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ABSTRACT

Graph Neural Networks (GNNs) are increasingly deployed in high-stakes domains
where interpretability is crucial. Existing model-level explanation methods largely
rely on generative models, which often produce motifs that fail to resemble real
instances, cannot account for the diversity of discriminative motifs recognized by
the classifier for a target class and lack mechanisms for translating global explana-
tions to instance-level insights. We present MatchEx, a framework that discovers
discriminative motifs directly from real instances by optimizing a novel match-
ing objective. Unlike isomorphism, which can only recover identical motifs that
rarely occur in real-world graphs, this objective extends beyond exact matches
to provably recover semantically similar motifs, allowing generalizable explana-
tions. The matching mechanism also enables projection of class level rationales
onto individual graphs for faithful instance-level insights. When a single mo-
tif fails to explain all instances, MatchEx adaptively partitions the instances in
a class into coherent subgroups with distinct rationales. Extensive experiments
across six real and synthetic datasets show that MatchEx consistently outperforms
state-of-the-art baselines, delivering coherent, generalizable, and multi-granular
explanations.

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved state-of-the-art performance across diverse tasks in-
volving graph-structured data. This success has driven their adoption in critical application domains
such as drug discovery and synthesis (Merchant et al.,[2023)), weather forecasting (Lam et al.,|2023)),
and recommender systems (Wu et al.|, 2022)). In high-stakes settings such as predicting polyphar-
macy side effects (Zitnik et al., 2018) and detecting fake news (Xie et al., [2025)), the growing use
of GNNs has underscored the need for interpretability and transparency in their decision-making
processes. Consequently, recent research has placed significant emphasis on developing post-hoc
explainability methods tailored for GNNs. According to a recent survey (Kakkad et al.}[2023)), post-
hoc explainability techniques for GNNs can be broadly categorized into two groups: instance-level
and model-level methods. Instance-level explainers (Vu & Thail [2020;[Ying et al.| 2019)) aim to high-
light a salient subgraph within a specific graph instance that influences the model’s prediction the
most. However, such explanations are localized and typically do not generalize to other instances,
limiting their effectiveness in revealing the model’s overall decision strategy. In contrast, model-
level explainers (Yuan et al.,|2020; [Wang & Shen, |2023)) seek to identify class-discriminative motifs
that are consistently used by the model to identify instances of a specific class. These explanations
are more generalizable, require less human scrutiny, and provide insights into the model’s reasoning
that hold across a broad range of instances.

However, existing model-level approaches (Wang & Shen, 2023} [Chen et al [2024; [Yuan et al.,
2020; Wang & Shenl 2024} |Saha & Bandyopadhyay) predominantly rely on graph generative mod-
els to synthesize such motifs. This reliance introduces key limitations. Most notably, the generated
explanations often fail to resemble actual motifs present in real instances of the target class. To en-
sure that synthesized explanations remain consistent with the underlying data domain, these models
often require domain-specific constraints which are difficult to design without expert knowledge.
Additionally, the design of the generative model itself also limits the ability to produce graphs with
varied node and edge features. On the other hand, discovery based approaches such as PAGE (Shin
et al.| 2024) which search for a common discriminative subgraph within graphs classified to the tar-
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get class, struggle to converge as the search space grows exponentially with graph size and number
of instances. Additionally both generative and discovery based approaches exhibit low local fidelity.
They lack a mechanism to connect the model-level rationale to instances classified to the class. This
makes it unclear how the synthesized explanation is tied to the classifer behavior on the instances
within the class. When a target class comprises subgroups of graphs that the classifier distinguishes
using distinct motifs, these approaches are prone to mode collapse, capturing only one motif and
ignoring others. This significantly limits their utility in high-stakes domains, such as drug toxicity
prediction, where capturing the full diversity of discriminative motifs is essential.

In light of the limitations of existing model-level approaches, we propose MatchEx, a framework
that discovers model-level explanations from instances classified to the target class rather than syn-
thesizing them using a generative model. Instead of searching for a common discriminative motif
across instances which becomes computationally infeasible as graph size and dataset scale increase,
MatchEx operates by optimizing a novel matching objective guided by a graph matching algorithm
to discover a shared class level rationale. It does so by aligning semantically similar motifs across
instances that need not be strictly isomorphic but instead share equivalent structural roles or func-
tional patterns, unlike approaches that attempt to find a single common subgraph that rarely exists
in real-world data. The same matching mechanism also projects the class-level rationale back onto
individual instances, establishing an explicit bridge between global and local behavior that prior
approaches lacked. It is further used to devise a generalization score to detect when a single ex-
planation does not sufficiently generalize across all instances of the class. In such cases, MatchEx
can identify subgroups of instances within the class that share a common rationale. Experiments on
six diverse real and synthetic datasets, including the large-scale OGB-Molhiv benchmark, show that
MatchEx outperforms state-of-the-art model-level explainers. In addition, it reveals what the model
has learned, diagnoses biases and pitfalls, and offers multi-granular explanations across global, sub-
group, and instance levels, underscoring its effectiveness and broad applicability.

2 MATCHEX

The objective of MatchEx is to identify a common discriminative motif shared across a broad set of
instances within a target class that the classifier consistently relied on for assigning the target class
label. To fulfill this goal, the same motif must serve as the decisive factor in determining the class
identity for all relevant instances. However, expecting the presence of isomorphic motifs across all
such instances is unrealistic in most real-world scenarios. Rather, what is typically observed are
semantically similar motifs that capture the same overall structural pattern, albeit with variations in
the number or arrangement of constituent nodes. Therefore, the task of a model-level explainer is to
discover a motif that is semantically aligned with the class-discriminative structures present in the
instances of the target class. To support this, we incorporate supervision via a multi-graph matching
algorithm that promotes the discovery of a motif that semantically resembles the discriminative
substructures across instances.

2.1 MULTI-GRAPH MATCHING AND CLUSTERING PROBLEM

We use the graduate assignment approach (Wang et al., 2020a) to solve a graph matching problem on
the instances that belong to a target class. Let D, denote the set of graphs that have been classified to
the target class c by the classifier. Each graph G; € D, can be represented as a tuple G; = (X, A;),
where X; € R™*! denotes the {-dimensional feature vectors for the n; nodes. The matrix 4; €
R™*™i s a weighted adjacency matrix capturing the connectivity within G;.

The objective of the graduate assignment algorithm is to return a node matching matrix M;; €
{0,1}™*™ for any two graphs G;,G; € D., which defines the correspondence between their
nodes. Note that the multi-graph matching (MGM) problem differs significantly from a pairwise
matching problem. Here, it is crucial to enforce the principle of cycle-consistency. Cycle consis-
tency enforces the transitive consistency of matching across multiple graphs. Specifically, if node a
in graph G is matched to node b in graph G, and node b is matched to node c in graph G/, then
node a should also be matched to node ¢ via transitive composition. Formally, the set of pairwise
matchings {M;;} is said to be cycle-consistent if Vi, j, k € {1,...,|Dc|}, M;; = M Mg;.
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The graduate assignment algorithm (Wang et al.l 2020al) enforces this condition. This condition
allows decomposition of all pairwise matchings into alignments between each graph and a shared
node universe of size d. Let U; € {0,1}"*¢ denote the matching from G; to this shared universe.
Then, the pairwise matching from G; to G; can be derived as M;; = U; UjT. Hence, the matching
from a graph G to the node universe can be transferred to the matching from G; to another graph
G;. As we demonstrate later, we utilize this mechanism to transfer explanations obtained on one

graph in a target class to find matching explanations in other graphs belonging to the same class.

