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ABSTRACT

Diffusion models have shown remarkable performance on many generative tasks.
Despite recent success, most diffusion models are restricted in that they only al-
low linear transformation of the data distribution. In contrast, broader family of
transformations can potentially help train generative distributions more efficiently,
simplifying the reverse process and closing the gap between the true negative
log-likelihood and the variational approximation. In this paper, we present Neural
Diffusion Models (NDMs), a generalization of conventional diffusion models that
enables defining and learning time-dependent non-linear transformations of data.
We show how to optimise NDMs using a variational bound in a simulation-free
setting. Moreover, we derive a time-continuous formulation of NDMs, which
allows fast and reliable inference using off-the-shelf numerical ODE and SDE
solvers. Finally, we demonstrate the utility of NDMs with learnable transforma-
tions through experiments on standard image generation benchmarks, including
CIFAR-10, downsampled versions of ImageNet and CelebA-HQ. NDM:s outper-
form conventional diffusion models in terms of likelihood and produce high-quality
samples.

1 INTRODUCTION

Generative models are a powerful class of probabilistic machine learning models with a wide range
of applications from e.g. art and music to medicine and physics (Tomczak| 2022; Creswell et al.,
2018} [Papamakarios et al., 2021;|Yang et al.,[2022). Generative models learn to mimic the underlying
probability distribution of a given data set and can generate novel samples that are similar to the
original data. They can for example be used for data augmentation, generating synthetic data sets that
increase diversity and scale of the training data, as well as for unsupervised learning, discovering
patterns and latent structures in data.

Diffusion models have emerged as a family of generative models that excel at several generative tasks
(Sohl-Dickstein et al., 2015} |Ho et al.,|2020). They parameterize the data model through an iterative
refinement process, the reverse process, that builds up the data step-by-step from pure noise. For
training purposes an auxiliary noising process, the forward process, is introduced that successively
adds noise to data. The reverse process is then optimized to resemble the forward process. Despite
success in various domains (Sohl-Dickstein et al., 20155 |Ho et al., [2020; [Saharia et al., | 2021; Popov
et al., 2021} Watson et al., 2022} [Trippe et al., 2023)), a key limitation of most existing diffusion
models is that they rely on a fixed and pre-specified forward process that is unable to adapt to the
specific task or data at hand. At the same time there are many works (Hoogeboom & Salimans)
2022; Rombach et al.| 2022; Lipman et al.,|2022) that improve performance of diffusion models by
modifications of the forward processes.

In this paper we develop Neural Diffusion Models (NDMs), a general framework that enables non-
linear, time-dependent and learnable data transformations. We extend the approach by [Song et al.
(2020a) and construct the general forward process as a non-Markovian sequence of latent variables;
each latent variable is constructed through a transformation of the data to which we then inject noise.
This is then leveraged in the corresponding reverse process. To train NDMs efficiently we generalize
the diffusion objective while keeping it a simulation-free bound on the log-likelihood. Furthermore,
we derive the time-continuous analogue of the objective function as well as the stochastic differential
equation (SDE) and ordinary differential equation (ODE) corresponding to the reverse process.

We demonstrate how NDMs generalizes several existing diffusion models and then propose a new
model with learnable transformations of data parameterized by a neural network. To illustrate the
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Figure 1: The directed graphical models of DDIM and NDM.

empirical properties of NDMs we provide experimental results on a synthetic data as well as on
MNIST, CIFAR-10, downsampled ImageNet and CelebA-HQ image datasets. NDMs consistently
outperforms baselines in terms of negative log-likelihood, reaching values of 3.55 and 3.35 on
ImageNet 32 and 64 respectively. Moreover, for small to medium number of steps NDMs achieves
better image generation quality than denoising diffusion probabilistic models (DDPMs) (Ho et al.,
2020), while being comparable for a large number of steps. Finally, we demonstrate that unlike
conventional diffusion models, NDMs allows learning simpler generative dynamics like dynamical
optimal transport.

We summarize the contributions as follows:

1. We propose neural diffusion models or NDMs, a new framework that generalizes conven-
tional diffusion models in both discrete and continuous time settings.

2. We develop an objective function to optimize NDMs that upper bounds the negative log-
likelihood and study its properties.

3. We demonstrate the utility of NDMs with learnable transformations in terms of consistently
improved log-likelihood and for small to medium number of steps improved generation
quality.

