 3.67 69.25± 4.00 65.83± 5.16

Seaquest 2.79± 3.48 64.28± 13.38 21.33± 18.43 38.02± 28.75 46.76± 25.84 59.59± 37.29

SpaceInvader 126.98± 18.59 276.24± 66.06 140.18± 1.52 180.30± 20.80 140.32± 40.36 213.85± 59.75

Table 7: Max Average Return for MED-RL MaxminDQN with four neural networks on PyGames and
MinAtar environments. Maximum value for each task is bolded. ± corresponds to a single standard
deviation over trials.

Environment Baseline MeanVector Gini Atkinson Theil VOL

Asterix 28.60± 5.51 34.16± 8.37 35.64± 4.03 41.44± 6.44 41.39± 10.76 39.35± 5.87

Breakout 5.98± 0.93 6.22± 0.68 8.01± 0.97 8.01± 1.49 8.64± 0.71 7.51± 0.81

Catcher 53.17± 3.24 58.71± 0.14 58.64± 0.06 58.83± 0.17 58.80± 0.06 58.87± 0.08

Copter 43.20± 3.06 68.62± 3.45 66.40± 6.89 67.18± 6.51 74.83± 4.71 63.33± 4.79

Seaquest 0.00± 0.00 10.26± 19.72 1.16± 0.75 15.67± 30.06 1.03± 0.65 0.87± 0.45

SpaceInvader 74.69± 10.36 91.09± 36.08 87.63± 18.68 120.25± 43.34 96.54± 16.24 93.89± 26.17

Figure 6 shows the training curves for the all the six environments and Tables 5 to 7 represent the
results in the tabular, similar to our observations for the continuous control experiments, MED-RL
augmented MaxminDQN outperformed un-regularized MaxminDQN significantly on average return
and sample-efficiency metrics. Notably, in Seaquest and SpaceInvader environments where MED-RL
MaxminDQN with two neural networks achieved 400% and 300% increase in performance. Note
that the baselines shown in Figure 6 are strong baselines. For example, in the MaxminDQN paper,
the best performance of baseline MaxminDQN on Asterix and SpaceInvader environments is around
20 and 50 respectively while we have achieved an average reward of 35 and 135 respectively.
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C RESULTS ON DISCRETE CONTROL TASKS USING ENSEMBLEDQN
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Figure 7: All EnsembleDQN Results. Top to Bottom: Atkinson, Gini, MeanVector, Theil, Variance
of Logarithms
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C.1 RESULTS IN TABULAR FORM

Table 8: Max Average Return for MED-RL EnsembleDQN with two neural networks on PyGames
and MinAtar environments. Maximum value for each task is bolded. ± corresponds to a single
standard deviation over trials.

Environment Baseline MeanVector Gini Atkinson Theil VOL

Asterix 31.06± 4.19 43.07± 4.96 44.49± 2.61 47.52± 11.76 46.05± 5.37 48.21± 12.68

Catcher 44.66± 4.33 58.29± 0.70 57.29± 2.60 58.59± 0.25 55.87± 5.94 56.03± 3.64

Copter 31.03± 8.83 64.50± 4.93 69.28± 6.54 67.45± 7.81 64.66± 12.40 64.03± 2.37

Breakout 18.03± 4.95 20.91± 3.28 27.38± 10.35 23.08± 6.59 26.70± 5.22 26.05± 4.38

Seaquest 14.64± 2.63 44.38± 10.52 37.45± 18.67 44.17± 17.62 43.60± 13.05 54.84± 22.53

SpaceInvader 81.97± 15.62 196.34± 51.71 213.32± 38.77 182.58± 31.34 190.08± 27.03 217.76± 23.80

Table 9: Max Average Return for MED-RL EnsembleDQN with three neural networks on PyGames
and MinAtar environments. Maximum value for each task is bolded. ± corresponds to a single
standard deviation over trials.

Environment Baseline MeanVector Gini Atkinson Theil VOL

Asterix 35.32± 10.66 51.32± 13.39 47.56± 12.45 49.91± 8.05 57.92± 8.50 49.37± 9.78

Breakout 19.51± 2.87 18.74± 3.13 25.52± 2.81 26.30± 5.63 31.15± 8.19 24.14± 6.66

Catcher 37.07± 5.24 58.80± 0.17 57.95± 1.16 58.65± 0.33 58.30± 0.80 58.83± 0.06

Copter 30.01± 4.92 73.60± 4.38 67.22± 8.10 66.44± 0.84 68.12± 5.93 69.81± 7.48

Seaquest 19.99± 3.60 44.55± 25.23 48.13± 25.68 38.31± 6.98 38.89± 14.30 37.84± 3.41

SpaceInvader 86.33± 12.05 187.88± 42.91 168.60± 3.60 221.38± 8.48 158.65± 10.45 170.43± 37.19

Table 10: Max Average Return for MED-RL EnsembleDQN with four neural networks on PyGames
and MinAtar environments. Maximum value for each task is bolded. ± corresponds to a single
standard deviation over trials.

