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ABSTRACT

A core challenge in scientific machine learning, and scientific computing more
generally, is modeling continuous phenomena which (in practice) are represented
discretely. Machine-learned operators (MLO) have been introduced as a means
to achieve this modeling goal, as this class of architecture can perform inference
at arbitrary resolution. In this work, we evaluate whether this architectural in-
novation is sufficient to perform “zero-shot super-resolution,” namely to enable
a model to serve inference on higher-resolution data than that on which it was
originally trained. We comprehensively evaluate both zero-shot sub-resolution
and super-resolution (i.e., multi-resolution) inference in MLOs. We decouple
multi-resolution inference into two key behaviors: 1) extrapolation to varying fre-
quency information; and 2) interpolating across varying resolutions. We empiri-
cally demonstrate that MLOs fail to do both of these tasks in a zero-shot manner.
Consequently, we find MLOs are not able to perform accurate inference at resolu-
tions different from those on which they were trained, and instead they are brittle
and susceptible to aliasing. To address these failure modes, we propose a simple,
computationally-efficient, and data-driven multi-resolution training protocol that
overcomes aliasing and that provides robust multi-resolution generalization.

1 INTRODUCTION

Modeling physical systems governed by partial differential equations (PDEs) is critical to many
computational science workflows:

S2 = M(S1), (1)

where M is an approximation of the PDE’s solution operator, S1 is the input state of the system, and
S2 is the predicted state. Central to this problem formulation is that continuous physical systems
must be sampled and, therefore, modeled discretely. For a discrete model, M , to be useful in repre-
senting phenomena of different scales, scientists require the ability to use it at different resolutions
accurately. For example, when modeling fluid flow, scientists often use adaptive mesh refinement
(Berger & Oliger, 1984), a technique that increases simulation resolution in areas that require high
accuracy (e.g., regions of turbulence), and coarsens it in less critical regions.

Traditionally, the approximation M is constructed by numerical methods which, by design, can be
employed at arbitrary discretization (Forrester et al., 2008; Cozad et al., 2014; Asher et al., 2015; Su-
dret et al., 2017; Alizadeh et al., 2020; Kudela & Matousek, 2022). However, numerical methods are
computationally expensive. Alternatively, machine-learned operators (MLOs), a class of data-driven
machine learning (ML) models which parameterize the solution operator to families of PDEs, have
been proposed (Raissi et al., 2019; Li et al., 2020a; Lu et al., 2021; Kovachki et al., 2023; Raonic
et al., 2023). Although querying MLOs at arbitrary discretization is computationally inexpensive,
it is not obvious that this can be done accurately. The Fourier Neural Operator (FNO) (Li et al.,
2020a), a specific MLO, claimed to address the discretization challenge in a zero-shot manner (Li
et al., 2020a; Tran et al., 2021; George et al., 2024; Li et al., 2024b; Azizzadenesheli et al., 2024).
The claim is that FNO can be trained at resolution m and then serve accurate inference at resolution
n > m, without training on additional high resolution data e.g., zero-shot super-resolution. This
claim of zero-shot super-resolution, if true, is especially attractive in settings where generating, and
training on, high-resolution data is computationally expensive.
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Figure 1: Aliasing in zero-shot super-resolution. Model trained on resolution 16 data, and eval-
uated at varying resolutions: 16, 32, 64, 128. Top Row: Sample prediction for Darcy flow; notice
striation artifacts at resolution 128. Middle Row: Average test set 2D energy spectrum of label and
model prediction. Bottom Row: Average residual spectrum normalized by label spectrum.

In this paper, we evaluate the claim of zero-shot super- (and sub-)resolution inference in MLOs.
We document a substantial disparity in model performance across data of different discretizations,
suggesting that MLOs are generally incapable of accurate inference at resolutions greater or less than
their training resolution (i.e., zero-shot multi-resolution inference). Instead, we find that MLOs often
misrepresent unseen frequencies and incorrectly infer their behavior in data whose discretization
differs from its training discretization, i.e., they exhibit a form of aliasing (Fig. 1). In addition, we
study two previously proposed solutions: (i) physics-informed optimization constraints (Li et al.,
2024b) and (ii) band-limited learning (Raonic et al., 2023; Gao et al., 2025). We find that neither
enables zero-shot multi-resolution, as they do not address the central issue: MLOs, like all machine-
learned models, cannot typically generalize beyond their training data (Yang et al., 2023; Liu et al.,
2020; Krueger et al., 2021). We establish that the discretization at which MLOs are trained impacts
the discretization at which they accurately model the system.

To enable multi-resolution inference, we propose multi-resolution training, a simple, intuitive, and
principled data-driven approach which trains models on data of multiple resolutions. We profile
the impact of different multi-resolution training approaches, finding that optimal multi-resolution
performance can often be achieved via training data sets that contain mostly low resolution (less
expensive) data and very little high resolution (more expensive) data. This permits us to achieve low
computational overhead, while also increasing the utility of a single MLO.

To summarize, the main contributions of our work are the following:

1. We assess the ability of trained MLOs to generalize beyond their training resolution. We
demonstrate that MLOs struggle to perform accurate inference at resolutions higher or
lower than which are they trained on, and instead they exhibit aliasing. Based on these re-
sults, we conclude that accurate zero-shot multi-resolution inference is unreliable (Sec. 3).

2. We evaluate two intuitive approaches—incorporating physics-informed constraints during
training, as well as performing band-limited learning—and we find that neither approach
enables reliable multi-resolution generalization. (Sec. 4).

