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ABSTRACT

The growing capabilities of neural rendering have increased the demand for new
techniques that enable the intuitive editing of 3D objects, particularly when they
are represented as neural implicit surfaces. In this paper, we present a novel neural
algorithm to parameterize neural implicit surfaces to simple parametric domains,
such as spheres, cubes or polycubes, where 3D radiance field can be represented as
a 2D field, thereby facilitating visualization and various editing tasks. Technically,
our method computes a bi-directional deformation between 3D objects and their
chosen parametric domains, eliminating the need for any prior information. We
adopt a forward mapping of points on the zero level set of the 3D object to a para-
metric domain, followed by a backward mapping through inverse deformation. To
ensure the map is bijective, we employ a cycle loss while optimizing the smooth-
ness of both deformations. Additionally, we leverage a Laplacian regularizer to
effectively control angle distortion and offer the flexibility to choose from a range
of parametric domains for managing area distortion. Designed for compatibil-
ity, our framework integrates seamlessly with existing neural rendering pipelines,
taking multi-view images as input to reconstruct 3D geometry and compute the
corresponding texture map. We also introduce a simple yet effective technique
for intrinsic radiance decomposition, facilitating both view-independent material
editing and view-dependent shading editing. Our method allows for the immedi-
ate rendering of edited textures through volume rendering, without the need for
network re-training. Moreover, our approach supports the co-parameterization of
multiple objects and enables texture transfer between them. We demonstrate the
effectiveness of our method on images of human heads and man-made objects.
We will make the source code publicly available.

1 INTRODUCTION

Neural radiance fields (NeRF)(Mildenhall et al., 2020) have garnered remarkable success in both
the computer vision and computer graphics communities, redefining benchmarks for high-quality
renderings and novel view synthesis. Building upon NeRF, a variety of methods leveraging implicit
neural representations (Oechsle et al., 2021; Wang et al., 2021; Yariv et al., 2021) have emerged,
delivering high-fidelity 3D reconstructions. The demand for intuitive 3D object editing techniques
has increased with the growing capabilities of neural rendering, especially for neural implicit sur-
faces. Extensive explorations have been made in editing within the Neural Rendering framework to
achieve diverse visual effects. We can implicitly alter the shape and color of 3D objects by manipu-
lating the latent codes of the network(Liu et al., 2021; Yenamandra et al., 2021; Xu et al., 2023). In
the work of (Tojo & Umetani, 2022; Kuang et al., 2023), palette-based methods have been employed
to facilitate transformations in the color and style of rendered scenes. However, these methods suffer
from limited controllability and disallow local pixel editing. Seal3D (Wang et al., 2023) proposed
a teacher-student training strategy to edit the interactive scene at the pixel level. Yet, this method is
tricky to handle shading, and each subsequent edit required a new training iteration. By employing
neural networks to formulate a differentiable surface parameterization, it can be facilitated to edit
textures or shapes within the neural rendering pipeline (Xiang et al., 2021; Ma et al., 2022). Existing
neural parameterization techniques still face significant challenges, such as the need for appropriate
distortion constraints to ensure accurate detail reconstruction or reducing the reliance on prior infor-
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Figure 1: Our method takes multi-view images as input to reconstruct 3D geometry as neural implicit
surfaces, while representing appearance through a mapping between the 3D surface and a user-
selected parametric domain. Such a representation allows volume rendering of modified textures
without the need of network retraining, facilitating both view-dependent shading editing and view-
independent material editing.

mation from tracked mesh and UV mapping. The final quality of edited visual effects is significantly
impacted by these issues.

