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Abstract

Machine learning is transforming molecular sciences by accelerating property pre-
diction, simulation, and the discovery of new molecules and materials. Acquir-
ing labeled data in these domains is often costly and time-consuming, whereas
large collections of unlabeled molecular data are readily available. Standard semi-
supervised learning methods often rely on label-preserving augmentations, which
are challenging to design in the molecular domain, where minor changes can dras-
tically alter properties. In this work, we show that semi-supervised methods that
rely on an ensemble consensus can boost predictive accuracy across a diverse
range of molecular datasets, task types, and graph neural network architectures.
Notably, we show that training with an ensemble consensus objective results in
an effect similar to knowledge distillation; an individual member of an ensemble
trained this way outperforms a full ensemble trained in a traditional supervised
fashion in almost all cases. In addition, this type of semi-supervised training re-
duces calibration error and is robust over different datasets.

1 Introduction

In recent years, machine learning has emerged as a transformative tool in the molecular sciences, ac-
celerating discovery in areas ranging from predicting quantum mechanical properties [Schütt et al.,
2021, 2017, Musaelian et al., 2023, Wood et al., 2025] to discovering novel drugs [Wong et al., 2024,
Kellenberger et al., 2007, Vidler et al., 2013, Zhuang et al., 2014, Ren et al., 2023] and catalysts [Pil-
lai et al., 2023, Sun et al., 2024, Bai et al., 2025]. However, despite recent efforts to curate large
labeled datasets [Merchant et al., 2023, Levine et al., 2025], the scarcity of labeled data remains a
fundamental bottleneck.

In materials and drug discovery, labels often come from computationally expensive simulations,
such as density functional theory (DFT), or resource-intensive laboratory measurements. Conse-
quently, datasets with specialized high-quality labels are typically small, while large databases of
unlabeled molecules (e.g., ZINC, PubChem [Irwin et al., 2012, Kim et al., 2024]) are not fully
exploited. This scenario—abundant unlabeled data coupled with scarce labeled data—is an ideal
setting for semi-supervised learning (SSL).

Yet, many state-of-the-art methods are poorly suited for the molecular domain. Dominant techniques
such as consistency training [Berthelot et al., 2019, Sohn et al., 2020] critically depend on data
augmentation strategies that create perturbed copies of an input while preserving its label. Such
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augmentations are notoriously difficult to design for molecules, where minor structural changes can
drastically alter the chemical properties we aim to predict. Meanwhile, approaches such as iterative
pseudo-labeling [Scudder, 1965, Riloff and Wiebe, 2003, Huang et al., 2022] hinges on the ability to
reliably rank predictions by confidence in order to select the best candidates for pseudo-labeling and
to avoid reinforcing model errors. This highlights a critical gap where standard SSL benchmarks
and algorithms do not translate well to the practical challenges of molecular science.

In this work, we build upon a class of SSL methods that does not require the explicit design of data
augmentations, but rather relies on an ensemble consistency loss. Specifically, we train a model
ensemble where each member learns from labeled data using a standard supervised loss and from
unlabeled data using a loss that promotes agreement among the ensemble members. While ensemble
coupling in self-supervised learning has been explored in previous work [Sajjadi et al., 2016, Tar-
vainen and Valpola, 2017, Platanios, 2018], our formulation is theoretically grounded in an ensemble
loss ambiguity decomposition, trains in a single run, and exhibits a knowledge distillation-like effect
that has not previously been discussed. Surprisingly, we find that a single model from the coupled
ensemble often achieves greater accuracy than an entire decoupled ensemble. We demonstrate the
effectiveness of this approach on a wide array of molecular graph datasets.

2 Methods

We address a standard semi-supervised learning problem with a small set of labeled data, DL =
{(xi, yi)}NL

i=1, and a large set of unlabeled data, DU = {uj}NU
j=1. We assume that both datasets are

drawn from the same underlying distribution. Our method utilizes a deep ensemble of M models,
f̄ = {fθm}Mm=1, initialized with different random weights.

The training objective is defined on each model fθm within the ensemble. At each training step, its
parameters θm are updated to minimize a composite loss, Lm, which combines a standard supervised
signal Lsup with an ensemble-driven consistency signal Lconsistency:

Lm = Lsup(fθm , BL) + γLconsistency(fθm , f̄ , BU ), (1)

where γ is the coupling weight, and BL and BU are mini-batches of labeled and unlabeled data.
During training, all models are updated simultaneously by minimizing the sum of their individual
losses i.e. L =

∑M
m=1 Lm. The first term, Lsup, is the standard task-specific loss for model fθm

on the labeled batch, such as mean squared error (MSE) for regression or cross-entropy (CE) for
classification. The second term, Lconsistency, provides the semi-supervised signal. It is calculated
for the model fθm but depends on the outputs of the entire ensemble. For each unlabeled sample
u ∈ BU , a consensus prediction, f̄(u), is computed by averaging the predictions of all M models:

f̄(u) =
1

M

M∑
m=1

fθm(u). (2)

The Consensus prediction serves as the augmentation-free consistency target for model fθm . We
penalize the discrepancy between model prediction and the ensemble consensus as

Lconsistency(fθm , f̄ , BU ) =
1

|BU |
∑

u∈BU

D
(
fθm(u), f̄(u)

)
. (3)

Here, D is a suitable distance metric, for example, the task-specific supervised loss (e.g., L2 or
KL-divergence). In practice, when minimizing the loss we detach the gradient through f̄(u), as the
consensus prediction is at least as accurate as the individual members’ predictions on average (see
Appendix B), ensuring that the ensemble is not encouraged to match the less accurate individual
predictions. Note, detaching the gradient has been observed to result in failure cases such as learner
collusion [Jeffares et al., 2023], but in our experiments the results are not affected negatively.

2.1 Consensus-Diversity Dynamics

Our proposed SSL training scheme directly manipulates the trade-off between accurate individual
models and high diversity among them. The unsupervised loss term, Lu(xu) = L(fθi(xu), fe(xu)),
creates a pull towards consensus by guiding each model fθi to agree with the more stable ensemble
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prediction fe. This directly reduces the average individual error by providing a high-quality super-
visory signal for unlabeled data. Simultaneously, this pull is counteracted by forces that preserve
diversity. Each model begins from a unique random initialization and follows a distinct optimization
path due to the stochastic nature of mini-batch SGD. This dynamic allows the models to converge to
different solutions in parameter space while still agreeing in function space. Therefore, our method
does not eliminate diversity but rather regulates it.