It is important to note here that the graduate assignment algorithm solves a more general multi
graph matching and clustering(MGMC) problem. Formally, the objective formulated by a slight
modification of the Koopmans-Beckmann Quadratic Assignment Problem (KB-QAP) is written as:

max Cij (Mr(M;E A M A + (M, Wi (1)
{Mi;},i,5€[|Del] . Z J( ( J J J) ( J J))

1,J€[| Del]
The optimization aims to jointly maximize structural and node-level agreement between graphs that
belong to the same cluster. Here, C;; indicates whether graphs G; and G; are assigned to the same
cluster (C;; = 1) or not (C;; = 0). The term tr(MJ A;M;;A;) measures the structural consistency

between the adjacency matrices A; and A; under the assignment M;;, while W;; = X; X captures
the similarity at the node level based on the correspondence of features. When the task is solely
multi-graph matching without clustering, the cluster membership is implicitly assumed to be fixed
with C;; = 1 for all pairs ¢, j such that all graphs belong to a single cluster. The MGMC formulation
extends the classical notion of graph isomorphism as formalized in the following theorem.

Theorem 1 (Matching Generalizes Isomorphism). Let {G, = (X;, A;)}, be a collection of
graphs and consider the MGMC objective in Eq.|l| For any pair (i, j) with C;; = 1, the maximizer
M; recovers (i) the exact permutation when G; and G j contain isomorphic induced subgraphs and
(ii) the maximum common induced subgraph (MCIS) when no isomorphism exists (for large \).

The proof of Theorem I]is deferred to Appendix

2.2 DISCOVERY OF MODEL-LEVEL EXPLANATIONS USING MATCHEX

Let D, = {G;} <, denote the set instances classified to class ¢ by the trained classifier f : G — Y.
We start out by computing the multi-graph matching by optimizing Equation [I| with C;;—; for all
instances in D.. Our objective is to learn shared motifs M = {M;,--- , My} that explain the
class identity of all instances in D.. The primary goal is that each motif M; should explain the
largest possible subset of instances in D,. To assess this, we later devise a generalization score that
evaluates the range of instances explained by a motif M;. For now, note that any discovered motif
M; is a subgraph of some graph G; € D.. Therefore, we may use the matching assignment matrices
to obtain a subgraph M; in any G; € D, that matches M;. This allows us to verify whether the
matched subgraph M also explains the class identity of G ;.

2.2.1 DESIGN AND LEARNING OBJECTIVE OF THE EXPLAINER

To identify representative explanations for a target class, we focus on the set of graphs that are con-
fidently classified into that class by the trained GNN classifier. Since the motifs that the model truly
relies on to identify a target class are unobservable, the standard assumption in model-level literature
is that motifs with high target class scores when evaluated by the model f contain discriminative
information. Following this principle, we posit that instances in D, receiving high class scores are
most likely to contain discriminative substructures used by the model to identify the target class c.

We rank the graphs in a class according to their predicted class scores. We pose the explainer the
task of finding one motif each from the top k graphs. The objective of the explainer is designed with
inspiration from the information bottleneck principle such that it optimizes a combination of two
opposing objectives: a) the target class score of the obtained motif in a graph G; and the target class
scores of the matched subgraphs to the motif in the other k — 1 graphs to the obtained explanation
is high b) the size of the obtained motif in each graph is small. The explainer is parametrized as
a GNN followed by a linear layer and is trained to maximize this objective. For a graph G, in the
top k graphs containing n; nodes, the explainer outputs a soft node selection mask m; € [0, 1]™:.
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To make node selection differentiable, we adopt the Gumbel-Sigmoid reparameterization trick. The
explainer outputs a set of logits z; € R™, from which the stochastic mask m; is sampled as:

<10gu —log(1 —u) + z;
m; =o
i

> , u ~ Uniform(0, 1) ()

where o (+) denotes the sigmoid function and 7 is the temperature parameter.

The masked node features are obtained as X! = m; ® X;, and a soft edge mask e; is implicitly
induced by computing e,,,, = my,, - m;, for each edge (u, v). The mask weighted adjacency matrix
can be obtained as A} = e; ©® A;. Note that the classifier is kept frozen during explainer training.
The class score objective can be defined as L = f.(X/, A}) where f.(.) depicts the class score
corresponding to the target class c.

To encourage generalizable explanations, an alignment objective is introduced which is computed
across the top k graphs. Recall that, U; € {0, 1}"*¢ denotes the node matching matrix from G; to
a universal node space of dimension d. The explanation mask m; on a graph G; can be transferred
to another graph G; using mé-”ms = U,;U/ m;. The masked node feature matrix th-”ms, and
adjacency matrix Atrans’ can be calculated in the same manner using the transferred mask. The
alignment objective encourages the explainer to find an explanation such that these transferred masks

also determine the class identity of the other graphs Lumaching = ki fe(X ]‘?T“”SI, A;"msl).

The bottleneck on the size of the explanation is imposed using a L; norm regularization
lm;||1 on the mask values and optionally a budget constraint is used when needed Lyudeer =

ReLU (0, i, — B).

The final training objective combines all components as:

EMatchEx = Ecls + Amatchingﬁmatching + )\sparsity”Tni || 1+ )\budgetﬁbudget (3)

In addition, we introduce two lightweight regularizers to keep the explanations human interpretable:
a connectivity term, which encourages neighboring nodes to receive similar mask values, and an
entropy term, which avoids ambiguous values and pushes them towards 0, 1. They are discussed in
detail in Appendix [E]

2.3 SUBGROUP DISCOVERY AND SELECTION OF THE FINAL MODEL-LEVEL EXPLANATION

Optimization of Lyaenex yields k candidate model-level explanations, each derived from one of the
top-k graphs ranked by their predicted class scores. To evaluate how well a candidate explanation
generalizes across the class, we define the generalization score of a motif M as

1

gc(M) = w

> I[|fe(Match(M, G;)) — f(G;)| < 7], (4)

G,;€D,

where f.(G;) is the class score of graph G for class ¢, Match(M, G;) denotes the subgraph of G
matched to motif M, and  is set to 0.1 in our experiments. Intuitively, g.(M ) measures the fraction
of graphs whose class scores remain consistent when explained through the matched motif. The
candidate motif with the highest g.(M) is selected as the representative model-level explanation for
the class.

If the g, for all k candidates fall below a tolerance threshold (set to 0.7 in our experiments), MatchEx
infers that no single explanation sufficiently generalizes across the class. In this case, the multi-graph
matching and clustering (MGMC) procedure is applied to partition the graphs into more coherent
clusters. MatchEx is then invoked within each cluster to identify subgroup-level explanations. When
some clusters still fail to yield a satisfactory explanation, MGMC is recursively applied within those
clusters, thereby refining the partition hierarchically. This ensures adaptivity while avoiding repeated
global recomputation. Algorithm 2]illustrates the pseudocode for MatchEx.

Recovering Matching Instance-Level Explanations. The matching assignment matrices also en-
able recovery of instance-level explanations from a model- or subgroup-level explanation. Let the
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final model-level explanation mask be m; corresponding to a graph G} among the top k candidates.
A transferred explanation on another graph G in the same subgroup can be obtained using:

mj = U;U; Tm, (5)

where U and U; are the assignment matrices for G and G}, respectively. The node mask m;
allows sampling of an instance-level explanation on G; with induced edge weights. This natural
scheme equips MatchEx with greater local fidelity, enabling users to interpret explanations at finer
granularity and establishes a direct link between global and local explanations.

