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ABSTRACT

Understanding how humans perceive visual complexity is a key area of study
in visual cognition. Previous approaches to modeling visual complexity assess-
ments have often resulted in intricate, difficult-to-interpret algorithms that em-
ploy numerous features or sophisticated deep learning architectures. While these
complex models achieve high performance on specific datasets, they often sacri-
fice interpretability, making it challenging to understand the factors driving hu-
man perception of complexity. Recently (Shen, et al. 2024) proposed an inter-
pretable segmentation-based model that accurately predicted complexity across
various datasets, supporting the idea that complexity can be explained simply. In
this work, we investigate the failure of their model to capture structural, color
and surprisal contributions to complexity. To this end, we propose Multi-Scale
Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale
Unique Color (MUC) which quantifies colorfulness across multiple scales, and
surprise scores generated using a Large Language Model. We test our features on
existing benchmarks and a novel dataset (Surprising Visual Genome) containing
surprising images from Visual Genome. Our experiments demonstrate that mod-
eling complexity accurately is not as simple as previously thought, requiring ad-
ditional perceptual and semantic factors to address dataset biases. Our model im-
proves predictive performance while maintaining interpretability, offering deeper
insights into how visual complexity is perceived and assessed. Our code, anal-
ysis and data are available at https://github.com/Complexity-Project/
Complexity-in-Complexity.

1 INTRODUCTION

Visual complexity is a fundamental attribute of images that reflects the level of detail, intricacy,
and variation in visual elements within a scene (Snodgrass & Vanderwart, |[1980b)). This perceptual
characteristic encompasses multiple dimensions, including the number of lines within an icon or
symbol, density of elements (McDougall et al., |1999; Forsythe et al., 2003)), quantity of objects
(Olivia et al.l 2004 [Saraee et al., 2020; |[Shin & Joo, 2019; Nath et al.l 2024} |Shen et al., [2024),
clutter (Kyle-Davidson et al., 2023 |[Fan et al., 2017), symmetry (Kyle-Davidson et al.,[2025)), variety
of colors (Corchs et al., 2016), and spatial organization of components (Yu & Winkler, 2013).

Understanding how humans perceive and judge visual complexity is crucial across numerous do-
mains, from user interface design (Miniukovich et al., 2018; |Akca & Omer Ozgiir Tanriover, 2021}
Reinecke et al., 2013)) to cognitive psychology (Forsythe, 2009; Madan et al.l [2018). While deep
learning models have achieved impressive performance in predicting perceived complexity, their
black-box nature (Li et al.| [2022)) limits our ability to understand the underlying factors that drive
human complexity judgments. This understanding is particularly important in applications where
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we need to not only predict but also explain or manipulate perceived complexity, such as in educa-
tional materials design (Stoesz et al., 2020;|Ghai & Tandon, 2022) or information visualization (Zhu
et al., [2007ajb). Moreover, interpretable features that correlate with human perception can provide
valuable insights into cognitive processes, helping us better understand how the human visual sys-
tem processes and evaluates complex scenes. Therefore, the development of simple, interpretable
measures of visual complexity that align with human perception remains an important research goal,
complementing the achievements of more complex computational approaches.

A recent study by [Shen et al.| (2024) bridged the gap between handcrafted features and deep learn-
ing approaches by proposing a simple two-feature model based on outputs from deep segmentation
models (the numbers of segments and semantic classes in the image). Their simple, yet interpretable,
model achieved superior performance compared to baseline on many naturalistic and art datasets,
supporting the idea that the numbers of segments and classes are generic features that explain com-
plexity well. However, their model fails to take into account the structure and arrangement of com-
ponents in the image.

Here, we build upon the model from |Shen et al.|(2024)), by studying two of its major failure modes.
First, we find that datasets with high structural and color regularity require two low-level features
to explain complexity: Multi-Scale Sobel Gradient (MSG) and Multi-Scale Unique Color (MUC).
MSG captures continuous spatial intensity variations across multiple scales, offering a richer repre-
sentation of image structure. MUC quantifies color diversity also at multiple scales, and at different
color resolutions. The latter feature builds on the concept of “colorfulness” from (Teresa et al.,
2014), and provides a more robust and performant measure of chromatic complexity.

We discovered a second failure mode of [Shen et al.|(2024) which concerns the rather underexplored
contribution of whole-image, holistic or emergent information to visual complexity. Previous re-
search by |[Forsythe et al.| (2008) demonstrated that participants in a visual complexity experiment
exhibited a familiarity bias, perceiving familiar shapes as less complex compared to unfamiliar or
novel ones. Similarly, Snodgrass & Vanderwart|(1980a) found a negative correlation between visual
complexity and familiarity in their experiment. [Forsythe| (2009) suggests that complexity judgments
are context-dependent and that familiarity should be considered when developing a model of visual
complexity. Motivated by their findings, we show that holistic, whole-image surprise judgments of
scenes contribute significantly to the visual complexity of naturalistic images. We define surprising
images as those containing unusual, or contextually novel elements, i.e., the opposite of familiarity.
(Meyer et al.}|1997;|Ortony & Partridge} [1987)). To this end, we introduce a novel dataset, SVG, con-
taining both surprising and randomly sampled images from the well-studied Visual Genome dataset
(Krishna et al., |2016) and show that surprise scores generated by a large language model (LLM)
explains significant variance in the perceived complexity of images in this dataset.

2 METHODS

2.1 MODELING AND EVALUATION

In this work, we evaluate the effectiveness of sets of features to explain visual complexity on datasets
using linear regression models. We follow the procedure in|Shen et al.|(2024), and fit M repetitions of
3-fold cross-validated linear regression. M is determined by the size of the dataset to address statis-
tical variability in smaller datasets. We measure performance using the mean Spearman correlation
coefficient across all test splits. We compare the performance of our models to the same baselines in
Shen et al.| (2024): handcrafted features (Corchs et al.l 2016} |Kyle-Davidson et al., [2023)) and deep
learning approaches (Saraee et al.,2020; |[Feng et al.,2023)). The code for our analysis, dataset[ﬂ and
experimental setup E] can be found in our Github repositories.