We speculate that the continuous learning between models means they should be less likely get stuck
on early bad predictions, as could happen with many forms of pseudo-labeling. This is because the
ensemble targets are "moving" with the ensemble. This suggests the ensemble prediction does not
need a warm-startup strategy, as other works have observed by Tarvainen and Valpola [2017] and
used in Filipiak et al. [2021], Platanios [2018].

3 Experimental setup

We evaluate our method in two settings: First, on a quantum chemistry benchmark to demonstrate its
relevance for 3D-geometry-based molecular property prediction, and then across a diverse suite of
graph-level tasks to assess its broader applicability. All ensemble members were trained on identical
mini-batches of supervised data to simplify implementation. While this strategy reduces ensemble
diversity, potentially limiting the ensemble’s predictive power, it allows for a fair direct comparison
with single models.

Semi-supervised protocol To simulate the common scenario of data scarcity, we restrict the su-
pervised portion of our training to a small fraction for each task (10%). The remaining training
data (90%) is treated as unlabeled and is used exclusively for our ensemble consistency loss. Our
primary baseline is a standard deep ensemble of the same architecture, trained only on this small
labeled data subset. This setup allows us to directly measure the performance gain from leveraging
unlabeled data.

Datasets We evalaute our method across several domains. First, we predict 12 molecular prop-
erties on the QM9 dataset [Wu et al., 2018] using a four-member (M = 4) PaiNN [Schütt et al.,
2021] ensemble, where we also study performance scaling by varying the ensemble size of a single
target. For broader validation, we use GCN [Kipf and Welling, 2016], GIN [Xu et al., 2019] and
GatedGCN [Bresson and Laurent, 2017] architectures on a suite of graph-level tasks, adapting the
code from Rampásek et al. [2022] and Luo et al. [2024], again with M = 4. To demonstrate gen-
eral applicability, further experiments on non-molecular and non-graph datasets are included in the
Appendix. All datasets are split 80/10/10 for train/validation/test.

Hyperparameter tuning To ensure well-tuned models for datasets, the training hyperparameters
(learning rate and weight decay) were optimized for each target and model based on the validation
performance of a single model in the supervised setting on the reduced labeled data. These hy-
perparameters were kept fixed across different SSL methods tested to ensure fair comparison. The
parameters associated with each specific SSL method (coupling weight, mean-teacher decay, etc.)
were optimized based on validation accuracy for each target on QM9, and selected for the GNN+
datasets based on the best value of ZINC. Details about the tuning procedures and selected hyperpa-
rameters can be found in Appendix D.

Evaluation We evaluate the predictive performance for a standard ensemble, an ensemble using
SSL via ensemble consensus (ours), the individual members from the ensembles, mean-teacher [Tar-
vainen and Valpola, 2017], and PSEUDOσ [Huang et al., 2022]. All results are reported as the mean
along with 1.96 times the standard error of the mean across different seeds.

4 Results and Discussion

4.1 Molecular Property Prediction on QM9

The performance of our method on the 12 regression targets of the QM9 dataset is presented in
Table 1. The results indicate that training with the ensemble consistency loss (“Supervised + SSL”)
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Table 1: PaiNN performance (MAE) on QM9 targets. Results are reported as mean ±1.96 standard
error of the mean over 5 seeds.

Individual Member Ensemble (M=4)

Target Unit Supervised Supervised + SSL Supervised Supervised + SSL Mean-teacher PSEUDσ

µ D .07390±.00077 .06191±.00024 .06808±.00056 .06136±.00024 .07211±.00106 .06487±.00088

α a30 .1622±.0011 .1322±.0011 .1419±.0009 .1303±.0011 .1570±.0009 .1454±.0004

ϵHOMO meV 80.61±.5062 73.98±.4368 76.47±.5361 73.08±.4472 80.61±.9079 78.72±1.1196

ϵLUMO meV 62.04±.4253 57.72±.2247 59.31±.4609 57.24±.2159 61.97±.3648 59.74±0.6248

∆ϵ meV 125.2±.4734 117.0±.4988 119.4±.4468 115.7±.5100 125.0±1.155 122.5±.7501

⟨R2⟩ a20 .7922±.0284 .6100±.0206 .6246±.0205 .5605±.0206 .7987±.0197 .9099±.0157

ZPVE meV 2.220±.0055 2.014±.0054 2.074±.0054 1.991±.0055 2.182±.0170 2.141±.0123

U0 meV 24.88±.1477 19.96±.1291 20.91±.1557 19.38±.1278 24.73±.3803 24.00±.2929

U meV 25.19±.2025 20.17±.1577 21.10±.1914 19.59±.1574 24.96±.4452 24.28±.4701

H meV 25.12±.1981 20.14±.1268 21.09±.1946 19.55±.1328 24.85±.4295 24.33±.6181

G meV 25.38±.1856 20.31±.1571 21.41±.1811 19.75±.1634 25.16±.3359 24.33±.4412

Cv
cal

mol K .05668±.00038 .04498±.00019 .04884±.00035 .04392±.00020 .05570±.00021 .05408±.00027

reduces the MAE across all evaluated targets when compared to the supervised-only baseline. This
is observed for both the individual PaiNN models and the four-member ensembles. Furthermore,
the individual model from the coupled ensemble consistently outperforms the traditional supervised
ensemble on all targets. This is also the case across different ensemble sizes, as explored in Table 3.

4.2 Generalization across graph benchmarks

Our experiments on QM9 and the more varied GNN+ benchmark (see Table 2) show that our
ensemble-based SSL framework consistently improves model performance in low-data regimes. The
most significant finding is the substantial boost in accuracy for individual models, a direct result of
the knowledge transferred from the ensemble’s consensus on unlabeled data. This finding is alike
that of ensemble distilling [Hinton et al., 2015], where the knowledge of an ensemble is transferred
to a single, smaller model, except that our method inherently produces knowledgeable single models.
This is explained through the semi-supervised effect on the entire ensemble, resulting in even better
ensemble consensus targets for individual models to learn from. This has a key practical benefit:
while the method requires an ensemble during training, a single, improved model can be deployed
for inference. This offers a valuable trade-off, where an increased one-time training cost yields a
final model that is both highly accurate and computationally efficient at inference time. Chemical
property screening or MD simulations are compelling use case, where models are called many times
and can introduce computational bottlenecks if very expensive. It is noteworthy that for datasets
where the parameter (γ or the mean-teacher decay) related to SSL was not directly tuned, the im-
provement in predictive accuracy was noticeably smaller. This indicates the SSL parameter is highly
dependent on the specific dataset.

