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ABSTRACT

To enable effective learning of new tasks with only few samples, meta-learning
acquires common knowledge from the existing tasks with a globally shared meta-
learner. To further address the problem of task heterogeneity, recent developments
balance between customization and generalization by incorporating task cluster-
ing to generate the task-aware modulation to be applied on the global meta-learner.
However, these methods learn task representation mostly from the features of in-
put data, while the task-specific optimization process with respect to the base-
learner model is often neglected. In this work, we propose a Clustered Task-
Aware Meta-Learning (CTML) framework with task representation learned from
both features and learning path. We first conduct rehearsed task learning from the
common initialization, and collect a set of geometric quantities that adequately de-
scribes this learning path. By inputting this set of values into a meta path learner,
we automatically abstract path representation optimized for the downstream clus-
tering and modulation. To further save the computational cost incurred by the
additional rehearsed learning, we devise a shortcut tunnel to directly map between
the path and feature cluster assignments. Extensive experiments on two real-world
application domains: few-shot image classification and cold-start recommenda-
tion demonstrate the superiority of CTML compared to state-of-the-art baselines.

1 INTRODUCTION

The astonishing performance of deep learning relies on large amounts of data, which are not always
available. Humans, on the other hand, are able to learn new tasks much more quickly, leveraging
prior experience to relate knowledge among tasks. Inspired by this property of human intelligence,
meta-learning (also known as learning to learn) (Thrun & Pratt, 1998) acquires transferable com-
monalities from existing tasks for more efficient learning of new tasks. Although recent advances in
meta-learning have demonstrated success in fields like few-shot image classification and cold-start
recommendation (Vinyals et al., 2016; Snell et al., 2017; Ravi & Larochelle, 2016; Munkhdalai &
Yu, 2017), most of them typically assume that all the tasks are drawn from a single distribution and
face the challenge of handling tasks that come from different underlying distributions, a problem
known as task heterogeneity (Devos & Dandi, 2020; Yao et al., 2020; Suo et al., 2020).

To overcome this challenge, many recently developed works leverage task-specific information to
customize the global meta-learner (Vuorio et al., 2019; Oreshkin et al., 2018; Requeima et al., 2019;
Finn et al., 2018; Yoon et al., 2018; Li et al., 2019; Rusu et al., 2018). To further consider gener-
alization among related tasks, methods that perform various types of task clustering are proposed
(Yao et al., 2019; 2020; Suo et al., 2020; Lu et al., 2020; Dong et al., 2020; Lin et al., 2021). De-
spite their effectiveness in improving over the globally shared meta-learning algorithms, they learn
task representations only based on the input data distribution in (original or projected) feature space,
while the interaction between data and the base-learner is often neglected.

The amount of information contained in the task-specific data about a network that is responsible for
performing the task can be seen as a good representation of the task itself. This can be manifested as
the gradients of the network parameters with respect to the task-specific loss, or Fisher Information
Matrix (FIM) which indicates the importance of different network parameters in solving the task.
Achille et al. (2019) introduce a task embedding method based on FIM to assist the meta task of
selecting a pre-trained feature extractor. To alleviate the conflict issue of the global initialization
methods, Baik et al. (2020) utilize task gradients at the initialization as task representation to produce
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attenuation. However, these methods represent task based on gradients at only a single point in
parameter space (e.g., at the initialization), while the potential of exploiting a wider range on the
task manifold remains unexplored .

For the parameter initialization approach, the key of success lies in that the task adaptation process
is accounted for when training the meta-learner. This task-specific learning may involve multiple
gradient descent steps, and thus constitute a learning trajectory on the loss surface (Flennerhag
et al., 2018; Zenke et al., 2017). To better characterize the task optimization behaviors, it is more
beneficial to look at the complete learning trajectory as opposed to only the first gradient step at
the initialization, as it is likely that tasks with similar gradients at first will have their learning paths
diverged as the update proceeds. With that in mind, we are motivated to leverage the entire learning
path for better task representation, which will then be used to condition the global initialization.

In particular, we propose a Clustered Task-aware Meta-Learning (CTML) framework, building
upon the well-known global initialization method Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017). To address the problem of task heterogeneity with a good balance between customiza-
tion and generalization, we modulate the common initialization based on task representation learned
from both its local task-specific information and global clustering results. In addition to using the
input features to represent task, we further leverage the task learning path with respect to the base-
learner to characterize task from the perspective of optimization. To facilitate clustering, we devise a
GRU-based meta path learner which automatically abstracts path representations from the step-wise
geometric quantities. We realize that it may be too costly to rehearse the entire learning process
for task representation. Hence, we further propose a shortcut tunnel to bypass the rehearsed task
learning during meta-testing and predict path cluster assignment directly from the feature cluster
assignment. We carefully study the effectiveness of CTML in two real-world application domains:
few-shot image classification and cold-start recommendation, and show that our method is able to
outperform the baselines with comparable inference time.

2 RELATED WORK

To address the problem of task heterogeneity, recent developments often tailor the shared meta-
learner to different tasks using task-specific information. Finn et al. (2018) and Yoon et al. (2018)
model the uncertainty exists in task distribution with probabilistic framework. Oreshkin et al. (2018),
Li et al. (2019), Requeima et al. (2019) and Bateni et al. (2020) condition the base network on task-
specific data by designing a meta adaptation network. To enable more robust training, Rusu et al.
(2018) propose to learn a lower-dimensional latent space specific to each task to generate the base
network parameters. Relevant to our work, Vuorio et al. (2019) build upon MAML and modulate
the global initialization based on the task representation learned from an encoder network.

However, customizing the common knowledge to individual task without considering the relations
among similar tasks may lead to poor generalization. In regard to this, Dong et al. (2020) and Lin
et al. (2021) apply K-means clustering on users (treated as tasks) based on their profile information
to address the cold-start problem in recommender systems. Yao et al. (2019) employ a hierarchical
structure to model the nested relationships inherent in domains with clear taxonomy, such as image
classification. Yao et al. (2020) further develop an automatic relational graph method by constructing
a meta-knowledge graph to preserve and propagate the global structural information. Suo et al.
(2020) take advantages of an external knowledge base to facilitate task clustering. Despite their
effectiveness in generalizing across tasks, they rely solely on input features for task representation,
while the interaction between task data and the base-learner (e.g., gradients) is often neglected.

The idea of using gradients for task representation is commonly adopted in continual learning (Kirk-
patrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018). In the context of task-aware meta-
learning, Achille et al. (2019) propose to use the FIM of a “probe” network to represent task, and
Baik et al. (2020) leverage gradients of the globally initialized parameters to generate task-specific
attenuation. However, these methods utilize gradients only at a single point in parameter space,
whereas meta-learning often incorporates the entire task learning trajectory while learning the meta-
learner. Garcia et al. (2021) perform task clustering at each adaptation step and aggregate the gradi-
ents for more stable task adaptation. Flennerhag et al. (2018) highlight the benefits of leveraging the
learning paths for deriving the common knowledge, but the proposed algorithm only relies on one
geometric quantity – the length of the path, which can be limited in characterizing the learning paths,
and the initialization is not tailored to specific task. Our work serves to address the above-mentioned
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limitations, whereby higher-order behaviours of the learning path are also taken into account to learn
a better task representation for modulating the global initialization.

3 PRELIMINARIES AND PROBLEM STATEMENT

In task-heterogeneous setting, tasks {T1, T2, ..., TN} are sampled from a mixture of task distributions
{p1(T ), p2(T ), ...}, where the number of underlying distributions is usually unknown. The goal of
meta-learning is to learn the sharable knowledge by training the meta-learner on a set of meta-
training tasks Ttr = {Ti}N

tr

i=1 , and test it on a set of meta-testing tasks Tte = {Ti}Ni=Ntr+1. For
each task Ti ∈ Ttr ∪Tte, its samples are further divided into a training set (also termed support set)

Dtr
Ti

= {(xi,j , yi,j)}
ntr
Ti

j=1 and a test set (also termed query set) Dte
Ti

= {(xi,j , yi,j)}
nTi

j=ntr
Ti

+1
, which

together form an “episode” (Vinyals et al., 2016). This episodic scheme allows us to train tasks
to learn fast during meta-training, and test the learning performance of new tasks in the same way
during meta-testing. For few-shot learning, the size of the training set ntr

Ti
is usually small.