3. We propose and test multi-resolution training, where we include training data of varying
resolutions (in particular, a small amount of expensive higher-resolution data and a larger
amount of cheaper lower-resolution data), and we show that multi-resolution inference
improves substantially, without a significant increase in training cost (Sec. 5).
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Figure 2: Accurate multi-resolution inference requires both interpolation & extrapolation.
Original: Signal is sampled at a rate greater than its Nyquist frequency. Interpolation: Adapting to
new sampling rates of a given signal. Extrapolation: Adapting to new frequency information under
constant sampling rate. Super-Resolution: Sampling a system at a higher rate which enables the
capture of higher frequency information (interpolation & extrapolation). Aliasing: High-frequency
information is misrepresented as a low-frequency information due to insufficient sampling.

2 BACKGROUND ON SIGNAL PROCESSING AND ALIASING

We start by discussing the practice of training ML models to represent continuous systems via dis-
crete data. Next, we outline the implications of aliasing in ML as it relates to multi-resolution
inference. Finally, we formally define “zero shot multi-resolution” inference in a discrete context.

Discrete Representations of Continuous Systems. The fundamental challenge in discretely rep-
resenting continuous systems lies in the choice of sampling rate. The Whittaker–Nyquist–Shannon
sampling theorem established that given a sampling rate r, the largest resolved frequency is r/2
(Unser, 2002; Shannon, 1949; Whittaker, 1928). Thus, ML models will be trained on discrete rep-
resentations where only some of the frequencies are fully resolved. Resolving higher-order frequen-
cies greater than r/2, consequently, becomes an out-of-distribution task. Aligning these discrete
models’ predictions with the underlying continuous system is an open problem (Krishnapriyan et al.,
2021; Queiruga et al., 2020; Ott et al., 2021; Ren et al., 2023; Takamoto et al., 2022; Subel et al.,
2022; Chattopadhyay et al., 2024).

Aliasing. When sampling a continuous signal at rate r, aliasing occurs when frequency components
greater than r/2 are projected onto lower frequency basis functions (Fig. 2) (Gruver et al., 2022).
Thus, content with frequency n > r/2 is observed as a lower frequency contribution:

Alias(n) =
{
n mod r if (n mod r) < r/2

r − (n mod r) if (n mod r) > r/2
(2)

In an ML context, when inferring at different discretizations of a given signal, aliasing can manifest
as the divergence between the energy spectrum of the model prediction and the expected output.
Aliasing indicates a model’s failure to fit the underlying continuous system.

Zero-shot multi-resolution inference. We define multi-resolution inference as the ability to do in-
ference at multiple resolutions (e.g., sub- and super-resolution). The zero-shot multi-resolution task
employs an ML model, which is trained on data with some resolution and tested on data with a dif-
ferent resolution. Zero-shot multi-resolution inference raises two important questions with respect
to the generalization abilities of trained models (see Fig. 2):

1. Resolution Interpolation. How do models behave when the frequency information in the
data remains fixed, but its sampling rate changes from training to inference? Can the model
interpolate the fully resolved signal to varying resolutions?

2. Information Extrapolation. How do models behave when the resolution remains fixed,
but the number of fully resolved frequency components changes from training to inference?
For super-resolution, this means can the model extrapolate beyond the frequencies in its
training data and model higher frequency information?
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Figure 3: Resolution Interpolation. Four FNOs are trained on Darcy data at resolutions {16, 32,
64, 128} from left to right with constant frequency information (low-pass limit of 8f ), and are tested
on varying resolutions. We assess if each model can generalize to data with varying sampling rate.
We visualize spectra of the normalized residuals across test data. Notice, residual spectra (error)
increases substantially in the low frequencies. Lower residual energy at all frequencies is better.

3 ASSESSING MULTI-RESOLUTION GENERALIZATION

We examine the zero-shot multi-resolution abilities of FNO, an architecture for which this claim
has been previously made (Li et al., 2020a). We study the multi-resolution inference task from an
out-of-distribution data perspective by decoupling what it means for a model to perform inference
at a resolution different from that used during training. Specifically, in Sec. 3.1, we assess whether
models trained on a system sampled at rate r are capable of both interpolating accurately to new
sampling rates (Fig. 2(b)) and extrapolating accurately to additional/fewer frequencies present in
data (Fig. 2(c)). We systematically test an FNO’s ability to do both objectives and show neither are
achieved. In light of these failure modes, in Sec. 3.2, we then assess the spatial zero-shot sub- and
super-resolution capabilities of FNOs and show the claim does not hold (Fig. 2(d)).

We evaluate FNO on three standard scientific datasets: Darcy, Burgers, and Navier Stokes. For each
dataset we optimize FNO hyperparameters via grid-search as described in Appendix A.

3.1 BREAKING DOWN MULTI-RESOLUTION CAPABILITIES

Resolution Interpolation. We assess if an FNO trained on data of a specific resolution can general-
ize to data of both lower and higher resolution under fixed frequency information. Specifically, we
keep the set of populated frequencies constant in the train and test data, while varying the resolution
of the test data. We do this by applying a low-pass filter to all data at the highest resolution, and then
down-sampling as needed. The sampling rates of all data are large enough to resolve all remaining
frequencies.

We begin with a simple experiment: we train an FNO on a Darcy flow dataset at resolution
N = 16 and assess the trained model’s performance across test datasets at varying resolutions
{16, 32, 64, 128}, all low-pass filtered with limit 8f where f is the frequency unit 2π/N . In
Fig. 3(a), we visualize the average spectral energy of the model predictions normalized by the spec-
tral energy of the unfiltered ground truth for each test dataset. For the test data with resolutions that
are different from the training data, we observe sharp increases in their residual’s energy spectrum
in frequencies greater than 8f . This is especially concerning since the model was never trained on
nor shown inference data containing frequencies greater than 8f . In other words, FNOs, trained in
a zero-shot manner, fail to reliably interpolate to varying resolutions.