2.2 DATASETS

We evaluate our method on four publicly available datasets with human-rated complexity scores:
RSIVL (49 images) (Corchs et al) [2016), VISC (800 images) (Kyle-Davidson et al., |2023),
SAVOIAS (1400 images across 7 categories) (Saraee et al., 2018)), and IC9600 (9600 images across
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8 categories) (Feng et al., [2023)). We select image subsets to demonstrate the effectiveness of our
new features to explain complexity - VISC and IC9600 architecture subset for MSG, Savoias Art
and Suprematism subsets for MUC, and Savoias Interior Design and IC9600 Abstract for the combi-
nation of MSG and MUC. Finally, we use our novel dataset SVG to show that surprisal contributes
significantly to complexity.

2.3 SVG: A DATASET OF SURPRISING IMAGES

To the best of our knowledge, there is currently no existing image set with surprising images that
can be used to study visual complexity. To fill this gap, we introduce a new dataset containing
100 highly surprising images and 100 (on average, less surprising) images, the latter of which were
sampled uniformly at random from the Visual Genome, subject to stratification according to bins of
complexity based on IC9600 scores (Feng et al 2023). To confirm that our subjectively selected
images are more surprising than randomly sampled ones, we compare the distributions of LLM-
generated surprise scores (as explained in Section [2.4) between the two subsets. A histogram of
these scores shows clear separation: sampled images cluster at lower values, while handpicked
images have higher surprise scores (mean: 39.45 for ordinary, 72.35 for surprising). A Kolmogorov-
Smirnov test confirms a significant difference (D = 0.67, p < 0.001), supporting our hypothesis. See
Appendix [A.3|for further details about the dataset, including representative examples.

We collect visual complexity ratings from humans using an online experiment on Prolific (Palan
& Schitter] |2018). Participants are shown pairs of images and asked to select the one that is more
visually complex, similarly to the procedure in |Saraee et al.| (2018). We followed the sampling
strategy in Saraee et al.|(2018)), and collect 6000 = 200 x 30 comparisons by sampling images with
probabilities inversely proportional to the total number of times they have already been selected. We
ensure that each pairwise comparison is assessed by three different participants. Hence there are
in total 18,000 evaluations. Each participant evaluates 200 pairwise comparisons in one session.
We also inserted attention checks into the experiment to ensure participant engagement and data
reliability. We convert pairwise comparisons into scalar complexity ratings using the Bradley-Terry
algorithm (Bradley & Terry, [1952). Initially, the final ratings were mostly clustered around zero, a
phenomenon also observed in Saraee et al.| (2018)). To address this, we applied the same procedure
as in their work. Before using the Bradley-Terry model, we rescaled the initial probability matrix
from the range [0, 1] to [0.33,0.66]. This adjustment helped distribute the final ratings more evenly
within a narrower and more interpretable range. We also collect human surprise ratings to validate
our LLM-generated scores using a similar experiment. More details about our experiment setup can

be found in Appendix

2.4 GENERATING SURPRISE SCORES USING LLMS

In order to have an automated pipeline for predicting complexity, we prompt an LLM using zero-
shot Chain-of-Thought (Wei et al., 2023) to get surprise scores for each image in our SVG dataset.
Our prompt is shown in Algorithm [l We selected GEMINI-1.5-FLASH for its ability to provide
rapid responses without compromising quality. The model generated surprise scores with step-by-
step reasoning, producing structured output in the desired format. More details as to our preliminary
ablation on LLMs can be found in Appendix [A.4]

Algorithm 1 Zero-shot-CoT

Q: Step by step, explain why this image is surprising or not. Consider factors like rare events, or
unexpected content. Be precise in your reasoning. Then, on a precise scale from 0 to 100, rate the
surprisal of this image.

Provide your reasoning and numeric rating as follows:

Reasoning: [your explanation]

Rating: <number>>

2.5 MULTI-SCALE SOBEL GRADIENT

We propose the Multi-Scale Sobel Gradient (MSG) algorithm (Algorithm 2)) to capture structure in
images. MSG applies the Sobel operator across multiple resolutions to RGB images, functioning
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as an asymmetry detector within k x k patches, where k represents the kernel size. For symmetric
patches, the left and right columns (or rows in horizontal application) of the kernel counterbalance
each other, resulting in lower MSG values. Consequently, images exhibiting greater patch-level
symmetry produce smaller MSG measurements. Note that the Sobel operator is typically applied to
grayscale images (Kanopoulos et al., | 1988), but we found in ablations that the grayscale version of
the algorithm (which first converts the colored images to grayscale) did not perform as well. Based
on our permutation tests across 16 datasets, the colored version demonstrated statistically signifi-
cant superiority over the grayscale version in 6 datasets, while the grayscale version outperformed
the colored in 2 datasets. The remaining 8 datasets showed no statistically significant differences
between the two versions. Hence we use the color version of the algorithm for the rest of this work.

Algorithm 2 Multi-Scale Sobel Gradient

Require: Input image img € R”*W>3 in RGB format
Ensure: Scalar MSG score

1: Normalize image: img < img/255.0

2: Define scales S = {1,2,4,8}

and weights W = {0.4,0.3,0.2,0.1}

3: Initialize MSG < 0

4: for each scale s € S and weight w € W do
Resize image to % X %:
scaled + Resize(img, (%, )
6:  for each channel ¢ € {R,G,B} do
7 Gy = Sobel(scaled|:,:,c|,dx
8 Gy = Sobel(scaled|:,:,c

9: mag = /G2 + G2

10 grad, < Mean(mag)

11:  end for

12:  s_grad + Mean(gradg,gradg, gradg)
13:  MSG <+ MSG+w-s_grad

14: end for

15: return MSG

bl

2.6 MULTI-SCALE UNIQUE COLOR

We introduce MUC which intuitively counts the number of unique colors present in an image. We
start from the “colorfulness” feature introduced by |Teresa et al.[ (2014} (which was first applied to
image indexing and content querying) and derive MUC by making colorfulness multi-scale. Note,
Teresa et al.|(2014) and subsequent works did not provide pseudocode for the colorfulness algorithm
- we are the first to do so. MUC has two hyperparameters which control the coarse-graining of spatial
resolution and color resolution (bit precision). In the rest of this paper we report results using the
best bit precision for each dataset in terms of correlation to complexity (this was typically 7-8 bits).
We use a fixed set of spatial scale weights for both MSG and MUC on all datasets.