This paper aims at developing an intuitive and easy-to-use tool for appearance editing in neural
implicit surfaces. Towards this goal, we propose a novel method to parameterize neural implicit
surfaces to parametric domains, such as spheres, cubes or polycubes, where the radiance field is
represented as a texture map. Technically, our parameterization algorithm utilizes a neural network
to learn a bi-directional deformation between 3D objects and the chosen parametric domains. This
involves a forward deformation that maps points from the zero level set of the neural implicit surface
to the parametric domain, followed by an inverse deformation, mapping points backward. Notably,
we do not require any explicit prior information in learning both deformations. We employ a cycle
loss to ensure the smoothness of the bi-directional deformation, and a Laplacian regularization to
effectively control angle distortion. Our method also supports the flexible selection of parametric
domains for controlling area distortion. With the parametrization, 3D radiance field becomes es-
sentially a 2D field, facilitating visualization and various editing tasks. we further decompose the
2D radiance field into two components: view-independent material and view-dependent shading,
streamlining both texture and shading editing. Our neural parameterization algorithm is fully com-
patible with existing neural rendering pipelines, allowing 3D reconstruction from multi-view images
as input and the creation of texture maps simultaneously. It allows for the immediate rendering of
edited textures through volume rendering, without the need for network re-training. Moreover, it
also supports co-parameterization of multiple objects of similar geometry and enable texture trans-
fer between them. We validate the effectiveness of our method on images of human heads and
man-made objects.

Our contributions are summarized as follows:

• We present a neural parameterization framework that computes bi-directional deformation
between 3D objects and their parametric domains, eliminating the need for any prior in-
formation from tracked mesh or UV mapping. Our approach utilizes Laplacian loss to
minimize angle distortion and provides a choice of parametric domains, such as spheres,
cubes, or polycubes, to control area distortion.

• We introduce a simple yet effective technique for intrinsic radiance decomposition, facili-
tating both view-independent texture editing and view-dependent shading editing.

• Our framework is fully compatible with existing neural rendering architectures, accepting
multi-view images as input to reconstruct 3D geometry and generate UV maps as output.
Additionally, it enables the direct rendering of modified textures using volume rendering
pipeline.

• Our approach supports co-parameterization of multiple objects and allows for texture trans-
fer between different objects.
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2 RELATED WORK

Parameterization. Surface parameterization (Sheffer et al., 2007; Floater & Hormann, 2005) aims
at computing a bijective mapping between the 3D surface and a suitable parametric domain, usually
a 2D region or a simple 3D object, such as spheres (Gotsman et al., 2003) and polycubes (Garcı́a
et al., 2013). Serving as an important computational tool in computer graphics and digital geometry
processing (Sheffer et al., 2007), surface parameterization facilitates various applications, including
texture editing (Fang & Hart, 2004), surface painting (Sun et al., 2013), details transfer (Biermann
et al., 2002), remeshing (Praun & Hoppe, 2003), among others. Neural networks are now commonly
used in digital geometry processing, resulting in the creation of parameterization algorithms based
on deep learning techniques (Groueix et al., 2018; Williams et al., 2019; Bednarik et al., 2020; Guo
et al., 2022). Unlike classical methods that yield global and seamless parametrization, most neural
parameterization methods are computing local parametrization (Groueix et al., 2018; Zhang et al.,
2023; 2022). These methods typically partition the 3D model into multiple patches and parameterize
each to a 2D region, possibly followed by a post-processing step to stitch the patches together.
Although these methods are efficient and can handle surfaces of arbitrary geometry and topology,
they frequently encounter problems including non-bijectivity, a lack of smoothness, the presence
of seams and overlaps, and large distortions. There are also works on neural parametric surfaces,
defined in rectangular domains (Low & Lee, 2022) and n-sided patches (Yang et al., 2023). They
can model complex surface geometries with high precision; however, such representations are not
applicable to neural implicit surfaces and thereby incompatible with neural rendering.

Neural Implicit Functions. Recent years have seen a surge in the successful application of neu-
ral implicit functions within the realm of 3D deep learning. Compared to explicit representations
such as point clouds (Qi et al., 2017), voxels (Qi et al., 2016), and meshes (Wang et al., 2018),
neural implicit representations offer unique advantages including flexibility, continuity, and robust-
ness (Mescheder et al., 2019; Saito et al., 2019; Park et al., 2019). When integrated within the neural
rendering pipeline, neural implicit surfaces exhibit exceptional quality in 3D reconstructions from
multi-view images (Li & Zhang, 2021; Wang et al., 2022a;b; Xu et al., 2023; Müller et al., 2022;
Li et al., 2023; Rosu & Behnke, 2023). However, as geometries and radiance fields are encoded as
network parameters, editing them becomes complex and non-intuitive, compared to explicit repre-
sentations. This paper aims at tackling this challenge by explicitly representing radiance fields as
texture mapping that encompasses both view-dependent and view-independent components.