In Figs. 3(b-d), we repeat the same experiment at varying training resolutions (e.g, 32, 64, 128)
with low-pass limit 8f . We notice that at each training resolution, the model consistently and in-
correctly assigns high energy in frequencies greater than 8f across all test resolutions. We perform
corresponding experiments for the Burgers dataset with low-pass limit 64f and resolutions ∈ {128,
256, 512, 1024} and Navier Stokes dataset with low-pass limit 32f and resolutions ∈ {64, 128, 255,
510} and observe the same failure mode (Appendix D: Figs. 11-12). We conclude that changing
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Figure 4: Information Extrapolation. Four FNOs trained on Darcy data of resolution 128 (constant
sampling rate) and low-pass filtered with limits {8, 16, 32, 64}f (varying frequency information)
from left to right. Test if each model can generalize to data with varying frequency information.
Visualizing spectrum of the normalized residuals across test data. Notice, residual spectra (error)
increases substantially in the high frequencies. Lower residual energy at all frequencies is better.

resolution at test time is akin to out-of-distribution inference: the model is never trained on data
with a broad range of sampling rates and consequently fails to generalize.

Information Extrapolation. We assess if an FNO trained on data containing a fixed set of frequen-
cies can generalize to data containing both fewer and additional frequencies under fixed resolution.
Specifically, we keep the resolution constant but vary the number of populated frequencies in the
train and test datasets by applying varying low-pass filters to data at a fixed resolution.

We begin with a simple experiment: an FNO is trained on a Darcy flow dataset at resolution 128
which is low-pass filtered at limit 8f . In Fig. 4(a), we assess the trained model’s performance across
four versions of a test dataset, all of which have the same sampling resolution (128) but are filtered
with low-pass limits {8, 16, 32, 64}f (e.g., increasing amounts of frequency information). There is
a sharp increase in the residual spectra in higher frequencies across all test sets; the residual error
increases as the test and training filters diverge. In other words, FNOs, trained in a zero-shot manner,
fail to extrapolate on data with previously unseen frequency information.

In Figs. 4(b-d), we repeat the same experiment at varying training data low-pass filter limits (e.g,
16, 32, 64f ). Each model consistently and incorrectly assigns high energy in the high frequencies
regardless of whether the test data contained any high-frequency information. This is a concerning
failure mode indicating FNOs do not generalize both in the presence of frequencies greater than,
and the absence of frequencies less than, what was present in their training data. We perform corre-
sponding experiments for the Burgers dataset with resolution 1024 and low-pass limits ∈ {64, 128,
256, 512}f and Navier Stokes dataset with resolution 510 and low-pass limits ∈ {8, 16, 32, 255}f
and observe the same failure mode (Appendix D: Figs. 13-14). We conclude that varying the fre-
quency information at test time is effectively out-of-distribution inference as the model was not
trained on data with such variation in frequency information and, therefore, fails to generalize.

3.2 ZERO-SHOT MULTI-RESOLUTION INFERENCE

We study whether FNOs are capable of spatial multi-resolution inference: simultaneously changing
the sampling rate and frequency information. For each dataset in {Darcy, Burgers, Navier Stokes},
we train a model on data at resolutions (16, 32, 64, 128), (1024, 512, 256, 128,), (510, 255, 128,
64), respectively. In Fig. 1, we see that models trained at low resolutions do not generalize to
high resolutions. Similarly, in Fig. 5, we again see a failure to generalize and instead observe high-
frequency artifacts in model predictions in multi-resolution settings. Further, for time-varying PDEs,
such as Navier Stokes, we observe that these high frequency aliasing artifacts compound across time
steps (Fig. 15). In Fig. 16, we show that models trained at a given resolution do not achieve low
loss across all test resolutions. In fact, losses vary by 1×, 2×, and 10× across test resolutions for
the Darcy, Burgers, and Navier Stokes datasets, respectively. Therefore, we conclude that Fourier
neural operators are not capable of consistent zero-shot super- or sub-resolution.
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Figure 5: FNOs do not generalize to higher or lower resolutions. Model trained on Navier Stokes
dataset at resolution 255 (indicated by *), evaluated resolutions 510, 255, 128. Top Row: Ground
truth, prediction at resolutions 510 (super-resolution), resolution 255 (same as train resolution), and
resolution 128 (sub-resolution). Bottom Row: Average energy spectra over test data.

4 EVALUATING POTENTIAL CORRECTIVE METHODS

Here we assess two previously proposed strategies for accurate zero-shot multi-resolution inference:
physics-informed optimization objectives (Li et al., 2024b) and band-limited learning (Raonic et al.,
2023; Gao et al., 2025). We find that neither enables accurate multi-resolution inference.

4.1 PHYSICAL OPTIMIZATION CONSTRAINTS

Physics-informed optimization constraints have been proposed as a means of achieving accurate
inference in the zero-shot super-resolution setting (Li et al., 2024b). For each dataset in {Darcy,
Burgers, Navier Stokes}, we train FNOs at all avaliable resolutions. We optimize each set of model
parameters θ with a dual optimization objective L(θ) = (1 − w) ∗ ℓdata(θ) + w ∗ ℓphys(θ), where
ℓdata is the original data-driven loss (mean squared error) with an additional physics-informed loss
ℓphys, which explicitly enforces that the governing partial differential equation is satisfied. We use
the physics losses of Li et al. (2024b) and detail the implementation in Appendix G.

We find that the data-driven loss always outperforms any training objective that includes a physics
constraint (Fig. 19). We determine this by evaluating w ∈ {0, 0.1, 0.25, 0.5} for {Darcy, Burg-
ers, Navier Stokes} at resolutions 64, 512, 255, respectively. Among the objectives that contain a
physics constraint, we observe a clear trend: the lower the physics constraint is weighted, the better
test performance the model achieves. This indicates that physics constraints make it more challeng-
ing for the model to be trained optimally despite extensive hyperparameter tuning (perhaps due to
practical reasons such as being difficult to optimize (Krishnapriyan et al., 2021; Subramanian et al.,
2022; Gao & Wang, 2023; Wang et al., 2023)).

