
Multi-Agent Domain Calibration with a Handful of
Offline Data

Tao Jiang1,2,3∗, Lei Yuan1,2,3∗, Lihe Li1,2, Cong Guan1,2,
Zongzhang Zhang1,2†, Yang Yu1,2,3

1National Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, China
2School of Artificial Intelligence, Nanjing University, Nanjing, China

3Polixir Technologies, Nanjing, China
{jiangt,yuanl,lilh,guanc}@lamda.nju.edu.cn, {zzzhang, yuy}@nju.edu.cn

Abstract

The shift in dynamics results in significant performance degradation of policies
trained in the source domain when deployed in a different target domain, posing a
challenge for the practical application of reinforcement learning (RL) in real-world
scenarios. Domain transfer methods aim to bridge this dynamics gap through tech-
niques such as domain adaptation or domain calibration. While domain adaptation
involves refining the policy through extensive interactions in the target domain, it
may not be feasible for sensitive fields like healthcare and autonomous driving. On
the other hand, offline domain calibration utilizes only static data from the target
domain to adjust the physics parameters of the source domain (e.g., a simulator) to
align with the target dynamics, enabling the direct deployment of the trained policy
without sacrificing performance, which emerges as the most promising for policy
deployment. However, existing techniques primarily rely on evolution algorithms
for calibration, resulting in low sample efficiency. To tackle this issue, we propose a
novel framework Madoc (Multi-agent domain calibration). Firstly, we formulate a
bandit RL objective to match the target trajectory distribution by learning a couple
of classifiers. We then address the challenge of a large domain parameter space by
modeling domain calibration as a cooperative multi-agent reinforcement learning
(MARL) problem. Specifically, we utilize a Variational Autoencoder (VAE) to
automatically cluster physics parameters with similar effects on the dynamics,
grouping them into distinct agents. These grouped agents train calibration policies
coordinately to adjust multiple parameters using MARL. Our empirical evaluation
on 21 offline locomotion tasks in D4RL and NeoRL benchmarks showcases the su-
perior performance of our method compared to strong existing offline model-based
RL, offline domain calibration, and hybrid offline-and-online RL baselines.

1 Introduction

Reinforcement learning (RL) has gained significant traction in various fields [1], such as sequential
recommendation systems [2] and robotic control [3], demonstrating tremendous potential in real-
world applications. However, the inherent trial-and-error nature of RL limits its application, especially
in safety-critical areas such as healthcare [4] and autonomous driving [5], as extensive interactions
with the target environment can entail prohibitive costs and pose substantial safety risks. To address
this problem, a range of studies have proposed collecting training samples from a surrogate source
domain (e.g., simulation environment) to learn policies, which are then deployed to the downstream

∗Equal Contribution
†Corresponding Author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

target domain [6, 7]. Nonetheless, due to complex system dynamics and the characteristics of open
environments, a high-fidelity simulator may not always be available [8], leading to severe dynamics
shifts between the source and target domains [9]. Consequently, policies trained optimally in the
source domain may fail catastrophically in the target domain. To bridge the dynamics gap, various
kinds of solutions have been developed recently. Domain randomization [10] methods, for instance,
randomly sample the physics parameters of the source domain and train policies across multiple
simulated environments to approximate the target domain. However, as the target domain is often
unknown and set in an open environment [8], these methods can also suffer from unpredictable policy
degradation, which hinders further development.

Integrating the source domain with some data from the target domain offers a promising solution
to the mentioned problem [11]. A class of methods, known as domain calibration, attempts to use
data from the target domain as feedback to calibrate the easily obtained source domain and then
transfer the policy directly to the target domain. This approach shows enormous potential when the
parameters are adjusted accurately enough. Some typical methods automatically tune the physics
parameters by minimizing the transition discrepancy between the source and target domains [12, 13]
or by maximizing the expected return in the target domain [14]. While these methods can successfully
transfer learned policies in robotics [15], they still require interaction feedback from the target domain
during training. Instead, DROID [16] and DROPO [17] introduce an offline setting for domain
calibration, where the physics parameters are adjusted using offline demonstrations pre-collected in
the target domain, showing potential for real-world applications.

Nevertheless, in complex real-world scenarios, numerous physics parameters may require calibration.
The above-mentioned methods primarily employ evolutionary algorithms [16, 18] or sampling-
based methods [19, 20] for black-box optimization, often results in low sample efficiency [21, 22].
Recently, some algorithms have attempted to mitigate this issue by learning sampling strategies [22]
or leveraging causal discovery [23] to eliminate parameters that have little impact on the environment.
Despite the effectiveness of these methods, a significant challenge remains in handling complex
scenarios where all physics parameters critically influence the dynamics, and different parameters
may have varying, or even opposite, impacts on these dynamics [24]. A method for efficiently
addressing the interrelations among different parameters is urgently needed.

From the perspective of whole-domain calibration, each physics parameter contributes to different
aspects of the calibration process. This can be modeled as a typical multi-agent system (MAS)
problem [25], where each agent adjusts a group of domain parameters, and all agents cooperate to
reduce the domain gap. This problem can be addressed using cooperative multi-agent reinforcement
learning (MARL) [26], leading to the development of the Madoc (Multi-agent domain calibration)
framework. Specifically, we first formulate domain calibration as a target trajectory distribution
matching problem and derive a bandit RL optimization objective by introducing a couple of classifiers
to act as the reward model. We then formulate the problem into the MAS where multiple agents
calibrate different parameters to reduce the dynamics gap between the source and target domains.
Concretely, we propose an automatic grouping technique to cluster physics parameters based on
their impacts on the dynamics. We then employ popular value decomposition methods in MARL
to train cooperative calibration policies to adjust domain parameters. We conduct experiments
on popular locomotion tasks to showcase Madoc’s superior performance against baselines and
highlight the contributions of its core design components. The source code is available at https:
//github.com/LAMDA-RL/Madoc.

2 Related Work

Domain transfer in RL. Transferring RL policies learned from imperfect source domains to the
target domain is a crucial step in the practical use of RL algorithms [11]. However, the trained policy
often suffers from severe performance deterioration when directly deployed into the target domain due
to the distribution shift between different domains with varying transition dynamics [27]. Previous
works have addressed this problem with three common strategies: domain randomization (DR),
domain adaptation (DA), and system identification (SI). DR attempts to train a generalizable policy
that works well across a variety of randomized simulated dynamics [28, 9]. While the motivation
is simple and often effective, these methods require manually determining which parameters to
randomize and may result in underfitting or failing policies due to hand-tuning parameter ranges.
DA involves using a huge amount of data from source domains to improve policy performance on a

2

https://github.com/LAMDA-RL/Madoc
https://github.com/LAMDA-RL/Madoc

different target domain [29, 30, 31]. However, these efforts are constrained by the quality and quantity
of target domain data and often still require interaction with the target domain. Another line of work,
SI, uses measured data to build mathematical models of dynamical systems [32]. These methods
rely on numerous interactions with the target domain to study how to learn a model of the system
dynamics [33, 34], which results in learning a biased policy with fewer interactions. Most recent
works calibrate the parameters of the biased source domain to bridge the domain gap [19, 13, 15],
also known as domain calibration, and try to improve efficiency by learning a parameter sampling
strategy [22] or leveraging causal discovery [23]. However, these methods still require interacting
with the target domain, posing potential safety hazards during the training process. To mitigate this
problem, DROID [16] and DROPO [17] use offline datasets to adjust the source domain parameters
via evolutionary algorithms [18] with different optimization objectives, perform poorly when the
number of domain parameters is large [35]. Unlike the above methods, we propose to adjust the
source domain with a handful of offline data, enabling the domain parameters to match the target
trajectory distribution with high sample efficiency.

Cooperative multi-agent RL. Many real-world problems are inherently large-scale and complex,
making it inefficient and impractical to model them as single-agent systems. Instead, they are more
suitably addressed as multi-agent systems (MASs) [25]. Multi-agent reinforcement learning (MARL)
provides frameworks for modeling and solving such challenges [26]. In scenarios where agents within
MAS share common objectives, these problems are categorized under cooperative MARL, which has
demonstrated significant advancements in domains like power management [36], path planning [37],
and dynamic algorithm configuration [38]. One of the primary challenges in cooperative MARL
is the scalability issue [39, 40, 41], exacerbated by the exponential growth of the search space
with the number of agents, complicating policy exploration and learning. Various approaches have
been proposed to enhance agent coordination recently. These include policy-based methods such
as MADDPG [42] and MAPPO [43], value-based techniques like VDN [44] and QMIX [45], and
innovations like the transformer architecture [46]. Among these methods, value-based approaches
have demonstrated promising results in diverse and complex settings [47, 48]. VDN leverages
additivity to factorize global value functions, QMIX further enforces monotonicity in global value
functions, and DOP [49] introduces value function decomposition within multi-agent actor-critic
frameworks. These methods exhibit remarkable coordination capabilities across various tasks such
as SMAC, Hanabi, and GRF [26]. In this paper, our method formulates domain calibration as a
cooperative MARL problem, improving efficiency and fidelity.

3 Background

Reinforcement Learning can be generally modeled as a Markov decision process (MDP) [50],
formulated as a tupleM := (S,A, T, r, γ, ρ0), where S and A denote the state and action spaces,
T (s′|s, a) ∈ [0, 1] and r(s, a) represent the transition and reward functions, γ ∈ [0, 1) implies the dis-
count factor, and ρ0(s) is the initial state distribution. The agent running in the environment perceives
the state st ∈ S at time step t, performs an action at ∈ A based on a learnable policy π(a|s) ∈ [0, 1],
then the environment receives the action, transits to a new state st+1, and rewards the agent according
to the transition function T (st+1|st, at) and reward function r(st, at) at next time step. The above
process is continuously iterated until termination, we can record the whole trajectory of length H + 1
as τ = (s0, a0, r0, s1, a1, r1, · · · , sH , aH , rH) and the trajectory distribution over agent’s policy and
the environment can be defined as dπ,M(τ) = ρ0(s0)

∏H
t=0 T (st+1|st, at)π(at|st). The objective

of RL algorithms is to learn a policy π(a|s) which maximizes the expected discounted return across
the distribution of trajectories, i.e., J (M, π) = Eτ∼dπ,M(·)R(τ) with R(τ) =

∑H
t=0 γ

tr(st, at).