NeRF Editing. Numerous studies have focused on editing neural radiance fields, including relight-
ing (Srinivasan et al., 2021; Li et al., 2022), composition (Pérez et al., 2023; Yang et al., 2021),
content generation (Niemeyer & Geiger, 2021), and shape editing (Yuan et al., 2023; Lin et al.,
2022). Editing tools operating at the scene- or object-level, such as (Yang et al., 2021; Yenamandra
et al., 2021; Huang et al., 2022), utilize latent codes to modify and stylize the appearance of an
object or entire scenes. Conversely, pixel-level editing tools, such as Seal3D (Wang et al., 2023) and
NeuMesh (Yang et al., 2022), utilize training-based approaches to edit fine-grained details. However,
they necessitate retraining for each editing, lacking efficiency and robustness. Parameterization-
based methods, such as NeuTex (Xiang et al., 2021), ISO-UVField (Sagnik Das & Samaras, 2022)
and NeP (Ma et al., 2022), integrate the learning of UV mapping into the neural rendering frame-
work, providing an intuitive means for editing within 2D domains. However, these methods often
suffer from large distortions in the parametrization. Furthermore, they require 3D prior informa-
tion from tracked meshes and UV mapping - conditions that may not be readily met in practical,
real-world scenarios. IntrinsicNeRF (Ye et al., 2023) enhances standard neural radiance fields by
generating additional outputs, including reflectance, shading, and a residual term. Incorporating a
semantic branch, it facilitates real-time scene editing. However, it often results in aggregated col-
ors, akin to palette-based methods (Tojo & Umetani, 2022; Kuang et al., 2023), hence cannot offer
fine-grained editing results at the pixel level. Our approach decomposes the radiance field into view-
dependent shadings and view-independent materials. Both components are represented as textures,
enabling intuitive material modifications while preserving consistent shading.

3 METHOD

The input of our method is a collection of RGB images, denoted I = {Ii}, representing either
multiple objects of similar geometry or a single object, captured from different viewpoints. To
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Figure 2: Algorithmic pipeline. Our network consists of three modules: bi-directional deformation
(Fdef and Finv-def), geometry reconstruction (Fsdf) and radiance decomposition (Fmat and Fshd).

differentiate among objects, we assign a latent shape code zs and an appearance code za to each
object. This facilitates the co-parameterization of multiple objects and enables transfer material
and shading among them. As illustrated in Figure 2, our method reconstructs 3D geometry as a
neural implicit surface and encodes the 3D radiance field in a simple parametric domain, such as
spheres and polycubes. For each input image, we randomly select a set of pixels. Then, for each
pixel, we shoot a ray originating from the location of camera and traversing through the pixel. If
the ray intersects with the surface, at a point, denoted as p, we compute its corresponding position
in the parametric domain D, denoted as p′, via a bi-directional deformation (Sec. 3.1): the forward
deformation (depicted in orange) generates a displacement vector so that the updated position p′ is
in the parametric domain; subsequently, the inverse deformation (depicted in green) maps p′ back
to a point p′′, which is anticipated to be in close proximity to the surface. We incorporate a cycle
loss to penalize occurrences where p′′ deviates from p. In addition, we employ a Laplacian loss
(Sec. 3.2) to effectively reduce the angle distortion. Furthermore, we decompose the radiance into
a view-independent material field and a view-dependent shading field (Sec. 3.3), each of which can
be edited independently, thus augmenting the editing capability of our framework.