In the table 3 and C.2 in the appendix, the predictive performance scales with the number of mem-
bers in the coupled ensemble. Individual models from the ensemble trained with our method consis-
tently perform at a similar level to an entire traditional ensemble across all ensemble sizes.

Limitations The primary limitation of our approach is the computational overhead associated with
training an ensemble consensus model. Transfer learning is another method that is often used in
sparsely-labeled settings, which we have not compared against.

Future work Our findings suggest several promising avenues for future research. While this work
created a semi-supervised split from a fully labeled dataset, a compelling next step would be to
test out of domain generalization, by using all available labeled data for supervision while introduc-
ing a separate, fully unlabeled dataset. This would more directly quantify the benefit of leverag-
ing vast, external chemical libraries and be of interest in a practical setting. Using ensembles for
semi-supervised learning also opens the direction for improving accuracy in a principled manner by
diversifying the ensemble members through existing techniques. Furthermore, different strategies
for how to couple our ensemble can be investigated. Only including the unsupervised data in the
later part during training could potentially result in similar predictive performance, while reducing
computational cost.
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A Background

A.1 Background on Semi-Supervised Learning

Semi-Supervised Learning Semi-supervised learning (SSL) is a machine learning paradigm de-
signed for settings with a small amount of labeled data and a much larger amount of unlabeled data.
The idea is to leverage the unlabeled data to learn about the underlying structure of the data distri-
bution p(x), which in turn improves the model’s ability to learn the mapping from inputs to outputs,
p(y|x). Effective SSL methods are typically built upon one or more of the following assumptions:

• Smoothness Assumption: If two points x1, x2 are close in a high-density region of the un-
derlying data manifold, their corresponding labels y1, y2 should also be close or identical.

• Cluster Assumption: The data tends to form distinct clusters, and points within the same
cluster are likely to share the same label. This implies that a good decision boundary should
lie in the low-density region between clusters.

Consistency Loss Consistency regularization is currently the most dominant family of SSL meth-
ods. The core idea is that the model’s prediction for an unlabeled data point should remain consistent
under small perturbations. This directly enforces the smoothness assumption. A successful perturba-
tion or data augmentation is one that explores the local neighborhood of a data point on the manifold
without changing its label. The objective is typically formulated as minimizing a distance measure
(e.g., Mean Squared Error or KL-Divergence) between the model’s predictions for two different
augmentations of the same input:

Lconsistency = Exu∼Xu
[D(fθ(aug1(xu))||fθ(aug2(xu))].

Different choices of the perturbations give rise to a wide range of methods. Π-models [Sajjadi et al.,
2016] enforce that two predictions should be the same under transformations to the data, the use
of dropout and random pooling for perturbations to the model. Each unlabeled datapoint is passed
through the network twice and penalized for the difference in the predictions between the passes.
The benefit of consistency loss is highly linked to the quality of the data augmentation techniques,
as shown in [Xie et al., 2020]. Temporal ensembling [Laine and Aila, 2016] builds upon this by
maintaining an exponential moving average of predictions for each unlabeled example to create
a more stable consistency target. Instead of applying a temporal averaging over the predictions,
the mean-teacher method [Tarvainen and Valpola, 2017] averages the model weights and uses the
predictions of that model as the consistency target. In the above works, the predictions can be seen
as coming from a sort of pseudo-ensemble. As the members of this pseudo-ensemble are based on
the trajectory or perturbation of a single network, the diversity of the predictions is reduced and
biased, which reduces the prediction accuracy as we later highlight.

This problem can be mitigated by introducing multiple different initial weightings of the same archi-
tecture and training them in parallel to use as consistency targets. Chen et al. [2021] (cross pseudo
supervision) proposes to do this for pixel-wise segmentation, where the prediction of each of the
two ensemble members is hard labeled and used as the consistency target. Filipiak et al. [2021]
further extends this for pixel-wise segmentation by using n ensemble models and taking all combi-
nations of hard labeled predictions as the consistency targets. Another paper that explores different
ensemble predictions is Platanios [2018]. Here the ensemble members are restarted multiple times
during training, and the consensus target is computed from a trainable majority vote or Restricted
Boltzmann Machine. All the above methods can be seen as stemming from a broad class of SSL
methods that rely on the prediction of an ensemble to guide the training of the individual models to
improve predictive accuracy.

In many applications, there exist few or no data augmentations that preserve the label of a data
point. Examples include molecules, where the chemical properties can be changed significantly
under small changes to the molecule. This restricts the consistency loss methods to only rely on
perturbations to the model and not the data. This makes the class of ensemble-based SSL methods
well-suited for the problem.

Pseudo-labeling Pseudo-labeling [Yarowsky, 1995, Scudder, 1965, Riloff and Wiebe, 2003], also
known as self-training or entropy minimization, is a process where an initial model is trained on
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the labeled data points and then used to predict labels for a large unlabeled dataset. The primary
risk of this method is confirmation bias: if the model generates an incorrect pseudo-label with
high confidence, it will reinforce its own mistake during retraining, leading to error propagation. To
mitigate this risk, modern SSL methods often integrate more sophisticated frameworks. For example,
one uncertainty-aware approach uses a model’s evidential uncertainty to estimate the quality of
each pseudo-label. This enables an adaptive weighting scheme where high-uncertainty (low-quality)
pseudo-labels are given a smaller weight in the loss function, reducing their biasing effect. While this
can be effective, such a strategy requires an initial, full training phase on the labeled data before the
episodic pseudo-labeling can begin. It also introduces several additional tunable hyperparameters
related to its episodic schedule, which require careful tuning [Huang et al., 2022].

Knowledge Distillation Knowledge distillation [Bucilu et al., 2006, Hinton et al., 2015] was pro-
posed as a way of using a complex "teacher" model to transfer its knowledge to a simpler "student"
model. Usually, the teacher model is either a model with more parameters or the same model with
multiple predictions averaged over multiple augmentations of the input, but the use of an ensemble
as the teacher has also been explored [Hinton et al., 2015, Fukuda et al., 2017, Malinin et al., 2020].
The transfer of knowledge can be enforced at different levels, such as feature representations [Heo
et al., 2019] or intermediate layers [Zagoruyko and Komodakis, 2016]. Approaches that match pre-
dictions are most closely related to our work. Aligning student and teacher predictions resembles
the use of consistency targets in semi-supervised learning, with the key distinction that distillation
is typically applied post-hoc, and thus lacks a bootstrapping effect where the teacher also benefits
from the students progress. Furthermore, knowledge distillation is often focused on preserving the
uncertainty calibration of the teacher or achieving computational efficiency by deploying the smaller
student model instead of the larger one.