Domain Calibration aims to adjust a manipulable source domain to close the domain gap between it
and the target domain. Both the target and source domains can be modeled as MDPs, and the only
difference between them is the transition functions which are determined by the physics dynamics
parameter vector ξ ∈ Ξ ⊂ RN (e.g., friction, mass, damping). Here, Ξ denotes the physics parameter
space, and N represents the dimension of the physics parameters. Each parameter ξi is bounded on a
closed interval, which can only be inferred roughly based on experience and expert knowledge, i.e.,
ξi ∈ [ξilow, ξ

i
high]. We assume the unknown physics parameters of the target domain ξ∗ are included

in the parameter space Ξ if the physical modeling is reasonable, i.e., ξ∗ ∈ Ξ, as we can set sufficient
wide parameter ranges. We now denote the transition function conditioned on domain parameters
as Tξ = T (s′|s, a, ξ) and the corresponding MDP as Mξ := (S,A, Tξ, r, γ, ρ0). However, the

3

Imperfect
source domain

Calibrated
source domain

Online RL
algorithm

Final policy

Multi-agent
domain calibration
(Madoc)

Domain parameters
𝜉 = 𝜉!, ⋯ , 𝜉" ∼ 𝑞# ⋅

Encoder

Target domain

Encode &
group

Embedding space

… …

Assign

Multi-agent system

Maximize

Calibrate
𝑞# 𝜉

ℛ! 𝜉 = log
𝑇"#$(𝑠%$&' |𝑠, 𝑎)
𝑇%$&(𝑠%$&' |𝑠, 𝑎)

Offline data
{ 𝑠, 𝑎, 𝑠$%&' }

Simulated data { 𝑠, 𝑎, 𝑠(&)' , 𝜉 }

Reward model

{ 𝑠, 𝑎, 𝑠(&)' }

{ 𝑠, 𝑎, 𝑠(&)' , 𝜉 }

Cross entropy loss

Agent 2

Agent 3

Agent 1

Value decomposition
MARL

Simulated data
{ 𝑠, 𝑎, 𝑠(&)' }

Team reward

Figure 1: The conceptual workflow of the multi-agent domain calibration framework. The or-
ange arrow represents the simulated data flow in the source domain, with the transition function
T (s′|s, a, ξ), while the blue represents the offline data in the target domain, with the transition
function T (s′|s, a, ξ∗). The subscripts “src” and “tar” are used to distinguish between the source and
target domains, respectively. After learning the grouping scheme, we use the red arrow to represent
the process of domain calibration by MARL value decomposition methods.

manipulable source domain is typically non-differentiable, we can only calibrate the distribution of
the source domain parameters ξ ∼ qϕ(·), and the optimal policy learned under this distribution is
marked as π∗(qϕ) = argmaxπ Eξ∼qϕ(·)J (Mξ, π). The objective of domain calibration is to learn
the source domain parameters that maximize the expected discounted return under the target domain:
maxqϕ J (Mξ∗ , π

∗(qϕ)).

4 Method

In this section, we propose the Madoc (Multi-agent domain calibration) framework for leveraging a
modest amount of offline data from the target domain to calibrate the biased source domain, thus
facilitating optimal policy transfer. The overall workflow of the Madoc framework is shown in Fig. 1.
We first deduce a bandit RL objective to adjust the domain parameters in Sec. 4.1, improving the
synthetic data sampled from the source domain to align with the target trajectory distribution. We
further model it as a cooperative multi-agent reinforcement learning problem in Sec. 4.2 and use an
automatic grouping technique to improve the efficiency and fidelity of domain calibration. Finally, a
practical algorithm under the Madoc framework is presented in Sec. 4.3.

4.1 Domain Calibration via Reinforcement Learning

Domain calibration is the process of tuning the parameter distribution of a mismatched source
domain to better align with the target domain, which can be realized by comparing the divergence
between target domain interactions and simulated synthetic rollouts based on the same policy [12, 13].
However, since interacting with the target domain may not be feasible for sensitive fields, we propose
an alternative approach to minimize the trajectory discrepancy between the two domains by employing
a handful of offline target domain data.

Formally speaking, the static offline dataset D = {τ1, τ2, · · · , τk} contains k trajectories where
τi = (si0, a

i
0, r

i
0, s

i
1, a

i
1, r

i
1, · · · , siH , aiH , riH), which are collected previously by an unknown behavior

policy µ from the target domain, i.e., τi ∼ dµ,Mξ∗ (·). By introducing a prior normal parameter
distribution p(ξ) to foster better generalization [51], we intend to learn a sample policy π and calibrate
the domain parameters to match the target trajectory distribution:

min
π,qϕ

DKL

(
qϕ(ξ)dπ,Mξ

(τ)||p(ξ)dµ,Mξ∗ (τ)
)
, (1)

4

where the Kullback-Leibler (KL) divergence can be further derived as:

E ξ∼qϕ(·)
τ∼dπ,Mξ

(·)

[
log

∏H
t=0 π(at|st)T (st+1|st, at, ξ)∏H
t=0 µ(at|st)T (st+1|st, at, ξ∗)

+ log
qϕ(ξ)

p(ξ)

]
, (2)

=E ξ∼qϕ(·)
τ∼dπ,Mξ

(·)

[
H∑
t=0

(
log

π(at|st)
µ(at|st)

+ log
T (st+1|st, at, ξ)
T (st+1|st, at, ξ∗)

)]
+ Eξ∼qϕ(·)

[
log

qϕ(ξ)

p(ξ)

]
, (3)

≈E(s,a)∼B

[
log

π(a|s)
µ(a|s)

]
− E(s,a,s′,ξ)∼B

[
log

T (s′|s, a, ξ∗)
T (s′|s, a, ξ)

]
+DKL(qϕ(ξ)||p(ξ)), (4)

where Eq. 4 is an approximation of Eq. 3 as the parameter distribution and trajectory distribution used
to calculate the expectation are difficult to compute. Consequently, we use Monte Carlo sampling
on the source domain to approximate the expected results. To enhance sampling efficiency, we
sample a domain parameter ξ ∼ qϕ(·), generate the trajectories τ ∼ dπ,Mξ

(·), and store the rollouts
(s, a, s′, ξ) in the replay buffer B. By doing so, we are able to convert the trajectory-based objective
into a transition-based one, following the classic off-policy RL paradigm.

It is delighted to discover that the objective in Eq. 4 can be clearly divided into three terms: the
first term, i.e., minπ E(s,a)∼B

[
log π(a|s)

µ(a|s)

]
≈ minπDKL(π(a|s)||µ(a|s)), attempts to minimize the

KL divergence between π(a|s) and µ(a|s), we can consider it as a variant of behavior cloning; the
second term is formulated as maxqϕ E(s,a,s′,ξ)∼B

[
log T (s′|s,a,ξ∗)

T (s′|s,a,ξ)

]
, which can be seen as a bandit RL

objective for policy qϕ(ξ) to maximize rewardRq(ξ) = log T (s′|s,a,ξ∗)
T (s′|s,a,ξ) ; and the last term is regarded

as a policy regularizer added on qϕ(ξ) to prevent it from collapsing. It is worth noting that the policy
qϕ(ξ) here is not the one running (sampling) on the source domain, but the one outputting physics
parameter vector ξ as an action to adjust the source domain. To prevent confusion, in the following
paper, the policy running on the source domain, i.e., π(a|s), is referred to as the “running policy”,
while the one adjusting the domain parameters, i.e., qϕ(ξ), is referred to as the “calibration policy”.
Additionally, we similarly define the “calibration critic”, which is responsible for evaluating the
accuracy of the parameters output by the calibration actor. The calibration critic and the calibration
policy (actor) together constitute a calibration agent.

The key challenge lies in how to estimate the stochastic reward log T (s′|s,a,ξ∗)
T (s′|s,a,ξ) given the offline data

and simulated rollouts. According to Bayes’ rule, we can transform the transition probability [29] as:

T (s′|s, a, ξ) = P (ξ|s, a, s′)P (s, a, s′)

P (ξ)P (s, a|ξ)
=

P (ξ|s, a, s′)P (s, a, s′)

P (ξ|s, a)P (s, a)
, (5)

and the reward can be derived as:

Rq(ξ) = logP (ξ∗|s, a, s′)− logP (ξ∗|s, a)− logP (ξ|s, a, s′) + logP (ξ|s, a),

where ξ∗ and ξ stand for the target and source domains respectively. Hence, we can train a couple
of binary classifiers Dψsas

(·|s, a, s′) and Dψsa
(·|s, a) to discriminate whether state-action-state and

state-action pairs come from the offline dataset (referred to as the binary variable target) or synthetic
samples (referred to as the binary variable source). These two discriminators form a reward model
with certain generalization ability [52], and the corresponding cross-entropy losses are written as:

Lψsas
= −E(s,a,s′)∼D[logDψsas

(target|s, a, s′)]− E(s,a,s′)∼B[logDψsas
(source|s, a, s′)],

Lψsa = −E(s,a)∼D[logDψsa(target|s, a)]− E(s,a)∼B[logDψsa(source|s, a)]. (6)

4.2 Multi-Agent Domain Calibration

As the complexity of the source domain grows, characterized by an expanding number of physics
parameters, the calibration policy learned by single-agent reinforcement learning often struggles to
consistently reduce the domain gap. To address this challenge, we employ multi-agent reinforcement
learning (MARL) algorithms to effectively reduce the search space for a single calibration agent,
thereby enhancing the efficiency and fidelity of domain calibration.