3.1 BI-DIRECTIONAL DEFORMATION

The bi-directional deformation module serves as the pivotal component within our neural parame-
terization framework. As illustrated in Figure 2, this module consists of two sub-networks: Fdef,
which is responsible for the forward mapping from the original model to the parameter domain, and
Finv-def, which establishes the inverse mapping. Let S be the 3D surface and D be the parametric
domain; both are represented by the zero level-set of neural signed distance fields. For an arbitrary
point p ∈ S , the forward deformation Fdef(p, zs) computes a displacement vector, mapping the
point p to a corresponding point p′ ∈ D in the parametric domain as follows:

p′ = p+ Fdef(p, zs). (1)

Conversely, we employ Finv-def to map points inversely from the parametric domain D back to the
original shape S:

p′′ = p′ + Finv-def(p
′, zs), (2)

where the point p′′ is expected to be in close proximity to p. To encourage the smoothness and
stability of the deformations, we impose an L2 loss on the magnitude of the displacement vectors:

Lsmooth = ∥Fdef(p, zs)∥2 + ∥Finv-def(p
′, zs)∥2. (3)

This loss helps minimize abrupt and irregular deformations, leading to more coherent and gradual
changes between S and D.

In training the networks Fdef and Finv-def, our objective is to achieve a bijective mapping between the
3D surface S and the parametric domain D. To achieve this goal, we adopt a cycle loss, which is
similar to NeuTex (Xiang et al., 2021):

Lcycle =
∑

p∈S

λ(p)∥p− p′′∥2, (4)
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where the weight λ characterizes the importance of sample p to the loss. The reason that we do not
consider all sample points equally is that a sample point may not be exactly on the zero level-set of
the SDF. To tolerate such an inaccuracy, we define λ(p) = T (p)(1− exp(−σ(s)δ(p))) as the color
weight used in volume rendering (Mildenhall et al., 2020). Here, T (p) is the transparency of sample
p in the viewing direction, δ is the length of the sample interval along the ray, and s is the signed
distance value of the point p. Clearly, when p is away from the surface, the coefficient λ(p) has
few effects on this loss. We refer the readers to (Mildenhall et al., 2020) for details about volume
rendering and the computation of transparency T . By explicitly minimizing the distance between p
and p′′, the cycle loss effectively prevents scenarios where two distinct points p1,p2 ∈ S map to an
identical point p′ ∈ D. In such cases, the inverse deformation Finv-def would be unable to map the
single point p′ back to the respective distinct points p′′

1
and p′′

2
.

Remark. It is worth mentioning that while our framework involves two SDFs - one for the 3D
surface S and the other for the parametric domain D - our network design only requires one of
them. This is because one SDF can be derived from the other via either the forward or the backward
deformation. To reduce the network complexity, we only adopt one geometry sub-network Fsdf,
which is used to represent the parametric domain D. Given a sphere, a cube, or a polycube, we
pretrain the SDF sub-network to encode D’s geometry. Leveraging the inherent smoothness of
MLPs, the resulted SDF is smooth, aiding the computation of Laplacian.

3.2 LAPLACIAN REGULARIZATION

Mitigating angle distortion is crucial in ensuring the quality of parameterization. One ap-
proach to reduce angle distortion involves minimizing the ratio of the two singular val-
ues of the Jacobian matrix associated with the parameterization (Floater & Hormann, 2005).
However, considering the representation of the surface S , the para-
metric domain D, and the parameterization Fdef as neural implicit
functions in our approach, directly computing the Jacobian matrix is
a non-trivial task. To circumvent this, we employ a Laplacian regu-
larizer in our implementation to control angle distortion. Achieving
the minimizer of the Laplacian of the map results in a harmonic
map. For genus-0 surfaces, harmonic maps are also conformal,
which preserves angles (Gu et al., 2004). Although for surfaces of
higher genus, a harmonic map is not necessarily conformal, it still
serves an effective tool for reducing angle distortion (Gu & Yau,
2003). Specifically, for a sample point p ∈ S and its neighboring
points qj ∈ S , the forward deformation maps them to p′ ∈ D and q′

j ∈ D, respectively. We
compute the Laplacian of the sample p as follows:

∆(p) =

m
∑

j=1

ωj(p
′ − q′

j). (5)

Here, the weights wj are defined using the metric from the original surface S as:

ωj = exp

(

−
∥p− qj∥2

l

)

, (6)

where l is the average distance from point p to its neighboring points. Subsequently, the weights are
normalized ωj = ωj/

∑m

k=1
ωk. Notice that ∆(p) ∈ R

3 is a 3D vector, which may not necessarily
lie on the tangent plane. Therefore, we define the normal component of the Laplacian as:

∆(p)⊥ = ⟨∆(p),n⟩n, (7)

where n is the normal at p′, and ⟨, ⟩ represents the inner product. Summing the tangential compo-
nents yields the Laplacian loss:

LLap =
∑

p∈S

∥∆(p)−∆(p)⊥∥2. (8)

In our implementation, we set m = 6 neighboring points for each sample p.
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3.3 APPEARANCE DECOMPOSITION

Radiance represents the directional emission of color, illustrating how the appearance of an object
varies in response to changes in the observational viewpoint (Mildenhall et al., 2020). Drawing
inspiration from previous works (Ma et al., 2022; Ye et al., 2023) and applying the assumptions of
Lambertian and grayscale shading (Fan et al., 2018), we decompose the radiance field of the target
surface into two components: a view-independent material field and a view-dependent shading field
(see Figure 7(b)). This decomposition allows for independent editing of material and shading. More
precisely, for a sample point p ∈ S , we employ two sub-networks, Fmat and Fshd, to decompose the
radiance r ∈ R

3 at point p as follows:

r(p) = Fmat(p
′,n, za) · exp(Fshd(p

′,n,v, za)), (9)

where p′ ∈ D is the image of p and n is the unit normal of p on the original surface. The material
network Fmat takes the mapped point p′, the surface normal n, and the appearance latent code za as
input, generating the view-independent material field in response. The shading network Fshd, which
is designed for computing the view-dependent shading field, takes an additional input: the viewpoint
v. To ensure the shading sub-network Fshd concentrates on local shading features, we employ an L1

loss to the output of Fshd, encouraging sparsity,

Lshd = ∥Fshd(p
′,n,v, za)∥1. (10)

To compute the color, we need the signed distance values for the samples p. As mentioned above,
our network adopts only one SDF network Fsdf, which represents the geometry of the parametric
domain D. We use the forward deformation Fdef to compute s(p) as

s(p) = Fsdf (p+ Fdef(p, zs)) . (11)

Then we employ the SDF-based volume rendering (Yariv et al., 2021) to integrate the radiances
along the ray to compute color cpred =

∑

i λiri, where ri is the radiance of a sample point pi and
λi is the same color weight as used in Equation (4).

GT Normal D Normal D Normal D

Figure 3: We offer the flexibility to choose from a range of parametric domains for managing area
distortion. From left to right: the closer the domain D to the 3D surface S , the lower the area
distortion in the parameterization.

3.4 CHOICE OF PARAMETRIC DOMAINS

When mapping a 3D surface to a parametric domain, angle and area distortions are usually in-
evitable. We use the Laplacian regularizer to reduce angle distortion. Given the existence of infinite
conformal maps (Jin et al., 2004), identifying those with minimal area distortion is highly desired.
Area distortion is influenced by the similarity between the 3D surface and the parametric domain:
the closer their alignment, the less the distortion. Thus, a simplistic, closely aligned parametric do-
main is ideal, balancing simplicity and alignment. Our algorithm accommodates various domains
such as spheres, cubes, and polycubes, allowing flexibility in selection. It should be noted that
our method supports more complex parametric domains, such as polyhedral complexes Yang et al.
(2023), thanks to the representation capability of the SDF sub-network. In our current implementa-
tion, we use spheres, cubes and polycubes, mainly because of their simplicity. Figure 3 illustrates
the impact on the choice of parametric domain to the parameterization quality.

3.5 TRAINING LOSSES

In contrast to NeP (Ma et al., 2022), which necessitate prior information such as tracked mesh and
UV mapping for supervision, our method is capable of reconstructing 3D geometry and computing
the corresponding texture map directly from multi-view images. This process is supervised by the
image loss

Lrgb = ∥cgt − cpred∥1, (12)

6



Under review as a conference paper at ICLR 2024

where cgt and cpred are the ground-truth and predicted colors, respectively. To ensure the shape and
appearance latent codes, zs and za, conform to Gaussian distributions, we incorporate a regulariza-
tion term, expressed as Lcode = ∥zs∥2 + ∥za∥2 (Park et al., 2019). Additionally, since both the 3D
surface S and the parametric domain D are represented as signed distance fields, we employ the
Eikonal loss (Yariv et al., 2020; Gropp et al., 2020), defined as LEik = (∥∇s∥2 − 1)2. Putting it all
together, we define the total loss function as follows:

L = Lrgb + λ1LEik + λ2Lcycle + λ3Lsmooth + λ4LLap + λ5Lshd + λ6Lcode. (13)

In our implementation, we empirically set the coefficients as λ1 = λ2 = λ5 = λ6 = 0.01 and
λ3 = λ4 = 0.001.