B Theoretical Motivation

The theoretical motivation for our method is grounded in the formal relationship between an en-
semble’s performance and that of its individual members. Ensemble performance is governed by
a fundamental trade-off between the accuracy of the individual models and the diversity of their
predictions. This relationship can be expressed through a loss decomposition, which shows that for
any convex loss function, the ensemble’s loss is guaranteed to be less than or equal to the average of
the individual losses [Wood et al., 2023]. This stems from Jensen’s inequality and takes the general
form:

Ensemble Loss = Average Individual Loss − Ambiguity (4)

The ambiguity (or diversity) term is a non-negative quantity measuring disagreement among the
members. This decomposition reveals that optimal ensemble performance requires not only accurate
individual models but also beneficial diversity.

Mean Squared Error This principle is most clearly illustrated in regression with Mean Squared
Error (MSE), where the decomposition is exact and well-established [Krogh and Vedelsby, 1994].
For an ensemble of M models {fθm}Mm=1 with a mean prediction f̄(x), the decomposition is:

(y − f̄(x))2︸ ︷︷ ︸
Ensemble MSE

=
1

M

M∑
m=1

(y − fm(x))2︸ ︷︷ ︸
Average Individual MSE

− 1

M

M∑
m=1

(f̄(x)− fm(x))2︸ ︷︷ ︸
Ambiguity (Prediction Variance)

. (5)

Here, the ambiguity is simply the variance of the predictions around the ensemble mean, providing
a clear, label-independent measure of diversity.

Cross-Entropy The same principle extends to classification, though the decomposition for Cross-
Entropy (CE) loss is more nuanced. Using the geometric mean to average probabilities across the
ensemble yields a clean, label-independent decomposition, as in regression [Wood et al., 2023]. An
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exact decomposition is also available for the arithmetic mean:

−y · ln f̄︸ ︷︷ ︸
Ensemble CE Loss

= − 1

M

M∑
m=1

y · ln fm︸ ︷︷ ︸
Avg. Individual CE Loss

−
C∑

c=1

yc ln
1
M

∑M
m=1 fm,c

(
∏M

m=1 fm,c)1/M︸ ︷︷ ︸
Ambiguity (Label-Dependent)

, (6)

although here the ambiguity term is explicitly a function of the true label vector y (where yc is the
true probability of class c), making it label-dependent [Wood et al., 2023]. Crucially, this ambiguity
term is still guaranteed to be non-negative, ensuring that the ensemble loss is always less than or
equal to the average individual loss.

Because the ensemble consensus is provably superior to the average individual model, using it as a
consistency target for unlabeled data is both effective and theoretically well-justified. In addition,
the ensemble prediction will be a useful signal as long as the models are better than random. This
suggests the ensemble prediction does not need to incorporate a warm-startup to provide a useful
predictive signal, as other works have observed [Tarvainen and Valpola, 2017] and used [Filipiak
et al., 2021, Platanios, 2018].

C Extended Studies

C.1 GNN+ benchmark

To assess the broader applicability of our method, we evaluate it on several molecule-related bench-
marks using three different GNN architectures. The results are summarized in Table 2, and are
consistent with the performance on QM9. Looking at a single model, the addition of the SSL task
consistently improves performance over the supervised-only baseline across all datasets and archi-
tectures. This performance gain also translates to the full ensembles, which show improvement
when trained with the consistency loss. The performance of a single model trained with our SSL
method often exceeds that of an entire ensemble trained only on labeled data.

Table 2: Performance on molecule-related benchmarks using different GNN architectures averaged
across 5 seeds.

GCN GIN GatedGCN

Dataset Training Metric Individual Ensemble Individual Ensemble Individual Ensemble

ZINC

Supervised

MAE ↓
.3163±.0121 .2934±.0094 .2765±.0247 .2516±.0136 .2920±.0113 .2646±.0235

Consensus .2406±.0150 .2367±.0148 .2519±.0246 .2485±.0232 .2717±.0230 .2658±.0177

Pairwise .2462±.0108 .2390±.0102 .2500±.0083 .2462±.0092 .2653±.0158 .2597±.0171

Mean teacher .2884±.0128 – .2791±.0117 – .2830±.0159 –

Peptides-struct

Supervised

MAE ↓
.3047±.0098 .2932±.0084 .2966±.0067 .2918±.0058 .2994±.0105 .2908±.0101

Consensus .2868±.0062 .2866±.0061 .2944±.0072 .2938±.0068 .2854±.0061 .2848±.0068

Pairwise .2933±.0031 .2892±.0029 .2916±.0030 .2901±.0029 .2898±.0042 .2870±.0041

Mean teacher .2985±.0029 – .2948±.0023 – .2953±.0034 –

Peptides-func

Supervised

AP ↑
.4931±.0346 .5105±.0342 .4566±.0224 .4765±.0327 .4289±.0051 .4444±.0200

Consensus .5070±.0141 .5160±.0141 .4756±.0180 .4815±.0179 .4509±.0144 .4580±.0062

Pairwise .5055±.0151 .5163±.0150 .4739±.0110 .4811±.0117 .4463±.0067 .4548±.0069

Mean teacher .4893±.0169 – .4611±.0130 – .4352±.0058 –

ogbg-molhiv

Supervised

AUROC ↑
.7216±.0193 .7357±.0212 .7329±.0166 .7346±.0165 .7312±.0081 .7341±.0107

Consensus .7308±.0218 .7357±.0212 .7339±.0149 .7347±.0153 .7361±.0069 .7383±.0073

Pairwise .7247±.0160 .7336±.0146 .7273±.0128 .7294±.0128 .7375±.0052 .7403±.0050

Mean teacher .7213±.0161 – .6996±.0207 – .7295±.0165 –

ogbg-molpcba

Supervised

AP ↑
.1368±.0025 .1578±.0030 .1421±.0026 .1567±.0029 .1615±.0034 .1779±.0043

Consensus .1476±.0023 .1585±.0026 .1496±.0033 .1567±.0039 .1701±.0036 .1781±.0034

Pairwise .1471±.0027 .1597±.0028 .1498±.0021 .1574±.0024 .1674±.0032 .1765±.0034

Mean teacher .1435±.0016 – .1479±.0037 – .1669±.0028 –

C.2 Scaling with Number of Ensemble Members

Using the same setup as section 4.1, we investigate how the predictive accuracy scale with the
number of models in the ensemble. The results are detailed in Table C.2.
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Table 3: PaiNN performance (MAE) on QM9 internal energy at 0K in eV (U0) for different ensemble
sizes averaged across 5 seeds, with mean ±1.96 standard error of the mean.