5

0.0 0.2 0.4 0.6 0.8 1.0
Normalized critic value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
bs

ol
ut

e
ca

lib
ra

tio
n

er
ro

r

SA Pearson: -0.077
MA Pearson: -0.982

Figure 2: The Pearson correlation between the critic
value of the gravity coefficient and the absolute cal-
ibration error. Each dot represents a sampled action,
which is then fed into the corresponding critic to
compute the critic value. When the parameters out-
put by the calibration actor are closer to the target
parameters (indicating a smaller absolute calibra-
tion error), the evaluation value output by a “good”
critic should be higher.

We conduct experiments on the HalfChee-
tah [53] environment and train to calibrate the
gravity coefficient along with other physics pa-
rameters. The preliminary results are shown
in Fig. 2, we capture snapshots for both ap-
proaches at the same training step to investi-
gate Pearson correlation [54] between the critic
value of the gravity coefficient and the absolute
calibration error. Here, the absolute calibra-
tion error represents the absolute difference be-
tween the parameters output by the calibration
actor and the target parameters. The single-
agent method, represented by the blue dots,
utilizes just a shared calibration critic for pa-
rameter adjusting, facing challenges in assess-
ing a specific action within a huge action space.
In contrast, the multi-agent method, depicted
by the red dots, employs value decomposition
algorithms [44] to narrow the action space of
each individual calibration policy. This decom-
position leads to more accurate evaluations of
domain parameters, thereby reducing calibra-
tion errors and improving policy transfer.

To utilize the cooperative MARL for domain calibration, we now formally define N agents (since
the source domain has a total of N physics parameters) to perform domain calibration coordinately
where each of them qiϕ(ξ

i) attempts to adjust the single parameter ξi, therefore the joint calibration
policy can be decomposed as qϕ(ξ) =

∏N
i=1 q

i
ϕ(ξ

i). Utilizing any off-the-shelf value decomposition
algorithm VD, we employ the single global rewards [R1

q(ξ
i), · · · ,RNq (ξN)] = VD(Rq(ξ)) to guide

individual calibration policy updates:

max
qiϕ

Eξi∼qiϕ(·)R
i
q(ξ

i)−DKL

(
qiϕ(ξ

i)||pi(ξi)
)
. (7)

Nonetheless, when the number of the domain parameters N is large, employing N agents for domain
calibration leads to low exploration and optimization efficiency [55]. To mitigate this problem,
clustering physics parameters with similar effects on the transition dynamics, e.g., the mass of a
symmetrical robot’s left and right feet, into one calibration agent is an advisable choice. Hence we
introduce an automatic grouping technique by adopting a Variational Autoencoder (VAE) [56]. By
adjusting a specific parameter ξi while keeping all other parameters ξ−i fixed [57], we can assume
the identity i of each parameter (i.e., the one-hot encoding) to be representative of the transition
tr = (s, a, s′, ξi), the Evidence Lower BOund (ELBO) of the transition is then derived as:

logP (tr) ≥ Ez∼fe(z|i)[log fd(tr|z)]−DKL (fe(z|i)||p(z)) , (8)

where fe, fd stand for the encoder and decoder, z is the latent variable, and p(z) represents the
corresponding prior distribution. We can deduce the reconstruction term as:

log fd(tr|z) = log
[
fd(s

′|s, a, ξi, z)fd(s, a, ξi|z)
]
,

= log fd(s
′|s, a, ξi, z) + c, (9)

where c is a constant as s, a, and ξi do not depend on the latent variable z. We parameterize the
encoder fe and the decoder fd with Ψ, making them fΨe

and fΨd
, and optimize the VAE model with

the following loss:

LΨ = −E(s,a,s′,ξi,ξ−i)∼B,z∼fΨe (·|i)
[
log fΨd

(s′|s, a, ξi, z)
]
+DKL (fΨe(z|i)||p(z)) . (10)

Before domain calibration, we first minimize the VAE loss (Eq. 10). Then we apply the k-means
clustering method [58] to the means generated by the encoder fΨe(z|i) for all i ∈ N , in order to
group the domain parameters [39]. The resulting n (1 ≤ n ≤ N) grouping scheme is recorded
as [ξg1, · · · , ξgn], each group forms one agent equipped with a calibration actor qgiϕ (ξgi) and a
calibration critic vgiΦ (ξgi), following the multi-agent actor-critic framework.

6

4.3 Practical Algorithm

Based on the above analysis, we now present a practical algorithm under the Madoc framework, the
pseudo-code is shown in App. A. We apply DOP [49], a popular multi-agent policy gradient algorithm
as the value decomposition method. Concretely, there are n agents for calibrating the source domain
after automatic grouping, we factor the joint critic as a weighted summation of individual critics:

V tot
Φ =

n∑
i=1

kiv
gi
Φ (ξgi) + b, (11)

where ki ≥ 0 and b are denoted as learnable weights and biases. The individual critics are learned by
back-propagating gradients from global Temporal Difference updates:

LΦ = E(s,a,s′,ξ)∼B

[
1

2

(
V tot
Φ −Rq(ξ)

)2]
. (12)

Given individual critics, we use SAC [59] to update the stochastic actors in an off-policy manner:

Lϕ = Eξgi∼qgiϕ (·)

[
α log qgiϕ (ξgi)− vgiΦ (ξgi) + λDKL

(
qgiϕ (ξgi)||pgi(ξgi)

)]
, (13)

where α and λ control the relative importance of the entropy and regularization term respectively.
Besides, the prior domain parameter distribution pgi(ξgi) is set to be an exponentially moving
average of the current calibration policy qgiϕ (ξgi), which has been shown to stabilize training like
target network. Finally, we parameterize the policy running in the source domain π with θ and enable
it to clone the behavior policy on offline data during domain calibration. Once domain calibration is
complete, we train the policy πθ from scratch on the source domain using SAC, and directly deploy it
to the target domain.

5 Experiments

In this section, we present the empirical evaluations of our proposed Madoc framework. We first
describe the experiment environments and related baselines in Sec. 5.1, and then conduct a series
of experiments to answer the following questions: (1) How is the comprehensive performance of
Madoc against multiple baselines (Sec. 5.2)? (2) How do core components of Madoc contribute to
the overall performance (Sec. 5.3)? (3) How is the generalization capability of Madoc across datasets
of varying sizes and source domains with different initial ranges (Sec. 5.4)?

5.1 Experiment Setup

In our experiments, we evaluate Madoc on classic continuous control tasks from the MuJoCo [53]
engine and choose two offline benchmarks to serve as offline datasets collected in the target domain.
On the popular D4RL benchmark [60], we choose four locomotion tasks (HalfCheetah, Hopper,
Walker2d, Ant), each with three types of datasets (medium, medium-replay, medium-expert), to
evaluate different algorithms’ performance when faced with datasets of varying quality. Considering
more challenging scenarios, three environments (HalfCheetah, Hopper, Walker2d) along with three
levels of datasets (low, medium, high) from NeoRL benchmark [61] are also selected. The main
difference between the two benchmarks lies in that the static datasets in the NeoRL benchmark occupy
more narrow distributions. During the training process, we are given imperfect source domains, and
only aware of the initial range of specific physics parameters (gravity, body_mass, dof_damping).
Each environment has different parameter dimensions, initial ranges, and ground truth values, refer to
App. D for detailed information.

Madoc utilizes static offline datasets to calibrate biased source domains, and we choose several
baseline algorithms with identical or similar settings for comparison. DROPO [17] and DROID [16]
use fixed offline datasets from the target domain to optimize the distribution bounds with different
objectives via evolution algorithms like CMA-ES [18]. OTED [51] models the parameter optimization
process as a bandit RL problem, which is similar to our method, but the objective is different and
cannot cope with large parameter space. H2O [62] and DR+BC are two hybrid offline-and-online
algorithms where the former penalizes the Q-function learning on simulated state-action pairs with
large dynamics gaps, and the latter directly combines uniform domain randomization with behavior

7

Table 1: Normalized average returns on D4RL benchmark. The results are evaluated in the target
domain and we bold the highest mean.

Task DROPO DROID OTED H2O DR+BC CQL MOREC Madoc-S Madoc
hfctah-med 41.0± 7.9 29.9± 7.5 76.1±11.7 57.3± 3.7 31.9±14.5 52.0± 3.0 73.9± 3.0 93.3± 9.4 91.9± 7.7
hfctah-med-rep 51.2±16.2 45.3± 8.0 67.5±13.4 50.4± 3.7 38.6± 4.4 48.9± 2.8 74.1± 2.8 84.7±18.6 95.7± 9.9
hfctah-med-exp 55.4±10.4 46.9±11.3 78.9±12.9 55.3± 4.1 40.5± 4.1 53.0± 2.9 72.0± 3.1 70.7±23.8 96.9± 5.3
hopper-med 59.1±34.6 73.9±10.4 49.8±21.4 83.7±19.0 43.2±24.7 50.3±18.8 105.0± 1.0 57.5±17.0 76.0±13.9
hopper-med-rep 43.0±18.7 45.3±17.6 65.4±26.1 84.1±12.3 43.5±16.9 70.0±13.9 28.7± 0.7 79.9±34.1 90.2±11.7
hopper-med-exp 80.4±21.3 21.5± 8.3 41.1±20.7 89.0±11.3 63.1±24.0 68.5±12.1 106.0± 0.8 47.7±13.0 81.5±18.6

walker-med 61.5±21.1 63.2±12.1 58.8±31.6 75.5± 8.7 57.2±12.1 4.5± 3.5 84.1± 0.8 69.9±19.8 90.5±17.5
walker-med-rep 19.8±16.6 16.8± 8.7 71.2±22.5 83.4± 1.3 43.7± 5.5 62.4±13.1 85.4± 0.3 60.6±33.1 85.8±20.8
walker-med-exp 60.0±13.8 73.8± 9.6 74.8±28.2 91.7± 7.7 61.1± 7.3 12.2± 8.3 86.2± 0.5 60.7±18.3 79.9±12.8

ant-med 16.4±12.2 20.8±17.8 65.3±41.8 60.0±26.6 29.2±12.6 58.0±20.6 64.9±41.2 76.5±29.6 88.7±24.8
ant-med-rep 64.1±31.9 64.4±35.0 62.4±41.9 98.4±12.7 34.8±15.0 43.8±33.7 6.1±14.1 58.8±42.9 81.2±16.5
ant-med-exp 76.7±34.0 64.2±41.1 70.0±35.5 66.5±22.8 30.3± 9.2 14.4±19.6 67.8±35.6 65.6±24.5 101.0±21.5
Average 52.4 47.2 65.1 74.6 43.1 44.8 71.2 68.9 88.3

Table 2: Normalized average returns on NeoRL benchmark. The results are evaluated in the target
domain and we bold the highest mean.