GT Normal D S GT Normal D S

(a) (b)

Figure 4: Parameterization results. (a) Human heads are co-parameterized to a sphere owing to
the clear geometric resemblance. (b) Given the diverse geometry of cars, each is parameterized
to a polycube domain. From left to right: the input image, the normal map of the reconstructed
geometry S , the parametric domain D, and the reconstructed surface S . See Appendix A.2 for
additional results.

4 EXPERIMENTS

Datasets. For our experiments, we used a customized dataset named FS-Syn, derived from the
Facescape dataset (Yang et al., 2020). From Facescale, we selected 10 human head models and
configured 30 fixed viewpoints and lighting conditions for each to obtain synthesized multi-view
images. We also evaluated our method on several man-made objects from the DTU dataset (Jensen
et al., 2014) and the OmniObject dataset (Wu et al., 2023).

Training details. All the sub-networks Fdef, Finv-def, Fsdf, Fmat, and Fshd are MLPs. See Ap-
pendix A.1 for the detailed network architectures. We trained our network using the Adam (Kingma
& Ba, 2014) optimizer. Once the parametric domain is chosen, we first trained Fsdf for 2,000 itera-
tions to obtain the implicit neural representation of the parametric domain. Subsequently, we fixed
Fsdf and trained other sub-networks for 2,000 epochs driven by the loss function as Equation (13).

Results. Our neural parameterization framework enables the construction of a bijective map be-
tween objects and multiple parametric domains such as spheres, cubes, and polycubes, as shown in
Figure 4. Additionally, our method supports co-parameterization of multiple objects and facilitates
the transfer of material and shading between them. Our neural parameterization algorithm is fully
compatible with existing neural rendering pipelines. Given multi-view images as input, we can re-
construct the 3D geometry and create the texture maps simultaneously. As shown in Figure 4, we
can obtain high-fidelity results without any prior information.

Compared with NeP (Ma et al., 2022), which is the latest neural surface editing work using neural
parameterization, our method eliminates the need for prior information from UV mapping. Unlike
our algorithm, NeP learns a map between surfaces and the UV plane. However, it heavily relies on an
existing UV mapping as initialization, and yields rather poor texture mapping results without the UV
mapping as prior (see Figure 5). Moreover, the results from NeP still exhibit significant distortions
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UV prior NeP w/o prior NeP w/ prior Ours

Figure 5: Parametrization results of NeP (Ma et al., 2022)

even with UV prior. Our method can effectively reduce angle distortion by minimizing Laplacian
loss and reduce area distortion by choosing an appropriate parametric domain, as demonstrated in
Figure 6 (left).

w/o LLap w/ LLap GT w/o Fshd w/ Fshd

Figure 6: Ablation studies. Left: Utilization of the Laplacian loss has proven effective in reducing
angle distortion, especially in regions with high curvature. Right: For scenes with significantly
varying illumination, it is crucial to decompose view-dependent shading from the radiance field.

Radiance decomposition. In contrast to an entangled radiance field in NeRF (Mildenhall et al.,
2020) and VolSDF (Yariv et al., 2021), we decompose the radiance into view-independent material
and view-dependent shading according to Equation 9. We illustrate the decomposition results in
Figure 7. We would like to emphasize that it is essential to decompose the radiance according to the
view-dependent correlations for scenes with varying illumination. As shown in Figure 6 (right), it
fails to reconstruct the 3D geometry when we remove the Fshd, and the visual quality drops subse-
quently.

GT Material Shading GT Material Shading

Figure 7: Radiance decomposition results.