3 RESULTS

The features we introduced: MSG, MUC, and Surprise, explain additional variance in perceived
complexity beyond that captured by segmentation and class counts alone. We present these results
in Table [T} showing that our models not only surpass all handcrafted features but also achieves
performance comparable to the best supervised model. In the following subsections, we present
each feature in turn and describe the datasets on which they improve complexity prediction. We
then describe our final model, which combines our three novel features to achieve state-of-the-art or
near state-of-the-art performance on all datasets.

3.1 EXPLAINING THE FAILURE MODES WITH A DATA-CENTRIC APPROACH:
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Algorithm 3 Multi-Scale Unique Color

Require: Image / (RGB), Number of bits to preserve per channel b
Ensure: Multi-Scale unique color score
1: Define scales S = {1,2,4,8}
and weights W = {0.4,0.3,0.2,0.1}
2: Initialize MUC <0
3: for each scale s € S and weight w € W do
4:  Resize image to @ X %:
Iy < resize(I,gp, (W'Sth, w))
5. Calculate bit shift: shift < 8 —b
6:  Quantize image by bit shifting:
I, < (I, > shift) < shift
7:  Flatten image: Iy, < reshape(/;,—1,3)
8:  Create color index:
idx < Ifiar[5,0] - 210 + T [, 1] - 28 + Ly 1, 2]
9:  Count unique colors: ypique — |unique(idx)|
10:  Add weighted contribution:
MUC < MUC + (W - Nunique)
11: end for
12: return MUC

Table 1: Model performance on 7 datasets and comparison with previous models. The models from
previous work are classified as being based on either handcrafted features or Convolutional Neural
Networks (CNNs). * for supervised methods indicate their own fest set. Bold indicates the best
model. Improvements from the baseline are indicated with arrows.

Model/Dataset VISC 1C9. Arch. Sav. Art Sav. Suprematism Sav. Int. 1C9. Abstract SVG
Handcrafted features

Corchs 1 (10 features) 0.62 0.66 0.68 0.80 0.85 0.74 0.73

Kyle-Davidson 1 (2 features) 0.60 0.54 0.55 0.79 0.74 0.69 0.70
CNNs

Saraee (transfer) 0.58 0.59 0.55 0.72 0.75 0.67 0.72

Feng (supervised) 0.72 0.92* 0.81 0.84 0.89 0.94° 0.83
Previous simple model

/numzseg + v num_class 0.56 0.66 0.73 0.89 0.61 0.66 0.78
Visual features

MSG+MUC 0.60 0.65 0.64 0.91 0.84 0.76 0.72
Baseline + visual features

V/numzseg +~/num_class + MSG 0.68 70.13 0.76 10.10 0.75 0.90 0.79 0.79 0.78

V/num_seg +~/num_class + MUC 0.62 0.71 0.81 10.08 0.94 10.05 0.80 0.76 0.79

/num_seg +/num_class + MSG + MUC 0.68 0.77 0.81 0.94 0.87 10.26 0.8310.17 0.79
Baseline + semantic feature

num_seg 4 v/num_class 4 Surprise 0.60 0.67 0.74 0.89 0.60 0.67 0.83 10.05

Baseline + all features

/num_seg +/num_class + MSG + MUC + Surprise 0.71 0.78 0.81 0.94 0.87 0.84 0.85

COLORS AND STRUCTURE

On the VISC dataset, the MSG feature improves the mean Spearman’s rank correlation coefficient
from 0.56 to 0.68, surpassing all previous handcrafted features. Similarly, it achieves a notable in-
crease of 0.10 in mean Spearman’s rank correlation coefficient on the IC9. Architecture dataset.
These two datasets comprise of mostly real-world natural images of buildings, and indoor and out-
door scenes which are highly textured or regular - for example a grass field, the windows on a
highrise, or rows of seats in an airport. A Sobel operator applied to a spatially coarse-grained im-
age can be interpreted as an (a)symmetry detector. Hence MSG detects (a)symmetry and quantifies
the regularity of local patches (e.g. windows on a highrise) at multiple spatial scales, making it a
well-suited feature for predicting complexity on VISC and IC9. Architecture.

Table [T| shows that MUC improves model performance on Sav. Art dataset, increasing Spearman’s
correlation from 0.73 to 0.81, and in Sav. Suprematism, where it improves performance from 0.89
to 0.94. These datasets are comprised of 2D art. The efficacy of MUC in these domains likely stems
from its ability to quantify color-based complexity, which may be more crucial for people’s aesthetic
judgments than judgments of naturalistic images.
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(2) B: 50, P: 39,G: 40 (b) MSG: 20 (2) B: 54, P: 61,G: 60  (b) B: 46, P: 55, G: 55

(-

(a) Surprise score: 85

Reasoning: The image depicts sheep dressed in
jockey silks and participating in a race. This is
surprising because it is not a typical activity for
sheep. The juxtaposition of animals in a human
sport is unexpected and humorous.

(c) B: 50, P: 67, G: 68 (d) MSG: 92
] o (b) Surprise score: 85
Figure 1: Left column: original images from Sav.  Reasoning: The image depicts a skateboarder

Int.. Right column: gradient visualizations. B: performing an unexpected maneuver on a
baseline prediction using number of beach, resulting in an unusual pose mid-air.
segmentations and classes. G = ground truth The rarity stems from the seemingly
complexity. P = predicted complexity using uncontrolled backflip and the unusual beach

baseline and MSG. All values are scaled between  setting for such a stunt.
0 and 100. The first image has 177 segmentations

and 35 classes, while the second has 185 Figure 2: Incorporating surprise scores (85)
segmentations and 38 classes. Due to these narrows the gap between baseline predictions
similarities, the baseline model prediCtS nearly and ground truth, hlghhghtlng Surprise’s role in
identical complexity scores for both. However, aligning predictions with human perception.
MSG acts as a latent dimension, refining GEMINI-1.5-FLASH explanations improve the
predictions to better align with ground truth. interpretability of these scores.

Two datasets, Sav. Interior Design and IC9. Abstract experience very large performance gains (from
0.61 to 0.87 and from 0.66 to 0.83 respectively) when both MSG and MUC features are included in
the model. Interior Design is a dataset of synthetic renderings of rooms for IKEA advertisements.
The dataset likely benefits from MSG for the same reason as VISC - the images contain regular,
highly symmetric elements like books in a bookshelf or panels of a kitchen cabinet. Furthermore,
unlike naturalistic images Sav. Interior Design images were designed with color themes in mind
for aesthetic reasons, similar to art images which is likely why the Sav. Interior Design dataset
benefits from MUC like the Sav. Art dataset. IC9. Abstract on the other hand, consists of real-life
photographs. However, the images are taken in an artistic way with aesthetic value in mind, likely
increasing the importance of colorfulness in predicting complexity.