Task DROPO DROID OTED H2O DR+BC CQL MOREC Madoc-S Madoc
HalfCheetah-L 49.5±16.8 64.8±21.3 60.9± 8.7 33.1± 3.0 31.3± 3.1 32.0± 2.9 50.6± 0.3 63.2±22.7 71.9±10.8
HalfCheetah-M 33.6± 9.8 30.5± 8.1 64.6±15.9 37.1±13.7 34.8± 4.4 51.9± 4.8 1.1± 0.6 63.9±18.0 85.6± 7.3
HalfCheetah-H 45.4±16.6 47.1±17.5 61.0±15.4 2.5± 3.4 42.5±10.4 30.6±25.5 58.6±22.9 80.1±10.5 84.2± 6.0
Hopper-L 62.6±17.0 37.8±14.0 39.8±19.8 24.1± 2.0 40.3±11.5 20.7± 8.1 25.6± 0.7 56.9±16.5 71.7±16.9
Hopper-M 67.2±11.9 61.3±18.1 50.4±16.5 39.2± 6.0 49.4±16.4 35.1±10.4 54.2±10.2 47.2±13.4 61.4±23.8
Hopper-H 56.6±25.9 27.1±14.9 29.4±16.1 55.2± 6.5 42.4±15.7 55.1±14.1 40.6± 3.0 56.0±24.4 62.6±18.1
Walker2d-L 25.8± 8.5 9.9± 2.9 35.1±20.9 47.3± 3.3 34.1±14.0 33.8± 2.9 41.0±25.1 48.7±24.5 62.6±13.0
Walker2d-M 16.8± 6.2 44.8±17.4 53.1±21.9 44.3± 5.3 37.0± 4.5 57.4± 3.1 78.1± 1.1 47.5±33.1 69.6±20.5
Walker2d-H 20.9±10.1 11.9± 3.8 41.7±26.7 36.0± 7.9 37.8± 9.7 77.1± 5.7 20.3±30.7 50.9±22.0 67.9±18.7

Average 42.0 37.2 48.4 35.4 38.8 43.7 41.1 57.2 70.8

cloning. CQL [63] is the classic pure offline RL algorithm using value regularization, MOREC [52]
is the state-of-the-art offline model-based RL algorithm by learning a generalizable dynamics reward
function, representing the upper-bound performance by solely utilizing offline data. Madoc-S is an
ablation algorithm of our proposed Madoc, which only uses a single calibration agent for parameter
tuning, without applying the multi-agent decomposition and automatic grouping technique. Madoc
and all the above baselines use SAC [59] as the online algorithm after domain calibration for its
practicality and convenience on MuJoCo tasks.

All the numerical results in our experiments are reported in terms of mean and 95% confidence
interval computed over 6 random seeds, and we give more details about the model implementation of
our method in App. C.

5.2 Performance Comparison on the Benchmarks

We first evaluate the overall performance of our method and baselines on the two benchmarks and
use the normalized average scores introduced by D4RL [60] for intuitive comparison. In realistic
scenarios, both the size of offline datasets and the usage of the source domain can be restricted, thus
we constrain each algorithm to access a static dataset with up to 2 × 105 transitions and execute
only 1× 106 simulated samples for domain calibration (when used). Due to these constraints, the
performance of the baseline algorithms has experienced varying degrees of degradation. As shown
in Tab. 1 and Tab. 2, we observe that our methods outperform prior methods on both benchmarks:
two pure offline algorithms, CQL and MOREC, suffer from severe performance degradation in
some scenarios, especially when encountering narrow NeoRL datasets; two hybrid offline-and-online
algorithms are limited by the dataset quality and domain fidelity, and cannot achieve the expected
performance; DROPO and DROID employ evolutionary algorithms to optimize domain parameters,
encountering challenges in transferring learned policies when the parameter space is large; the
comparison with OTED demonstrates the rationality of our optimization objective described in
Sec. 4.1, while the comparison with Madoc-S further illustrates the effectiveness of modeling domain
calibration as a multi-agent system formulated in Sec. 4.2. To verify that Madoc indeed reduces
the dynamics gap between the source and target domains, we report the mean absolute calibration
error for different algorithms in App. E.1. Furthermore, given the significant variance in domain

8

(a) Visualization of the automatic grouping technique (b) The performance gap between Madoc and Madoc-S

performance gap

Figure 3: (a) The visualization results of the automatic grouping technique. The left part is a schematic
of the Hopper robot, each point on it representing a physics parameter to be calibrated, and different
colors indicate the final grouping results. For example, the four parameters encircled by the yellow
rectangle are clustered into one group in the embedding space on the right part. (b) The normalized
average return of Madoc and Madoc-S on the Ant environment. We can observe that as the parameter
dimension of the source domain increases, the performance gap between them (indicated by the black
shadow) becomes more pronounced.

calibration algorithms, we provide a more detailed discussion on the stability of the experimental
results in App. E.3.

5.3 Effectiveness of Different Components

To investigate the impact of the design components of Madoc, we first design experiments on the
Hopper environment to visualize the automatic grouping technique, as shown in Fig. 3(a). The
Hopper is a one-legged robot simulation with four distinct body sections: the torso, thigh, leg, and
foot. These components are connected by three joints, which serve as the articulation points between
each pair of bodies. We need to calibrate the gravity coefficient, the mass of each body, and the
damping coefficients at each joint. After projecting the embedding space onto a three-dimensional
space, we can discover that the robot’s physics parameters are divided in an orderly manner from top
to bottom, while the gravity coefficient forms a separate group on its own. The result aligns perfectly
with our expectations, as parameters that have similar impacts on dynamics can be adjusted using one
calibration policy. Additionally, in Fig. 3(b), we conduct ablation studies on the Ant environment
of the D4RL benchmark, to verify the effectiveness of modeling domain calibration as an MARL
problem. When the dimension of the domain parameters is 1 or 2, there is no significant performance
gap between Madoc and Madoc-S; however, as the source domain becomes more complex, the
performance of both declines, but the drop is faster when only one agent is employed for parameter
calibration. This experimental result favorably supports that modeling as MARL can enhance the
efficiency of domain calibration in large parameter spaces.

5.4 Generalization across Various Conditions

Madoc leverages static offline datasets to adjust the domain parameters, driving our curiosity toward
its generalization capacity under varying dataset sizes and initial parameter ranges of the source
domain. Here we choose all the above-mentioned tasks on the NeoRL benchmark and calculate the
averaged normalized returns for comparison. As illustrated in Fig. 4(a), the algorithms access datasets
of different magnitudes, 5× 104 (small), 2× 105 (medium), and 1× 106 (large), to reflect a spectrum
of data availability. The results reveal that the effectiveness of both the hybrid offline-and-online
H2O algorithm and the purely offline MOREC algorithm rises with the expansion of the dataset size.
This discovery suggests that their dependency on the size of offline data for improved performance.
On the contrary, our method maintains stable and excellent performance, unfazed by the dataset
size. Besides, for source domains with various initial parameter ranges, categorized as easy, medium,
and hard (see App. D for more details), Madoc exhibits remarkable performances across all levels,
particularly excelling in “hard” cases with the largest parameter search space, as shown in Fig. 4(b).

9

(a) Performance with different sized datasets (b) Performance under different initial domain parameter ranges

Figure 4: The generalization ability of Madoc compared to the baselines under different conditions.

This underscores our algorithm’s effectiveness in coping with challenging scenarios, affirming its
robustness and adaptability in diverse conditions.

6 Conclusion and Discussion

In this paper, we introduce Madoc, a framework for closing the dynamics gap by calibrating the
source domain with a handful of offline data via multi-agent reinforcement learning. Concretely,
the target domain data serve as a guide for target transition dynamics, which is leveraged to train
classifiers generating rewards and derive a bandit RL objective for domain calibration, To improve
calibration efficiency with a large number of parameters, we further model it as a cooperative MARL
problem and propose to group parameters with similar effects on dynamics. Experiments on popular
control tasks demonstrate that our method can calibrate the source domain with sufficient accuracy,
allowing the optimal trained policy to be transferred to the target domain without severe performance
deterioration. One possible constraint of our method is that, when dealing with high-dimensional
vision tasks [64], using a handful of offline data may not guarantee the accuracy and generalizability
of the reward model. This challenge could be mitigated by deploying more expressively powerful
tools like diffusion models [65], which is left for future work.

Acknowledgements This work is supported by the National Science Foundation of China
(62276126, 62250069), the Natural Science Foundation of Jiangsu (BK20221442, BK20243039, and
BK2024119), and the Fundamental Research Funds for the Central Universities (0221/14380022).

References
[1] Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu, Bin Dai, and

Qiguang Miao. Deep reinforcement learning: A survey. IEEE Transactions on Neural Networks
and Learning Systems, 35(4):5064–5078, 2024.

[2] M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7):1–38, 2022.

[3] Bharat Singh, Rajesh Kumar, and Vinay Pratap Singh. Reinforcement learning in robotic
applications: A comprehensive survey. Artificial Intelligence Review, 55(2):945–990, 2022.

[4] Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys, 55(1):1–36, 2021.