Texture editing. Both NeuMesh (Yang et al., 2022) and NeP (Ma et al., 2022) can edit the ob-
ject’s texture at a pixel level. We compare the editing and rendering results with NeuMesh and
NeP, as shown in Figure 8. NeuMesh requires a mask of the editing region. It also re-trains the
network after each edit, which is time-consuming and cannot guarantee the stability of the training
results. Our method outperforms NeuMesh in terms of the visual quality. NeP, which is also neural
parameterization-based method, requires a UV prior for initialization. It often yields poor param-
eterization results without such prior. Even with the UV prior, its parameterization results exhibit
large distortion, making the edit in the 2D domain challenging. Our method is free of prior, and
can yield parameterization with low distortion, thereby facilitating pixel-level editing and material
transferring without network re-training.

Shading editing. We decompose the 3D radiance field into view-independent material and view-
dependent shading defined in the parametric domain. Taking advantage of this decomposition and
the embedding into a simple domain, we can edit both the material and shading of the 3D surfaces
in an intuitive manner. As illustrated in Figure 9, we modify the shading of one model by transfer-
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GT

Texture Ours NeuMesh NeP

Texture editing Texture transfer

Figure 8: Representing the materials as textures defined in simple parametric domain enables easy
editing. Also, our co-parameterization naturally supports texture transfer between different objects.

ring the shading from another model under different lighting conditions, while keeping the material
unchanged.

Before After Before After

Figure 9: We transfer the decomposed shading from one model to another. See also the accompany-
ing video.

5 CONCLUSION

We present a novel neural algorithm for parametrizing 3D surfaces represented by neural implicit
functions to a user-defined parametric domain, such as a sphere, cube, or polycube. Utilizing bi-
directional deformation, our method is capable of learning a bijective mapping without relying on
any prior knowledge, while controlling angle distortion through the usage of a Laplacian regular-
izer. Furthermore, our approach seamlessly integrates with the neural rendering pipeline, enabling
the reconstruction of 3D objects from multi-view images and facilitating efficient volume rendering
of modified textures and shadings — eliminating the necessity for network re-training. We demon-
strated the efficacy of our method on human heads and man-made objects.

Our method has a few limitations that require further improvement in the future. First, computa-
tional results on the FS-Syn dataset show that the reconstruction quality of our method is slightly
worse than the standard SDF-based neural rendering algorithms, such as VolSDF (Yariv et al., 2021)
and NeuS (Wang et al., 2021). For instance, the PSNRs of our results and VolSDF’s are 30.87 and
31.15, respectively. This decline in visual quality arises from the incorporation of additional mod-
ules, such as bi-directional deformation and radiance decomposition, resulting in the cessation of
updates to the SDF network within our neural parameterization pipeline. Therefore, computing a
parameterization without compromising the reconstruction quality is highly desired. Second, our
radiance decomposition operates under the assumptions of Lambertian reflectance and grayscale
shading, which might hinder its effectiveness when dealing with intricate materials or sophisticated
shadings. Third, in our current implementation, we did not optimize the runtime performance.
Therefore, training our model is time consuming, requiring 3 days for the 10 human heads of the
FS-Syn dataset (Yang et al., 2020). Incorporating recent advancements such as PermutoSDF (Rosu
& Behnke, 2023) and Strivec (Gao et al., 2023) has the potential to significantly reduce the training
and inference time.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Jan Bednarik, Shaifali Parashar, Erhan Gundogdu, Mathieu Salzmann, and Pascal Fua. Shape re-
construction by learning differentiable surface representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4716–4725, 2020.

Henning Biermann, Ioana Martin, Fausto Bernardini, and Denis Zorin. Cut-and-paste editing of
multiresolution surfaces. ACM transactions on graphics (TOG), 21(3):312–321, 2002.

Qingnan Fan, Jiaolong Yang, Gang Hua, Baoquan Chen, and David Wipf. Revisiting deep intrinsic
image decompositions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 8944–8952, 2018.

Hui Fang and John C Hart. Textureshop: texture synthesis as a photograph editing tool. ACM
Transactions on Graphics (TOG), 23(3):354–359, 2004.

Michael S Floater and Kai Hormann. Surface parameterization: a tutorial and survey. Advances in
multiresolution for geometric modelling, pp. 157–186, 2005.