Individual member Ensemble

Size (M) Supervised Supervised + SSL Supervised Supervised + SSL

1 24.8752±0.1477 – – –
2 – 20.8847±0.2947 22.1755±0.4394 20.4256±0.2876

3 – 20.4414±0.1625 21.3140±0.2289 19.9342±0.1661

4 – 19.9642±0.1291 20.9101±0.1557 19.3816±0.1278

Scaling past 4 members We also investigate the predictive accuracy scaling with the number of
ensemble members to larger than 4 sizes. Ensembles of these sizes were not feasible to do on any
of the graph datasets, so we instead use the original computer vision version of CIFAR-10. This
also validates that our method works for other domains than graphs. We use ResNet-18 [He et al.,
2016] with 5,000 labeled and 40,000 unlabeled data-points without any data augmentations. We
performed an exhaustive hyperparameter sweep using a single seed over learning rate (0.1, 0.075,
0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001), and weight decay (0.01, 0.025, 0.05, 0.075, 0.1,
0.25, 0.5) for the purely supervised model. The number of epochs and learning rate annealing was
fixed at a number informally found to work. The parameters of best performing model on validation
accuracy at the last epoch was selected. The optimal values can be found in 14. The coupling weight
was fixed kept at γ = 1.

The hyper-parameters can be found in Appendix D.3. From the accuracy results in Table 4 and
calibration scores in section C.3, we see a significant increase in accuracy and calibration scores
going from a single model to a coupled ensemble with just two models. Interestingly, the individual
prediction accuracy of a model trained in a coupled ensemble of two models outperforms the ensem-
ble prediction from all decoupled ensemble sizes tested. This highlights the semi-supervised effect
from using unlabeled data for training. Looking at the calibration metrics in Appendix C.3, we see
that the calibration results for the coupled ensemble are worse than the uncoupled one. This is of-
ten seen in self-supervised learning, as the "self-validating" training can result in worse calibration
from confirmation bias [Arazo et al., 2020, Mishra et al., 2024]. Surprisingly, we see the individual
calibration improving over the decoupled model (i.e., a single model), and also improving as the
number of ensemble members increases.

Table 4: Predictive accuracy (%) on CIFAR-10 validation, comparing Decoupled and Coupled mod-
els. The values represent mean ± 1.96 standard error of the mean.

Individual Accuracy % Ensemble Accuracy (%)

Ensemble size Decoupled Coupled Decoupled Coupled

1 59.08±1.35 · · · · · · · · ·

2
... 66.36±0.45 62.51±0.40 66.96±0.47

4
... 67.24±0.40 64.65±0.46 67.92±0.49

8
... 67.64±0.35 65.73±0.51 68.34±0.34

16
... 67.75±0.32 66.41±0.57 68.54±0.45

32
... 67.75±0.30 66.64±0.37 68.52±0.35
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C.3 Calibration Metrics on CIFAR-10

Table 5: NLL on CIFAR-10, comparing decoupled and coupled models. The values represent mean
± 1.96 standard error of the mean.

NLL

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 1.543±0.109 · · · · · · · · ·

2
... 1.217±0.021 1.267±0.020 1.161±0.021

4
... 1.169±0.019 1.121±0.012 1.096±0.019

8
... 1.142±0.017 1.048±0.015 1.064±0.016

16
... 1.126±0.015 1.007±0.015 1.047±0.014

32
... 1.123±0.019 0.990±0.011 1.042±0.018

Table 6: AUC-ROC on CIFAR-10, comparing decoupled and coupled models. The values represent
mean ± 1.96 standard error of the mean.

AUC-ROC

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 .8885±.0075 · · · · · · · · ·

2
... .9250±.0020 .9125±.0021 .9292±.0020

4
... .9295±.0019 .9266±.0016 .9349±.0019

8
... .9316±.0019 .9336±.0021 .9377±.0018

16
... .9323±.0016 .9384±.0019 .9386±.0015

32
... .9329±.0019 .9409±.0017 .9394±.0019

Table 7: ECE on CIFAR-10, comparing decoupled and coupled models. The values represent mean
± 1.96 standard error of the mean.

ECE

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 .2210±.0357 · · · · · · · · ·

2
... .1713±.0041 .1128±.0057 .1512±.0049

4
... .1609±.0034 .0591±.0043 .1369±.0040

8
... .1548±.0031 .0320±.0043 .1301±.0035

16
... .1494±.0028 .0243±.0033 .1235±.0030

32
... .1485±.0044 .0207±.0043 .1226±.0043
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Table 8: Brier score on CIFAR-10, comparing decoupled and coupled models. The values represent
mean ± 1.96 standard error of the mean.

Brier

Individual member Ensemble

Ensemble size Decoupled Coupled Decoupled Coupled

1 .4854±.0271 · · · · · · · · ·

2
... .5594±.0042 .4585±.0041 .5530±.0040

4
... .5654±.0040 .4422±.0047 .5572±.0040

8
... .5676±.0048 .4316±.0050 .5588±.0047

16
... .5652±.0044 .4283±.0049 .5563±.0043

32
... .5649±.0030 .4263±.0033 .5558±.0030

C.4 Non-Chemical GNN+ datasets

Results for non-chemical GNN+ datasets are shown in Table 9. Note the consensus and mean-
teacher run for the GatedGCN models were not computed, as the models were too large to fit in
memory.

Table 9: Performance on non-molecule-related benchmarks, comparing supervised models with
those using additional self-supervised learning (SSL). Results are shown for individual models (In-
dividual) and the full ensemble (Ensemble). Results are the mean ±1.96 standard error of the mean
over 5 different seeds.