Our work builds upon Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017). It implements
the meta-learner as an initialization of parameters θ0 ∈ RD of the base-learner fθ responsible for
the prediction task. During meta-training, the global initialization θ0 is first adapted to each meta-
training task Ti ∈ Ttr by learning on the respective training set Dtr

Ti
, which yields the task-specific

parameters θTi
. After that, loss is computed on the test set Dte

Ti
based on θTi

and backward propa-
gated to update θ0. Taking one step adaptation as an example, the meta-optimization is as follows:

θ∗0 = argmin
θ0

!

Ti∈Ttr

L(fθTi
,Dte

Ti
) = argmin

θ0

!

Ti∈Ttr

L(fθ0−α▽θL(fθ0 ,D
tr
Ti

),Dte
Ti
), (1)

where α is the adaptation rate, L(fθ,D) can be mean square error loss for regression prob-
lem (i.e., 1

|D|
"

(x,y)∈D(y − fθ(x))
2), or cross-entropy loss for classification problem (i.e.,

− 1
|D|

"
(x,y)∈D y log fθ(x)). During meta-testing, the learned initialization θ∗0 is adapted to each

meta-testing task Ti ∈ Tte using Dtr
Ti

, and the learning performance is evaluated on Dte
Ti

.

However, with a globally shared initialization, MAML is not capable of handling task heterogeneity.
Though task-specic methods have been developed to tailor the global initialization, they lack explicit
modeling of the global clustering structure. Hence, a framework considering both task-specific
information and global structure is desired.

4 METHODOLOGY

Grounded on MAML, our CTML framework modulates the common initialization based on task
representation learned from two different perspectives enhanced with the clustering information.
Specifically, given the training set of a specific task, we first conduct rehearsed learning of the
task from the common initialization and compute a set of step-wise quantities along the learning
path. This set of values will be inputted into the meta path learner to generate a task-specific path
embedding. On the other hand, input features of the given task will also be extracted to form the
feature embedding. Both feature and path embeddings will then undergo soft K-means clustering
in their respective latent space. Finally, the two embeddings enriched with cluster information will
be aggregated to produce the task-aware modulation to be applied on the global initialization. From
this modulated intialization, standard MAML follows, which conducts the actual task learning on
the training set and perform meta-update across tasks using the test sets. To further improve the
inference efficiency during meta-testing, a shortcut tunnel is used to bypass the rehearsed learning
process and generate the path cluster assignment directly from the feature cluster assignment. An
overview of CTML framework is shown in Figure 1.

In the following sections, we first elaborate on task representation learning based on learning path
and features respectively, and then introduce the task-aware modulation and the shortcut tunnel.

4.1 TASK REPRESENTATION BASED ON LEARNING PATH

4.1.1 PATH CONSTRUCTION

To obtain representation of task Ti based on learning path, we first conduct a τ -step rehearsed
learning from the global initialization θ0 on training set Dtr

Ti
. Applying the same gradient de-

scent update as in MAML, we obtain the updated parameters at each step t ∈ {1, 2, ..., τ} by:
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Figure 1: Overview of CTML framework. For each incoming task
Ti, part (a) extracts path representation and performs clustering; part
(b) extracts feature representation and performs clustering; part (c)
generates task-aware modulation for global initialization; part (d) re-
constructs path cluster assignment from feature cluster assignment.

Figure 2: Illustration of
CTML task learning process.
Tasks with similar rehearsed
learning paths will produce
similar modulations.

θ̃tTi
= θ̃t−1

Ti
− α▽θL(fθ̃t−1

Ti

,Dtr
Ti
), where θ̃0Ti

= θ0. The overhead ·̃ is used to differentiate between
the parameters updated from the rehearsed learning and from the actual learning.

Joining the discrete points {(θ̃tTi
, L̃t

Ti
)}τt=0 constitutes the rehearsed learning path of Ti (we write

L(fθ̃t
Ti

,Dtr
Ti
) as L̃t

Ti
for brevity) on the unique task manifold MTi

∈ RD+1, characterized by the
base-learner function and the task-specific data distribution. We collect the coordinates of point
(θ̃tTi

, L̃t
Ti
) at each update step t ∈ {0, 1, 2, ..., τ} to indicate the exact learning trajectory. To account

for higher-order behaviours of the learning path, we further incorporate the gradients ▽θL̃t
Ti

and
the Fisher Information Matrix (FIM) F̃ t

Ti
at each step, which specify the direction and curvature

respectively. Note that by definition, the FIM is equivalent to the Hessian matrix in expectation for
cross-entropy loss: F̃ t

Ti
= Ex,y∼Ti [▽θL(fθ̃t

Ti

,x, y)▽θL(fθ̃t
Ti

,x, y)⊤] = Ex,y∼Ti [▽2
θL(fθ̃t

Ti

,x, y)].
It provides a measure of the amount of information that task Ti contains about the parameters θ
(Gianfelici & Battistelli, 2009). Following Achille et al. (2019), we assume negligible correlation
among different parameters and consider only the diagonal entries of F̃ t

Ti
, denoted by F̃ t

Ti
. As a

result, we obtain a set of step-wise quantities {(θ̃tTi
, L̃t

Ti
,▽θL̃t

Ti
, F̃ t

Ti
)}τt=0 that adequately describes

the rehearsed learning path.

As opposed to looking at only a single point in the parameter space (e.g., use gradients at the ini-
tialization to represent task (Baik et al., 2020)), it is benificial to take into account the entire learn-
ing path traversed, which gives a more complete picture of the optimization process. Take for
instance, two tasks Ta and Tb may have gradients forming a small angle ψ0

a,b at the initialization,
i.e., cos(ψ0

a,b) > 0. However, it is likely that their learning paths will diverge as the gradient update
proceeds, i.e., the accumulated angle

"τ
t=0 cos(ψ

t
a,b) < 0 (see dotted paths of T2 and T3 in Figure

2). Conversely, the tasks may have gradients pointing at different directions at first, but eventu-
ally converge towards the same direction as the learning proceeds (see dotted paths of T1 and T2).
Considering a single step only can be restrictive for task representation from the optimization per-
spective. Looking further down the paths allows better characterization of the learning behaviors and
even the flexibility to determine the “important” steps (as shown in experiments later), producing
more informative task representations. Furthermore, leveraging path representations serves to pro-
vide a stronger inductive bias to condition the initialization in favorable direction, as the rehearsed
learning path can be considered as encoding the quality of the initialization with respect to the task
(i.e., tasks with longer and more zigzag paths imply that the initialization is not a good one for them).

4.1.2 PATH REPRESENTATION

Having collected the step-wise quantities {(θ̃tTi
, L̃t

Ti
,▽θL̃t

Ti
, F̃ t

Ti
)}τt=0 along the rehearsed learn-

ing path, the problem now is how to evaluate “similarity” among different task learning paths for
clustering. Previous works with single-step gradients usually compute dot product or cosine sim-
ilarity between gradients of two tasks (Riemer et al., 2018; Katoch et al., 2019; Yu et al., 2020;
Baik et al., 2020). With multiple steps, a straightforward adaptation will be to simply sum up the
similarity scores at all steps. However, this human-defined rule may not be the best way of mea-
suring path similarity. Instead, we propose to employ a meta path learner to automatically learn a
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path embedding from the step-wise quantities, and then measure similarity based on these vector
representations. In other words, the meta path learner induces a latent space on which the distance
metric best characterizes what is considered as “similar” (or “disimilar”) among task learning paths.