Quankai Gao, Qiangeng Xu, Hao Su, Ulrich Neumann, and Zexiang Xu. Strivec: Sparse tri-vector
radiance fields. arXiv preprint arXiv:2307.13226, 2023.

Ismael Garcı́a, Jiazhi Xia, Ying He, Shi-Qing Xin, and Gustavo Patow. Interactive applications for
sketch-based editable polycube map. IEEE Trans. Vis. Comput. Graph., 19(7):1158–1171, 2013.

Craig Gotsman, Xianfeng Gu, and Alla Sheffer. Fundamentals of spherical parameterization for 3d
meshes. ACM Trans. Graph., 22(3):358–363, 2003.

Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman. Implicit geometric regular-
ization for learning shapes. In International Conference on Machine Learning, pp. 3789–3799.
PMLR, 2020.

Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

In our framework, the bi-deformation networks Fdef and Finv-def, the SDF network Fsdf, the texture
network Fmat, and the appearance network Fshd are all multilayer perceptrons, consisting of 8, 8,
8, 4, and 4 layers, respectively. Each of these hidden layers has 256 neurons. The latent shape
codes zs and the appearance codes za are 128-dimensional. Within the neural rendering process,
we set the frequency of position encoding for positions and viewpoints as 6 and 4, respectively. In
each iteration, we randomly sample 1024 pixels from each input image for training. As for other
parameter settings related to neural field reconstruction, we refer mainly to the work of VolSDF
(Yariv et al., 2021).

Baseline implementation details For static settings, we remove the warp module in the NeP (Ma
et al., 2022). Then we train NeP under two settings, one is under UV ground truth as supervision
and the other is not( See Figure 11). The parameter configurations for other settings can be found in
the referenced paper.
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A.2 ADDITIONAL RESULTS

Our method is capable of supporting parameterization between more general man-made models and
polycubes, as shown in Figure 10(a). We have tested this on the DTU dataset (Jensen et al., 2014).
Moreover, our parameterization framework can be used to seamlessly stitch segmented texture maps
together, as shown in Figure 10(b). In addition to texture and shading, our framework also can edit
geometric details on original models, as illustrated in Figure 10(c).

(a) (b)

(c)

Figure 10: Additional results: (a) normals, rendering and parametric domain on DTU dataset (Jensen
et al., 2014) (b) Stitching texture. (c) Geometric detail editing.

Figure 11: We compare the rendering results with NeP without prior information from UV mapping.

Method Repre Prior Rendering Regularizer Texture Domain

NeuTex (Xiang et al., 2021) Density init UV-inv V.R. NA Entangled Sphere

ISO-UV (Sagnik Das & Samaras, 2022) SDF init UV D.R. Jacobian Entangled R
2

NeP (Ma et al., 2022) density Mesh&UV V.R. Angle Disentangled R
2

Ours SDF None V.R. Laplace Disentangled Sphere & polycube

Table 1: Qualitative comparison with other neural parameterization methods. V.R. and D.R. stand
for volume rendering and differentiable rendering, respectively.

A.3 QUALITATIVE COMPARISON

We summarize some parametrization methods(refer to Table 1) to illustrate the effectiveness and su-
periority of our approach. As shown in Table 2, we categorize these methods into three groups:
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scene-level, object-level, and pixel-level editing. Scene-level editing methods focus on the en-
tire appearance of a scene including lighting and material. Object-level editing methods employ
distinct part-based latent codes to manipulate different attributes of a scene, such as hairstyles in
i3DMM (Yenamandra et al., 2021). Pixel-level editing, on the other hand, offers a fine-grained
editing result by taking into account precise user guidance.

Method Level Retraining 3D input

EditNeRF (Liu et al., 2021) Object Y N

StylizedNeRF (Huang et al., 2022) Scene N N

i3DMM (Yenamandra et al., 2021) Object N Y

NeuMesh (Yang et al., 2022) Pixel Y N

Seal3D (Wang et al., 2023) Pixel Y N

NeuTex (Xiang et al., 2021) Pixel N Y

NeP (Ma et al., 2022) Pixel N Y

Ours Pixel+Object N N

Table 2: Qualitative comparison with other neural texture editing methods.
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