GCN GIN GatedGCN

Dataset Training Metric Individual Ensemble Individual Ensemble Individual Ensemble

CIFAR-10

Supervised

Acc (%)↑
50.44±0.33 55.38±0.49 50.46±0.34 53.90±0.50 57.69±0.34 61.23±0.45

Consensus 55.33±0.31 57.11±0.42 54.30±0.36 55.60±0.31

Mean teacher 50.64±0.28 50.99±0.86 - - -

MNIST

Supervised

Acc (%)↑
96.61±0.07 96.97±0.04 96.26±0.10 96.73±0.13 96.96±0.05 97.38±0.11

Consensus 96.82±0.08 96.93±0.11 96.68±0.09 96.82±0.11 97.48±0.06 97.57±0.07

Mean teacher 96.55±0.06 - 96.31±0.11 - 96.84±0.13 -

D Hyperparameters

D.1 QM9

Our hyperparameter search for QM9 followed a two-step process. First, we started with baseline hy-
perparameters from a fully supervised setting and tuned the learning rate and weight decay for a sin-
gle model on the 10% labeled data subset. Second, using these optimized parameters, we then tuned
the coupling weight (γ) for the size-4 ensemble by searching over {1.0, 0.1, 0.01, 0.001, 0.0001}.
The coupling weight swept for the mean-teacher was {0.9, 0.95, 0.99, 0.995, 0.999}. Final a archi-
tectural and training configurations are detailed in Table 10 and Table 11.

D.1.1 PSEUDσ Baseline Implementation

To provide a robust comparison, we re-implemented the Uncertainty-Aware Pseudo-labeling
(PSEUDσ) method [Huang et al., 2022] for the PaiNN architecture, as the original work did not
test this model. We used our exact 10% labeled / 90% unlabeled training data split to ensure a direct
and fair comparison. Our implementation used a PaiNN backbone with an added evidential head
to output the required prior parameters (γ, v, α, β). We trained using AdamW (1e-4 LR, 1e-4 WD)
with a batch size of 32. The training schedule consisted of a 1000-epoch initial training phase on
the labeled data, followed by 15 outer-loop episodes (M ) of 100 inner-loop epochs (K) each. We
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adopted the original paper’s recommended low-data hyperparameters, including an evidential regu-
larization coefficient (λ) of 0.5 and epistemic uncertainty for adaptive weighting. Consistent with
the PSEUDσ strategy, our cosine annealing learning rate scheduler was re-initialized at the start of
each of the 15 episodes.

Table 10: Hyperparameter Configuration for QM9. These are fixed across all targets.

Hyperparameter Value

Training

Batch size 32
Epochs 1000
Optimizer AdamW
Scheduler Cosine annealing

Coupling

Unsupervised loss criterion L2

Table 11: Additional hyperparameter Configuration for QM9 for different targets.

Target Learning rate Weight decay Coupling weight Mean teacher decay

µ 1e-3 1e-3 0.1 0.995
α 1e-4 1e-3 0.1 0.99
ϵHOMO 1e-3 0 0.01 0.95
ϵLUMO 5e-4 1e-6 0.01 0.9
∆ϵ 1e-3 0 0.01 0.99
⟨R2⟩ 5e-4 1e-4 0.1 0.99
ZPVE 5e-4 1e-5 0.001 0.99
U0 1e-4 1e-4 0.01 0.99
U 1e-4 0 0.01 0.9
H 1e-4 1e-4 0.01 0.9
G 1e-4 1e-5 0.01 0.995
Cv 1e-4 1e-5 0.01 0.995

D.2 GNN+ Datasets

We keep the hyperparameters for the different datasets and models the same as in the original paper,
except for the number of epochs, weight decay, and learning rate. As we are training with 10%
of the original data, we double the number of epochs to mitigate the fewer parameter updates. We
then made a two-step hyper-parameter sweep; initially the learning rate using original weight decay
values, and afterwards the weight decay using the found best learning rates. The learning rates
investigated were (0.25, 0.5, 1.0, 2.0, 4.0) times the original learning rate value for that model and
dataset. The weight decays investigated was (10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0). We could
not simply multiply the weight decay values by a fixed factor, as some of the original weight decay
values were 0. These sweeps were performed for a single uncoupled model following the same
tuning procedure as in the original paper. Notably, this means that the predictive accuracy report
from each run is the best validation performance seen during any of the epochs. The found learning
rates are listed in Table 12, and weight decays Table 13 below. The train, validation, and test splits
follow the same procedure as Luo et al. [2024]. Each seed shuffles the labeled and unlabeled part of
the training data.

The SSL parameters were selected based on the best performing values on the validation score on
ZINC. The mean-teacher values investigated was (0.9, 0.99, 0.995, 0.999), and the coupling weight
for the consensus and pair-wise methods were (0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2.0). The optimal
value of mean-teacher was found to be 0.999, and coupling weight for the consensus learning was
1.0, and the pairwise loss was tied between 0.5 and 0.75, so we went with 0.5 based on the recom-
mendations in Filipiak et al. [2021].
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Table 12: Tuned learning rates for GNN models across datasets.

Dataset GCN GINE GATEDGCN
CIFAR-10 0.002 0.0005 0.001
CLUSTER 0.0005 0.0005 0.002
ogbg-molhiv 0.0001 0.00005 0.0004
MalNet-Tiny 0.00025 0.002 0.002
MNIST 0.001 0.002 0.001
PATTERN 0.004 0.001 0.000125
ogbg-molpcba 0.000125 0.000125 0.00025
peptides-func 0.0005 0.002 0.002
peptides-struct 0.002 0.0005 0.002
ogbg-ppa 0.0006 0.0012 0.0003
PascalVOC-SP 0.004 0.002 0.0005
ZINC 0.004 0.001 0.004

Table 13: Tuned weight decays for GNN models across datasets.

Dataset GCN GINE GATEDGCN

CIFAR-10 10−2 10−1 10−2

CLUSTER 0 10−1 10−6

ogbg-molhiv 10−3 10−1 10−5

MalNet-Tiny 10−4 10−2 10−4

MNIST 10−1 10−2 10−5

PATTERN 10−3 10−2 10−1

ogbg-molpcba 10−1 10−2 10−5

peptides-func 0 10−1 10−3

peptides-struct 10−3 10−5 10−1

ogbg-ppa 10−1 10−1 10−2

PascalVOC-SP 10−1 10−4 10−2

ZINC 10−1 10−5 10−3

D.3 CIFAR-10

The hyperparameter configurations for CIFAR-10 are shown in Table 14.
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Table 14: Hyperparameter Configuration for CIFAR-10.