Before we delve into the design of the path learner, we first elaborate how we construct the functional
input from the step-wise quantities. Recall that at each step t, we have θ̃tTi

,▽θL̃t
Ti
, F̃ t

Ti
∈ RD and

L̃t
Ti

∈ R. To obtain a regularly shaped input, we duplicate L̃t
Ti

to form a D-dimensional vector and
stack it together with the other 3 components to form a matrix Pt

Ti
∈ R4×D. Further stacking the

τ + 1 steps gives the overall 3-D matrix PTi ∈ R(τ+1)×4×D. To avoid high model complexity, we
apply the meta path learner coordinate-wise on the base-learner parameters. That is, the same path
learner is used to process the matrix Pd

Ti
∈ R(τ+1)×4 independently for all d ∈ {1, 2, ..., D}.

For the path learner design, we propose to leverage the Gated Recurrent Units (GRUs) to model the
sequential dependencies among steps1. Specifically, the hidden state hd,t

i at step t is obtained by
inputting the t-th sliced vector Pd

t,: ∈ R4 of Pd
Ti

and the hidden state hd,t−1
i at step t − 1 into the

GRU cell:
rd,ti = σ(Wr · [hd,t−1

i ,Pd
t,:]), zd,ti = σ(Wz · [hd,t−1

i ,Pd
t,:]),

h̃d,t
i = tanh(Wh̃ · [rd,ti ⊙ hd,t−1

i ,Pd
t,:]), hd,t

i = (1− zd,ti )⊙ hd,t−1
i + zd,ti ⊙ h̃d,t

i ,
(2)

where [·, ·] denotes concatenation, σ(·) is the sigmoid activation, rd,ti , zd,ti ∈ (0, 1) are gates that
control how much of past and present information to be retained, and Wr,Wz,Wh̃ are learnable
weights shared across all steps. For step t = 0, we use a zero-initialized input hidden state.

The path representation hd
i at the d-th dimension is obtained from the final step hidden state hd,τ

i

via a linear transformation: hd
i = Wo · hd,τ

i + bo. Concatenating the path representations at
all D dimensions and passing it through a fully-connected layer gives the final path embedding
epathTi

∈ Rde for task Ti: epathTi
= FC([h1

i , ...,h
D
i ]⊤).

Inspired by (Suo et al., 2020; Dong et al., 2020; Lin et al., 2021), we handle task heterogeneity
without jeopardizing generalization among similar tasks by employing a simple yet effective soft
K-means clustering on the path embeddings2. Specifically, we maintain kpath learnable cluster
centroids {apathj |∀j ∈ [1, kpath]} ∈ Rkpath×de for path embeddings. The cluster-enhanced path
embedding ẽpathTi

∈ Rde is simply the weighted sum of the cluster centroids:

ẽpathTi
=

!kpath

j=1
qpathij apathj , (3)

where qpathij =
(1+||epath

Ti
−apath

j ||2)−1

!
j′ (1+||epath

Ti
−apath

j′ ||2)−1
is the probability of assigning epathTi

to cluster j, computed

using the Student’s t -distribution as a kernel, following Xie et al. (2016).

4.2 TASK REPRESENTATION BASED ON FEATURES

Task representation based on learning path can be interpreted as encoding the conditional distribu-
tion p(y|x) (as the learning path is informed by the labels), whereas task is best described by the
joint distribution p(x, y) = p(y|x)p(x). Therefore, we further incorporate the marginal distribution
of input features by learning another representation solely based on features, as what have been
done in most of the existing task-aware meta-learning methods (Vuorio et al., 2019; Yao et al., 2019;
2020; Lin et al., 2021). Another significance of including feature-based representation is that, we
can create a mapping between the path and feature representations to bypass the rehearsed learning
during the meta-testing phase (details will be elaborated in Section 4.4).

Generally, the design of the feature extractor may vary for different application domains. Let E(·)
denote an arbitrary feature extractor, the feature embedding efeatTi

∈ Rde for task Ti is obtained by

aggregating the extracted features of all samples in the training set: efeatTi
= 1

ntr
Ti

"ntr
Ti

j=1(E(xi,j)).

Similar to the path embeddings, we also employ a soft K-means clustering to promote generaliza-
tion among related feature embeddings. Specifically, given kfeat cluster centroids {afeatj |∀j ∈

1Other network designs are possible for the meta path learner. We compare their efficacy in ablation study.
2Other clustering algorithms are possible. We leave it to future work.
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[1, kfeat]} ∈ Rkfeat×de , the cluster-enhanced feature embedding ẽfeatTi
∈ Rde is obtained by:

ẽfeatTi
=

!kfeat

j=1
qfeatij afeatj , (4)

where qfeatij =
(1+||efeat

Ti
−afeat

j ||2)−1

!
j′ (1+||efeat

Ti
−afeat

j′ ||2)−1
is the probability of assigning efeatTi

to cluster j.

4.3 TASK-AWARE MODULATION

We aggregate the path and feature embeddings via a learnable weight vector λ to generate the final
task representation. This task representation will then be used to produce a modulation to tailor the
global initialization θ0 to specific task. The modulated initialization θ0i for task Ti is obtained by:

θ0i = σ(W · (λẽpathTi
⊕ (1− λ)ẽfeatTi

) + b)⊙ θ0, (5)

where W, b, λ are learnable parameters, σ(·) is the sigmoid function, ⊕ and ⊙ denote element-wise
addition and element-wise multiplication respectively.

From this modulated initialization, task Ti will undergo regular task adaptation learning for τ steps.
After that, the meta-learner φ will be updated by optimizing loss across all the test sets, the same
procedure as in MAML. The meta-optimization objective is:

min
φ

!

Ti∈Ttr

L(fθ0i−α
!τ−1

t=0 ▽θL(fθtTi

,Dtr
Ti

),D
te
Ti
), (6)

where φ includes the global initialization θ0, the learnable parameters used to generate the cluster-
enhanced path and feature embeddings, and also the final modulation.

4.4 IMPROVING META-TESTING EFFICIENCY VIA SHORTCUT TUNNEL

The need to conduct rehearsed learning before the actual learning of each task inevitably leads
to twice the inference time compared to the original MAML. Though it is not possible to bypass
the rehearsed learning during meta-training as we need to optimize the meta path learner and the
downstream cluster centroids, it is possible to improve the inference efficiency during meta-testing
with the well-trained cluster centroids. Note that the cluster-enhanced path embedding ẽpathTi

used
to generate modulation is obtained based on the path cluster centroids and the soft assignment (see
equation 3). If we can estimate the path cluster assignment without actually going through the
rehearsed learning process to obtain epathTi

, we will be able to reduce the inference time by half.

Inspired by this, we devise a shortcut tunnel to predict the path cluster assignment directly from the
feature cluster assignment of the same task. The assumption behind is that there exists a one-to-
one mapping between the feature cluster assignments and the path cluster assignments, which can
be linear or non-linear. For better expressivity, we employ a two-layer fully connected network to
approximate the mapping and use it to reconstruct the path cluster assignment of Ti from its feature
cluster assignment:

q̂path
i = softmax(FCs(qfeat

i )), (7)

where qfeat
i = [qfeati1 , ..., qfeatikfeat

]⊤ ∈ Rkfeat and q̂path
i = [q̂pathi1 , ..., q̂pathikpath

]⊤ ∈ Rkpath . The
mapping handles cases where kpath ∕= kfeat and allows for different softness of cluster assignments.
To align the reconstructed and the actual assignment distributions, we use the Jensen-Shannon (JS)
divergence (a symmetrized version of Kullback-Leibler (KL) divergence) as the reconstruction loss:

Lr(Dtr
Ti
) = JS(q̂path

i ||qpath
i ) =

1

2
KL(q̂path

i ||pi) +
1

2
KL(qpath

i ||pi), (8)

where pi =
1
2 (q̂

path
i + qpath

i ), and KL(q||p) =
"

j qj log
qj
pj

is the KL divergence. During meta-
training, the reconstruction loss is optimized together with the loss in equation 6, resulting in the
following overall objective:

min
φ

!

Ti∈Ttr

L(fθ0i−α
!τ−1

t=0 ▽θL(fθtTi

,Dtr
Ti

),D
te
Ti
) + ζLr(Dtr

Ti
), (9)

where ζ controls the weight of Lr(Dtr
Ti
), and φ now further includes the shortcut tunnel parameters.