[5] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

[6] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science Robotics, 5(47):5986, 2020.

10

[7] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. In
Robotics: Science and Systems, 2018.

[8] Zhi-Hua Zhou. Open-environment machine learning. National Science Review, 9(8):nwac123,
2022.

[9] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew,
Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba,
and Lei Zhang. Solving rubik’s cube with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[10] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In International Conference on Intelligent Robots and Systems, pages 23–30, 2017.

[11] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep
reinforcement learning for robotics: A survey. In IEEE Symposium Series on Computational
Intelligence, pages 737–744, 2020.

[12] Yuqing Du, Olivia Watkins, Trevor Darrell, Pieter Abbeel, and Deepak Pathak. Auto-tuned
sim-to-real transfer. In IEEE International Conference on Robotics and Automation, pages
1290–1296, 2021.

[13] Fabio Ramos, Rafael Possas, and Dieter Fox. Bayessim: Adaptive domain randomization via
probabilistic inference for robotics simulators. In Robotics: Science and Systems, 2019.

[14] Fabio Muratore, Christian Eilers, Michael Gienger, and Jan Peters. Data-efficient domain
randomization with bayesian optimization. IEEE Robotics and Automation Letters, 6(2):911–
918, 2021.

[15] Marius Memmel, Andrew Wagenmaker, Chuning Zhu, Dieter Fox, and Abhishek Gupta. ASID:
Active exploration for system identification and reconstruction in robotic manipulation. In
International Conference on Learning Representations, 2023.

[16] Ya-Yen Tsai, Hui Xu, Zihan Ding, Chong Zhang, Edward Johns, and Bidan Huang. DROID:
Minimizing the reality gap using single-shot human demonstration. IEEE Robotics and Automa-
tion Letters, 6(2):3168–3175, 2021.

[17] Gabriele Tiboni, Karol Arndt, and Ville Kyrki. DROPO: Sim-to-real transfer with offline
domain randomization. Robotics and Autonomous Systems, 166:104432, 2023.

[18] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolu-
tion strategies. Evolutionary Computation, 9(2):159–195, 2001.

[19] Yevgen Chebotar, Ankur Handa, Viktor Makoviychuk, Miles Macklin, Jan Issac, Nathan Ratliff,
and Dieter Fox. Closing the sim-to-real loop: Adapting simulation randomization with real
world experience. In International Conference on Robotics and Automation, pages 8973–8979,
2019.

[20] Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In AAAI
Conference on Artificial Intelligence, pages 1607–1612, 2010.

[21] Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew, Jakub
Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas Schneider, Szymon
Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Zaremba. Learning dexterous
in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20, 2020.

[22] Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J Pal, and Liam Paull. Active
domain randomization. In Conference on Robot Learning, pages 1162–1176, 2020.

[23] Peide Huang, Xilun Zhang, Ziang Cao, Shiqi Liu, Mengdi Xu, Wenhao Ding, Jonathan Francis,
Bingqing Chen, and Ding Zhao. What went wrong? closing the sim-to-real gap via differentiable
causal discovery. In Conference on Robot Learning, pages 734–760, 2023.

11

[24] Nima Fazeli, Russ Tedrake, and Alberto Rodriguez. Identifiability analysis of planar rigid-body
frictional contact. Robotics Research: Volume 2, pages 665–682, 2018.

[25] Ali Dorri, Salil S Kanhere, and Raja Jurdak. Multi-agent systems: A survey. IEEE Access,
6:28573–28593, 2018.

[26] Lei Yuan, Ziqian Zhang, Lihe Li, Cong Guan, and Yang Yu. A survey of progress on cooperative
multi-agent reinforcement learning in open environment. arXiv preprint arXiv:2312.01058,
2023.

[27] Manuel Kaspar, Juan D Muñoz Osorio, and Jürgen Bock. Sim2real transfer for reinforcement
learning without dynamics randomization. In International Conference on Intelligent Robots
and Systems, pages 4383–4388, 2020.

[28] Fereshteh Sadeghi and Sergey Levine. CAD2RL: real single-image flight without a single real
image. In Robotics: Science and Systems, 2017.

[29] Benjamin Eysenbach, Shreyas Chaudhari, Swapnil Asawa, Sergey Levine, and Ruslan Salakhut-
dinov. Off-dynamics reinforcement learning: Training for transfer with domain classifiers. In
International Conference on Learning Representations, 2020.

[30] Kang Xu, Chenjia Bai, Xiaoteng Ma, Dong Wang, Bin Zhao, Zhen Wang, Xuelong Li, and
Wei Li. Cross-domain policy adaptation via value-guided data filtering. In Advances in Neural
Information Processing Systems, pages 73395–73421, 2023.

[31] Xiong-Hui Chen, Shengyi Jiang, Feng Xu, Zongzhang Zhang, and Yang Yu. Cross-modal
domain adaptation for cost-efficient visual reinforcement learning. In Advances in Neural
Information Processing Systems, pages 12520–12532, 2021.

[32] Lennart Ljung. System identification. In Signal Analysis and Prediction, pages 163–173.
Springer, 1998.

[33] Horia Mania, Michael I Jordan, and Benjamin Recht. Active learning for nonlinear system
identification with guarantees. Journal of Machine Learning Research, 23(32):1–30, 2022.

[34] Wenhao Yu, Jie Tan, C. Karen Liu, and Greg Turk. Preparing for the unknown: Learning a
universal policy with online system identification. In Robotics: Science and Systems, 2017.

[35] Zhi-Hua Zhou, Yang Yu, and Chao Qian. Evolutionary learning: Advances in theories and
algorithms. Springer, 2019.

[36] Jianhong Wang, Wangkun Xu, Yunjie Gu, Wenbin Song, and Tim C Green. Multi-agent
reinforcement learning for active voltage control on power distribution networks. In Advances
in Neural Information Processing Systems, pages 3271–3284, 2021.

[37] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar, Sven Koenig,
and Howie Choset. PRIMAL: Pathfinding via reinforcement and imitation multi-agent learning.
IEEE Robotics and Automation Letters, 4(3):2378–2385, 2019.

[38] Ke Xue, Jiacheng Xu, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, and Yang Yu.
Multi-agent dynamic algorithm configuration. In Advances in Neural Information Processing
Systems, pages 20147–20161, 2022.

[39] Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht.
Scaling multi-agent reinforcement learning with selective parameter sharing. In International
Conference on Machine Learning, pages 1989–1998, 2021.

[40] Lei Yuan, Tao Jiang, Lihe Li, Feng Chen, Zongzhang Zhang, and Yang Yu. Robust coopera-
tive multi-agent reinforcement learning via multi-view message certification. Science China
Information Sciences, 67(4):142102, 2024.

[41] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Interna-
tional Conference on Machine Learning, pages 330–337, 1993.

12

[42] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In Advances in Neural Information
Processing Systems, pages 6379–6390, 2017.

[43] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of PPO in cooperative multi-agent games. In Advances in Neural
Information Processing Systems, pages 24611–24624, 2022.

[44] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and
Thore Graepel. Value-decomposition networks for cooperative multi-agent learning based on
team reward. In International Conference on Autonomous Agents and MultiAgent Systems,
pages 2085–2087, 2018.

[45] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

[46] Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and
Yaodong Yang. Multi-agent reinforcement learning is a sequence modeling problem. In
Advances in Neural Information Processing Systems, pages 16509–16521, 2022.

[47] Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and
Arnu Pretorius. Towards a standardised performance evaluation protocol for cooperative marl.
In Advances in Neural Information Processing Systems, pages 5510–5521, 2022.

[48] Lei Yuan, Lihe Li, Ziqian Zhang, Fuxiang Zhang, Cong Guan, and Yang Yu. Multiagent
continual coordination via progressive task contextualization. IEEE Transactions on Neural
Networks and Learning Systems, 2024.

[49] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. DOP: Off-
policy multi-agent decomposed policy gradients. In International Conference on Learning
Representations, 2020.

[50] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. Adaptive
computation and machine learning. MIT Press, 1998.

[51] Izzeddin Gur, Ofir Nachum, and Aleksandra Faust. Targeted environment design from offline
data. In Deep RL Workshop NeurIPS, 2021.

[52] Fan-Ming Luo, Tian Xu, Xingchen Cao, and Yang Yu. Reward-consistent dynamics models
are strongly generalizable for offline reinforcement learning. In International Conference on
Learning Representations, 2023.

[53] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based
control. In International Conference on Intelligent Robots and Systems, pages 5026–5033,
2012.

[54] Philip Sedgwick. Pearson’s correlation coefficient. Bmj, 345, 2012.

[55] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control
using deep reinforcement learning. In Autonomous Agents and Multiagent Systems: AAMAS
2017 Workshops, Best Papers, pages 66–83, 2017.

[56] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations, 2014.

[57] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In AAAI conference on Artificial Intelligence, 2018.

[58] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D Piatko, Ruth Silverman,
and Angela Y Wu. An efficient k-means clustering algorithm: Analysis and implementation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

13

[59] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1861–1870, 2018.

[60] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[61] Rong-Jun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and
Yang Yu. NeoRL: A near real-world benchmark for offline reinforcement learning. In Advances
in Neural Information Processing Systems, pages 24753–24765, 2022.

[62] Haoyi Niu, Shubham Sharma, Yiwen Qiu, Ming Li, Guyue Zhou, Jianming Hu, and Xianyuan
Zhan. When to trust your simulator: Dynamics-aware hybrid offline-and-online reinforcement
learning. In Advances in Neural Information Processing Systems, pages 36599–36612, 2022.

[63] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. In Advances in Neural Information Processing Systems, pages
1179–1191, 2020.

[64] Md Tanzil Shahria, Md Samiul Haque Sunny, Md Ishrak Islam Zarif, Jawhar Ghommam,
Sheikh Iqbal Ahamed, and Mohammad H Rahman. A comprehensive review of vision-based
robotic applications: Current state, components, approaches, barriers, and potential solutions.
Robotics, 11(6):139, 2022.