To further illustrate, we use the smallest w = 0.1 and compare the physics-informed optimization
with solely data-driven optimization. In Fig. 6, the predicted spectra of data from models opti-
mized with physics loss generally diverge more substantially across test resolutions than models
optimized with only a data loss. Models optimized with physics constraints even fail to accurately
fit their training distributions (Fig. 6(c)), and fail to generalize to both super- and sub-resolution
data (Fig. 6(a,b,d)). See Appendix G for results on all datasets. We conclude that physics informed
constraints do not reliably enable multi-resolution generalization.

4.2 BAND-LIMITED LEARNING

We study two approaches which propose learning band-limited representations of data: convolu-
tional neural operators (CNO) (Raonic et al., 2023) and the Cross-Resolution Operator-Learning
(CROP) pipeline (Gao et al., 2025). Both CNO and CROP have been proposed as alias-free so-
lutions to enable multi-resolution inference (Bartolucci et al., 2023). CNOs are fixed-resolution
models; to use them, one must first interpolate their input to the model’s training resolution, do a
forward pass, and then interpolate back to the original dimension. The CROP pipeline is more gen-
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Figure 6: (Physics-Informed) Optimization Evaluation. FNO trained on Burgers data at resolu-
tion 256 (indicated by *) with and without physics optimization constrains. Average test spectra
visualized. Spectra generated by the models trained with physics+data loss do not match the ground
truth. Physics Loss term weighting w = 10%. Full results in Appendix G, Figs. 21-23.

eral and extends to any class of model by interpolating inputs (both at training and inference) to and
from a fixed-dimensional representation before and after a forward pass.
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Figure 7: Bandlimited Learning Evaluation.
Models trained on Darcy dataset at resolution 16
(indicated by *), evaluated resolutions 16, 32, 64,
128. Average test set 2D energy spectrum of
model predictions and ground truth. Notice both
model prediction spectrums diverge from ground
truth after frequency 8.

We train and evaluate a CNO and CROP+FNO
model on all {Darcy, Burgers, Navier Stokes}
datasets. Models are optimized using optimal
hyper-parameters which were found via a grid
search detailed in Appendix A. In Fig. 7, we vi-
sualize the predicted spectra of model’s trained
on resolution 16 data across test data of res-
olution {16, 32, 64, 128}. We observe that
the CNO does accurately learn the band-limited
representation of its training data: the spectra
matches that of the ground truth until frequency
8f after which, by design, it drops sharply. This
means that while CNO does not alias, it cannot
predict frequencies higher than what was seen
during training. Similarly, we observe that the
CROP model, accurately fits lower frequencies,
but struggles to fit high frequencies accurately
across resolutions.

We note more broadly that the design of band-limiting a model’s training data and predictive capacity
is counter-intuitive to the goal of multi-resolution inference, in which, a broad range of frequencies
must be modeled accurately. Band-limiting a model’s predictive capacity may enable accurate
fixed-resolution representations, but ensures that high-frequency information is not predicted
accurately (or at all). We conclude that band-limited learning limits a model’s utility for multi-
resolution inference (full results in Appendix H).

5 MULTI-RESOLUTION TRAINING

We hypothesize that the reason models struggle to do zero-shot multi-resolution inference is because
data representing a physical system at varying resolutions is sufficiently out-of-distribution to a
model’s fixed-resolution training data. To remedy this, we propose a data-driven solution: multi-
resolution training (i.e., training on more than one resolution).

We compose multi-resolution datasets by randomly sampling different proportions of training data
at varying resolutions {r1, ..., rn} where rx is the proportion of x resolution training data and n = 4.
We begin by evaluating dual-resolution training. Li et al. (2024a) have previously shown that dual-
resolution active learning enables more accurate high-resolution inference. We extend this finding
and evaluate if dual-resolution training can enable accurate multi-resolution inference. For each
dataset in {Darcy, Burgers, Navier Stokes}, we combine data across resolutions in a pairwise manner
creating n(n−1)

2 dual-resolution sets; the ratio of data samples between the two resolutions is varied
over p ∈ {0.5,0.1,0.25,0.5,0.75,0.9,0.1}. In Fig. 8(a-f ), we observe for pair-wise training, the test
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Figure 8: Multi-resolution training. FNO trained on multi-resolution Darcy data. Top row: Av-
erage number of pixels in a data sample in the training set. Lower number of pixels enables faster
data generation and model training. Middle row: The ratios of data within each resolution bucket.
Bottom row: The average test loss across different resolutions. Lower loss is better. Notice: mixed
resolution datasets achieve both low average data size and low loss (ideal scenario).

performance for data that corresponds to the two training resolutions is generally better, but there
are not consistent gains for the two non-training resolutions. This indicates that models perform best
on the data resolutions on which they are trained.

To improve multi-resolution capabilities, we investigate the impact of including data from all res-
olutions. We first assess an equal number of samples across resolutions. In Fig. 8(g), the test
performance across all resolutions improves which confirms that multi-resolution training benefits
multi-resolution inference. Next, we ask: Can we improve the computationally efficiency of multi-
resolution training? To do this, the training dataset must be composed of primarily low resolution
data as it is both the cheapest to generate and train over (Fig. 33). We compose two additional
multi-resolution datasets: {(0.7, 0.1, 0.1, 0.1), (0.9, 0.5, 0.3, 0.2)}. In Fig. 8(h, i), models remain
competitive across test resolutions, even as we decrease the amount of high-resolution data. In
Fig. 9, we observe the consistent trend for all datasets: models are able to achieve a balance between
dataset size and multi-resolution test loss via multi-resolution training. Optimizing the ratios across
all resolutions remains an exciting future direction. Full results in Appendix I.
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6 RELATED WORK