Environment Baseline MeanVector Gini Atkinson Theil VOL

Asterix 35.62± 7.80 50.26± 11.14 46.65± 9.76 45.12± 9.86 43.23± 11.50 48.26± 4.83

Breakout 19.61± 2.31 17.85± 1.82 23.31± 2.87 21.91± 1.40 22.71± 6.72 28.79± 18.82

Catcher 47.77± 6.62 58.74± 0.22 58.33± 0.81 52.44± 5.33 58.24± 1.11 58.23± 0.81

Copter 39.29± 9.75 75.37± 2.35 67.63± 6.01 67.73± 5.21 75.57± 5.79 70.16± 3.58

Seaquest 15.46± 8.11 37.00± 7.16 48.18± 33.34 58.95± 12.31 23.59± 12.35 37.60± 6.73

SpaceInvader 106.76± 32.14 269.96± 71.46 227.60± 20.75 218.65± 54.32 239.84± 54.58 227.46± 63.46

Figure 7 shows the training curves for the all the six environments and Tables 8 to 10 represent the
results in the tabular, similar to our observations for the continuous control experiments, MED-RL
augmented EnsembleDQN outperformed un-regularized EnsembleDQN significantly on average
return and sample-efficiency metrics. Notably, in Copter, SeaQuest and SpaceInvader environments
where MED-RL EnsembleDQN with two neural networks achieved 200%, 350% and 250% increase
in performance.
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D T-SNE VISUALIZATIONS

To visualize the impact of the regularization, Figures 8 and 9 shows t-SNE (van der Maaten & Hinton,
2008) visualization of the activations of the last layer of the trained networks. Figure 8a show the
network trained for the Catcher environment, while Figures 8b and 9, the network trained for the
PixelCopter environment. The upper row of the figure shows the original, unregularized models,
while the lower row a regularized version. For all combinations, we find that the activations from
the original MaxminDQN and EnsembleDQN versions do not show any obvious pattern, while the
regularized ones show distinct clusters. An additional benefit of t-SNE visualizations over CKA
similarity heatmaps is that the CKA similarity heatmaps are useful to show representation similarity
between two neural networks, but they become counter intuitive as the number of neural networks
increases.

Baseline MaxminDQN Baseline EnsembleDQN

MeanVector MaxminDQN Gini EnsembleDQN

(a) Catcher

Baseline MaxminDQN Baseline EnsembleDQN

Atkinson MaxminDQN VOL EnsembleDQN

(b) PixelCopter

Figure 8: Clustering last layer activations from Catcher and PixelCopter after processing them
with t-SNE to map them in 2D. The regularized variants have visible clusters while the baseline
MaxminDQN and EnsembleDQN activations are mixed together with no visible pattern.

Baseline MaxminDQN Baseline EnsembleDQN

Theil-MaxminDQN Theil-EnsembleDQN

Figure 9: Clustering last layer activations from PixelCopter after processing them witht-SNE to map
them in 2D
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E PLOTTING THE GINI INEQUALITY

We measured the L2 norm inequality of the baseline MaxminDQN and EnsembleDQN along with
their regularized versions. We trained baseline MaxminDQN and EnsembleDQN with two neural
networks along with their Gini index versions with regularization weight of 10−8 on the PixelCopter
environment on a fixed seed . Figure 10 represents the L2 norm inequality of the experiments along
their average return during training. Notably, despite each neural network being trained on a different
batch, the L2 norm of the baseline MaxminDQN and EnsembleDQN are quite similar while the L2

norm of the regularized MaxminDQN and EnsembleDQN have high inequality.
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Figure 10: Left: Plot representing the L2 norm inequality between the two neural networks using
Gini index trained on PixelCopter environment. Right: Plot representing the average return during
training.
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F IMPLEMENTATION DETAILS AND HYPERPARAMETERS

For our implementation of MaxminDQN and EnsembleDQN, we used the code provided
by the MaxminDQN authors that has implementations of different DQN based methods
github.com/qlan3/Explorer). For the baseline experiments, we used most of the hyperparameter
settings provided in the configuration files by the authors except the number of ensembles which we
limited to four.

Table 11: Hyperparameters for discrete control tasks

Hyperparameter Value
Target Weight τ 1e−3

Actor Learning Rate [1e−3, 1e−4]
Regularization Weight 1e−6, 1e−7, 1e−8

Replay Buffer 1e6

Batch Size 32
Exploration Steps 5000

Optimizer Adam

Table 12: Hyperparameters for continuous control tasks

Hyperparameter Value
Target Weight τ 1e−3

Actor Learning Rate [1e−4, 3e−5]
Critic Learning Rate [1e−4, 3e−5]

Replay Buffer 1e6

Batch Size [256]
Exploration Steps 25000

Optimizer Adam
Hidden Layer Size 256

Number of critics (REDQ) 10
Regularization Weight 1e−6
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F.1 COMPUTING INFRASTRUCTURE

All the experiments were performed on a Kubernetes managed cluster with Nvidia V100 GPUs and
Intel Skylake CPUs. Each experiment was run as an individual Kubernetes job with 11 CPUs, 16GB
of RAM and 1 GPU (if needed). This configuration allowed us to run experiments without any
interference from other applications which was important to accurately measure the wall-clock time.

Future Work: Even though the focus of this paper was on empirical testing, there are several
different research questions that needs to be addressed, for example how do we select the best
regularizer for a particular environment or an algorithm with some N numbers of networks in the
ensemble. Another interesting line of research is to study how different inequality distributions effect
the diversity of the ensembles.
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