Figure [T presents two examples from the Sav. Interior Design dataset where the baseline model
assigns the same complexity due to similar SAM segmentations and FC-CLIP
classes, despite differing ground truth complexities. However, the two images differ greatly in their
MSG values (20 vs. 92 on a normalized scale of 100), possibly because the lower image has patterns
on the bookshelves and blanket which contribute substantially to MSG. The lower (higher) MSG
values in the top (bottom) image decrease (increase) the complexity predictions in model, making
the predictions much closer to the ground truth complexity ratings.

3.2 SURPRISE TO THE RESCUE: CAPTURING THE COMPLEXITY BEYOND STRUCTURAL
FEATURES

Table [T shows that including surprise scores generated using GEMINI-1.5-FLASH improves Spear-
man’s correlation on the SVG dataset from 0.78 to 0.83 over [2024)’s baseline model.
Our model containing surprise scores beats all the previous handcrafted features and matches the

performance of (Feng et al.,[2023))’s supervised network.

Figure2]shows two examples from the SVG dataset where the model from 2024) under-
predicts visual complexity. Both images have high (85) surprise scores. Hence our model including



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Participant Responses

Question: What strategy did you use to rate visual complexity?

“Checked if they look confusing or unreal.”

“How common the situation was, the angle the image was taken at, the number of colours,
the number of subjects and how in focus they were.”

“How many different elements there were in each photo and how surprising or unusual the
images were.”

“The most complex were those with many different elements to them and the most
surprising.”

“The weird or uncanny images appeared quite complex to me, most of the landscape shots
or regular street/traffic scenes didn’t strike me as complex.”

“Chose the confusing ones.”

“Where there are lots of things to look at. Was there something at a distance in the
background? Was the image novel?”

“The most complex were the ones with a lot going on in them—so more than one person or
something unusual happening. The least complex were the ones of sport or vehicles which
just look like generic images.”

“If there was a lot going on in the image or if the image was out of the ordinary. Also,
images where there were shadows and different types of light.”

“I think it was a mix of structure of the image and the elements within it—the more
unusual or juxtaposed the mix, the more complex it appeared to me.”

“How much was going on in the image Also, whether things looked fake—e.g., the boy
with the surfboard, where some looked real and some looked like computer-generated
images. Then if things were incongruous (like things that weren’t supposed to be there).”

“At first, I was thinking about the colours, people, and background. I then thought about
how complex the act was in the photo.”

Figure 4: A selection of responses from participants describing the strategies they used to assess
visual complexity. Their responses highlight various factors such as the number of elements,
unusual or weird features, level of detail, and how confusing or unreal an image appeared. Words
related to surprise, such as ‘unusual,” ‘confusing,” and ‘weird,” have been highlighted in red for
emphasis.

surprise scores correctly increases its complexity predictions, making the predictions much closer to
the ground truth complexity. Furthermore, one advantage of using LLMs in our automated pipeline
for complexity prediction is LLMs offer (often) interpretable, explicit reasoning in natural language
(Singh et al.,[2024).

LSS
Al
2

Residuals (Complexity — Predictions)

20 40 60 80
Surprise Scores (GEMINI-1.5-FLASH)

Figure 3: Correlation between residuals (actual complexity - baseline predictions) and surprise
scores (SVG).

Two examples of explanations generated from GEMINI-1.5-FLASH using CoT prompting (Zhu et al.,
2024} |Wei Jie et al., [2024), can be seen in Figure In the left image, GEMINI-1.5-FLASH success-
fully identifies the intuitively surprising fact that sheep are racing, an unusual activity for sheep. In
the right image, GEMINI-1.5-FLASH identifies that it’s unusual for the man to be doing an uncon-
trolled backflip, arguably consistent with human intuition for why the image is surprising.
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Furthermore, Figure [3] shows that the surprise scores have a correlation of 0.48 (p < 0.001) with
complexity after regressing out SAM number of segments and FC-CLIP number of objects, show-
ing that surprise captures variance in complexity not explained by the number of segments or objects.
These quantitative results are corroborated by participants’ anecdotes on how they rated visual com-
plexity on the SVG dataset. Many reported that “unusual”, “surprising”, or “weird”, objects or
events in the image, as well as judgments that the images are “confusing” or “unreal” caused them
to rate the visual complexity higher. Figure @ presents a selection of responses from participants in
our experiment, in which they describe the specific strategies they used to assess visual complexity.
Their responses provide a deeper understanding of the cognitive processes involved in evaluating
image complexity and highlight how the element of surprise works as a latent dimension for visual
complexity evaluation.

To explore quantitatively how well our GEMINI-1.5-FLASH surprise scores aligned with human
judgments of surprise, we computed Spearman’s correlation between GEMINI-1.5-FLASH scores
and the human surprise scores we collected. The results revealed a strong positive correlation of
0.73, indicating substantial agreement between model-generated and human-derived assessments
of visual surprise. This supports the fact GEMINI-1.5-FLASH explanations are good proxies for
human judgments of image surprisal which contribute to human perceptions of visual complexity.
In summary, GEMINI-1.5-FLASH surprise scores improve the predictive power of our complexity
model on the SVG dataset and the natural language explanations generated alongside these scores
facilitate a clearer understanding of why the image is complex.

The last row of Table[I] shows the performance of our final model including MSG, MUC, surprise
as well as the two features from (Shen et al.| [2024). Interestingly, we find combining MSG and
MUC with surprise only improves performance on all datasets over using either of these features
alone. Furthermore, our final model is significantly more performant than every baseline except
(Feng et al.l |2023)’s supervised network which is competitive. Results on all datasets using our
final model can be found in Appendix Taken together, in contrast to what (Shen et al., 2024))
previously suggested, the complexity of naturalistic images cannot be explained simply using two
generic segment and object features. Some datasets require additional features to explain visual
complexity fully.