To apply the shortcut tunnel during meta-testing, we simply replace qpath
i with q̂path

i in equation 3
to obtain the cluster-enhanced path embedding ẽpath, i.e., ẽpathTi

=
"kpath

j=1 q̂pathij apathj . The overall
meta-training and meta-testing procedures of CTML are summarized in Algorithm 1 and 2.
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Algorithm 1: Meta-Training of CTML

Required: Meta-training tasks Ttr = {Ti}N
tr

i=1 ;
Number of steps τ ; Adaptation rate α;
Meta-update rate β; Number of clusters
kpath and kfeat

1 Randomly initialize all learnable parameters φ
2 while not converged do
3 Sample a batch of tasks B from Ttr

4 for Ti ∈ B do
5 Extract efeat

Ti
and cluster to obtain ẽfeat

Ti

6 Extract epath
Ti

from the τ -step rehearsed
learning and cluster to obtain ẽpath

Ti

7 Aggregate ẽfeat
Ti

and ẽpath
Ti

to generate θ0i

8 Evaluate L(fθTi
,Dte

Ti
) and Lr(Dtr

Ti
)

9 Meta-update φ ←
φ− β▽φ

!
Ti∈B[L(fθTi

,Dte
Ti
) + ζLr(Dtr

Ti
)]

Algorithm 2: Meta-Testing of CTML
Required: Meta-testing tasks Tte = {Ti}Ni=Ntr

Ti
+1;

Number of steps τ ; Adaptation rate α;
Number of clusters kpath and kfeat;
Meta-trained φ

1 for Ti ∈ Tte do
2 Extract efeat

Ti
and cluster to obtain ẽfeat

Ti

3 if use shortcut approximation then
4 Generate path assignment via the shortcut

tunnel to obtain ẽpath
Ti

5 else
6 Extract epath

Ti
from the τ -step rehearsed

learning and cluster to obtain ẽpath
Ti

7 Aggregate ẽfeat
Ti

and ẽpath
Ti

to generate θ0i

8 Evaluate L(fθTi
,Dte

Ti
)

5 EXPERIMENTS

To test the effectiveness of the proposed CTML framework, we conduct experiments3 on two real-
world application domains: few-shot image classification and cold-start recommendation.

5.1 FEW-SHOT IMAGE CLASSIFICATION

Datasets and Settings In few-shot image classification, each task is defined as assigning images
to N classes after training with K samples (i.e., N -way K-shot) (Vinyals et al., 2016). To simulate
task heterogeneity, we construct the Mixture-Of-Datasets consisting of 6 widely used benchmark
datasets: CUB-200-2011 (Bird) (Wah et al., 2011), FGVC-Aircraft (Aircraft) (Maji et al., 2013),
FGVCx-Fungi (Fungi) (Schroeder & Cui, 2018), VGG Flower (Flower) (Nilsback & Zisserman,
2008), Describable Textures (Texture) (Cimpoi et al., 2014), and GTSRB Traffic Signs (Traffic Sign)
(Stallkamp et al., 2012). Following Yao et al. (2019), we create each task by sampling N classes
from one of the 6 sub-datasets. This step ensures that tasks are drawn from different underlying
distributions. Apart from the Mixture-Of-Datasets, we also conduct experiments on the MiniIma-
genet (Ravi & Larochelle, 2016), which can be considered as a task-homogeneous setting as tasks
are sampled from a single dataset (results on MiniImagenet are discussed in Appendix D.2). More
details on datasets and pre-processing can be found in Appendix A.1.

Baselines and Our Method We compare the performance of our method against 5 baselines: (1)
global initialization method: MAML (Finn et al., 2017); (2) task-specific initialization methods:
MMAML (feature-based customization) (Vuorio et al., 2019) and L2F (gradient-based customiza-
tion) (Baik et al., 2020); (3) cluster-enhanced initialization methods: HSML (feature-based hierar-
chical clustering) (Yao et al., 2019) and ARML (feature-based relational graph) (Yao et al., 2020).
For our proposed CTML, we report both the original meta-testing performance (CTML) and the
one applying shortcut approximation (CTML(approx.)). We further implement 2 variants to com-
pare with the baselines: CTML-feat which only depends on feature representation and CTML-path
which only depends on path representation. Following Finn et al. (2017), we adopt both the feature
extractor E(·) and the base-learner fθ as a four-layer 3 × 3 convolutions with 32 filters for all the
compared methods (experiments on deeper network for base-learner can be found in Appendix D.1).
Further details on hyper-parameters settings can be found in Appendix B.1.

Baseline Comparison Table 1a presents the 5-way 1-shot & 5-shot classification performance
on Mixture-Of-Datasets (disentangled performance on individual sub-datasets are included in Ap-
pendix D.3). First of all, we see that all the task-aware methods outperform the globally initialized
MAML in task-heterogeneous setting. L2F with gradient-based conditioning on the initialization
performs better than the feature-based MMAML. After considering generalization across similar
tasks with some clustering techniques, HSML and ARML further improve over MMAML. Under
our proposed CTML framework, CTML-feat with K-means clustering on features exhibits compara-
ble performance as HSML and ARML. For CTML-path, the improvements over baselines are more

3All experiments are conducted using NVIDIA Tesla P100 GPU with 16GB memory.
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Table 1: Few-shot classification performance on Mixture-Of-Datasets for (a) baseline comparison
and (b) ablation study. We sampled 1000 tasks for meta-testing. The results are reported in the form
of mean accuracy (%) ± std over 8 trials. We also report the inference time (in milliseconds) per
task during meta-testing for the 5-way 1-shot scenario for baseline comparison.

(a) Baseline Comparison

Methods
Mixture-Of-Datasets

5-way 1-shot 5-way 5-shot runtime

MAML 52.83 ± 1.54 66.54 ± 0.61 82.9
MMAML 54.28 ± 1.30 67.82 ± 0.59 83.2

L2F 56.61 ± 1.21 68.45 ± 0.54 117.9
HSML 56.32 ± 1.16 68.73 ± 0.41 101.3
ARML 57.21 ± 1.68 69.29 ± 0.42 93.0

CTML-feat 57.14 ± 1.38 68.71 ± 0.52 84.3
CTML-path 57.74 ± 0.67 70.63 ± 0.68 171.2

CTML 59.03 ± 0.84 72.18 ± 0.42 181.0
CTML(approx.) 58.91 ± 0.95 71.69 ± 0.61 85.7

(b) Ablation Study

Variants
Mixture-Of-Datasets

5-way 1-shot 5-way 5-shot

Remove θ̃t
Ti

56.74 ± 1.03 71.38 ± 0.52

Remove L̃t
Ti

57.24 ± 1.20 71.50 ± 0.71

Remove ▽θL̃t
Ti

57.89 ± 1.33 71.76 ± 0.61

Remove F̃t
Ti

58.13 ± 1.12 71.88 ± 0.67

Linear Path Learner 57.52 ± 1.09 71.44 ± 0.47
FC Path Learner 58.37 ± 1.02 71.62 ± 0.39

Attention Path Learner 58.67 ± 1.40 71.83 ± 0.56

No Clustering 57.29 ± 1.24 71.06 ± 0.62

CTML 59.03 ± 0.84 72.18 ± 0.42

(a) (b) (c)
Figure 3: Understanding the path learning mechanism. (a) 6 tasks (5-way 1-shot) are randomly
sampled from Aircraft, Flower and Traffic Sign sub-datasets. (b) PCA visualization of the 5-step
rehearsed learning paths (upper plot) and the corresponding path embeddings generated by the GRU
(lower plot) for the 6 tasks. (c) Visualization of z gate (how much to retain for the current step input)
and r gate (how much to retain for the previous step memory) of GRU at each step t for the 6 tasks.