[65] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
Advances in Neural Information Processing Systems, pages 6840–6851, 2020.

[66] Yang Yu. Towards sample efficient reinforcement learning. In International Joint Conference
on Artificial Intelligence, pages 5739–5743, 2018.

[67] Petar Kormushev, Sylvain Calinon, and Darwin G Caldwell. Reinforcement learning in robotics:
Applications and real-world challenges. Robotics, 2(3):122–148, 2013.

[68] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik,
Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,
Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P.
Agapiou, Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin
Dalibard, David Budden, Yury Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu
Wang, Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McK-
inney, Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis,
Chris Apps, and David Silver. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782):350–354, 2019.

[69] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[70] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies – A comprehensive introduc-
tion. Natural Computing, 1:3–52, 2002.

[71] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in Neural Information Processing Systems, pages 2960–2968,
2012.

[72] Shimon Whiteson. Evolutionary computation for reinforcement learning. Reinforcement
Learning: State-of-the-art, pages 325–355, 2012.

[73] Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based
reinforcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023.

[74] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

14

[75] Ching-An Cheng, Andrey Kolobov, and Alekh Agarwal. Policy improvement via imitation of
multiple oracles. In Advances in Neural Information Processing Systems, pages 5587–5598,
2020.

[76] Eliseo Ferrante, Alessandro Lazaric, and Marcello Restelli. Transfer of task representation in
reinforcement learning using policy-based proto-value functions. In International Conference
on Autonomous Agents and MultiAgent Systems, pages 1329–1332, 2008.

[77] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-
2):181–211, 1999.

[78] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[79] Yuhang Ran, Yi-Chen Li, Fuxiang Zhang, Zongzhang Zhang, and Yang Yu. Policy regularization
with dataset constraint for offline reinforcement learning. In International Conference on
Machine Learning, pages 28701–28717, 2023.

[80] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems, pages 14129–14142, 2020.

[81] Michael E Tipping and Christopher M Bishop. Probabilistic principal component analysis.
Journal of the Royal Statistical Society Series B: Statistical Methodology, 61(3):611–622, 1999.

[82] Christian Schroeder De Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the StarCraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

15

Appendix

A Algorithm Description

The pseudo-code of Madoc is presented in Alg. 1, we utilize SAC [59] and DOP [49] as our backbone
algorithms for domain calibration. From lines 1 to 9, we group the domain parameters by learning
a VAE and employing k-means; lines 13 to 16 aim at training discriminators as the reward model
and regularizing the running policy; the calibration actors and critics are updated from lines 17 to 19;
finally, we train the running policy from scratch and deploy it to the target domain.

Algorithm 1 Madoc
Input: A pre-collected dataset D, an imperfect manipulable source domainM
Initialize: Policy πθ, joint calibration actor qϕ and critic vΦ, a couple of binary discriminators Dψ,

VAE fΨ, prior distributions p(ξ) and p(z), replay buffer B = ∅ for simulated rollouts, step for
parameter grouping Tgroup, step for domain calibration Tcalibration, learning rate η

1: for step t = 1, · · · , Tgroup do
2: Behavior cloning:
3: πθ ← BC(πθ,D)
4: Collect simulated data:
5: B ← B

⋃
ROLLOUT(πθ, qϕ,M)

6: Update VAE:
7: fΨ ← fΨ − η∇ΨLΨ according to Eq. 10
8: end for
9: Get n groups by k-means, clear replay buffer B = ∅, and reinitialize policy πθ

10: for step t = Tgroup + 1, · · · , Tgroup + Tcalibration do
11: Collect simulated data:
12: B ← B

⋃
ROLLOUT(πθ, qϕ,M)

13: Update discriminators:
14: Dψ ← Dψ − η∇ψLψ according to Eq. 6
15: Behavior cloning:
16: πθ ← BC(πθ,D)
17: Update the joint calibration actor and critic:
18: vΦ ← vΦ − η∇ΦLΦ according to Eq. 12
19: qϕ ← qϕ − η∇ϕLϕ according to Eq. 13
20: end for
21: Train policy from scratch:
22: πθ ← SAC(πθ, qϕ,M)
23: Output: Policy πθ

B Extended Related Work

Sample efficient RL. A significant drawback of current reinforcement learning methods is their poor
sample efficiency, leading to extensive environmental interactions [66]. This results in prohibitive
costs in real-world applications [67] and hinders policy learning even in complex digital environments,
like the full StarCraft game [68]. Multiple factors may restrict the sample efficiency, while several
aspects can alleviate these limitations. Different optimization methods possess varying capabilities
for exploring and exploiting data. Mainstream algorithms in reinforcement learning commonly
rely on the gradient of the objective or surrogate objectives [69]. Still, there are also sample-based
methods, a.k.a. derivative-free optimization, that offer their unique advantages. Typical algorithms
like evolutionary algorithms [70] and Bayesian optimization [71] have been applied for reinforcement
learning [72], showcasing better performance on some tasks. Nonetheless, these methods also
encounter certain drawbacks, including slow convergence, difficulties in scaling, sensitivity to noise,
and a lack of theoretical guarantee. From another perspective, model-based algorithms can be much
more efficient as planning in the model is free of real-world samples in ideals [73]. Nevertheless, in
high-dimensional environments, learning an accurate transition model using supervised learning is
challenging. Employing manually constructed environments, i.e., simulators, is more efficient and
practical, especially in the field of robotics [74]. However, it also encounters new problems due to

16

the sim2real dynamics gap, and simulators are generally non-differentiable, unlike neural models.
Besides the aspects discussed above, the ability to transfer knowledge is also crucial for improving
the sampling efficiency. Rather than starting from scratch for each task, humans continuously learn
and build upon experiences from a variety of tasks. Many methods have proposed various types of
knowledge transfer, such as policy transfer [75], representation transfer [76], and skill transfer [77].
However, these methods work effectively only in specific cases. A general approach to transfer
reinforcement learning is yet to be developed.

Offline RL. In the offline RL setting, the agent no longer has the ability to interact with the environ-
ment [78]. Instead, the learning algorithm is access to a static offline dataset, collected previously by
an unknown behavior policy from the target domain. The main obstacle to this data-driven learning
paradigm is the distribution shift problem due to the discrepancy between the learned and behavior
policies, leading to severe extrapolation error. Previous works tackle this problem by constraining the
learned policies against the behavior policy [79] or penalizing the value function on out-of-distribution
(OOD) actions [63], both of which require large enough datasets. Besides, offline model-based RL
algorithms learn a dynamics model from offline data to enhance the efficiency of offline RL [80].
Benefiting from generating the synthetic data by the learned dynamics, model-based algorithms
improve the coverage of the dataset. However, this depends on accurate dynamics models and still
requires sufficient offline data. It is worth noting that in this work we use offline datasets to calibrate
domain parameters, thereby avoiding the selection of OOD actions, and alleviating the requirements
for dataset quality and quantity.

C Implementation Details

Discriminators. We train two discriminator networks Dψsas
(·|s, a, s′) and Dψsa

(·|s, a) to classify
whether the rollouts comes from the offline dataset or the source domain in our method. We follow the
implementation in DARC [29], propagating gradients back through both discriminators as follows:

Dψsa
(·|s, a) = SoftMax(fsa(s, a)),

Dψsas
(·|s, a, s′) = SoftMax(fsas(s, a, s

′) + fsa(s, a)),

where fsa(s, a) and fsas(s, a, s
′) represent the outputs of the two classifier networks, SoftMax(xi) =

exp xi∑
xj∈X exp xj

, X = {target, source}. Both networks contain two hidden layers, while dropout layers

and ReLU activations are used between layers. Before the final SoftMax layer, we employ the Tanh
activation function to map the outputs into probabilities.

Grouping VAE. We train both the encoder and decoder with two hidden layers, both dropout layers
and ReLU activation functions are used between layers. We employ MSE loss for state reconstruction
and eliminate KL divergence, as our goal is to encode the agent identity rather than generating states.
For each domain parameter, we encode its identity into a 16-dimensional latent space. Then the latent
variable is concatenated with the current observation and action, and the combined data is fed into the
decoder to predict the observation for the next time step. The latent variables of all parameters are
projected to three dimensions using Principal Component Analysis (PCA) [81], after which they are
grouped using the k-means algorithm [58]. To reduce randomness in the group results, we repeatedly
extract schemes from the last phase of group training and determine the final grouping scheme by
choosing the one that occurs most frequently.

Calibration policy. We use DOP [49] as the multi-agent decomposition method because it is a
popular off-policy multi-agent policy gradient method. As claimed in the paper, individual critics vgiΦ
are learned by backpropagating gradients from global TD updates, guiding the updates of individual
calibration actors by a similar objective as in SAC [59]:

Lϕ = Eξgi∼qgiϕ (·)

[
α log qgiϕ (ξgi)− vgiΦ (ξgi) + λDKL

(
qgiϕ (ξgi)||pgi(ξgi)

)]
.

Here, we do not employ the double-Q function and the automatic tuning scheme of α. Instead we
update λt = min(10, exp(t

2×105)) and prior pgi(ξgi) as a target network of qgi(ξgi) with smoothing
coefficient 1× 10−3 to stabilize training. The prior parameter pgi(ξgi) is distribution is initialized as
a normal distribution N (0, 1) to enhance exploration at the early stages of training.

We scale the output of the calibration actors by using a Gaussian with Tanh squashing, e.g., we rescale
the output of gravity to be within [−30, 0] in our preliminary experiments. To further enhance the

17

Table 3: The comparisons of method complexities.

Method GPU Memory Cost Contained Modules
Madoc 398MB reward models, grouping VAE, calibration agents, and running agents
CQL 286MB running agents
MOREC 1053MB dynamics reward function, dynamics models, and running agents

Table 4: The comparisons of computational costs.