3 EXPERIMENTAL EVALUATION

We evaluate MatchEx across six datasets of varying scales, including both real-world and syn-
thetic benchmarks, to assess its ability to discover model-level explanations. For each dataset,
we first train a classifier and collect the set of instances D, that the classifier assigns to a tar-
get class c. MatchEx is then applied to D, with the objective of identifying motifs that serve as
shared explanatory rationales for instances in the class. We make the code available at https:
//anonymous.4open.science/r/MatchEx-D6A4/\

We evaluate MatchEx through three research questions: R1: Can it discover a motif that explains
the largest possible subset of instances in D.? R2: When a single explanation is insufficient, can
it identify coherent subgroups within D, and extract subgroup-specific motifs? R3: Can instance-
level explanations for specific graphs be faithfully recovered from the discovered model-level or
subgroup-level motifs? Before addressing these questions, we first introduce the evaluation metrics
used to assess the performance of MatchEx.

3.1 METRICS FOR EVALUATION

We employ a range of evaluation metrics to rigorously assess different aspects of the explanatory
capability of MatchEx.

Model-Level Metrics. Since there is no ground truth available for the motifs used by the classifier
to recognize a target class, the evaluation of discovered explanations must rely on proxy metrics.
We adopt three key metrics to assess the quality of model-level explanations: Target Class Score,
Generalization Score, and Wasserstein Distance.

Target Class Score (p.). For a discovered explanatory motif M, the target class score p. denotes
the classifier’s predicted probability that M belongs to class c. A higher score indicates that the
classifier confidently associates the motif with the target class. This metric has been widely adopted
in prior model-level explanation literature (Yuan et al.| 2020; Wang & Shen, 2023} Chen et al.,2024;
Saha & Bandyopadhyay). We report the mean and standard deviation of p. across 50 explanations
on each target class.

Generalization Score (g.). As described by Equation |4] it evaluates the fraction of graphs in D,
whose own class scores remain within a -y threshold of the subgraph which is matched to the motif
M. We set v to 0.1. Note that the generalization score cannot be computed for generative model
based explainers such as XGNN |Yuan et al.|(2020) and GNNInterpreter Wang & Shen|(2023), since
there is no guarantee that the generated motif would be part of any graph G; € D.. We report the
mean and standard deviation of g. across 50 explanations on each target class.

Wasserstein Distance (W;). While p. and g. assess the classifier’s confidence and motif transfer-
ability, they do not capture how closely the distribution of discovered motifs aligns with the distribu-
tion of true class instances. To address this, we compute the Wasserstein-1 (Earth Mover’s) distance
between the embeddings of the discovered motifs and those of graphs in D,. Since the number of
explanation motifs may be small compared to the number of instances in the class, we expand this
set by resampling each motif embedding with zero-mean Gaussian noise, where the variance is set to
a small fraction (10%) of the average pairwise distance between motifs. This ensures perturbations
remain centered on each motif while producing a denser support for stable estimation. A smaller
W1 indicates that the motifs lie closer to the support of the true class distribution, thereby reflecting
better semantic alignment. Unlike the generalization score, W; can be computed for both retrieved
and generative explanations, enabling a fair comparison across methods.
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Instance-Level Metrics. For completeness, we also evaluate matching instance-level explanations
produced by MatchEx using Fidelity, Infidelity, and Sparsity, which measure predictive consis-
tency, necessity of the explanation, and conciseness of the selected subgraph. Full definitions and
results are provided in Appendix

3.2 EXPERIMENTS AND RESULTS

Our experiments span four real-world datasets (IMDB-Multi (Yanardag & Vishwanathan, |2015),
REDDIT-Binary (Yanardag & Vishwanathan, 2015), MUTAG (Debnath et al., [1991), OGB-
MOLHIV (Hu et al, 2020)) and two synthetic datasets (BA-2Motif (Luo et al. [2024), Group-
Shapes), with full details provided in Appendix [C| Among the synthetic benchmarks, the Group-
Shapes dataset is particularly important as it consists of two classes where instances can differ sub-
stantially in structure: one class contains Star and Lollipop graphs, while the other includes Grid and
Tree graphs. This setup reflects scenarios where a single class does not admit a uniform explanation,
requiring the discovery of meaningful subgroups and their associated motifs. To evaluate scalability,
we further include the OGB-MOLHIV dataset, which comprises 41,127 molecular graphs labeled
for HIV activity prediction. We compare MatchEx against three representative model-level explain-
ers: XGNN (Yuan et al.|[2020), a reinforcement learning-based approach that constructs motifs node
by node, GNNInterpreter (Wang & Shenl 2023)), which employs a probabilistic generative model to
synthesize explanations and PAGE (Shin et al., 2024) which is a discovery-based approach that
searches for common discriminative subgraphs across instances classified to the target class. This
selection provides a balanced comparison across both generative and discovery based paradigms.

Dataset Class XGNN GNNInterpreter PAGE MatchEx
Mutagenic > \/‘\
MUTAG
Non-mutagenic % \ \d
Class 0
Reddit-B
Class 1 .
Cycle Gy <. .. .
BA2-Motif
House « '.
=
: S.tar .Lollipap
Star-Lollipop r I
GroupShapes - ‘_ Grid Tree
Grid-Tree O )
Class 0 .
|
IMDB-Multi Class 1 . <
)
Class 2 . :: - S
bz 4

Figure 1: Model-Level Explanations across Target Classes.

R1: Capability to generate a common model-level explanation We first evaluate the ability of
MatchEx to discover motifs that serve as common rationales for all instances in a target class. Except
on the OGB-MOLHIV and GroupShapes datasets, MatchEx considered instances in all target classes
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of other datasets as a single group, yielding a single common explantion for each class. As shown
in Table |1} MatchEx achieves higher target class scores and generalization scores on almost all
datasets, indicating that its retrieved motifs are strongly associated with the classifier’s notion of the
target class and matching discriminative motifs recur across many confidently classified instances,
highlighting their role as class-level rationales. Lower W) scores for MatchEx also indicate that the
discovered explanations faithfully capture the distribution of the target class learnt by the classifier.
Figure [I| further illustrates representative motifs obtained on each dataset.

Across datasets, MatchEx consistently recovers class-defining motifs. On MUTAG, it identifies
fused ring structures and NO- as the rationale for mutagenic compounds, while for non-mutagenic
ones the explanation is dominated by halogen atoms, exposing a spurious association learnt by
the classifier confirmed by an analysis in Appendix [} On IMDB-Multi, Action(Class 0) graphs
show densely interconnected high-degree actors, whereas Comedy and Drama( Class 1 & 2) graphs
feature one or two central actors with peripheral groups, aligning with strong generalization scores
in Table On REDDIT-B, hub-and-spoke patterns emerge for the Question—Answer(Class 0) class
and clustered interactions for the Discussion class (Class 1), reflecting the communication dynamics.
learnt by the classifier. Finally, on BA-2Motif, MatchEx retrieves the planted House and Cycle
motifs, validating its ability to recover ground-truth structures in synthetic benchmarks.