significant, especially for the 5-shot scenario where the learning paths are more reliable with more
training data. The final CTML combining the advantages of the two representations achieves further
improvements and outperforms the strongest baseline by a significant margin. Nevertheless, we can
see that the meta-testing time of CTML is about twice that of the baselines due to the additional
rehearsed learning process. After applying the shortcut approximation, we are able to cut down the
inference time by half with just a small compromise on performance.
Ablation Study We further conduct ablation study to test the efficacy of various CTML designs,
including the step-wise input components, the path learner design, and the effects of clustering.
From the results in Table 1b, we see that the lower-order quantities seem more important. Regarding
the path learner design, our proposed GRU-based model achieves the best result due to its ability to
capture the sequential dependencies among the steps. Attention model is also a competitive alterna-
tive, as the positional encodings and the causal mask serve to constrain the sequential order (detailed
descriptions of the different path learner designs can be found in Appendix C). As for clustering, we
see that it indeed helps to generalize better as the global structure is explicitly considered.
Understanding the Path Learning Mechanism To understand what has actually been learned by
the GRU path learner, we randomly sample 6 tasks (5-way 1-shot) from Aircraft, Flower and Traffic
Sign sub-datasets (Figure 3a) and visualize their path learning results. In Figure 3b, we plot the 5-
step rehearsed learning paths (upper) and the corresponding path embeddings generated by the GRU
(lower) on the first two PCA components. We can see that the learning paths of tasks from the same
sub-dataset generally move along the same direction, and the corresponding path embeddings are
able to encode the path geometric information and positioned closely for similar tasks in the latent
space. In Figure 3c, we further visulize the z gates and r gates of the GRU at each step t, which
control how much to retain for the current step input and previous step memory respectively. We
can see that the GRU path learner is able to identify the “important” steps (darker-blue blocks) and
absorbs a larger portion of the inputs at these steps into the final path embedding. More examples
on path visualization can be found in Appendix D.5
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Table 2: Prediction performance in MAE
(lower the better) for 3 datasets. We re-
port the mean MAE over 5 trials, where the
standard deviations are all less than 0.001.

Methods MovieLens Yelp Amazon

MeLU 0.8164 0.9464 0.7216
PAML 0.7725 0.9280 0.7150

MAMO 0.8084 0.8965 0.7207
MetaHIN 0.7727 0.8832 0.6743

CTML-feat 0.7560 0.9023 0.6804
CTML-path 0.7592 0.8714 0.6286

CTML 0.7543 0.8603 0.6048
CTML(approx.) 0.7555 0.8679 0.6087

(a) (b)

Figure 4: (a) Effect of varying kfeat and kpath for
MovieLens dataset. (b) Shortcut approximation of path
cluster assignment for a user from MovieLens dataset,
where kfeat = 8 and kpath = 16.

5.2 COLD-START RECOMMENDATION

Datasets and Settings In the field of recommender systems, meta-learning has been applied to
solve the cold-start problem, which refers to making recommendations related to new items or new
users unseen before (Vartak et al., 2017; Volkovs et al., 2017; Lee et al., 2019). Here, we focus on
the user cold-start problem, where recommending for each user is treated as a task. This setting
is task-heterogeneous in nature as users may belong to different preference groups. We conduct
experiments on 3 public datasets: MovieLens-1M (Harper & Konstan, 2015), Yelp (Dataset, 2019),
and Amazon-CDs (McAuley et al., 2015), consisting of user’s ratings on movies, business services
and CD products respectively. We split each dataset into meta-train/val/test by ratio 7/1/2 according
to the timestamps of ratings. For each user, we use the first 10 samples as training set, and the rest
as test set. Further details about datasets and pre-processing can be found in Appendix A.2.
Baselines and Our Method We choose 4 baselines that specifically tackle the user cold-start
problem in recommender systems developed based on MAML. MeLU (Lee et al., 2019) is the first
to adopt MAML in recommender systems with locally adapted decision layers; MetaHIN (Lu et al.,
2020) further incorporates Heterogeneous Information Networks (HIN) for data augmentation and
multi-faceted adaptations; MAMO (Dong et al., 2020) involves a global memory module to group
users based on profile information and personalizes the initial bias; PAML (Yu et al., 2021) per-
sonalizes the adaptation learning rate to allow for better fitting of the minor users. Following the
baselines, we implement the feature extractor E(·) as several embedding lookup matrices for differ-
ent features, and the base-learner fθ as a general recommender system model consists of embedding
matrices followed by multiple fully-connected layers (Lee et al., 2019). Detailed hyper-parameters
settings can be found in Appendix B.2.
Baseline Comparison We evaluate the rating prediction performance in terms of mean absolute
error (MAE) on 3 datasets, reported in Table 2 (more detailed results can be found in Appendix D.4).
From the results, we can see that PAML and MAMO with personalized adaptation rate and initial-
ization achieve better performance than MELU. Our CTML surpasses all the baselines, including
MetaHIN which leverages HIN for data augmentation. Furthermore, we notice that for MovieLens,
CTML-feat is slightly better than CTML-path, while for the other two datasets, CTML-path sig-
nificantly outperforms CTML-feat. Given that the MovieLens dataset contains more complete user
profile, this result implies the potential of representing users based on learning paths when the side
information is seriously lacking or inaccurate, which is often the case in real-world applications.
Number of Clusters For recommendation problem, there is no ground-truth grouping of users. In
Figure 4a, we investigate the effect of varying the number of clusters kpath and kfeat for MovieLens
dataset. We see that the best performance occurs at smaller kfeat values and larger kpath values,
which implies greater complexity for clustering the learning paths. Our design of the shortcut tunnel
allows flexibility to set different kpath and kfeat. In Figure 4b, we visualize the shortcut approxi-
mation of path assignment from feature assignment for a random user of MovieLens. We can see
that the shortcut tunnel is rather reliable as the reconstructed path assignment highly resembles the
actual path assignment. More examples on shortcut approximation are provided in Appendix D.6.

6 CONCLUSION

In this work, we introduce a CTML framework which leverages both features and learning paths for
task representation. We employ a GRU-based meta path learner to process the step-wise geometric
quantities, and introduce a shortcut tunnel to bypass the rehearsed learning during meta-testing.
Experiments on two real-world application domains demonstrate the effectiveness of our framework.
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7 REPRODUCIBILITY STATEMENT

Our code can be accessed at:

https://github.com/didiya0825/ctml_code

For data pre-processing and hyper-parameters settings, please see Appendix A and B.

8 ETHICS STATEMENT

Since the proposed method is a general meta-learning framework, we do not foresee any potential
ethic issue to the best our knowledge.
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A DATASETS AND PRE-PROCESSING DETAILS

If not specially mentioned, datasets are downloaded from the respective official websites, where
we have tried our best to seek permission for usage if applicable. The open-source datasets are
licensed under CC0: Public Domain. For recommendation datasets, all records are anonymized and
no personal identifiable information is involved.

A.1 IMAGE DATASETS

In our experiments, Mixture-Of-Datasets consist of six widely used benchmark datasets. For
the CUB-200-2011 (Bird), FGVC-Aircraft (Aircraft), FGVCx-Fungi (Fungi), and DTD (Texture)
datasets, we directly acquire the pre-processed version released by the authors of HSML4 (Yao
et al., 2019). Pre-processing details of these four sub-datasets can be found in the original paper of
HSML. We have obtained the authors’ consent to use this asset for our research.

For the VGG Flower (Flower)5 and GTSRB (Traffic Sign)6 datasets, we download the raw datasets
from the respective official websites. We follow the pre-processing protocols of Finn et al. (2017) to
resize all the images to 84×84×3. We also try to maintain the same meta-train/validation/test ratio
as Yao et al. (2019) for class splits. For VGG Flower, there are in total 102 flower classes, and each
class consists of 40 to 258 images. For GTSRB, we use the official training data which contains 43
traffic sign classes, and each class has 30 images.

For MiniImagenet, we acquire the dataset as well as the meta-train/validation/test splits from Ravi
& Larochelle (2016). Table 3 summarizes the meta-train/validation/test splits for each of the sub-
datasets as well as MiniImagenet.

Table 3: Meta-train/validation/test splits of sub-datasets and MiniImagenet.