Lastly, we evaluate the performance of GEMINI-1.5-FLASH on our SVG dataset using two dis-
tinct prompting strategies. In the first approach, the model estimated visual complexity without
an explicit definition, replicating the open-ended methodology from our Prolific human-subject ex-
periments. In the second approach, we provided the canonical definition of visual complexity as
“the level of detail or intricacy contained within an image” (Snodgrass & Vanderwart, |1980a) to
anchor the model’s judgments. Both strategies leveraged Chain-of-Thought reasoning to generate
structured rationales from GEMINI-1.5-FLASH. The resulting complexity ratings showed strong
internal consistency (Spearman’s p = 0.89 between the two strategies) and high alignment with hu-
man ground-truth ratings (p = 0.83 for both). Notably, our final integrated model—which combines
pixel-level features, object-level segmentation metrics, and surprise scores from GEMINI-1.5-FLASH
(quantifying how surprising an image is)—outperformed GEMINI-1.5-FLASH ’s standalone visual
complexity evaluations on the SVG dataset.

In Figure[5] we present another pair of images where, this time, the addition of surprise scores causes
their predicted complexity values to diverge in opposite directions.

4  DISCUSSION

This work introduces three features to solve the inadequacy of the generic constructs proposed by
(Shen et al.; 2024) to explain complexity in certain datasets: multi-scale gradient analysis, multi-
scale unique color, and a surprise score. We experimentally show that complexity can be mul-
tifaceted - requiring both generic features (segmentation and object counts) and dataset specific
features to predict accurately. Our results demonstrate that pixel-level structural and chromatic fea-
tures, MSG and MUC effectively capture key aspects of visual complexity, with MSG quantifying
patch symmetry across scales and MUC capturing color diversity, both complementing object-level
information from deep segmentation models. Additionally, we introduce surprise, an image-level
“cognitive” feature, as a previously underexplored dimension of visual complexity, representing the
degree to which the image as a whole deviates from expected objects or events. We introduce a new
dataset SVG containing images with unexpected or novel elements to show that surprise contributes
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Surprise as the hidden dimension

We present a case where both images share
similar visual features, including segmentations,
classes, MSG, and MUC. The right image, with
lower feature values, was initially predicted to
have lower complexity. The left image received
a complexity score of 60, while the right

num_seg = 191 num_seg = 172 received 55. However, the element of surprise
num_class =9 num_class =9 shifts the outcome, with improved predictions at
(a) MSG =59 () MSG =56 52 (72) compared to ground truth values of 25
MUC =922 MUC = 820 (74). Despite their similarity, humans may
Surprise =25 Surprise = 85 perceive the second image as more complex

possibly due to its unusual composition, where
multiple traffic signs are clustered together.

Figure 5: Comparison of two images having similar values of visual
features but with differing complexity evaluations.

1C9. Abstract

VISC I1C9. Arch. Sav. Art

B:52,P:62,G: 63 B:52,P:44,G: 44 B: 52, P: 66, G: 68 B:52,P:43,G: 41 B:52,P:92,G: 94 B:52,P:38,G: 38

Figure 6: Representative samples from previous datasets show initial complexity predictions

(B = 52), derived from ,/num_seg and v num_class, refined using MSG (VISC, IC9 Architecture),
MUC (Sav. Art, Sav. Suprematism), and MSG + MUC (Sav. Int. Design, IC9 Abstract). The
enhanced predictions (P) align closer to ground truth scores (G).

significantly to perceived complexity. We constructed our SVG dataset by manually selecting sur-
prising images and hence acknowledge the limitations in scalability and the potential subjectivity of
this approach. We hope our preliminary yet confirmatory results will inspire future research to de-
velop larger datasets using objectively defined measure to further validate the link between surprise
and complexity.

Numerosity Perception As the baseline approach, uses the square root of the
number of segmentations and classes, an empirical finding that demonstrated better performance
than using the raw values. One reason why the square root works better than the raw values can be
explained by the Weber-Fechner Law (Moyer & Landauer, [1967), which establishes that subjective
perception typically relates to stimulus intensity in a nonlinear manner. According to this princi-
ple, the just-noticeable difference between two stimulus intensities is proportional to the absolute
stimulus intensity. From a practical perspective, this means participants can more readily distin-
guish between images containing 10 versus 20 segmentations than between those with 110 versus
120 segmentations, despite the absolute difference being identical. We also tested applying logarith-
mic transformation to the number of segmentations and classes, but the square-root transformation
achieved slightly better results in the regression model, so we decided to stick with it.

MSG versus Patch Symmetry and Edge Density Patch symmetry (Kyle-Davidson et al., 2023
[Olivia et all, 2004} [Rosenholtz et al.l [2007) and edge density (Guo et al., 2018}, |Ciocca et al., 2015
are two commonly used low-level features for capturing structural information in an image. We
run ablation studies to investigate whether MSG is more performant than these two features. We
evaluate on all 16 datasets: VISC, RSIVL, SAVOIAS (5 categories - excluding Advertisement and
Visualizations due to heavy presence of text), IC9600 (8 categories), and SVG using permutation
tests. We compare MSG against patch symmetry because 2024) reported that it captures
structural information well on the VISC dataset. We compare MSG against Canny edge density be-
cause Canny is a standard metric for predicting visual complexity. It has been applied in|Guo et al.|
(2018)); [Corchs et al| (2016); Rosenholtz et al.| (2007). You can find more details of our ablation
study in Appendix [A.3]
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MSG performs significantly better than Canny edge density in five dataset (IC9. Abstract, 1C9.
Paintings, Sav. Scenes, IC9. Advertisement, and Sav. Interior Design). For example, on IC9. Ab-
stract, MSG achieves significantly higher correlation with the complexity compared to edge density
(0.517 vs 0.705). Edge density only outperformed MSG on two datasets (IC9. Person and Sav. Art).
Compared to patch symmetry, MSG performs better on 7 datasets (IC9. Abstract, IC9. Paintings,
IC9. Scenes, IC9. Advertisement, IC9. Architecture, IC9. Person, and Sav. Art). Patch symmetry
outperforms MSG on only one dataset (Sav. Interior Design dataset). Our ablations show that MSG
is currently the most performant structural feature for predicting complexity, outperforming both
edge density and patch symmetry across diverse image datasets.