The baselines show clear limitations compared to MatchEx: XGNN performs well on MUTAG
but degenerates to trivial explanations such as line graphs or isolated nodes on other datasets; GN-
Nlnterpreter produces reasonable motifs on IMDB-Multi and REDDIT-B but produces pathological
unrealistic motifs on MUTAG. While PAGE discovers motifs from real graphs, it often does not
manage to find motifs with optimal class scores or high generalization scores on large graphs such
as REDDIT(Class 1) and the IMDB-Multi dataset with matching but non-isomorphic patterns.

Table 1: Comparative Results for Model-Level Explanations

Classes XGNN GNNInterpreter PAGE MatchEx (Ours)
(Dataset) pe (D w1 ) pe (D) Wi () pe (D) Wi () ge(1) pe (D) wid) ge(1)
Mutagenic 0.961£0.004 | 1.986 | 0.981£0.000 | 3211 | 0.983£0.003 | 1.871 | 0.825£0.010 | 0.998£0.003 | 0.801 | 0.901+0.001
(MUTAG)
g‘;‘(‘}‘ﬁ'ﬁ?ge‘““ 1.000£0.000 | 1.591 | 1.00040.000 | 4701 | 1.00040.000 | 1761 | 0.894x0.009 | 1.000£0.000 | 1.001 | 1.000+0.000
(Ll;asd;‘,'t B 0.004£0.000 | 10.510 | 0.82120.014 | 1911 | 0.776£0.051 | 2.677 | 0.739£0.003 | 0.975x0.001 | 1.229 | 1.000:0.000
e e
((;:af:;t B 0.329£0.000 | 10.974 | 0.988£0.000 | 0.992 | 0.745x0.038 | 2.189 | 0.661x0.001 | 0.976:0.000 | 1.041 | 1.000:0.000
e 1L~
ClassO | (30040.000 | 7.843 | 0.6500.020 | 5619 | 0.955:0.000 | 3982 | 0.821£0.004 | 0.994:0.006 | 2.636 | 0.99120.000
(IMDB-Multi)
Class1 ) (33540000 | 9913 | 035420020 | 6729 | 0.856£0.005 | 4813 | 0.7600.010 | 1.000:0.000 | 1302 | 0.99820.000
(IMDB-Multi)
Class2 | 11550.000 | 8900 | 0.7110.031 | 3414 | 0.855£0004 | 2793 | 0.836:0031 | 0.972:0.001 | 1420 | 0.95620.000
(IMDB-Multi)
Cyde 0.5020£0.003 | 3.202 | 0.94740.000 | 1.110 | 1.000:0.000 | 0.584 | 1.000:0.000 | 0.999:0.000 | 0.772 | 1.000+0.000
(BA-2Motif)
House 04910248 | 2.190 | 0.981£0.000 | 1.494 | 1.000£0.000 | 0.867 | 1.000:0.000 | 1.000:0.000 | 0.755 | 1.000+0.000
(BA-2Motif)
Star-Lollipop | 31,0002 | 4449 | 095240000 | 2758 | 0.998£0.000 | 2.648 | 0.512£0.005 | 1.000£0.000 | 0.998 | 1.0000.000
(GroupShapes)
Grid-Tree
0.4590.001 | 3.537 | 0.986£0.000 | 2511 | 0.975£0.003 | 1.173 | 0.5540.008 | 0.999:0.007 | 0.303 | 1.000:0.000

(GroupShapes)
Non-HIV

) NA NA | 0.7870.001 | 12.967 | 0.511+0.058 | 13.300 | 0337 +0.072 | 0.962 + 0.005 | 2.644 | 1.000:0.000
(OGBMolhiv)
HIv ) NA NA | 0.199£0.018 | 4375 | 0.089+0.096 | 4962 | 0.000£0.000 | 0.991 % 0.007 | 0.982 | 0.004:0.000
(OGBMolhiv)

R2: Recognizing Subgroups of Instances in a Target Class that share a Common Explanation
In absence of a common explanation on a target class, MatchEx discovers subgroups for which a
common rationale can be found. Wherever subgroups are discovered, Table || reports mean p. and
gc scores across subgroups on those classes.

This behavior is clearly illustrated on the GroupShapes dataset. In the Star—Lollipop class,
MatchEx discovers two distinct subgroups, one explained by a Star motif and the other by a Lol-
lipop motif. Similarly, in the Grid—Tree class, MatchEx identifies two subgroups corresponding to
the Grid and Tree motifs. Competing baselines, by contrast, always generate a non-representative
single explanation for the entire class, thereby failing to represent the underlying heterogeneity.
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On the large-scale OGB-Molhiv dataset (Hu et al., 2020), where the majority class exhibits substan-
tial structural diversity, MatchEx partitions the class into four subgroups, each characterized by a
distinct motif depicting distinct functionalities. These subgroup-level explanations achieve notably
higher p. and g, scores, and markedly lower W, distances than both GNNInterpreter and PAGE,
demonstrating MatchEx’s ability to uncover multiple complementary rationales in complex real-
world settings. The identified subgroups and their motifs are provided in Appendix [H.I} XGNN
is omitted on this dataset as it only applies to graphs with discrete node features. For the minority
class, none of the baselines produce explanations with high class scores, while MatchEx retrieves
high-scoring instances that nonetheless yield low g. values. Further node deletion experiments in
Appendix [H.I| show that removing even a single node from a minority-class graph can flip its pre-
dicted label. This reveals that the classifier, affected by extreme class imbalance (only ~4% minor-
ity samples), memorizes minority instances rather than learning a generalizable pattern. Together,
MatchEx and the generalization score serve as effective diagnostics, exposing such biases in model
behavior.

R3: Recovering Instance-Level Explanations from Model-Level Explanations For complete-
ness, we evaluate the quality of instance-level explanations recovered from the model-level motifs
using the mask transfer scheme described in Section[2.3] Table[2]reports comparative results against
two widely used baselines, GNNExplainer (Ying et al., 2019) and PGExplainer (Luo et al., [2020).

Table 2: Comparative Results for Instance-Level Explanations

Dataset MatchEx GNNExplainer PGExplainer

Fidelity(t) | Infidelity(}) | Sparsity(t) | Fidelity(t) | Infidelity(}) | Sparsity(t) | Fidelity((1)) | Infidelity (}) | Sparsity(1)
MUTAG 0.931+0.095 | 0.068+0.095 | 0.759+0.033 | 0.984+0.125 | 0.015+£0.125 | 0.445+0.093 | 0.813+0.290 | 0.186+0.290 | 0.765+0.098
Reddit-B 0.792+0.092 | 0.207+0.092 | 0.841+0.059 | 0.513+0.282 | 0.486+0.282 | 0.558+0.143 | 0.468+0.195 | 0.531+0.195 | 0.681+0.028

IMDB-Multi | 0.794+0.049 | 0.205+0.049 | 0.448+0.044 | 0.838+0.223 | 0.161+0.223 | 0.531£0.105 | 0.788+0.151 | 0.211£0.151 | 0.422+0.119
BA-2Motif 0.982+0.014 | 0.017£0.036 | 0.812+0.054 | 0.937+0.005 | 0.062+0.005 | 0.779+0.076 | 0.961+£0.024 | 0.038+0.024 | 0.851+0.074
GroupShapes | 0.931+0.008 | 0.068+0.008 | 0.512+0.085 | 0.920+0.014 | 0.079+0.014 | 0.416+0.080 | 0.912+0.007 | 0.087+0.007 | 0.455+0.018
OGB-Molhiv | 0.866£0.112 | 0.133x0.112 | 0.771£0.032 | 0.544+0.221 | 0.455£0.221 | 0.349+0.112 | 0.632£0.242 | 0.367+0.242 | 0.511£0.245