Datasets #Meta-Train Classes #Meta-Validation Classes #Meta-Test Classes

CUB-200-2011 (Bird) (Wah et al., 2011) 64 16 20
FGVC-Aircraft (Aircraft) (Maji et al., 2013) 64 16 20

FGVCx-Fungi (Fungi) (Schroeder & Cui, 2018) 64 16 24
VGG Flower (Flower) (Nilsback & Zisserman, 2008) 64 16 22

DTD (Texture) (Cimpoi et al., 2014) 30 7 10
GTSRB (Traffic Sign) (Stallkamp et al., 2012) 26 7 10

MiniImagenet (Ravi & Larochelle, 2016) 64 20 16

A.2 RECOMMENDATION DATASETS

A.2.1 MOVIELENS-1M

MovieLens-1M7 dataset (Harper & Konstan, 2015) contains 1,000,209 anonymous ratings on around
3,900 movies made by 6,040 users. We acquire the additional side information released by the
authors of MeLU8 (Lee et al., 2019), which contains user profile information of gender, age group,
occupation, zipcode, and movie profile information of rate, genre, director and actor.

The dataset is split into meta-train/validation/test set according to the timestamps of ratings by ratio
7/1/2. As a result, the start time is 2000-04-26, the meta-train cut-off time is 2000-11-22, the meta-
validation cut-off time is 2000-12-02, and the end time is 2003-03-01. Users with less than 30
samples in each split are removed. In the end, the average sample size for each user is 163. The
statistics of the pre-processed MovieLens-1M dataset and the number of meta-train/validation/test
users are recorded in Table 4 and 5. Note that it is possible for meta-train users to appear in meta-
validation and meta-test set, and these users are termed warm users. Conversely, meta-validation
or meta-test users that have never appeared in the meta-train set are termed cold users.

4https://github.com/huaxiuyao/HSML
5https://www.robots.ox.ac.uk/˜vgg/data/flowers/
6https://benchmark.ini.rub.de/
7https://grouplens.org/datasets/movielens/
8https://github.com/hoyeoplee/MeLU
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A.2.2 YELP

Yelp9 dataset (Dataset, 2019) contains 8,635,403 reviews for 160,585 business services made by
2,189,457 users. We extract the star ratings from the reviews for our experiments. For each business
service, we collect the city it resides and the categories it belongs to from the business metadata.
However, for the user, the personal information is lacking, and we only have access to the user ID.

The dataset is split into meta-train/validation/test set according to the timestamps of ratings by ratio
7/1/2. As a result, the start time is 2004-10-12, the meta-train cut-off time is 2018-02-07, the meta-
validation cut-off time is 2018-09-04, and the end time is 2019-12-13. Users with less than 30
samples in each split are removed. In the end, the average sample size for each user is 89. The
statistics of the pre-processed Yelp dataset and the number of meta-train/validation/test users are
recorded in Table 4 and 5.

A.2.3 AMAZON-CDS

Amazon-CDs10 dataset (McAuley et al., 2015) contains 3,749,004 ratings for 544,442 CD and Vinyl
products made by 1,578,597 users. For each CD, we collect its brand and category, while for the
user, the personal profile information is lacking and we only have access to the user ID.

The dataset is split into meta-train/validation/test set according to the timestamps of ratings by ratio
7/1/2. As a result, the start time is 1997-09-13, the meta-train cut-off time is 2012-01-13, the meta-
validation cut-off time is 2013-03-05, and the end time is 2014-07-23. Users with less than 30
samples in each split are removed. In the end, the average sample size for each user is 82. The
statistics of the pre-processed Amazon-CDs dataset and the number of meta-train/validation/test
users are recorded in Table 4 and 5.

Table 4: Statistics of recommendation datasets.

Datasets Features #IDs

MovieLens-1M (Harper & Konstan, 2015)

User 5,255
Gender 2

Age Group 7
Occupation 21

Zipcode 3,402

Movie 3,697
Rate 6

Genre 25
Director 2,186

Actor 8,030

Yelp (Dataset, 2019)

User 25,206

Business Service 159,611
Category 1,317

City 1,023

Amazon-CDs (McAuley et al., 2015)

User 3,876

CD 132,209
Category 490

Brand 49,283

Table 5: Number of meta-train/validation/test users of recommendation datasets.

Datasets #Meta-Train Users
#Meta-Validation Users #Meta-Test Users

All Warm Cold All Warm Cold

MovieLens-1M (Harper & Konstan, 2015) 4,119 621 122 499 1,229 485 744
Yelp (Dataset, 2019) 22,822 1,281 681 600 3,442 1,441 2,001

Amazon-CDs (McAuley et al., 2015) 3,584 202 110 92 355 119 236

9https://www.yelp.com/dataset
10https://jmcauley.ucsd.edu/data/amazon/
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B HYPER-PARAMETERS SETTINGS

B.1 FEW-SHOT IMAGE CLASSIFICATION

For fair comparison, we adopt the same feature extractor and base-learner for all the compared
methods. Following Finn et al. (2017), the feature extractor is a four-layer 3 × 3 convolutions with
32 filters, followed by a one-layer fully-connected layer that maps the extracted features into the
task embedding dimension de. The base-learner is also a four-layer 3 × 3 convolutions with 32
filters, followed by a one-layer fully-connected layer that projects the output to prediction scores for
5 classes. Each convolution layer is accompanied with batch normalization, ReLU nonlinearity, and
2× 2 max-pooling.

For all the compared methods, we follow the hyper-parameters settings for meta-training in MAML
(Finn et al., 2017), which sets the adaptation learning rate α as 0.01, the meta-update learning rate
β as 0.001, the number of adaptation steps τ as 5, the meta batch size |B| as 4, the size of test set
|Dte

Ti
| as 15, and the number of meta-update iterations as 60,000. For all the task-aware modulation

methods (i.e., MMAML (Vuorio et al., 2019), L2F (Baik et al., 2020), HSML (Yao et al., 2019),
ARML (Yao et al., 2020)), we set the dimension of task embedding de as 128 (following Yao et al.
(2019)). Additionally, for HSML (Yao et al., 2019), we set the number of clusters in the first and
second layer of hierarchical tree as 4 and 2 respectively. For ARML (Yao et al., 2020), we set the
number of vertices in the meta-knowledge graph as 4. For our proposed CTML, we set the number
of clusters for both feature and path representations as 6, i.e., kpath = kfeat = 6.

B.2 COLD-START RECOMMENDATION

Different from the image dataset, recommendation dataset typically consists of user-item interac-
tions and profile features for both sides. The feature extractor is implemented as several embedding
lookup tables, each corresponds to one categorical feature. We set the embedding dimension as 8
for all features. The base-learner is implemented as a general deep learning-based recommender
system model, composed of embedding matrices followed by a two-layer fully connected layer that
models the interaction between different features. The embedding dimension for base-learner is set
to 8, and the hidden sizes for the fully-connected layers is set to [32, 16].

For all the compared methods, we follow the hyper-parameters settings for meta-training in MeLU
(Lee et al., 2019), which sets the adaptation learning rate α as 5e-3, the meta-update learning rate
β as 5e-5, the number of adaptation steps τ as 5. For other hyper-parameters that are not explicitly
specified by Lee et al. (2019), we set the meta batch size |B| as 1, the size of training set |Dtr

Ti
| for

each user as 10 (the remaining are used as test set Dte
Ti

for that user, whose size varies for different
users), and the number of meta-training epochs as 20. For MAMO (Dong et al., 2020) which also
employs K-means clustering, we apply the same hyper-parameters tuning procedure as our CTML.
That is, we tune both kpath and kfeat in {4, 8, 12, 16, 20}, and tune the dimension of task embedding
de in {64, 128, 256, 512, 1024}. Other hyper-parameters settings specific to the baseline methods are
directly adopted from the source codes released by the authors.
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C OTHER PATH LEARNER DESIGNS

In addition to the GRU-based meta path learner design described in equation 2, we also experiment
on 3 other network designs to test their effectiveness in modeling the step-wise geometric quantities.