Hyperparameter Value

Learning Rate

Learning rate 0.005
Annealing method Step
Step size 1
Learning rate reduction 0.975

Regularization

L2 Weight Decay 0.075

Optimizer

Optimizer SGD
Momentum 0.9

Training

Epochs 250

Loss Function

Coupled loss weighting 1.0
Ensemble coupled loss KL-divergence
Supervised loss Cross-entropy

E Calibration Scores for the ogbg-molhiv

We also investigate the calibration on the ogbg-molhiv benchmark. We do not investigate the datasets
ogbg-pcba and peptides functional due to the to the large skewing of classes and missing values. The
results are included in Table 15 and Table 16. We see across different architectures that the coupling
of the ensemble improves the calibration scores, especially NLL. One notable exception is the MCE
score for the GIN ensemble model, where the coupled ensemble becomes significantly worse.

Table 15: Individual Performance on the ogbg-molhiv dataset

GCN GIN GatedGCN

Metric Decoupled Coupled Decoupled Coupled Decoupled Coupled

Accuracy 95.78±0.38 96.18±0.48 95.97±0.68 96.30±0.35 95.66±0.72 96.01±0.57

ROC-AUC .721±.0193 .731±.0218 .733±.017 .734±.015 .731±.008 .736±.007

NLL .375±.185 .230±.0662 .147±.015 .140±.012 .200±.033 .180±.023

ECE .0312±.0092 .0246±.0039 .0113±.0045 .0105±.0048 .0232±.0069 .0201±.0049

MCE .2041±.0994 .2058±.0763 .1113±.0620 .1058±.0246 .1154±.0399 .0985±.0287

Table 16: Ensemble Performance on the ogbg-molhiv dataset

GCN GIN GatedGCN

Metric Decoupled Coupled Decoupled Coupled Decoupled Coupled

Accuracy 96.66±0.33 96.60±0.20 96.11±0.66 96.39±0.33 96.03±0.62 96.12±0.56

ROC-AUC .7350±.0228 .7357±.0212 .7346±.0165 .7347±.0153 .7341±.0107 .7383±.0073

NLL .2437±.1051 .1760±.0275 .1432±.0130 .1383±.0108 .1821±.0249 .1729±.0208

ECE .0261±.0057 .0224±.0046 .0121±.0039 .0109±.0037 .0201±.0051 .0193±.0045

MCE .2587±.0793 .2617±.0564 .1585±.0760 .1933±.0852 .1566±.0576 .1533±.0251

17



F Ablation Studies

F.1 Soft or Hard labels for Classification

Often semi-supervised methods use some form of "hard-labeling" as the consistency target. Usually,
this is implemented as setting the ensemble target for an unlabeled datapoint to be the most likely
label, as predicted by the individual model [Filipiak et al., 2021, Tarvainen and Valpola, 2017]
or the ensemble [Platanios, 2018]. This removes the underlying uncertainty information of the
estimates, and risking drastically reducing the calibration of the model by making it overconfident.
The motivation for using hard-labeling is the assumption of label smoothness, as it forces the model
to pick the same label for data points close together. We investigate this assumption in table 17. The
results on accuracy show that hard-labelling slightly benefits the accuracy, it comes at the cost of
worse calibration metrics such as ECE and MCE for the individual models. The reason for such a
small increase in accuracy can be explained by the label-smoothens assumption can be violated for
graphs and especially molecules.

Table 17: Calibration metrics on graph CIFAR-10.

Non-Ensemble Ensemble

Metric Mean Hard Label Mean Hard Label

Accuracy (%)↑ 56.0220±0.2233 56.2020±0.5595 56.7640±0.2742 57.1920±0.4124

ROC ↑ .9040±.0017 .8936±.0025 .7598±.0015 .7621±.0022

F1 ↑ .5586±.0021 .5607±.0051 .5661±.0023 .5706±.0034

ECE ↓ .1514±.0030 .3034±.0052 .4324±.0027 .4281±.0041

MCE ↓ .2307±.0030 .4252±.0141 .4324±.0027 .4281±.0041

F.2 Pairwise or Mean Ensemble Loss?

There is a strong theoretical connection between the pairwise loss between ensemble members used
in n-CPS and the coupled ensemble loss presented in this work. For a convex loss L that can be
written on the form L(x− y), then Jensen’s inequality yields

L
(
fθi(x)− Em[fθm(x)]

)
= L

(
Em[fθi(x)− fθm(x)]

)
≤ Em[L

(
fθi(x)− fθm(x)

)
=

1

M

M∑
m=1

L
(
fθi(x)− fθm(x)

)
≤ 1

M − 1

M∑
m=1

L
(
fθi(x)− fθm(x)

)
.

As fθi(x)− fθm(x) = 0 if i = m this upper bound is exactly the n-CPS loss. In general this upper
bound is not tight, but if M = 2 and L is of the form (x− y)l, e.g. the l1 or l2-loss we get

L(fθ1 − Em[fθm(x)]) =
(
fθ1 −

fθ1 + fθ2
2

)l

=
1

2l
(fθ1 − fθ2)

l.

We see that the two losses are equal up to a scaling factor that disappears if we tune the learning
rate.

F.3 Robustness of Coupled Weighting

To investigate the robustness of the coupled weighting γ, we followed the same experimental setup
on CIFAR-10 with a Resnet18 model. The results can be seen in Figure 1. From the figure, we see
that the validation accuracy is somewhat flat as soon as γ > 1, but there is a small optimum around
γ = 6. This illustrates that at least for CIFAR-10, the choice of γ is robust.
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Figure 1: Validation accuracy as a function of the weighting of the ensemble consistency loss.

F.4 How to Schedule the coupled loss

Initially, during training, the members of the ensemble models only have weak prediction strength.
This results in the ensemble prediction serving only as a weak signal guiding the models. Intu-
itively, this suggests that the weighting of the coupled loss should be added or increased as training
progresses. We investigate if this is the case in the same CIFAR-10 setting. We let the ensemble cou-
pling weighting be a linear function of the number of epochs, and vary the starting value and slope
of the ensemble coupling weighting. The results can be seen in Figure 2, where negative coupling
weights are clipped to 0, while Figure 3 shows the un-clipped results (in the relevant area). From
Figure 2, we see that for CIFAR-10, there is no large benefit to begin coupling later compared to
selecting a good constant coupling value. Note that a delayed start corresponds to a negative start
value and a positive increase pr. epoch, as an initial coupling of -1 and a pr. epoch increase of 0.1
means it starts at epoch 10, due to clipping.