Runtime comparisons on all datasets and a time complexity analysis and hyperparameter settings
for MatchEx can be found in Appendix [[|and [E] Taken together the findings in this Section demon-
strate that MatchEx uniquely offers coherent explanations across model, subgroup, and instance-
level granularities.
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Figure 2: a) Class Score with variation in Aepropy and Agparsity b) Generalization Score Distribution
of Explanations with (blue) and without (orange) the matching objective



Under review as a conference paper at ICLR 2026

3.3 IMPACT OF DIFFERENT LOSS OBJECTIVES

We assess the effect of the matching objective and regularization terms on the quality of explana-
tions. MUTAG and Reddit-Binary were chosen due to their contrasting scales and domains, pro-
viding a representative setting for ablation. As shown in Figure 2p, including the matching loss
yields consistently higher generalization scores, whereas removing it produces unstable or weakly
transferable explanations. We also vary the regularization weights Acngropy and Agparsity (Figure ),
and observe that target class scores remain high throughout indicating high robustness of MatchEx.

4 RELATED WORK

Explanations for GNNs. Explainability approaches for GNNs can be broadly grouped into two
categories: self-interpretable architectures and post-hoc methods. Self-interpretable GNNs (Miao
et al., [2022; [Miiller et al., [2024) are designed to output not only predictions but also built-in ratio-
nales. While this promotes transparency, such approaches typically impose restrictive architectural
assumptions that can hinder predictive performance. Post-hoc explainers, to which our work be-
longs, instead aim to provide explanations for any pre-trained GNN without requiring architectural
changes. According to a recent survey (Kakkad et al., 2023), post-hoc methods can be further
divided into instance-level and model-level methods. Instance-level explainers (Pope et al., 2019;
Feng et al., 2023} Baldassarre & Azizpour,2019; | Huang et al.| 2022 Schlichtkrull et al.| [2020; [Yuan
et al., 2021} |Lucic et al., 2022; |Lin et al., 2022; [Zhang et al., 2021) identify subgraphs, nodes, or
edges most influential for a specific input. These provide fine-grained, sample-specific rationales but
do not generalize across instances. Hence, inferring general classical behaviour from these require
significant human oversight.

Model-level explanations, the subcategory to which MatchEx belongs, aim to uncover discrimina-
tive motifs that a classifier relies on to recognize a class. Ideally, these motifs should be explicitly
related to instances that the classifier assigns to the class. However, existing model-level meth-
ods do not make this connection explicit. Most of them such as XGNN (Yuan et al., |2020), GN-
Ninterpreter (Wang & Shen| [2023)), D4Explainer [Chen et al.| (2024) and Gen-GraphEx [Saha et al.
(2025)) adopt generative approaches which produce explanations that may stray far away from the
data distribution. Another line of work is based on discovering model-level explanations, such as
PAGE (Shin et al.| [2024) which adopts a common subgraph search and motif-scoring procedure,
MAGE (Yu & Gaol [2025) and GLGExplainer |Azzolin et al.| (2023) which build a vocabulary of
motifs from which the model-level explanation is built. While this grounds motifs in data, searching
or building a vocabulary is computationally expensive, requires prior knowledge of motif size and
offers no guarantee of generalization beyond the subset considered. Moreover, in realistic settings
isomorphic motifs are unlikely to appear across a large number of instances; one can only expect
semantic similarity across explanations, a challenge that MatchEx is explicitly designed to address.

Multi-Graph Matching and Clustering (MGMC). MGMC aims to align multiple graphs by es-
tablishing consistent node correspondences, thereby revealing shared substructures across instances.
Unlike strict subgraph isomorphism, matching does not require graphs to be of the same size, mak-
ing it better suited for real-world data. Among classical algorithms, Graduated Assignment (Wang
et al., 2020al) is attractive because it avoids reliance on anchors (Solé-Ribalta & Serratosal [2013)),
does not require initialization (Bernard et al., 2019)), and can jointly handle matching and cluster-
ing (Wang et al., 2020b). While deep learning-based graph matching methods (Yu et al.,|2019; |[Fey
et al.| [2020; Nowak et al.| [2018)) exist, they often depend on costly supervision. MatchEx to the best
of our knowledge, is the first GNN explainer to incorporate MGMC for discovering explanations.

5 CONCLUSION

In this work, we introduced MatchEx, a novel framework for generating model-level explanations
for GNNG. It advances beyond existing approaches by extracting semantically similar motifs rather
than relying on strict isomorphism, uncovering subgroups within a class that share a common ratio-
nale, and providing an explicit mechanism to connect global motifs to explanations at finer granu-
larities. Together, these contributions position MatchEx as a robust and versatile method for GNN
interpretability supporting its deployment in high stakes domains in real world tasks.
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Reproducibility Statement: We make the code for MatchEx anonymously available in Section
Details of datasets, classifier and explainer architecture, hyperparameters and theorem proofs are

provided in Appendix [C] [D} [E]and [A]respectively.
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A PROOF OF THEOREM [I]

Proof. Since all C; is set to 1. We analyze the optimization objective
O(M) = Mr(MTAMA;)) + tr(M W),

where M is a (partial) permutation matrix aligning nodes of G; and G, the first term measures
structural consistency of the alignment, and the second term measures node feature similarity.

(a) Isomorphic case. Suppose G; and G; contain induced-isomorphic subgraphs H; C G; and
H; C @G, related by a bijection = : V(H;) — V(H;). Let P denote the permutation matrix
corresponding to 7. Because the subgraphs are isomorphic, the adjacency matrices align exactly,
ie. P'A;P = A; on the motif nodes. Hence the structural term achieves

Atr(PTAPAj) = AE(H,)|,
which is maximal for this subgraph.

Note that corresponding nodes in H; and H; also have the same features, so the feature term
tr(PTW;;) is simultaneously maximized. Any alternative alignment M # P must either (i) de-
stroy some edges within H;, lowering the structural term, or (ii) mismatch node features, lowering
the feature term. In either case, ®(M) < ®(P). Thus, the optimal solution coincides with P on the
motif nodes (up to automorphisms that yield the same score).

(b) Non-isomorphic case. Now suppose G; and G are not isomorphic. Let S denote a maximum
common induced subgraph (MCIS) between them, and let Mg denote the alignment that realizes
this MCIS. By maximality of S, any other alignment M # Mg necessarily matches fewer edges.
Formally, there exists a margin deqee > 0 such that

tI‘(MSTAZMsAJ) - tI‘(MTA,L'MAj) Z 6edge-
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Next consider the feature term. Because node features are bounded and the set of possible alignments
is finite, the largest possible difference in feature score between any M and Mg is also bounded:

‘tI‘(MTWij) — tr(MgVV?J)‘ < Afeat < 00.

If we choose A to be larger than the ratio Afeae/Jedge, then the structural advantage of Mg outweighs
any possible feature advantage of a competing alignment. In particular,

(I)(MS)_CD(M) > A(Sedge_Afeat > 0;

for all M # Mg. Thus, Mg strictly dominates all alternatives.