Modeling PDEs via Deep Learning. Three prominent approach exist to discretely model PDEs
with deep learning. 1) Mesh-Free models learn the solution operator to a specific instance of a PDE
(Yu et al., 2018; Raissi et al., 2019; Bar & Sochen, 2019; Smith et al., 2020; Pan & Duraisamy, 2020).
Mesh-free models can be queried to return a measurement at any time and space coordinate. While,
this approach means that a single model can resolve its solution at arbitrary discretization, it has
two shortcomings: (i) Inference costs increases with number of points queried. (ii) Models cannot
generalize beyond the specific PDE instance it was trained on. 2) Fixed-Mesh models remedy both
issues by learning a solution operator for a PDE family over a fixed-resolution mesh (Guo et al.,
2016; Zhu & Zabaras, 2018; Adler & Öktem, 2017; Bhatnagar et al., 2019; Khoo et al., 2021). The
inference costs of fixed-mesh models are lower than traditional numerical methods at corresponding
mesh resolutions. However, fixed-mesh models fall short when one is interested in modeling scale
phenomena that cannot be resolved via the fixed-mesh resolution (e.g., high-frequency information
in turbulent systems ). 3) Mesh-invariant models, unlike fixed-mesh models, are capable of doing
inference at arbitrary mesh resolutions (Li et al., 2020b;a; Lu et al., 2021; Bhattacharya et al., 2021;
Nelsen & Stuart, 2021; Patel et al., 2021; Rahman et al., 2022; Fanaskov & Oseledets, 2023). They
have been proposed as a means to learn mesh-invariant solution operators to entire PDE families
cheaply: train on low-resolution data, and use in a zero-shot fashion on arbitrary resolution data
(e.g., zero-shot multi-resolution). In this work, we examine the zero-shot multi-resolution utility of
mesh-invariant models.

Aliasing (and corrective measures) in Deep Learning. Sources of aliasing in deep learning include
both artifacts of a pixel grid which models learn and amplify and the application of point-wise
non-nonlinearities to intermediate model representations (Karras et al., 2021; Gruver et al., 2022;
Wilson, 2025). A straightforward approach, first introduced in generative adversarial networks, to
stem nonlinearity-caused aliasing is to up sample a signal before applying a non-linearity followed
by down sampling the signal (Karras et al., 2021). Bartolucci et al. (2023) and Raonic et al. (2023)
extend the application of anti-alias activation function design to scientific machine learning; while
this does prevent aliasing, it does not enable models trained at a specific resolution to resolve higher
frequencies in higher resolution data. Gao et al. (2025) proposed a framework that “lifts” arbitrarily
discretization data to a fixed-resolution band-limited space, to both train and do inference in. We
investigate the sources of aliasing the context of zero-shot multi-resolution inference and show that
proposed solutions fall short in remedying the core issue: out-of-distribution generalization.

7 CONCLUSION AND FUTURE WORK

For machine-learned operators to be as versatile as numerical methods-based approaches for mod-
eling PDE’s they must perform accurate multi-resolution inference. To better understand an MLO’s
abilities, we break down the task of multi-resolution inference and assess a trained model’s ability
to both extrapolate to higher/lower frequency information in data and interpolate across varying
data resolutions. We find that models trained on low resolution data and used for inference on
high-resolution data can neither extrapolate nor interpolate, and therefore, more generally fail to do
accurate multi-resolution inference. Changing the resolution of data at inference time is akin to out-
of-distribution inference: models have not learned how to generalize in such settings. We document
that models used in a zero-shot multi-resolution setting are prone to aliasing. We study the utility
of two existing solutions–physics-informed constrains and learning band-limited learning–and find
that neither enable accurate multi-resolution inference.

We introduce a simple and principled approach to enable accurate multi-resolution inference: multi-
resolution training. We first show that models perform best at resolutions they have been trained
on. We then extend this finding and demonstrate that one can computationally efficiently achieve
the benefits of multi-resolution training via datasets composed with mostly low-resolution data and
small amounts of high-resolution data. This enables accurate multi-resolution learning with the
added benefit of low data-generation and model training cost. A promising future direction remains
the automated selection of multi-resolution training data using strategies like active learning.
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A HYPER-PARAMETER SEARCH

FNO HP Tuning: For each dataset ∈ {Darcy, Burgers, Navier Stokes} we do a grid search for
optimal training hyper-parameters: learning rate ∈ {1e-2, 1e-3, 1e-4, 1e-5} and weight decay ∈ {1e-
5, 1e-6, 1e-7} for both the data driven loss (i.e., mean squared error) and the respective data+physics
driven loss. Each model was trained for 150 epochs. For the models optimized with the data+physics
loss, we optimized the physics loss term’s weighting coefficient w ∈ {0.1, 0.25, 0.5}. For Darcy,
Burgers, and Navier Stokes we do this hyper-parameter search for data at resolution 64, 512, 255
respectively, and then use the optimize parameter values for each dataset to train models at remaining
resolutions. See Tab. 1 for the optimal hyper-parameter for each dataset/loss combination.

CROP/CNO HP Tuning: For each dataset ∈ {Darcy, Burgers, Navier Stokes} we do a grid search
for optimal training hyper-parameters: learning rate ∈ {1e-3, 1e-4, 1e-5} for the data driven loss
(i.e., mean squared error). Each model was trained for 150 epochs. For Darcy, Burgers, and Navier
Stokes we do this hyper-parameter search for data at resolution 64, 512, 255 respectively, and then
use the optimize parameter values for each dataset to train models at remaining resolutions. See
Tab. 2 for the optimal hyper-parameter for each dataset/loss combination.