Method Total Training Time Average Training Time per Epoch (over 1000 epochs)
Madoc 5 hours 1.8s for grouping (200 epochs), 14s for calibration, 4s for SAC
CQL 2 hours 7s for policy training
MOREC 6 hours 5s for training dynamics reward function, 16s for policy training

Table 5: The common hyper-parameters in Madoc.

Attribute Value

Calibration actor learning rate 3× 10−4

Calibration critic learning rate 3× 10−4

The temperature coefficient of calibration actor 0.05
Hidden layers of the calibration critic network [64, 64]
Target network smoothing coefficient for calibration actor 1× 10−3

Target network update interval for calibration actor 10
Discriminator learning rate 1× 10−3

Hidden layers of the discriminator network [256, 256]
The dropout rate of the discriminator network 0.2
Running actor learning rate 3× 10−4

Running critic learning rate 3× 10−4

Hidden layers of the running actor network [256, 256]
Hidden layers of the running critic network [256, 256]
Target network smoothing coefficient for running actor 5× 10−3

Target network update interval for running actor 1
VAE learning rate 3× 10−4

Hidden layers of the VAE [256, 256]
Latent variable dimension of VAE 16
The dropout rate of the VAE 0.5
Batch size 256
Optimizer Adam
Discount factor γ 0.99
Buffer size 2× 105

exploration of domain parameters, we sample a series of domain parameters every 100 rollouts in the
source domain. After calibration, we set the physics parameters with the means outputted by actors,
and train SAC from scratch with default hyper-parameters.

Most experiments were conducted on a server outfitted with a 13th Gen Intel(R) Core(TM) i9-13900K
CPU, 2 NVIDIA RTX A5000 GPUs, and 125GB of RAM, running Ubuntu 22.04. We also conduct a
comparison between Madoc and various offline RL algorithms with regard to method complexities
and computational costs on the hfctah-med-rep task of the D4RL benchmark, the results are presented
in Tab. 3 and Tab. 4. Compared to the traditional pure offline RL algorithm CQL, Madoc incorporates
additional modules that lead to increased GPU memory cost. Furthermore, it encompasses three
training stages, which consequently require more computational cost. Nevertheless, given the
significant performance improvement, these extra expenditures are deemed justifiable. We list the
default hyper-parameter settings for Madoc in Tab. 5.

18

(a) Half Cheetah (b) Hopper

(c) Walker2d (d) Ant

Figure 5: An illustration of environments used in our experiments.

D Experiment Details

D.1 Extended Environment Descriptions

We adopt the popular Gym-MuJoCo tasks [53] as our benchmarks used in the experiments. To
investigate the performance of our method and baselines, we conduct experiments on four locomotion
tasks shown in Fig. 5, including HalfCheetah, Hopper, Walker2d, Ant.

HalfCheetah is a 2D robotic simulation featuring 9 links and 8 joints, including two paws, designed
to move forward rapidly by applying torque on 6 specific joints. The main objective of this robot
centers on maximizing forward progression to earn positive rewards while minimizing backward
movement to avoid penalties.

Hopper is designed to enhance the complexity with more state and control variables than traditional
control settings, using a two-dimensional, one-legged hopper composed of a torso, thigh, leg, and
foot. The overall aim is to propel the hopper forward by exerting torque on the three joints that link
its four body sections.

Walker2d is a two-dimensional figure with two legs, including a torso, two thighs, two legs, and two
feet, focusing on coordinated movement to advance. The objective is to utilize torque on six joints to
synchronize the movement of all six body parts toward the desired direction.

Ant is a 3D model with a freely rotating torso and four two-linked legs, designed for coordinated
forward movement. The aim is to maneuver the ant by applying torques on eight hinges to effectively
control the movement of its nine parts toward the desired direction.

The number of groups n for each task is 6, 4, 6, and 6, respectively. We verify in extended experiments
(shown in Fig. 7(a)) that the performance results do not differ significantly as long as it is within a
reasonable range. We report the initial ranges and ground truth value of each physics parameter in
Tab. 6, Tab. 7, Tab. 8, and Tab. 9.

19

Table 6: The setting of HalfCheetah physics parameter at easy/normal/hard level.

Physics Parameter Initial Range (easy/normal/hard) Ground Truth
gravity [−15,−5]/[−30, 0]/[−50, 0] −9.81

body_mass_1 [6, 7]/[5, 7]/[4, 8] 6.36

body_mass_2 [1, 2]/[0, 2]/[0, 3] 1.54

body_mass_3 [1, 2]/[0, 2]/[0, 3] 1.58

body_mass_4 [0.5, 1.5]/[0, 2]/[0, 3] 1.07

body_mass_5 [1, 2]/[0, 2]/[0, 3] 1.43

body_mass_6 [0.5, 1.5]/[0, 2]/[0, 3] 1.18

body_mass_7 [0.5, 1.5]/[0, 2]/[0, 3] 0.85

dof_damping_3 [4.5, 7.5]/[1.5, 7.5]/[0, 7.5] 6

dof_damping_4 [3, 6]/[1.5, 7.5]/[0, 7.5] 4.5

dof_damping_5 [1.5, 4.5]/[1.5, 7.5]/[0, 7.5] 3

dof_damping_6 [3, 6]/[0, 6]/[0, 7.5] 4.5

dof_damping_7 [1.5, 4.5]/[0, 6]/[0, 7.5] 3

dof_damping_8 [0, 3]/[0, 6]/[0, 7.5] 1.5

Table 7: The setting of Hopper physics parameter at easy/normal/hard level.

Physics Parameter Initial Range (easy/normal/hard) Ground Truth
gravity [−15,−5]/[−30, 0]/[−50, 0] −9.81

body_mass_1 [3, 4]/[3, 5]/[2, 6] 3.53

body_mass_2 [3.5, 4.5]/[3, 5]/[2, 6] 3.93

body_mass_3 [2, 3]/[2, 4]/[1, 5] 2.71

body_mass_4 [4.5, 5.5]/[4, 6]/[3, 7] 5.08

dof_damping_3, 4, 5 [0, 2]/[0, 3]/[0, 4] 1

Table 8: The setting of Walker2d physics parameter at easy/normal/hard level.

Physics Parameter Initial Range (easy/normal/hard) Ground Truth
gravity [−15,−5]/[−30, 0]/[−50, 0] −9.81

body_mass_1 [3, 4]/[3, 5]/[2, 6] 3.53

body_mass_2, 5 [3.5, 4.5]/[3, 5]/[2, 6] 3.93

body_mass_3, 6 [2, 3]/[2, 4]/[1, 5] 2.71

body_mass_4, 7 [2.5, 3.5]/[2, 4]/[1, 5] 2.94

dof_damping_3, 4, 5, 6, 7, 8 [0, 0.2]/[0, 0.5]/[0, 1] 0.1

20

Table 9: The setting of Ant physics parameter at normal level.

Physics Parameter Initial Range Ground Truth
gravity [−30, 0] −9.81

body_mass_1 [0, 0.5] 0.33

body_mass_2, 3, 5, 6 [0, 0.1] 0.036

body_mass_4, 7 [0, 0.1] 0.065

dof_damping_6, 7, 8, 9 [0, 3] 1

D.2 Baselines

Here we introduce the baselines used in our experiments, including offline domain calibration, hybrid
offline-and-online RL, and pure offline RL algorithms.

DROPO [17] adapts a distribution of dynamics parameters to match an offline dataset by employing a
probabilistic distance measure, aimed at directly maximizing the likelihood of replicating real-world
data within a simulation. Consequently, the simulator can be envisioned as a stochastic forward
model, where the inherent randomness is attributed to variations in the scene’s physical parameters.

DROID [16] harnesses human demonstrations to synchronize the simulator’s trajectories with those
observed in the real world, rather than relying on guesswork or exhaustive adjustments to establish
the domain randomization (DR) range. This process helps in finding the most suitable range of
parameters for the simulator, which can be formulated as a statistical model. Subsequently, this model
can be sampled to inform the training process of RL agents.

OTED [51] is designed to autonomously learn a set of simulator parameters that align with a given
offline dataset. Using the calibrated simulator, it proceeds to train a Reinforcement Learning (RL)
agent using conventional online methods. An objective is formulated for the tuning of simulator
parameters, aiming to minimize a divergence metric between the state-action distribution generated
by the simulator and the provided target offline dataset.

H2O [62] presents a novel policy evaluation framework that is aware of dynamics, adaptively impos-
ing penalties on Q-function training for simulated state-action pairs that exhibit significant dynamics
discrepancies. At the same time, it permits learning from a predetermined dataset originating from
the real world without direct interactions with it.

CQL [63] enhances the conventional Bellman error objective by adding an uncomplicated Q-value
regularization term, which is easy to apply to most current deep Q-learning and actor-critic models.
The objective of CQL is to overcome existing limitations by training a conservative Q-function,
ensuring that the policy’s expected value, as estimated by this Q-function, is a conservative estimate
of its actual value, thus avoiding selecting OOD actions.

MOREC [52] acquires a dynamics reward function that can be generalized from offline data. This
reward function is then utilized as a transition filter within any offline Model-Based Reinforcement
Learning (MBRL) approach. During the transition generation process, the dynamics model produces
a set of possible transitions, from which the one with the highest dynamics reward value is chosen for
selection and used for policy update.

E Additional Experiment Results

E.1 The Absolute Calibration Error

We report the corresponding mean absolute calibration error of experiments in Sec. 5.2. As shown in
Tab. 10 and Tab. 11, there are five methods performing domain transfer by tuning simulator parameters.
It is apparent that the evolutionary algorithm-based methods, DROPO and DROID, result in huge
calibration errors, which suggests their limited effectiveness within the realm of high-dimensional
parameter spaces. Additionally, Madoc-S outperforms OTED, highlighting the more rational design

21

Table 10: The mean absolute calibration error on D4RL benchmark. We bold the lowest mean.