Single versus Multi-Scale We perform ablation studies to investigate the necessity of multi-scale
computations for MSG and MUC. We measure the correlation between complexity and our visual
features using both single and multiple scales. By single scale, we refer to the application of our
algorithms on the whole image only once (W = 1.0 and S = 1) without rescaling. We find that
multi-scale MSG outperforms single-scale MSG on 8 datasets (VISC, IC9 Abstract, Sav. Objects,
Sav. Scenes, Sav. Suprematism, IC9 Transport, IC9 Objects, and SVG), while single-scale MSG
outperforms multi-scale MSG on just two datasets (IC9 Paintings and IC9 Architecture) out of the
16 datasets tested. The advantage of the multi-scale approach was particularly pronounced in Sav.
Suprematism, where correlation increased substantially from 0.474 to 0.616. Similarly, multi-scale
MUC outperformed single-scale MUC on 5 datasets (IC9. Abstract, IC9. Paintings, Sav. Art, IC9.
Advertisement, IC9. Architecture), while single-scale MUC outperformed multi-scale MUC on only
one dataset (IC9 Transport). The multi-scale versions of MSG and MUC maximize the correlation
with the perceived visual complexity.

Memorability and Aesthetics The existing literature on visual complexity has largely concen-
trated on identifying low-level image features that define complexity, rather than examining its per-
ceptual implications for the observer. However, as noted by (Forsythe| 2009), complexity inherently
relates to the difficulty of cognitive processing, suggesting that surprising images should be per-
ceived as more complex. We provide evidence in support of this hypothesis, showing that surprise,
as determined by an LLM, contributes significantly to visual complexity on our SVG dataset.

Prior work links image memorability, a closely related concept to complexity (Kyle-Davidson &
Evans| 2023), to distinctiveness, finding that unique or atypical features enhance retention. (Bruce
et al.| [1994; Bartlett et al.l|1984) find that distinct facial features are more memorable. (Lukavsky &
Déchtérenko, 2017) find that images that deviate from their neighbors in a CNN embedding space
have increased recall. We observe a weak positive correlation between human surprisal ratings and
both AMNet-predicted (p = 0.25, p < 0.05) (Fajtl et al.,|2018)) and ResMem-predicted memorability
(p =0.25,p < 0.05) (Needell & Bainbridge, 2022), suggesting that surprise may contribute to, or
even be a common cause for both judgments of complexity and memorability. Future works should
elucidate the relationship between complexity, memorability, and surprise.

The relationship between complexity and aesthetics has been extensively studied, though its precise
functional form remains uncertain. (Imamoglu, 2000; Berlynel |1970) provides evidence for an in-
verted U-shape between visual complexity and aesthetics. (Sun et al.|2015)) confirms the ascending
part of Berlyne’s inverted-U curve and employs complexity features to predict beauty judgments
in images. However, their measure relies solely on visual features like edges and symmetry, while
the authors acknowledge that semantic factors, such as familiarity, may also shape perceived vi-
sual complexity. In this work, we find preliminary evidence that surprise contributes to complexity.
Given the close relationship between complexity and aesthetics, it would be interesting in future
works to investigate the extent to which surprise also influences aesthetic, potentially by mediating
complexity. Our findings emphasize the multifaceted nature of complexity, requiring varied features
across datasets. An incomplete representation of visual complexity may obscure its link to aesthet-
ics, while a more comprehensive approach integrating visual and cognitive-semantic features could
enhance understanding.

Future work While our work uses whole-image, holistic surprise scores, GEMINI-1.5-FLASH
identifies specific object relationships and object-contexts that make each image more or less sur-
prising. Therefore, it would be interesting for future works to derive surprise scores (or even other
semantic features) from object-centric representations such as scene graphs. Our dataset, SVG en-
ables this type of investigation by including human-rated complexity scores, and inheriting region
descriptions, and scene graphs from the Visual Genome dataset. These rich annotations open a
promising path for developing and validating features that reflect semantic rather than purely visual
contributions to complexity.
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A APPENDIX

A.1 RESULTS ON ALL DATASETS

Table 2] compares the performance of the baseline approach, our final model, and Feng’s supervised
model across all datasets.

A.2 ADDITIONAL EXPERIMENT DETAILS

In our main paper, we briefly described the creation of our Surprising Visual Genome (SVG) dataset
and our methodology for collecting human complexity ratings. Here, we provide additional details
about our experimental procedure.

The visual complexity assessment task was conducted using Prolific (Palan & Schitter, 2018)) as the
participant recruitment platform. Each participant completed 200 pairwise comparisons in a single
session. The study, which took approximately 15 minutes to complete, offered payment of 2.61
pounds. All participants were recruited from the UK.

The experiment was implemented using jsPsych (de Leeuw, 2015)), a JavaScript library for creating
behavioral experiments in web browsers. After reading instructions and completing practice trials,
participants were presented with image pairs and asked to select the one they perceived as more
visually complex (see Figure[7). Initial instructions are provided in Frame[A.2
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Table 2: Correlations with the ground truth perceived Here we compare the baseline

complexity ratings. Bold indicates the best model approach (,/num_seg + /num_class),

performance for each dataset. Improvements from the our final model

baseline are indicated with arrows. (baseline + MSG + MUC + Surprise),

and the best supervised model (Feng

Dataset Baseline | Our final model | Feng (sup.) et al.,[2023) across 16 datasets.
VISC 0.56 0.71 70.15 0.72 When evaluating on datasets not
RSIVL 0.83 0.84 1 0.01 0.83 included in Feng’s training data, our
SVG 0.78 0.85 1 0.07 0.83 model outperforms Feng’s supervised
Sav. Art 0.73 0.82 10.09 0.82 approach on 4 out of 8 datasets, while
Sav. Sup. 0.89 0.94 1 0.05 0.84 Feng’s model performs better on 3
Sav. Int. 0.61 0.87 10.26 0.89 datasets (with one dataset resulting in a
Sav. Objects 0.82 0.8510.03 0.83 tie), giving us a final record of 4/3/1.
Sav. Scenes 0.77 0.81 10.04 0.87 Feng’s supervised method shows
IC9. Arch. 0.66 0.77 10.11 0.93 superior performance across all IC9
IC9. Abstract | 0.66 0.84 10.18 0.95 datasets as expected since their model
IC9. Scenes 0.77 0.83 10.06 0.93 was specifically trained on this data
IC9. Objects 0.80 0.84 10.04 0.92 distribution (in-domain evaluation). In
IC9. Transport| 0.74 0.79 10.05 0.88 contrast, our approach maintains strong
IC9. Paintings | 0.83 0.87 10.04 0.95 performance while using interpretable
IC9. Adv. 0.75 0.8210.07 0.93 features that don’t require training on
IC9. Person 0.59 0.66 1 0.07 0.85 any dataset.