Table 1: Optimal FNO hyper-parameters from hyper-parameter search outlined in Appendix
A. *NS batch size had to be reduced to 1 for multi-resolution training experiments (see Sec. 5),
therefore we used a lower learning rate in that setting. w=Physic Loss Coefficient (see Sec. 4.1).

Data Loss w Learning Rate Weight Decay Batch Size

Darcy Data - 1e-3 1e-5 128
Darcy Data+Physics 0.1 1e-2 1e-5 128
Burgers Data - 1e-3 1e-5 64
Burgers Data+Physics 0.1 1e-3 1e-5 64
Navier Stokes Data - 1e-2 1e-6 4
Navier Stokes Data+Physics 0.1 1e-4 1e-5 4
Navier Stokes* Data - 1e-5 1e-6 1

Table 2: Optimal CNO/CROP hyper-parameters from hyper-parameter search outlined in Ap-
pendix A. *The original CROP implementation did not include a 1D version, so we omit CROP for
the 1D Burgers dataset.

Data Loss Model Learning Rate Weight Decay Batch Size

Darcy Data CNO 0.0001 1e-5 128
Darcy Data CROP 0.001 1e-5 128
Burgers* Data CNO 0.001 1e-5 64
Navier Stokes Data CNO 0.001 1e-6 1
Navier Stokes Data CROP 0.001 1e-6 1
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B MODEL IMPLEMENTATIONS

The Fourier Neural Operator is described in detail in (Li et al., 2020a); we closely follow
their implementation which can be found at https://neuraloperator.github.io/dev/
index.html.

The CNO is described in detail in (Raonic et al., 2023); we closely follow their
implementation which can be found at https://github.com/camlab-ethz/
ConvolutionalNeuralOperator/tree/main.

The CROP pipline is described in detail in (Gao et al., 2025); we closely follow their imple-
mentation for CROP+FNO which can be found at https://github.com/wenhangao21/
ICLR25-CROP/tree/main. We note that they did not include a 1D CROP implementation, so
we exclude evaluation of CROP on the 1D Burgers dataset.
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C DATA

We study three standard scientific datasets: Darcy, Burgers, and turbulent incompressible Navier
Stokes released in PDEBench (Takamoto et al., 2022); please refer to the original publication for
how these datasets were created.

We summarize each dataset here, for full details refer to Takamoto et al. (2022):

Darcy: We study the steady-state solution of 2D Darcy Flow over the unit square with viscosity
term a(x) as an input of the system. We learn the mapping from a(x) to the steady-state solution
described by:

−∇(a(x)∇u(x)) = f(x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2

The force term is a constant value f = 1.

Burgers: We study Burgers’ equation which is used to model the non-linear behavior and diffusion
process in fluid dynamics:

∂tu(t, x) + ∂x(u
2(t, x)/2) = v/π∂xxu(t, x), x ∈ (0, 1), t ∈ (0, 2] (3)

u(0, x) = u0(x), x ∈ (0, 1) (4)

The diffusion coefficient is a constant value f = 0.001.

(Turbulent) Inhomogeneous, Incompressible Navier Stokes: We study a popular variant of the
Navier Stokes equation: the incompressible version. This equation is used to model dynamics far
lower than the speed of propagation of waves in the medium:

∇ · v = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v (5)

Takamoto et al. (2022) employ an augmented form of (5) which includes a vector field forcing term
u:

ρ(∂tv + v · ∇v) = −∇p+ η∆v + u

The viscosity is a constant value v=0.01. We convert the incompressible Navier Stokes dataset to
vorticity form to enable direct comparison with Li et al. (2020a).
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Figure 10: Dataset Energy Spectrum. Average energy spectrums over test datasets. Notice that
Navier Stokes is in the turbulent regime. K = Kolmogorov coefficient.
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D INFORMATION EXTRAPOLATION AND RESOLUTION INTERPOLATION

Here we include the full experimental results of studying FNOs’ abilities to do both information
extrapolation and resolution interpolations as described in Sec. 3.
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Figure 11: Interpolation. Four FNOs trained on Burgers data low-pass limit 64f (constant fre-
quency information) and down sampled to resolutions {128,256,512,1024} (varying sampling rate)
from left to right. We test if each model can generalize to data with varying sampling rate. We
visualize the normalize residual spectra across test data. Notice, residual spectra (error) increases
substantially in the low frequencies. Lower energy at all wave numbers is better.
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Figure 12: Interpolation. Four FNOs trained on Navier Stokes data low-pass limit 32f (constant
frequency information) and down sampled to resolutions {64,128,255,510} (varying sampling rate)
from left to right. We test if each model can generalize to data with varying sampling rate. We
visualize the normalize residual spectra across test data. Notice, residual spectra (error) increases
substantially in the low frequencies. Lower energy at all wave numbers is better.
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Figure 13: Extrapolation. Four FNOs trained on Burgers data of resolution 1024 (constant sam-
pling rate) and low-pass filtered with limits {64,128,256,512}f (varying frequency information)
from left to right. We test if each model can generalize to data with varying frequency informa-
tion. We visualize the normalize residual spectra across test data. Notice, residual spectra (error)
increases substantially in the high frequencies. Lower residual energy at all wave numbers is better.
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Figure 14: Extrapolation. Four FNOs trained on Navier Stokes data of resolution 510 (constant
sampling rate) and low-pass filtered with limits {8,16,32,255}f (varying frequency information)
from left to right. Test if each model can generalize to data with varying frequency information. We
visualize the normalize residual spectra across test data. Notice, residual spectra (error) increases
substantially in the high frequencies. Lower residual energy at all wave numbers is better.
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E EVALUATING SUB- AND SUPER-RESOLUTION

Here we included the full experiment results of studying FNOs’ abilities to do zero-shot multi-
resolution inference as described in Sec. 3.