Conclusion. In the isomorphic case, the optimizer recovers the exact permutation on the motif nodes
(up to automorphism). In the non-isomorphic case, for sufficiently large A, the optimizer aligns the
maximum common induced subgraph. This establishes the claim. O

B INSTANCE-LEVEL EVALUATION METRICS

For completeness, we also assess the quality of instance-level explanations produced by MatchEx.
We consider three standard metrics: Fidelity, Infidelity, and Sparsity. These capture, respectively,
how well the explanation preserves the model’s original prediction, how necessary the explanation
is for the prediction, and how concise the explanation is in terms of subgraph size.

Fidelity. Fidelity measures the drop in the model’s confidence for the target class when the explana-
tory subgraph is removed from the original graph:

N

Fidelity = %Z (fc(Gi) — fe(Gi\ Gis)),

i=1

where f.(G;) is the prediction score of the full graph, f.(G; \ G;s) is the score after removing the
explanatory subgraph, and N is the number of evaluated instances. A higher fidelity indicates that
the detected subgraph is crucial to the class identity of G;.

Infidelity. Infidelity measures the drop in the model’s prediction score when the complementary
subgraph (i.e., everything outside the explanation) is removed:

N

Infidelity = >~ (7.(G1) — (G \ %),

i=1

where f.(G; \ G;$) denotes the score after masking out the complementary subgraph. A lower
infidelity signifies that the explanatory subgraph itself is sufficient for determining the class identity
of Gl

Sparsity. Sparsity quantifies the fraction of the graph retained in the explanation:

N
: 1 |Gis|
Spars1ty:1—Ni_Zl( Gl ),

where |G; g| is the number of nodes in the explanatory subgraph and |G| is the total number of nodes
in the original graph. A higher sparsity corresponds to a more concise and interpretable explanation.

Reporting. We report the mean and standard deviation of fidelity, infidelity, and sparsity scores
across all target classes on each dataset.

C DATASETS

The experiments were conducted on fourreal and two synthetic datasets. Table 3] summarises the
features of the datasets and the test accuracy of the classifier on each dataset.
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Table 3: Dataset Properties and Classifier Accuracy

Dataset #Classes | #Graphs | Average #Nodes | Average #Edges | Classifier Accuracy
IMDB-Multi 3 1500 19.77 96.53 0.835
Reddit-Binary 2 2000 429.63 497.75 0.812
MUTAG 2 188 17.93 19.79 0.8723
BA-2Motif 2 1000 25 25.48 1.00
GroupShapes 2 1000 12.85 14.97 1.00
OGB-MOLHIV 2 41127 25.51 54.94 0.9701

C.0.1 REAL DATASETS

We conduct our experiments on three standard and one large scale graph classification datasets:
IMDB-Multi(Yanardag & Vishwanathan, 2015), REDDIT-BINARY (REDDIT-B)(Yanardag &
Vishwanathan, [2015)), MUTAG(Debnath et al., |1991) and OGB-MOLHIVHu et al.| (2020). The
IMDB-MULTI |Yanardag & Vishwanathan| (2015) consists of 1,500 ego-networks extracted from
the Internet Movie Database. Each graph corresponds to an actor/actress, with nodes as actors and
edges connecting pairs who co-appear in movies. Graphs are labeled into three classes based on the
predominant genre of the target actor’s movies: Action, Comedy, or Drama. The REDDIT-B dataset
comprises graphs of user interactions on Reddit, with nodes denoting users and edges representing
reply relationships. Each graph is associated with either a question-answer based or discussion-
based community. The MUTAG dataset consists of molecular graphs, where nodes represent atoms
and edges denote chemical bonds. Each graph is labeled to indicate whether the compound is mu-
tagenic or non-mutagenic. OGBG-MOLHIV, part of the Open Graph Benchmark (OGB)Hu et al.
(2020), contains 41,127 molecular graphs with the binary prediction task of determining whether
a molecule inhibits HIV replication. Rich atom-level (type, chirality, valence) and bond-level fea-
tures are provided. Dataset splits are defined using scaffold splitting, ensuring structurally distinct
molecules across train, validation, and test sets. It should be noted that this a highly imbalanced
dataset with about 4% of the instances belonging to the minority HIV class, hence classifiers trained
on this dataset are often inherently biased towards the majority class.

C.0.2 SYNTHETIC DATASETS

We also conduct experiments on two synthetic datasets: BA-2Motif(Luo et al.l 2024) and Group-
Shapes dataset. BA-2Motif consists of Barabasi-Albert graphs with labels assigned by the motif
embedded in the graph. Each graph may either contain a House or a Cycle motif.

Algorithm 1 GroupShapes Dataset Generation

Class 0: {STAR, LOLLIPOP}  Class 1: {GRID, TREE}
Output: A dataset of graphs labeled by class
Procedure:
e Fort=1ton:
Sample STAR graph Gior with k € {5,...,10} leaves
Sample LOLLIPOP graph Gioipop With head m € {5,...,8} and tail ¢ € {3,...,5}
Assign label 0 to both graphs and store (Gstar, 0), (Gioitipop, 0)
Sample GRID graph Ggr:q of size p X ¢, p,q € {7,16}
Sample TREE graph Gc. as binary tree of height h € {3,7}
Assign label 1 to both graphs and store (Ggrid, 1), (Geree, 1)

The GroupShapes dataset includes two distinct classes of graphs. The first class comprises graphs
structured as either a Star or a Lollipop, while the second class contains graphs shaped like a Grid
or a Tree. This dataset is motivated by real-world scenarios where instances from the same class
can differ significantly in structure. In such cases, it is crucial for the explainer to identify subsets
of instances within a class that the classifier recognizes using a shared rationale and to uncover the
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common motif underlying this decision. Algorithm [I] demonstrates the pseudocode for generating
this dataset.

D CLASSIFIER AND EXPLAINER ARCHITECTURE DETAILS

BA-2Motif. The classifier for the BA-2Motif dataset consisted of a two-layer Graph Convolutional
Network encoder followed by a linear classification head. Each convolutional layer applied a GC-
NConv operation with batch normalization, ReLU activation, and dropout with probability 0.5. The
hidden dimensionality was set to 64. Node embeddings were aggregated by global mean pooling to
obtain a graph representation, which was passed through a fully connected layer for final logits. The
model was trained with cross-entropy loss, using the Adam optimizer and early stopping based on
validation performance.

GroupShapes. The GroupShapes dataset was modeled with a three-layer Graph Convolutional
Network, each layer using the same block structure as in BA2 with hidden dimension 64. Global
mean pooling produced graph embeddings, followed by a linear projection to class logits. The
deeper architecture was required to capture more complex structural patterns in the dataset. The
model was optimized with Adam at learning rate 10~3 and weight decay 10~°.

IMDB-Multi. The IMDB-Multi dataset was handled with a two-layer Graph Convolutional Net-
work encoder and a linear classification head. Each layer used GCNConv with ReLU activation and
dropout with probability 0.5, with hidden dimension 128. Global mean pooling aggregated node
embeddings into graph features, which were mapped to binary logits by a linear readout. The clas-
sifier was trained with cross-entropy loss and Adam optimizer, with stronger dropout to mitigate
overfitting on large and noisy graphs.

MUTAG. The MUTAG dataset employed a two-layer Graph Convolutional Network with hidden
dimension 64. Each layer consisted of GCNConv with ReLU activation and dropout. Embeddings
were pooled using global mean pooling, and a linear layer projected the pooled representation into
two output logits. Batch normalization was applied after each convolution to stabilize training. Due
to the small dataset size, early stopping and moderate weight decay of 10~° were used to avoid
overfitting.