Figure 2: Validation accuracy as a function of the initial coupling weight and the increase in coupling
weights per epoch for an individual model (left) and a coupled ensemble with two members (right).
The results are averaged over 3 seeds.
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Figure 3: Validation accuracy as a function of the weighting of the ensemble consistency loss.

F.5 Different Losses

We also investigated the sensitivity to different formulations of the ensemble consistency loss. The
results are shown in Table 18. We ran with the same setup for the computer vision CIFAR-10 and
two ensemble members. While the best performing loss function was KL-divergence (the same form
as the supervised loss), the "regression" functions (L1, L2, L∞) performed about the same. Only
the reversed KL-divergence, DKL(E||I), resulted in lower accuracy, at around the same level as a
decoupled model (see Table 4).

Table 18: Validation accuracy with different ensemble consistency loss functions. Results averaged
over 10 seeds. Here, I is the individual prediction and E is the ensemble consensus.

Ensemble Loss Individual Accuracy

L∞ 66.23±0.29

DKL(I||E) 66.62±0.51

DKL(E||I) 59.37±0.78

L1 66.01±0.51

L2 66.12±0.45

F.6 Different coupling strategies

We investigated different strategies for coupling the unsupervised loss on QM9. This includes var-
ious combinations of three parameters: the coupling weight, the coupling start and the coupling
schedule.

Coupling weight The coupling weight parameter defines how much the unsupervised loss should
contribute to the total loss. When set to 0, only the supervised loss will be taken into account.

Coupling start The coupling start refers to when the unsupervised loss in included during training,
i.e. for the first x% of epochs, the model is only trained on the labeled data and only afterwards, the
unsupervised loss with be included via coupling. Depending on the dataset and task, it intuitively
can make sense to first let the model learn a little bit before evaluating the loss on unlabeled data.
Specifically, in regression tasks this can be the case, since the model output is not bounded, as
opposed to classification tasks. When set to 0, coupling will be used through the whole training. This
parameter is given in percentage, i.e. percentage of total training epochs after which the coupling
should start.

Coupling schedule Three different coupling schedules were tested: constant, increase and bell.
Constant refers to the the coupling weight being constant from onset until the end of training. In-
crease means that the there will be a smooth ramp up until the coupling weight reaches its maximum
(i.e. the coupling weight parameter). Bell means that there is a smooth bell curve over the coupling
weight, i.e. first in increases, then decreases. Here, it will start and end at 0, and peak at a maximum
which is set via the coupling weight parameter.
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Figure 4 and Figure 5 shows the impact of different coupling strategies on the model performance,
here for target 4 and 7 of QM9 respectively. We can see that a good choice of the coupling weight
is crucial for our method to result in a significant improvement in MAE compared to the fully
supervised baseline. The optimal coupling weight seems to differ per task, as both targets have
a different optimum (0.1 for target 4 and 0.01 for target 7). A good value for the coupling start
seems to depend on the choice of coupling weight, however a trend can be observed that for the best
coupling weight options for each target, the optimal coupling start is 0, i.e. using coupling from
the start of training. The optimal choice of coupling schedule seems to depend on both of the other
choices, but in the specific case of target 4, the increase schedule led to the best performance. For
target 7, the bell schedule resulted in the best ensemble performance, while the constant schedule
led to the best individual performance.

One interesting finding here is that if we couple too strongly, meaning we are weighing the unsuper-
vised loss to high, the ensemble performance gets worse than the baseline, while at the same time
the individual members from the ensemble are outperforming the baseline. This is due to the models
collapsing, so while each individual model is better than an individual model that was not coupled,
ensembling has no significant benefit anymore.
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Figure 4: Performance (MAE) of coupled ensembles (left) and individual models from coupled
ensembles (right) for different coupling strategies, for QM9 target 4.
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Figure 5: Performance (MAE) of coupled ensembles (left) and individual models from coupled
ensembles (right) for different coupling strategies, for QM9 target 7.

F.7 Evaluating Overfitting on Unlabeled Data

To evaluate potential overfitting to the unlabeled data, we compare the final model’s performance
on the unlabeled training set against its performance on the unseen test set. For this analysis, we
leverage our access to the ground-truth labels of the unlabeled set to compute its MAE. As presented
in Table 19, the performance is nearly identical across both datasets for all 12 QM9 targets. This
strong correspondence indicates that our method avoids overfitting to the unlabeled data used during
training. This has a significant practical benefit, as it means the model’s predictions on the entire
unlabeled set can be reliably used for downstream tasks.
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Table 19: PaiNN performance (MAE) on QM9 targets, comparing the held-out test set with the
unlabeled dataset used during training. Results are reported for 5 seeds.

Target Unit Data Individual Member Ensemble (M=4)

µ D Test .0619±.0003 .0613±.0003

Unlabeled .0596±.0003 .0596±.0003

α a30
Test .1322±.0011 .1303±.0011

Unlabeled .1268±.0008 .1261±.0008

ϵHOMO meV Test 73.9789±.4368 73.0755±.4472

Unlabeled 71.7113±.4012 71.6826±.4018

ϵLUMO meV Test 57.7186±.2247 57.2369±.2159

Unlabeled 56.8810±.1844 56.8676±.1839

∆ϵ meV Test 117.0365±.4988 115.7195±.5100

Unlabeled 114.1592±.3078 114.1303±.3091

⟨R2⟩ a20
Test .6100±.0206 .5605±.0206

Unlabeled .5918±.0205 .5552±.0202

ZPVE meV Test 2.0138±.0054 1.9907±.0055

Unlabeled 1.9925±.0066 1.9883±.0066

U0 meV Test 19.9642±.1291 19.3816±.1278

Unlabeled 19.3096±.1434 18.9715±.1416

U meV Test 20.1731±.1577 19.5886±.1574

Unlabeled 19.5288±.1248 19.1908±.1234

H meV Test 20.1407±.1268 19.5509±.1328

Unlabeled 19.5028±.1370 19.1620±.1355

G meV Test 20.3142±.1571 19.7479±.1634

Unlabeled 19.7490±.1384 19.4296±.1400

Cv
cal

mol K
Test .0449±.0002 .0439±.0002

Unlabeled .0443±.0001 .0439±.0001
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