Ground Truth
Time 10

Predicted
Time 10

Ground Truth
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Predicted
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Figure 15: Aliasing artifacts compound over time. FNO trained on resolution 255 Navier-Stokes
data, evaluated at resolution 510. Left: Ground truth evolution of NS fluid flow. Right: Correspond-
ing FNO predictions at resolution 510. Notice, high frequency artifacts become more prevalent over
time.
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Figure 16: FNOs do not generalize to higher or lower resolutions. Heatmaps of losses incurred
by FNO trained and tested at varying resolutions (lower is better). When the test resolution varies
from the training resolution, the models often incur a substantial increase in loss.
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F MAX MODES

A key design decision in the FNO architecture is parameter m that indicates maximum frequencies
to keep along each dimension in the Fourier layer during the forward pass; this has implications
both during training (which frequencies are learned in the Fourier layers) and at inference (which
frequencies are predicted over in the Fourier layers). In Sec. 3, the FNO is always initialized such
that it can make use all frequencies in its input; this is especially critical in the multi-resolution
setting where data of varying discretization will have varying frequency information. Here we study
the impact of varying m. In the zero-shot multi-resolution inference setting, in Figs. 18 and 17, we
find that that across all variation in m, the models assign high energy in the high-frequencies (e.g.,
alias). More broadly, we comment that in the context of multi-resolution inference it does not make
sense to set m to a value less than the largest populated frequency in a model input, as it ensure that
the model cannot make use that frequency information greater than m in the Fourier layers. In the
event frequency information above m is not useful to prediction (e.g., noise), we advocate low-pass
filtering and down sampling the data to a more compressed representation of data prior to inference
to remove unwanted frequencies and ensure faster inference.
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Figure 17: Resolution Interpolation. Four FNOs trained on Darcy data low-pass limit = 8 (constant
frequency information) and down sampled to resolutions {16,32,64,128} (varying sampling rate)
from left to right, and top to bottom with max modes m ∈ {8,16,32,64}. Test if each model can
generalize to data with varying sampling rate. Visualizing spectrum of the normalized residuals
across test data. Notice, residual spectra (error) increases substantially in the low frequencies. Lower
energy at all wave numbers is better. We notice that across all variation in m, the models assign high
energy in the high-frequencies.
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Figure 18: Information Extrapolation. Sixteen FNOs trained on Darcy data of resolution 128
(constant sampling rate) and low-pass filtered with limits {8,16,32,64} (varying frequency informa-
tion) from left to right, and top to bottom with max modes m ∈ {8,16,32,64}. Test if each model
can generalize to data with varying frequency information. Visualizing spectrum of the normalized
residuals across test data. Notice, residual spectra (error) increases substantially in the high frequen-
cies. Lower residual energy at all wave numbers is better. We notice that across all variation in m,
the models assign high energy in the high-frequencies.
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G PHYSICS-INFORMED OPTIMIZATION

We use the physics losses of Li et al. (2024b) which explicitly enforce that the governing partial
differential equation is satisfied. The governing partial differential equations are detailed in Ap-
pendix Appendix C.

Below we include the results of tuning the physics loss weighting coefficient w in Figs. 20 and 19.
We then include the full comparisons of training each dataset (Darcy, Burgers, Navier Stokes) at
each resolution with both w ∈ {0, 0.1} in Figs. 21-22.
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Figure 19: (Physics-Informed) Optimization. Increasing the proportion of physics-informed loss
in the optimization objective corresponds with increased test loss. Lower MSE is better. Darcy
trained at resolution 64, Burgers trained at resolution 512, and Navier Stokestrained at resolution
255.
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Figure 20: (Physics-Informed) Optimization Objective. The physics informed constraints never
achieves better performance than pure data-driven constraints. Darcy trained at resolution 64, Burg-
ers trained at resolution 512, and Navier Stokestrained at resolution 255.
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Figure 21: Darcy. Energy spectra for models trained at a specific resolution (y-axis) and tested
at multiple resolution (x-axis) with and without physics optimization constraint. The spectrums
generated by the models trained with physics+data loss do not match ground truth. w = 10%.
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Figure 22: Burgers. Energy spectra for models trained at a specific resolution (y-axis) and tested
at multiple resolution (x-axis) with and without physics optimization constraint. The spectrums
generated by the models trained with physics+data loss do not match ground truth. w = 10%.
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Figure 23: Navier Stokes. Energy spectra for models trained at a specific resolution (y-axis) and
tested at multiple resolution (x-axis) with and without physics optimization constraint. The spec-
trums generated by the models trained with physics+data loss do not match ground truth. w = 10%.
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H BAND-LIMITED LEARNING

Here we include the full experimental results of training models with mixed resolution datasets as
described in Sec. 4.2. Note: Gao et al. (2025) did not release a 1D CROP pipeline, therefore, we
were unable to test CROP with Burgers.

First, we observe that band-limited learning, in which models are able to both infer and learn over
band-limited representations of data, accurately learn the frequency region of the data included in
the band-limit. However, they struggle to/do not learn anything outside this range (Figs. 7,28,26).
The implication of this is that band-limited-approaches suffice for modeling data within a prespec-
ified range as long as the band-limit range is wide enough, and the model will never need to be
used to infer on data containing additional frequency information. However, we observe the band
limited approach under performs multi-resolution training at fitting the full spectrum in the multi-
resolution inference setting since the resolution of data, and consequently the resolved frequencies,
are changing (Fig. 9). For both Darcy (Fig. 26) and Burgers (Fig. 27), we notice that multi-resolution
training out-performs band-limited approaches. In Fig. 7, we observe that the predetermined band-
limit leads to error in the high frequency range.

A scenario in which CNO and CROP appear to perform well is on datasets in which the majority
of the energy is concentrated in the predetermined band-limit (e.g., Navier Stokes, see Fig. 10). In
this setting, we see that band-limited fit the lower frequencies in the spectrum very well (Fig. 28).
However, we also see in Fig. 28, that multi-resolution training is the only method that consistently
predicts both the correct amount of energy across the full spectrum. Band limited approaches fail to
fit the high frequency range of the spectrum.