Thank you for your consent to participate in our study.

In this study, you will be shown pairs of images and asked to judge which one appears
more visually complex to you.

You will make around 200 comparisons in total. For each pair, simply click on the
image you judge to be more surprising. There are no right or wrong answers - we are
interested in your perception of surprise.

At the end of the study, we will ask brief questions to better understand your judge-
ments of visual complexity.

The complete study will take approximately 15 minutes.

We will now show you some example pairs to familiarize you with the task. Click
“Start” to begin.

To ensure data quality, we embedded three attention check trials among the 200 comparisons. In
these trials, participants were shown identical images, except one image contained a text overlay
with explicit instructions to select it. Participants who failed more than one attention check were
excluded from the analysis and replaced with new participants to maintain our target sample size.

After completing all comparisons, participants responded to questions about their strategy for rating
visual complexity, whether they found particular types of images consistently more complex, and if
they had additional comments about their experience. These responses provided qualitative insights
into the factors influencing complexity judgments, as highlighted in the main paper.

The pairwise comparison data was processed using the Bradley-Terry algorithm (Bradley & Terry,
1952) to convert the binary choices into continuous complexity scores. To address the issue of
scores clustering around zero, we applied the rescaling procedure described in |Saraee et al.| (2018)),
which involved transforming the probability matrix from [0,1] to [0.33, 0.66] before applying the
Bradley-Terry model.

To collect human surprise ratings, we utilized the same experimental setting with minor modifica-
tions to the instructions and text to focus on surprisal rather than complexity.

Our complete experimental materials, including stimuli, code for the web-based inter-
face, data processing scripts, and analysis pipelines, are available at https://github.com/
Complexity-Project/Experiment|to facilitate replication and extension of our work.
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Please look carefully at the following two images and decide which one is more visually complex.

A B

164 comparisons left

Figure 7: Interface of the pairwise comparison experiment for visual complexity assessment.
Participants were instructed to select the image they perceived as more visually complex by
clicking on it. The number of comparisons remaining was displayed in the bottom right corner.

A.3 SVG DATASET

To curate the SVG dataset, we employed a targeted approach, first manually identifying candidates
with high surprisal value from the Visual Genome dataset, then validating our selections using an
automated method (using an LLM). We considered an alternative strategy—directly evaluating sur-
prise values across the entire corpus using an LLM and selecting those exceeding a threshold—but
determined this was impractical for the following: Identifying truly distinctive surprising images, as
exemplified in Figure [8]and subsequently confirmed by participant responses in Figure [ required
examining a substantial portion of the dataset, which consists of > 100K images. The computa-
tional demands of LLM processing at this scale imposed substantial practical constraints: either (1)
lengthy processing times due to API rate limits, or (2) prohibitive costs for premium API access
that would bypass these limitations. Therefore, we implemented a hybrid approach, first manually
selecting candidate images with high surprisal potential, followed by LLM verification to ensure
selection validity.

PR

G:15,H:4,C:5 G:35,H:32,C: 81 G: 65, H: 66, C: 27 G: 75, H: 76, C: 56 G: 85,H:98,C: 72 G: 85, H: 85,C: 81

Figure 8: Representative samples from the SVG dataset. G indicates the
GEMINI-1.5-FLASH-generated surprise scores, H represents human surprise scores collected
through our experiments, and C shows the ground truth perceived visual complexity - all values are
normalized to a 0-100 scale. The second figure illustrates cases where relatively ordinary images
tend to be classified as visually complex merely due to their high number of objects or
segmentations. Figures 4 and 5 share similar visual features (number of segmentations = 88 vs. 88,
number of classes =5 vs. 4, MSG = 37 vs. 38, MUC = 34 vs. 24), yet their visual complexity
values differ significantly (56 vs. 72). This difference may be attributed to how participants
perceived the latter image as more surprising (76 vs. 98).
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A.4 ABLATIONS ON LLMS FOR SURPRISE SCORES

To generate surprise scores for images in our SVG dataset, we evaluated three different LLMs:
GEMINI-1.5-FLASH (Gemini Team, [2024)), LLAMA-3.2-8B (Llama Team, 2024)), and CHATGPT-
40 (OpenAll 2024). Our selection strategy aimed to compare models across the accessibility spec-
trum: LLAMA-3.2-8B as a fully open-source model with unrestricted access, CHATGPT-40 as a
sophisticated commercial model available only through paid API (or free account using the UI), and
GEMINI-1.5-FLASH as a middle-ground solution offering free access with daily request limitations.

We input the exact same Chain-of-Thought prompt (as given in Algorithm[I)) to the models. Al-
though a popular choice as being fully open-source, LLAMA-3.2-8B could not keep up with the
other models, as it struggled with understanding the task and providing responses that could be
parsed by our algorithm. Therefore, we decided to focus on comparing GEMINI-1.5-FLASH and
CHATGPT-40 for our task. In Table 3] we present the Spearman correlation coefficients between
our predicted values and ground truth perceived visual complexity, comparing surprise scores de-
rived from GEMINI-1.5-FLASH, CHATGPT-40, and human participants as features in our regression
models.

Table 3: Correlations of our models with the ground truth perceived visual complexity.

Surprise scores
Other features included CHATGPT-40 GEMINI-1.5-FLASH Human-rated
J/Aumseg +v/num_class 0.81 0.83 0.85
J/numseg + v/num_class +MSG +MUC 0.82 0.85 0.86

As anticipated, human-rated surprise scores yield the strongest contribution to the baseline model,
enhancing correlation from 0.78 to 0.86. GEMINI-1.5-FLASH and CHATGPT-40-generated sur-
prisal scores show substantial agreement with a correlation of 0.78. However, the GEMINI-1.5-
FLASH-generated surprise scores demonstrate superior performance compared to those produced
by CHATGPT-40, with the latter failing to surpass Feng’s supervised model (0.83). Based on
these findings, we ultimately selected GEMINI-1.5-FLASH-produced surprise scores for our final
model—a choice that offered the additional practical advantage of free access within certain usage
limits.

A.5 FURTHER DETAILS ON MSG AND MUC

Here we present two examples in Figure 0| from the previous study (Shen et al.| 2024), presented as
failure modes.