Task DROPO DROID OTED Madoc-S Madoc
hfctah-med 0.78±0.18 1.13±0.34 0.28±0.03 0.13±0.04 0.06±0.01
hfctah-med-rep 0.64±0.15 1.35±0.40 0.61±0.11 0.23±0.10 0.12±0.02
hfctah-med-exp 0.66±0.14 0.87±0.22 0.33±0.06 0.10±0.03 0.09±0.02
hopper-med 1.20±0.35 0.74±0.29 0.42±0.05 0.34±0.07 0.33±0.06
hopper-med-rep 1.27±0.38 1.21±0.33 0.48±0.07 0.53±0.07 0.39±0.05
hopper-med-exp 0.73±0.23 1.43±0.40 0.65±0.35 0.38±0.08 0.34±0.06
walker-med 0.55±0.16 0.45±0.09 0.30±0.05 0.26±0.05 0.18±0.02
walker-med-rep 1.16±0.20 1.13±0.34 0.38±0.07 0.33±0.05 0.25±0.04
walker-med-exp 0.64±0.12 0.48±0.13 0.29±0.04 0.21±0.04 0.19±0.03
ant-med 1.12±0.27 1.04±0.29 0.41±0.11 0.25±0.04 0.16±0.02
ant-med-rep 0.74±0.22 0.84±0.31 0.38±0.12 0.25±0.06 0.14±0.02
ant-med-exp 0.54±0.13 0.60±0.30 0.27±0.06 0.21±0.07 0.14±0.02

Table 11: The mean absolute calibration error on NeoRL benchmark. We bold the lowest mean.

Task DROPO DROID OTED Madoc-S Madoc
HalfCheetah-L 0.55±0.14 0.40±0.10 0.46±0.07 0.43±0.27 0.13±0.04
HalfCheetah-M 0.92±0.37 0.73±0.23 0.34±0.04 0.24±0.03 0.20±0.05
HalfCheetah-H 0.50±0.17 0.73±0.22 0.47±0.05 0.32±0.06 0.21±0.05
Hopper-L 0.76±0.19 0.59±0.22 0.30±0.05 0.22±0.06 0.24±0.05
Hopper-M 0.99±0.21 1.06±0.29 0.42±0.07 0.34±0.08 0.26±0.04
Hopper-H 0.93±0.28 1.90±0.67 0.38±0.07 0.34±0.08 0.26±0.04
Walker2d-L 0.86±0.37 1.22±0.38 0.27±0.05 0.24±0.04 0.22±0.04
Walker2d-M 1.16±0.34 0.62±0.22 0.26±0.06 0.29±0.03 0.17±0.02
Walker2d-H 1.17±0.39 1.09±0.31 0.24±0.05 0.28±0.04 0.18±0.03

of our reward model. Madoc minimizes the mean absolute calibration errors in almost all tasks,
which also serves as a basis for its efficient domain transfer.

E.2 Ablation Studies

In order to further validate the effectiveness of the automatic grouping technique, as in Fig. 6, we
implement a variant of Madoc, which is not equipped with the automatic grouping technique, i.e.,
there are N agents each responsible for calibrating a single parameter. We set the same hyper-
parameters, and train both policies on the HalfCheetah tasks of the NeoRL benchmark. We can find
the policy performance of Madoc significantly decreases without the use of the automatic grouping
technique, underscoring the importance of this component.

Besides, we additionally consider independent learning methods and different value decomposition
methods. Independent learning [41] treats each agent as an independent individual, optimizing each
policy with shared rewards without considering the joint policy, has gained traction again due to their
surprising performance in some domains [82]. Therefore, we have implemented the Madoc-ISAC
algorithm for domain calibration. VDN [44] is a classic value decomposition method representing the
global value function as a simple sum of individual value functions, and we denote the corresponding
version as Madoc-VDN. We train these policies with the same hyper-parameters on the HalfCheetah
tasks of the D4RL benchmark. The results, shown in Tab. 12, demonstrate that Madoc-ISAC and
Madoc-VDN perform worse than Madoc on all three datasets. All physics parameters in the source
domain are interrelated and cooperative. Consequently, the independent learning method overlooks
the policy changes of other calibration agents, which leads to non-stationary problems and a decline
in performance. The gap between Madoc-VDN and Madoc is small, we speculate the reason is
domain calibration is essentially a bandit RL problem, where there is no state space (therefore, we do
not compare with more complex value decomposition algorithms [45] either, as their implementation

22

with automatic grouping without automatic grouping

Figure 6: The average return of rollout steps in the source domain with or without the automatic
grouping technique.

Table 12: Normalized average return of Madoc and its variants. The results are evaluated in the target
domain and we bold the highest mean.

hfctah-med hfctah-med-rep hfctah-med-exp
Madoc 91.9± 7.7 95.7± 9.9 96.9± 5.3
Madoc-VDN 89.9± 6.9 92.7± 7.1 88.2± 5.7
Madoc-ISAC 81.1±14.7 75.0±13.1 75.2±16.1

would be the same without the global state). The main purpose of value decomposition methods is to
perform credit assignment and both methods can achieve this. This also reflects that our algorithm
can be integrated with any existing MARL value decomposition methods.

E.3 Stability of the Experimental Results

The performance results presented in Tab. 1 and Tab. 2 reveal that Madoc exhibits greater variance in
certain task scenarios compared to offline RL algorithms. In this subsection, we explain the large
variance and have designed corresponding adjustments to improve upon this instability.

Madoc has achieved a trade-off between high mean and low variance in return performance. On
the one hand, Madoc requires online interaction with the source domain to search for the domain
parameters that best match the offline dataset. Consequently, the random seed significantly influences
exploration and exploitation, leading to a larger variance for Madoc. In contrast, pure offline
algorithms like CQL and MOREC learn on a fixed dataset in a conservative manner and do not need
to explore. Therefore, they are less influenced by the random seed and have smaller variance. On
the other hand, algorithms with lower variance, namely H2O, DR+BC, CQL, and MOREC, obtain
conservative policies by penalizing the value functions on OOD actions or directly constraining the
policies against the behavior policies. As a result, their mean performances are also limited by the
dataset. Our method has achieved a trade-off between high mean and low variance, attaining optimal
performance compared to baselines in most scenarios.

Regarding the large variance problem of Madoc, we have made some improvements. Once domain
calibration is completed, we no longer use pure SAC to train the policy on the source domain from
scratch. Instead, we combine SAC with BC to impose appropriate constraints on the learned policy,
referred to as Madoc+BC. The results are shown in the Tab. 13. We can observe that the mean
performance of Madoc+BC decreased slightly but became more stable, confirming our approach.

E.4 Sensitivity of Hyper-parameters

By utilizing the automatic grouping technique, Madoc clusters physical parameters into several
groups; thus, we investigate the impact of the number of groups n on algorithm performance in the
hfctah-med-rep task. As illustrated in Fig. 7(a), the best performance is achieved when the number of
groups is 6; however, the impact is not significant as long as the value is within an appropriate range.

23

Table 13: Normalized average return of Madoc and its variants. The results are evaluated in the target
domain and we bold the highest mean.

hfctah-med hfctah-med-rep hfctah-med-exp
Madoc 91.9±7.7 95.7±9.9 96.9±5.3
Madoc+BC 88.9±4.6 90.1±4.8 97.2±3.3
MOREC 73.9±3.0 74.1±2.8 72.0±3.1

(a) Sensitivity of group number 𝑛 (b) Sensitivity of temperature coefficient 𝛼

Figure 7: Sensitivity of hyper-parameters.

Therefore, we default to setting 6 as the number of groups for the three tasks HalfCheetah, Walker2d,
Ant, and for the Hopper task, which has fewer domain parameters, we choose 4 as the number of
groups. Additionally, for the α hyper-parameter that affects the entropy of the calibration policy
during the domain calibration process, we also design experiments on this task to verify parameter
sensitivity. Fig. 7(b) demonstrates that α = 0.05 is the best choice, values that are too large or too
small will both lead to reduced search efficiency, affecting the final policies’ performance. We also
set this hyper-parameter to the same value for all experiments, and it showcases stable results.

(a) Performance with different sized datasets (b) Performance under different initial domain parameter ranges

Figure 8: More results about the generalization ability of Madoc compared to the baselines under
different conditions.

E.5 More Generalization Results

In Sec. 5.4, we have already verified the generalization capability of Madoc across different datasets
and under different search spaces. Here, we list the comparative results with more baseline algorithms.
As shown in Fig. 8, the pure offline RL algorithm CQL is inferior to Madoc across various datasets,
highlighting the limitations of conservative algorithms; DROID employs an evolutionary algorithm
for parameter optimization and can achieve performance comparable to Madoc in simple cases, but
collapses in complex ones. Madoc, on the other hand, can stably handle different scenarios and
achieve excellent performance, supporting its generalization stability.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the main claims in the abstract and introduction, which
accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the possible limitations in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

25

Justification: All assumptions and proofs are clearly stated in Sec. 3 and Sec. 4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present the implementation details in Sec. 5 and App. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [Yes]
Justification: We provide the code at https://github.com/LAMDA-RL/Madoc.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the experimental setting in App. C and App. D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The results and accompanied by error bars and confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

27

https://github.com/LAMDA-RL/Madoc
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information in App. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: I have read and followed the ethics guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

28

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: I cite the origin codebase in the last paragraph in App. C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

29

paperswithcode.com/datasets

Answer: [Yes]
Justification: We provide the code in the supplementary material, and document our method
in a README.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Work
	Background
	Method
	Domain Calibration via Reinforcement Learning
	Multi-Agent Domain Calibration
	Practical Algorithm

	Experiments
	Experiment Setup
	Performance Comparison on the Benchmarks
	Effectiveness of Different Components
	Generalization across Various Conditions

	Conclusion and Discussion
	Algorithm Description
	Extended Related Work
	Implementation Details
	Experiment Details
	Extended Environment Descriptions
	Baselines

	Additional Experiment Results
	The Absolute Calibration Error
	Ablation Studies
	Stability of the Experimental Results
	Sensitivity of Hyper-parameters
	More Generalization Results