We note that band-limited approaches do not accurately fit frequencies outside of their predeter-
mined limit; thus making them effective for fixed-resolution inference but ineffective for multi-
resolution inference. Alternatively, we demonstrated in Sec. 5 that multi-resolution inference can be
scaled to new data resolutions (and therefore new parts of the spectral energy spectrum) via scaling
up representative samples in the training dataset. We conclude that multi-resolution training is a
more flexible and scalable approach to enabling accurate multi-resolution training at all parts of the
energy spectrum.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 80 160 240
Frequency

10 8

10 5

10 2

101

104

107

En
er

gy

(a) Test Res. 510

0 40 80 120
Frequency

(b) Test Res. 255*

0 20 40 60
Frequency

(c) Test Res. 128

0 10 20 30
Frequency

(d) Test Res. 64

101

102

103

M
SE

Ground Truth Multi Res. CROP CNO FNO Physics Informed

Figure 24: Spectral Comparison Navier Stokes. Top Row: Average predicted spectra for test
data at varying resolutions across all methods. Bottom row: Average mean squared error loss
over test data at varying resolutions across all methods. Zero-shot methods: CNO, FNO, Physics
Informed and CROP are all zero-shot methods, meaning there are trained at a specific resolution
(255, indicated by *), and evaluated at resolutions 510, 255, 128, 64. Data-driven method: Multi-
resolution training; notice that multi-resolution training is the only method that consistently fits both
the high and low parts of the spectra. Band-limited methods: CNO and CROP are both band-
limited methods which are trained in a zero-shot manner at a fixed resolution; we observe that they
only accurately fit the low frequencies.
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Figure 25: Spectral Comparison Darcy. Top Row: Average predicted spectra for test data at
varying resolutions across all methods. Bottom row: Average mean squared error loss over test
data at varying resolutions across all methods. Zero-shot methods: CNO, FNO, Physics Informed
and CROP are all zero-shot methods, meaning there are trained at a specific resolution (16, indicated
by *), and evaluated at resolutions 128, 64, 32, 16. Data-driven method: Multi-resolution training;
notice that multi-resolution training is the only method that consistently fits both the high and low
parts of the spectra. Band-limited methods: CNO and CROP are both band-limited methods which
are trained in a zero-shot manner at a fixed resolution; we observe that they only accurately fit the
low frequencies.
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Figure 26: CROP+FNO and CNO trained on Darcy. On average both CROP+FNO and CNO
incur higher losses across resolutions compared to both FNO (Fig. 16) and multi-resolution training
(Fig. 9).
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Figure 27: CNO trained on Burgers. On average, CNO incur higher losses across resolutions
compared to both FNO (Fig. 16) and multi-resolution training (Fig. 9). We note that despite our
hyperparameter search (Tab. 2) the CNO model trained on resolution 128 failed to converge.
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Figure 28: CROP+FNO and CNO trained on Navier Stokes. On average both CROP+FNO and
CNO incur lower losses across resolutions compared to both FNO (Fig. 16) and multi-resolution
training (Fig. 9).
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I MULTI-RESOLUTION TRAINING

Here we include the full experimental results of training models with mixed resolution datasets
as described in Sec. 5 in Figs. 30-32. We plot the association between increased dataset size and
training time in Fig. 33. We provide an overview comparison across methods in Fig. 29.
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Figure 29: Assessing multi-resolution inference. Column 1: Expected prediction for Darcy flow
at varying resolutions. Columns 2-6: Sample prediction for Darcy flow at varying test resolutions.
Column 7: Average mean squared error test loss at each resolution (lower is better). Zero-shot
methods: CNO, FNO, Physics Informed and CROP are all zero-shot methods, meaning the model
was trained at a specific resolution (16) and evaluated at resolutions 16, 32, 64, 128. Data-driven
method: Multi-resolution training; notice that multi-resolution training consistently outperforms
zero-shot methods.
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Figure 30: Darcy Multi-Resolution Training. FNO trained on multi-resolution Darcy data. Each
row include two sub-rows; each row is delineated the the dual-resolution training ratio (indicated in
y-axis label). The top sub-row illustrates the ratios of data within each resolution bucket. The bottom
sub-row indicates the average test loss across different resolutions. Lower loss is better. Notice in
the mixed resolution datasets achieve both low average data size and low loss (ideal scenario).
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Figure 31: Burgers Multi-Resolution Training. FNO trained on multi-resolution Burgers data.
Each row include two sub-rows; each row is delineated the the dual-resolution training ratio (indi-
cated in y-axis label). The top sub-row illustrates the ratios of data within each resolution bucket.
The bottom sub-row indicates the average test loss across different resolutions. Lower loss is better.
Notice in the mixed resolution datasets achieve both low average data size and low loss (ideal sce-
nario).
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Figure 32: Navier Stokes Multi-Resolution Training. FNO trained on multi-resolution Navier
Stokes data. Each row include two sub-rows; each row is delineated the the dual-resolution training
ratio (indicated in y-axis label). The top sub-row illustrates the ratios of data within each resolution
bucket. The bottom sub-row indicates the average test loss across different resolutions. Lower loss
is better. Notice in the mixed resolution datasets achieve both low average data size and low loss
(ideal scenario).
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Figure 33: Data size corresponds with training time. We notice a clear trend with Darcy and
Navier Stokes datasets: as data size increases, so does average training time per epoch. For Burgers,
this trend is less clear; however, we note that the Burgers dataset is several orders of magnitude
smaller and therefore can be used with a high batch size (see Tab. 1) which reduces the computational
gains achieved from a smaller sized dataset.
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