Reddit-Binary. The Reddit-Binary dataset required a three-layer Graph Convolutional Network
with hidden dimension 128 to handle its large and structurally diverse graphs. Each layer followed
the standard structure of GCNConv with batch normalization, ReL.U activation, and dropout with
probability 0.5. Node embeddings were aggregated via global mean pooling, and a linear layer
projected the pooled vector to the output space. The model was optimized with cross-entropy loss,
Adam optimizer, and a tuned decay schedule to stabilize convergence.

OGB-Molhiv. We employ a Graph Isomorphism Network (GIN) architecture. The encoder con-
sists of five stacked GINConv layers, each parameterized by a two-layer MLP with ReL. U activation.
Batch normalization and dropout (p = 0.5) are applied after each layer to improve stability and pre-
vent overfitting. The final node embeddings are aggregated using global mean pooling to obtain a
fixed-size graph-level representation. This pooled representation is passed through a fully connected
layer with ReLU activation, followed by a linear classifier that outputs logits over the class labels.
The model is trained using the Adam optimizer with a learning rate of 10~ and a cross-entropy loss
function. A StepLR scheduler with decay factor v = 0.5 is applied every 20 epochs to reduce the
learning rate adaptively.

Explainer. The explainer architecture consists of a GCN layer that maps input node features to
hidden representations, followed by a linear projection that assigns a scalar importance logit to each
node. These logits are transformed into differentiable node masks using the Gumbel-sigmoid trick,
where annealed temperature scheduling gradually sharpens the masks from soft continuous values
toward near-binary selections across training epochs. In this way, the model produces stochastic yet
differentiable node-level masks that can be optimized end-to-end to highlight the subgraphs most
relevant for explanation.
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E REGULARIZATION COMPONENTS AND HYPERPARAMETER SETTING

E.1 ADDITIONAL REGULARIZERS

Connectivity. To discourage scattered explanations, we add a connectivity regularizer that en-
courages neighboring nodes to receive similar mask values. Let L; = D; — A; denote the graph
Laplacian of G;, where D; is the degree matrix and A; is the adjacency matrix. The regularizer is

defined as i

1

ﬁ ﬁ Z Ay (miu - mi'u)2- (6)
g v (u,v)EE;

Minimizing Lo, promotes smoothness of the mask across edges, leading to more compact and

connected explanations instead of disjoint fragments.

£conn =

T
m; Lz m,; =

Entropy. To improve interpretability, we encourage mask values to approach binary selections.
Given m;, € (0, 1) as the soft mask value on node v, the entropy penalty is

1 &
£entr0py = _; Z [miv IOg My + (1 - miv) 10g(1 - mw)} . (7)
ty=1

This penalty is minimized when m;,, is close to 0 or 1, thereby producing crisp, interpretable masks
that are more stable when transferred across graphs.

E.2 SETTING OF THE EXPLAINER HYPERPARAMETERS
The hyperparameters for training the Explainer on all the datasets are detailed in Table[d]

Table 4: Explainer hyperparameters used for each dataset.

Dataset )\entropy )\sparsily Abudget Budget Amatchin g )\conn k
BA-2Motif 0.2 2 2.0 5 2.5 1 5
GroupShapes 0.1 0.6 - - 3.0 1 5
IMDB-Multi 0.01 0.8 7.5 17 2.0 1 5
MUTAG 0.2 4 8.0 6 2.5 1 5
Reddit-Binary | 0.01 0.1 10.0 25 2.5 1 10
OGB-Molhiv 0.01 0.1 15.0 30 15.30 1 35

F FURTHER ANALYSIS ON MUTAG

The distinguishing feature of the explanation for the Non-Mutagenic class is the presence of halo-
gen atoms. However, it is important to note that in the literature the presence of halogen atoms
is not typically indicative of non-mutagenicity. Upon further examination, we found that matched
subgraphs corresponding to this explanation in other Non-Mutagenic instances also contain halogen
atoms and achieve high class scores. To investigate this further, we conducted a frequency analysis
of halogen atom occurrence across both classes, as shown in Figure 3] The analysis revealed that
halogen atoms appear nearly ten times more frequently in non-mutagenic compounds than in muta-
genic ones. This suggests that the classifier may have learned to associate the presence of halogens
with non-mutagenicity—a pattern that may not hold reliably in real-world scenarios and could lead
to misleading predictions.

To validate this hypothesis, we further removed halogen atoms from 10 randomly chosen molecules
classified to the Non-Mutagenic class and observed an average score drop of 0.31 £ 0.009. This
confirms that the classifier indeed relies on halogen presence as a key discriminative feature for
predicting non-mutagenicity, even though this association lacks solid chemical justification. Such
experiments highlight the risk of spurious correlations embedded in the learned decision process.

It is also worth emphasizing that such insights are made possible due to MATCHEX’s motif matching
mechanism, which enables systematic investigation of discovered explanations through controlled
interventions. In contrast, explanations produced by other methods lack this matching capability,
significantly limiting their local fidelity and their ability to support causal probing of model behavior.
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Halogen Frequency in MUTAG Dataset
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Figure 3: Frequency of halogen atoms across classes in the MUTAG dataset.

ALGORITHM OF MATCHEX

Algorithm 2] demonstrates the pseudocode of MatchEx.

Algorithm 2 Implementation of MatchEx to Discover Explanations

Require: Trained GNN f, class-wise graphs D,, tolerance threshold 7, top-k
Ensure: Set of model-level or subgroup-level explanations M
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[O¥]
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25:

26:
27:
28:
29:

A A ol e

I}
T

M0
# Step 1: try single explanation once via MGM on the whole class
Select top-k graphs from D, with highest predicted class-c scores
Run multi-graph matching (MGM) on D.. to obtain alignments {U; }
for each G; in top-k do
Train explainer to predict mask m; over nodes (optimize Eq.[3)
end for
Evaluate generalization scores on D, by transferring m; across graphs using U; U,'m;
if best generalization score > 7 then
Append the corresponding explanation (G;, m;) to M; return M

. end if
: # Step 2: binary MGMC on the whole class (first split), then refine only failing clusters
: (€ AUMY). (€2, {U)) ¢~ MGMC(D, K=2)

Q[ UMY, (G AU
: while Q not empty do

(C.{UF}) « pop(Q)
Select top-k graphs from C with highest predicted class-c scores
for each GG; € top-k of C do
Train explainer to predict mask m; over nodes (optimize Eq. [3)
end for
Evaluate generalization scores within C using the provided alignments {US} and transfers
Uy (UF) "mi
if best generalization score > 7 then
Append the corresponding explanation (G;, m;) to M; continue
else
(€L, AU}, (Cr, {UT}) « MGMC(C, K=2)
push (Cyr, {U;L)}) and (Cg, {Ui(R)}) into Q
end if
end while
return M
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H DETAILED ANALYSIS ON THE OGB-MOLHIV DATASET

H.1 EXPLANATIONS ON THE MAJORITY CLASS
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Figure 4: Explanations Corresponding to the Majority Class of the OGB-Molhiv dataset by
MatchEx. Each row depicts 3 explanations with highest class score in each subgroup discovered
by MatchEx.
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In the majority (non-active) class of OGB-Molhiv, MatchEx discovered four distinct subgroups,
each characterized by a recurrent structural motif. Representative explanations from each subgroup
are shown in Figure ]

* Subgroup 1 (Aromatic Rings): Molecules containing benzene-like aromatic rings formed
a consistent subgroup. This is chemically plausible, as aromaticity frequently contributes
to stability and is overrepresented in drug-like molecules.