Recall that the meta path learner is applied coordinate-wise on the base-learner parameters. That
is, the same meta path learner is used to process the sequence of step-wise tuples Pd

Ti
∈ R(τ+1)×4

independently for all parameters at different dimensions d ∈ {1, 2, ..., D}.

The first design linearly transforms the vectorized Pd
Ti

with learnable weight and bias:

Linear : hd
i = W · vec(Pd

Ti
) + b. (10)

The second one employs multiple fully-connected layers with nonlinear activation σ(·):

FC : u0 = vec(Pd
Ti
),

u1 = σ(W1 · u0 + b1),

...

uL = σ(WL · uL−1 + bL),

hd
i = uL.

(11)

The third design applies multiple self-attention layers on the sequence with scaled dot-product sim-
ilarity following Vaswani et al. (2017). To inform about the sequential order, we apply sinusoid
positional encodings at the input level, and also apply causal mask to prevent interaction with future
steps (i.e., set the upper triangular entries of the similarity matrix to −∞ before inputting into soft-
max). The final representation hd

i is given by the (τ + 1)-th row (i.e., the last row) of the final-layer
output:

Attention : U0 = Pd
Ti

+ positional encodings,

U1 = softmax(
Q1 · (K1)⊤√

da
) ·V1,

...

UL = softmax(
QL · (KL)⊤√

da
) ·VL,

hd
i = UL

τ+1,:,

where Ql = σ(Ul−1 ·Wl
Q + bl

Q) ∈ R(τ+1)×da ,

Kl = σ(Ul−1 ·Wl
K + bl

K) ∈ R(τ+1)×da ,

Vl = σ(Ul−1 ·Wl
V + bl

V ) ∈ R(τ+1)×da .

(12)

Concatenating the path representations at all D dimensions and passing it through a fully-connected
layer gives the final path embedding epathTi

∈ Rde for task Ti:

epathTi
= FC([h1

i , ...,h
D
i ]⊤). (13)
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D ADDITIONAL EXPERIMENTAL RESULTS

D.1 PERFORMANCE ON RESNET-12

We have conducted additional experiments to test the effectiveness of our method using a deeper
network ResNet-12 as the backbone (i.e., the base-learner). We follow the implementation of Sun
et al. (2019) which adopts (64-128-256-512) for the number of filters at the four blocks.

It was shown recently that, with a deeper backbone, simple training paradigm like pre-training and
fine-tuning (Tian et al., 2020; Chen et al., 2018) can achieve very satisfactory performance. We
therefore further include the following 3 baselines for comparison on ResNet-12:

• Finetune: This baseline simply pretrains a global feature extractor on the entire training
dataset and then finetunes the classifier for individual tasks.

• Finetune-distance (Chen et al., 2018): This method modifies Finetune by computing cosine
distance between the input feature vector and the class vectors for the classifier.

• Finetune-distill (Tian et al., 2020): This method modifies Finetune by employing a sequen-
tial self-distillation technique to pretrain the feature extractor.

Table 6 below presents the 5-way 1-shot performance on the Mixture-Of-Datasets with 2 differ-
ent backbones: Conv-4 and ResNet-12. We can see that the gaps between Finetune methods and
MAML are narrower for deeper backbone, which can be attributed to that the deeper models have
larger capacity to accommodate the transferable knowledge obtained from the pre-training (in line
with the findings of Chen et al. (2018)). However, under this task-heterogeneous setting, the task-
conditioned methods still yield better performance than MAML and the Finetune baselines for
ResNet-12, demonstrating the effectiveness of task-conditioning even for deeper backbone. And
our method with path representation yields the best result.

Table 6: 5-way 1-shot performance (mean accuracy (%) ± std over 8 trials) on Mixture-Of-Datasets
for Conv-4 and ResNet-12

Methods
Mixture-Of-Datasets

Conv-4 ResNet-12

Finetune 45.76 ± 0.75 53.48 ± 0.57

Finetune-distance 46.82 ± 1.32 54.67 ± 1.44

Finetune-distill 47.41 ± 1.67 55.72 ± 1.07

MAML 52.83 ± 1.54 56.84 ± 1.38

MMAML 54.28 ± 1.30 59.12 ± 1.61

L2F 56.61 ± 1.21 61.57 ± 1.28

HSML 56.32 ± 1.16 64.03 ± 0.89

ARML 57.21 ± 1.68 61.06 ± 1.19

CTML 59.03 ± 0.84 63.18 ± 1.02

CTML(approx.) 58.91 ± 0.95 62.69 ± 1.32

D.2 PERFORMANCE ON MINIIMAGENET

Table 7 presents the results on MiniImagenet benchmark (Ravi & Larochelle, 2016), where tasks
are constructed from a single dataset (i.e., there is only one underlying distribution) and hence can
be considered as a task-homogeneous setting. Since in this case, task-aware methods do not have
advantages over the global initialization methods, we see that all the baselines have comparable
performance as the original MAML. Nevertheless, the results show that though the task-aware mod-
ulation is rendered less meaningful in task-homogeneous setting, CTML will yield performance at
least comparable to the global initialization method in this scenario.
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Table 7: Few-shot classification performance on MiniImagenet. Since for all the baselines on Mini-
Imagenet, the results are reported in the form of 95% confidence interval of accuracy (%) based on
1000 meta-testing tasks, we also report our results in the same format for direct comparison.

Methods
MiniImagenet

5-way 1-shot 5-way 5-shot

MAML 48.70 ± 1.84 63.11 ± 0.90

MMAML 49.86 ± 1.85 63.73 ± 0.91

L2F* 50.78 ± 1.72 64.06 ± 0.89

HSML 50.38 ± 1.85 64.03 ± 0.90

ARML 50.42 ± 1.79 64.12 ± 0.90

CTML-feat 50.29 ± 1.82 64.05 ± 0.87

CTML-path 50.43 ± 1.82 64.07 ± 0.90

CTML 50.47 ± 1.83 64.15 ± 0.90

CTML(approx.) 50.25 ± 1.84 64.03 ± 0.93

* reproduced due to different implementation of base-learner.

D.3 PERFORMANCE ON SUB-DATASETS

Table 8 presents the few-shot classification performance of CTML and the baselines on each sub-
dataset. We see that CTML consistently outperforms all the baselines for all the sub-datasets. Other
trends are similar to that of the overall results in Table 1a.

Table 8: Few-shot classification performance on individual sub-datasets. We sample 1000 tasks
from each sub-dataset for meta-testing. The results are reported in the form of mean accuracy (%)
± std over 8 trials.

Methods Bird Aircraft Fungi Flower Texture Traffic Sign

5-way
1-shot

MAML 52.73 ± 1.52 49.04 ± 1.03 39.42 ± 1.25 61.73 ± 1.42 31.80 ± 1.12 93.16 ± 1.01
MMAML 54.02 ± 1.36 51.81 ± 1.08 41.99 ± 1.27 64.36 ± 1.21 32.83 ± 1.54 92.07 ± 1.13

L2F 57.13 ± 1.52 54.23 ± 1.14 43.44 ± 1.31 64.79 ± 1.47 33.64 ± 1.52 92.61 ± 0.87
HSML 55.75 ± 1.14 53.02 ± 1.47 43.03 ± 1.24 64.15 ± 1.62 34.07 ± 1.48 92.01 ± 1.08
ARML 58.12 ± 1.53 54.11 ± 1.52 44.15 ± 1.12 65.36 ± 1.01 33.87 ± 1.39 93.76 ± 1.12

CTML-feat 58.72 ± 1.33 53.87 ± 1.07 44.21 ± 1.37 65.41 ± 1.22 33.07 ± 1.51 92.95 ± 1.31
CTML-path 58.63 ± 1.04 54.21 ± 1.37 44.10 ± 1.33 66.72 ± 1.37 33.15 ± 1.16 94.09 ± 0.92

CTML 61.05 ± 1.56 56.13 ± 1.21 45.19 ± 1.37 67.08 ± 1.24 35.24 ± 1.07 94.93 ± 0.89
CTML(approx.) 60.73 ± 1.42 55.92 ± 1.11 44.72 ± 1.61 67.32 ± 1.05 34.98 ± 1.26 94.71 ± 1.07