We performed multiple ablation studies across all 16 datasets to determine the superior methodology.
Our statistical analysis assessed whether the correlation between feature X and visual complexity
differs significantly from that between feature ¥ and complexity, allowing us to identify the more
effective approach.

The permutation test first calculates Spearman’s rank correlations (r5) between complexity C and
both features X and Y, computing the difference of their absolute values, denoted as Agps =
|rs(C,X)| = |rs(C,Y)|. Tt then performs n = 1000 permutations, each time randomly shuffling the

complexity values C\¥) while keeping feature values fixed, which breaks any real relationships be-
tween complexity and the features. For each permutation i, it calculates new correlations with

the shuffled complexity values and records their permuted difference as Aé@m = |rs(CYD, X)| —
|rs(C,Y)|. Statistical significance is determined by calculating a p-value:

1 T(A ] > [Aops]) + 1
n+1
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MSG applies the Sobel operator to each k x k patch
——— in the image. While the Sobel operator has sym-

o« metric magnitude, its kernel contains opposite signs
—— on different sides. Consequently, symmetrical image
patches typically produce lower MSG values. This
image has a high segmentation count (538 - maxi-
mum in VISC dataset), yielding a high baseline pre-
diction of 86 versus the ground truth of 56. Incorpo-
rating its MSG score of 0.26 (50th percentile) reduces
the predicted complexity to 0.69, aligning closer to
the actual value.

Similarly, this image receives a high baseline predic-
tion (57) due to its substantial segmentation count
(204, 78.5 percentile) and class diversity (37, 87
percentile). However, by incorporating both sym-
metry effects and color uniformity, we can refine
our prediction. The image’s low MSG value (0.19,
15th percentile) and MUC value (0.18 for 7 bits, 7th
percentile) adjust the final prediction to 0.20, much
closer to the ground truth complexity of 0.16. Both
the symmetrical patches and monochromatic struc-
ture reduce its perceived visual complexity.

Figure 9: Examples where MSG and MUC features help improve complexity predictions: (top) an
image from VISC dataset and (bottom) an image from Sav. Int. dataset, both previously shared by

(2024) as failure modes.

Feature \ Comparison \ Result (win/loss/non-significant)

baseline vs. alternative #1 71415
baseline vs. alternative #2 4/3/9

MSG baseline vs. alternative #3 4/4/8
baseline vs. alternative #4 10/1/5
baseline vs. larger kernel 6/3/7
baseline vs. alternative #1 19/17/60

MUC baseline vs. alternative #2 22/10/64
baseline vs. alternative #3 13/8/75
baseline vs. alternative #4 51/9/36

Table 4: Results of weight/scale/kernel ablation studies. Numbers indicate datasets where the first
feature significantly outperformed (win), underperformed (loss), or showed no significant
difference (non-significant) compared to the second feature (p < 0.05).

where I(+) is the indicator function that equals 1 when the condition is true and O otherwise. A low
p-value (p < 0.05) indicates the difference between correlations is statistically significant, and if
significant, the feature with the higher absolute correlation is declared the “winner”.

We carried out a preliminary small-scale ablation study on weights and scales for MSG/MUC algo-
rithms. Our baseline used scales [1,2,4, 8] with weights [0.4,0.3,0.2,0.1] (baseline). We compared
this against three alternatives: (1) the same scales with reversed weights [0.1,0.2,0.3,0.4] (alter-
native #1); (2) fewer scales [1,4] with weights [0.6,0.4] (alternative #2); (3) linearly incremental
scales [1,2,3,4] with baseline weights (alternative #3) and (4) larger scales [8, 16,32, 64] with base-
line weights (alternative #4). For MSG, we also evaluated using a larger 5 x 5 kernel size. For
MSG, each comparison is carried out 16 times (number of datasets). For MUC, we carried out
the comparison separately for each bit setting € {3,4,5,6,7,8} and reported the total number of
win/loss/non-significant ratio (16 X 6 = 96 runs).
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Comparison \ Result (win/loss/non-significant)
Colored MSG vs. Grayscale MSG 6/2/8
Multi-scale MSG vs. Single-scale MSG 8/2/6
Multi-scale MUC vs. Single-scale MUC 5/1/10
MSG vs. Edge Density 5/2/9
MSG vs. Patch-symmetry (Kyle-Davidson et al., 2023) 7/1/8

Table 5: Results of feature comparison ablation studies. Numbers indicate datasets where the first
feature significantly outperformed (win), underperformed (loss), or showed no significant
difference (non-significant) compared to the second feature (p < 0.05).

Based on our ablation study, we selected the baseline weight and scale configuration for MSG
and MUC algorithms to conduct subsequent experiments. While our ablation study guided the
selection of a baseline configuration, we recognize that many other parameter combinations could
be explored. A more heavily tuned setup might yield even better results, but we opted for a simpler
baseline to focus on the broader methodological implications without spending excessive time on
hyperparameter optimization.

We then extended our investigation by examining various algorithmic variations, including colored
versus grayscale MSG, single-scale versus multi-scale implementations, and comparative analyses
of different feature extraction techniques. These comparisons encompassed edge density and patch-
based symmetry methods previously introduced by Davidson et al. |Kyle-Davidson et al.| (2023)).
Table E] highlights the effectiveness of colored MSG, multi-scale techniques, and MSG over the
baseline alternatives.

A.6 CONCLUSION

In this work, we introduce novel visual features that significantly outperform those traditionally
employed in visual complexity literature, enhancing the existing segmentation-based model while
preserving its interpretability. Drawing inspiration from the familiarity bias, we explore a previ-
ously unexamined dimension of visual complexity: the element of surprise. We first developed the
Surprising Visual Genome (SVG) dataset, created based on the well-studied Visual Genome collec-
tion, to systematically investigate semantic factors in complexity perception. Using this resource,
we conducted human participant studies that revealed a consistent tendency to perceive unfamil-
iar, surprising, or bizarre images as visually more complex. We then used LLMs to automate the
generation of surprise scores with explicit reasoning capabilities, creating a scalable approach to
quantifying this subjective dimension of visual complexity without sacrificing interpretability. Our
final model—which integrates low-level visual features, segmentation and class counts, and LLM-
generated surprise scores—not only outperforms all previous handcrafted feature approaches but
also achieves competitive results against the best-supervised model while maintaining interpretabil-

1ty.
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