* Subgroup 2 (Halogen Substituents): Molecules featuring halogen atoms (Cl, Br, F, I)
bonded to carbon emerged as a separate subgroup. These motifs often modulate the solu-
bility and bioavailability of the ligand, making them relevant discriminative features.

* Subgroup 3 (Primary Amines): Another subgroup was characterized by the presence
of N atoms-NN Ho groups attached to carbon backbones. Primary amines are common
functional groups in pharmaceutical chemistry and were consistently captured by MatchEx.

e Subgroup 4 (Carbonyl Groups): Finally, a subgroup enriched with carbonyl groups
(C=0) was identified. Carbonyl functionalities are widespread in organic molecules and
provide a distinct rationale for classification.

These subgroup-level explanations highlight that the majority class is structurally diverse, and a
single motif cannot adequately generalize across all instances. MatchEx adaptively partitions the
dataset and identifies motifs that collectively achieve high generalization scores, yielding a richer
and more faithful explanation than baseline methods.

H.2 EXPLAINING CLASSIFIER BEHAVIOUR ON THE MINORITY CLASS

Confusion Matrix

Proportion of Label Flips with Node Removal
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Predicted 0 nodes 1 node 2 nodes 3 nodes

(a) Confusion Matrix of the Classifier. (b) Proportion of label flipping minority-class graphs

Figure 5: Classifier Analysis on the OGB-Molhiv Dataset

The OGB-Molhiv dataset is heavily imbalanced, with the minority (active) class representing only
around 4% of the molecules. Consequently, classifiers trained on this dataset may be inherently
biased towards the majority class so much so that it does not learn any general pattern about the
minority class. Rather, it only memorizes some instances that it has correctly or wrongly classified
to the minority class. To verify if this was indeed the case for the classifier we trained, we conducted
a controlled experiment. We picked the top S0 molecules that the classifier had classified in the HIV
category by descending order of their class score and progressively deleted one to three nodes from
them. Figure 52 shows the confusion matrix of the classifier where it can be seen that the classifier
had classified a total of 486 samples (< 2%) of the dataset to the minority class. Out of the 50
graphs we chose from this 486 samples, 67% of their labels flipped to the majority class on deletion
of one random node while upto 89% of their labels flipped to the majority class on deletion of 3
random nodes. This confidence drop on samples which the classifier classified to the minority class
on deletion of these few random nodes signifies that the classifier has actually memorized these
samples rather than learning a general pattern. This explains why MatchEx returned such a high
scoring instance as explanation and the generalization score of that instance is near 0.
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I COMPLEXITY ANALYSIS AND RUNTIME COMPARISONS

We analyze the computational complexity of MATCHEX in comparison with representative model-
level explainers. Generative approaches such as XGNN and GNNInterpreter enjoy lower asymptotic
complexity, but both face critical limitations in practice. XGNN relies on reinforcement learning to
sequentially construct motifs, where the action space of adding nodes and edges grows combina-
torially with graph size and node types. This makes policy learning unstable, requiring extensive
rollouts and often converging to unrealistic motifs despite high scores. GNNInterpreter adopts a
variational sampling approach, but it requires the maximal motif size to be fixed in advance and
incurs the full cost of Monte Carlo sampling and optimization for each new explanation, leading to
inefficiency and brittle performance on larger datasets. By contrast, discovery-based approaches at-
tempt to identify motifs directly from data. Among them, PAGE performs iterative subgraph search,
but the number of candidate subgraphs grows exponentially with graph size, leading to an inherent
combinatorial explosion that renders the method unstable on large graphs. MATCHEX avoids such
search procedures entirely by formulating explanation discovery as a matching problem, incurring
a one-time polynomial cost that amortizes efficiently across all instances of a class while ensuring
faithful, multi-granular explanations.

Table 5: Runtime comparison across datasets. For MATCHEX, we report one-time matching and
training cost as well as per-explanation sampling time. For XGNN, GNNInterpreter, and PAGE,
only per-explanation sampling time is reported.

Dataset MatchEx XGNN GNNInterpreter PAGE
Matching and Training Time | Sampling Time | Sampling Time | Sampling Time | Sampling Time
(seconds) (seconds) (seconds) (seconds) (seconds)

MUTAG 7.13 0.007 50.64 5.17 12.64
IMDB-Multi 133.35 0.004 81.31 120.43 110.31
REDDIT-B 1834 0.004 119.63 271.85 14456
BA-2Motif 13.39 0.006 63.32 11.12 27.71

GroupShapes 15.61 0.006 74.49 130.23 18.92
OGB-MOLHIV 24228 0.363 - 178.54 40104

MatchEx. The complexity of MATCHEX consists of two parts:
O(N?n?) + O(T (knd® + k*n?)),

where IV is the number of graphs in a class, n the average number of nodes per graph, d the embed-
ding dimension, & the number of top graphs retained for alignment, and 7" the number of explainer
iterations. The first term arises from multi-graph matching, which requires solving pairwise align-
ments with cubic dependence on n and quadratic dependence on N. This step is the dominant cost,
but it is incurred once per class. The second term corresponds to training the explainer, which is
lightweight. After alignment, explanations can be generated for all graphs in the class through mask
transfer at near-quadratic cost (O(n?)), making the amortized per-explanation cost efficient.

PAGE. PAGE relies on iterative subgraph search to identify motifs. The number of possible sub-
graphs of a graph with n nodes is 2°("), since every subset of nodes may define a candidate sub-
graph. Thus, the complexity of PAGE is dominated by

O(N max * 2n)’
where Ny is the maximum number of iterations allowed. In practice, PAGE mitigates this by
capping Nyax and pruning the search, but this introduces heuristic dependence and can easily miss

motifs. The key point is that PAGE inherently faces a combinatorial explosion in the size of the
subgraph search space, which grows exponentially with graph size.

Table [5] reports the mean time across all classes to generate one explanation for all datasets. We
report both the matching time and the time taken to sample an explanation. Note, that the matching
time is incurred only once per class for MatchEx. The sampling time is incurred each time an
explanation is sampled using the corresponding method.

J  LLM USAGE

We used GPT-5 to polish the writing and grammar of the paper.

20



	Introduction
	MatchEx
	Multi-Graph Matching and Clustering Problem
	Discovery of Model-Level Explanations using MatchEx
	Design and Learning Objective of the Explainer

	Subgroup Discovery and Selection of the Final Model-Level Explanation

	Experimental Evaluation
	Metrics for Evaluation
	Experiments and Results
	Impact of Different Loss Objectives

	Related Work
	Conclusion
	Proof of Theorem 1
	Instance-Level Evaluation Metrics
	Datasets
	Real Datasets
	Synthetic Datasets


	Classifier and Explainer Architecture Details
	Regularization Components and Hyperparameter Setting
	Additional Regularizers
	Setting of the Explainer Hyperparameters

	Further Analysis on MUTAG
	Algorithm of MatchEx
	Detailed Analysis on the OGB-Molhiv dataset
	Explanations on the Majority Class
	 Explaining Classifier Behaviour on the Minority Class

	Complexity Analysis and Runtime Comparisons
	LLM USAGE