5-way
5-shot

MAML 71.02 ± 0.82 63.64 ± 0.43 53.61 ± 0.48 75.29 ± 0.55 44.76 ± 0.63 97.01 ± 0.18
MMAML 71.82 ± 0.48 67.01 ± 0.54 52.80 ± 0.43 77.63 ± 0.84 45.29 ± 0.38 98.13 ± 0.57

L2F 72.64 ± 0.71 70.24 ± 0.67 56.79 ± 0.68 78.24 ± 0.87 45.91 ± 0.76 98.42 ± 0.32
HSML 71.73 ± 0.62 71.26 ± 0.39 56.48 ± 0.47 79.12 ± 0.49 46.11 ± 0.84 98.22 ± 0.33
ARML 73.84 ± 0.61 72.07 ± 0.15 55.87 ± 0.52 79.67 ± 0.44 45.48 ± 0.36 98.52 ± 0.26

CTML-feat 71.92 ± 0.73 72.19 ± 0.45 55.64 ± 0.58 78.94 ± 0.82 45.43 ± 0.46 98.43 ± 0.37
CTML-path 73.65 ± 0.29 74.03 ± 0.52 56.78 ± 0.62 80.92 ± 0.80 46.18 ± 0.33 98.95 ± 0.51

CTML 75.12 ± 0.27 74.09 ± 0.72 57.15 ± 0.46 81.07 ± 0.41 46.88 ± 0.56 98.81 ± 0.18
CTML(approx.) 74.57 ± 0.41 73.51 ± 0.41 57.41 ± 0.51 80.71 ± 0.71 46.81 ± 0.51 98.72 ± 0.31

D.4 PERFORMANCE ON RECOMMENDATION DATASETS

Table 9 presents the rating prediction performance on 3 datasets evaluated in two metrics: mean
absolute error (MAE) and normalized discounted cumulative gain at top 20 (NDCG@20). The
meta-testing users are further divided into warm and cold users, where warm users are those that
have appeared in the meta-training set, and cold users are those that have not11. From the results, we
see that CTML consistently outperforms the baselines.

11Note that for few-shot image classification, all the meta-testing tasks are unseen during meta-training,
while for recommendation, it is possible that the meta-testing users also appeared in meta-training set.
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Table 9: Rating prediction performance on 3 datasets in MAE and NDCG@20. Note that the results
under ‘All Users’ are the same as that in Table 2.

Datasets Methods
MAE ↓ NDCG@20 ↑

All Users Warm Users Cold Users All Users Warm Users Cold Users

MovieLens-1M

MeLU 0.8164 0.8112 0.8197 0.7839 0.7935 0.7716
PAML 0.7725 0.7575 0.7879 0.8255 0.8391 0.8165

MAMO 0.8084 0.8073 0.8091 0.8118 0.8274 0.8030
MetaHIN 0.7727 0.7490 0.7841 0.8264 0.8356 0.8110

CTML-feat 0.7560 0.7482 0.7631 0.8470 0.8530 0.8384
CTML-path 0.7592 0.7474 0.7690 0.8493 0.8499 0.8437

CTML 0.7543 0.7415 0.7626 0.8562 0.8634 0.8487
CTML(approx.) 0.7555 0.7411 0.7652 0.8531 0.8627 0.8418

Yelp

MeLU 0.9464 0.9100 0.9576 0.8149 0.8161 0.8139
PAML 0.9280 0.9151 0.9336 0.8215 0.8230 0.8204

MAMO 0.8965 0.9125 0.8840 0.8332 0.8296 0.8384
MetaHIN 0.8832 0.9021 0.8767 0.8375 0.8324 0.8412

CTML-feat 0.9023 0.9107 0.8949 0.8295 0.8301 0.8259
CTML-path 0.8714 0.8912 0.8581 0.8401 0.8327 0.8420

CTML 0.8603 0.8700 0.8533 0.8467 0.8364 0.8524
CTML(approx.) 0.8679 0.8721 0.8607 0.8433 0.8319 0.8497

Amazon-CDs

MeLU 0.7216 0.6840 0.7383 0.9026 0.9037 0.9020
PAML 0.7150 0.6813 0.7317 0.9083 0.9096 0.9051

MAMO 0.7207 0.7103 0.7260 0.9116 0.9067 0.9140
MetaHIN 0.6743 0.6675 0.6804 0.9111 0.9082 0.9153

CTML-feat 0.6804 0.6697 0.6874 0.9122 0.9078 0.9179
CTML-path 0.6286 0.6207 0.6372 0.9201 0.9180 0.9238

CTML 0.6048 0.6080 0.6011 0.9279 0.9244 0.9293
CTML(approx.) 0.6087 0.6144 0.6007 0.9244 0.9215 0.9260
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D.5 ADDITIONAL LEARNING PATH VISUALIZATION

D.5.1 FEW-SHOT IMAGE CLASSIFICATION

Here we provide more examples for visualizing the path learning results for the few-shot image
classification experiments. Figure 5, 6 and 7 each shows the path learning results of 6 tasks randomly
sampled from 3 of the 6 sub-datasets.

We see that in this application scenario, the overall direction of the learning path plays an important
role in determining the task representation. Looking at the GRU gates at each step, it seems that the
first 2 to 3 steps are often the most important/informative steps, after which the learning begins to
converge and the subsequent steps no longer provide useful information about the learning direction.

(a) (b) (c)
Figure 5: Visualizing path learning results of 6 tasks (5-way 1-shot) randomly sampled from Bird,
Fungi and Texture sub-datasets (2 tasks from each sub-dataset).

(a) (b) (c)
Figure 6: Visualizing path learning results of 6 tasks (5-way 1-shot) randomly sampled from Bird,
Aircraft and Traffic Sign sub-datasets (2 tasks from each sub-dataset).

(a) (b) (c)
Figure 7: Visualizing path learning results of 6 tasks (5-way 1-shot) randomly sampled from Fungi,
Flower and Texture sub-datasets (2 tasks from each sub-dataset).
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D.5.2 COLD-START RECOMMENDATION

We also provide examples for visualizing the learning paths for the cold-start recommendation ex-
periments. Figure 8 and 9 each shows the path learning results of 6 users randomly selected from
the MovieLens-1M dataset, and Figure 10 and 11 each shows the results of 6 users sampled from
the Amazon-CDs dataset.

In this application scenario, we notice that apart from the overall direction of the path, the length of
the path also plays an important role in determining the task representation. For instance, in Figure
11, the blue, orange, green and brown paths (upper plot) are clustered closely in the representation
space (lower plot) due to similar lengths, although they are pointing at very different directions.
Similar observation can also be found in Figure 8. Although blue and orange paths are pointing
at the same directions, their embeddings are positioned far away from each other due to the big
difference in path lengths.

Figure 8: Visualizing path learning results of 6
users randomly selected from MovieLens-1M.

Figure 9: Visualizing path learning results of 6
users randomly selected from MovieLens-1M.

Figure 10: Visualizing path learning results of 6
users randomly selected from Amazon-CDs.

Figure 11: Visualizing path learning results of 6
users randomly selected from Amazon-CDs.
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D.6 ADDITIONAL SHORTCUT APPROXIMATION VISUALIZATION

In this section, we give more examples to verify the effectiveness of the shortcut approximation.
Figure 12 shows the approximation results of 2 users sampled from the MovieLens-1M dataset, and
Figure 13 shows the results of 3 tasks sampled from 3 different image sub-datasets. We can see that
the shortcut tunnel is able to learn and accommodate different mappings, provide guarantee on the
performance of the approximated model.

(a) (b)

Figure 12: Shortcut approximation of path cluster assignment from feature cluster assignment for 2
users sampled from MovieLens-1M dataset. Here, we set kfeat = 8 and kpath = 16.

(a) (b) (c)

Figure 13: Shortcut approximation of path cluster assignment from feature cluster assignment for 3
tasks sampled from 3 different image sub-datasets. Here, we set kfeat = kpath = 6.
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