2 BACKGROUND

Diffusion models are generative models that make use of latent variables. Given a sample from
the data distribution x ~ ¢(x), we define a forward noising process that produces latent variables
Zo,Z1, - .., Z7. In contrast, the reverse generative process reverts the forward process, starting by
first generating the same latent variables and then data x.

The standard approach to specify the forward process is as a linear Gaussian Markov chain (Sohl-
Dickstein et al.,|2015; Ho et al.;, 2020). However, we can also use an implicit definition of the forward
process from [Song et al.|(2020a). This will turn out to be useful for our purposes and is what we
focus on here. To construct the implicit forward process we first define the marginal distributions
q(z¢|x). Using these marginal distributions we can define the joint distribution of all latent variables
Z0,Z1,- .., 27 as follows:

T
q(zo:r|x) =q(z7|x) Hq Zi—1|Z¢,X)
t=1
with (a1 [a,x)  sueh that (a1} = [ a(a[x)q(a11 e x) (1)

Here we make use of the posterior distribution ¢(z;_1|z:, x) instead of the regular forward distribution
q(z¢|z¢—1). Due to the dependence also on the data x it is a non-Markovian forward process (see
Figure [Ta). In general the forward process is considered fixed and has no trainable parameters.
Moreover, it is specified in such a way that q(zo|x) = 6(z¢ — x) and q(zr|x) ~ N (zr;0,I). So
if q(z1—1|z¢) was available we could sample zy ~ N (zr;0, I) and run the reverse process to get
7o ~ q(zo) ~ q(x). However, the distribution ¢(z;_1|z;) depends implicitly on the data distribution
¢(x) and thus has a complicated form, so we instead approximate the reverse process using a Markov
chain with distribution py(zo.7):

T
po(zo.r) = H (z¢—1|z:), where p(zr) = N(z71;0,1). )



Under review as a conference paper at ICLR 2024

The combination of the forward process ¢ and the reverse process pyg is a form of (hierarchical)
variational autoencoder (Kingma & Welling| 2013} Rezende et al.l 2014). Therefore, it can be trained
by optimizing the usual variational bound on the negative log-likelihood. In the case of diffusion
models, it can be written as follows (see Section A of [Ho et al.| (2020)):

Eq

T
Dk, (q(ZT\X)HP(ZT)) +ZDKL <(I(Zt71|ztvX)|‘p0(zt71|zt)> —IOgPG(X|ZO)1o 3

t=1

Liec

Lprior
Laige

Since the process ¢ and the distribution py(zr) = p(zr) are fixed, the prior term Lo, does not
depend on the parameters 6, so it can be omitted. The distribution py(x|z¢) is often take to be a
Gaussian distribution, with low variance, for continuous data and a dequantization distribution for
discrete data. Thus, also the reconstruction term L. does not depend on the parameter 6.

This means that the only part that depends on the model parameters 6 is the diffusion term Lg;g. It is
a sum of Kullback-Leibler (KL) divergences between posterior distributions in the forward process
q(z—1|z¢,x) and the distributions py(z:—1|2:) from the reverse process. In the general case this KL
divergence is intractable, so the standard choice here is to set the marginal conditional distributions to
be Gaussian, i.e. ¢(z;|x) = N (z; a;x, 07 1). The posterior distribution then takes the form:

s|t
q(zs|z¢,x) = N zs;asx—f—i‘(zt—atx),&fltl , for 0<s<t<T. 4
gt

Note that here we allow for an arbitrary choice of time grid, i.e. s and ¢, whereas above it was
equidistant. It is straightforward to check that such a posterior distribution satisfies (I)) for any
&g‘ . < o2. The exact schedule of &g‘ . is a user design choice.

Finally, the reverse distribution is set to py(zs|z:) = q(zs|z¢, Xo(2¢, 1)), where Xg(z,t) is the
model’s prediction of x. Since ¢(zs|z:,x) and py(zs|z;) are both Gaussian distributions, we can
compute the KL divergences in Lg;g in closed form.

This choice of forward and reverse processes, resulting in analytic expressions for the diffusion terms
given data, is what makes diffusion models a simulation-free approach. Simulation-free means that
we do not have to sample all latent variables for each optimization step. Rather than calculating all
individual terms in Lg;g, we can uniformly sample ¢ and optimize only a subset of KL divergences
using stochastic gradient descent.

By choosing a specific value for 5’5‘ ;» We can obtain equality between the processes of DDPM and

DDIM (see section 4.1 of |Song et al.|(2020a))). Furthermore, as|Song et al.| (2020b)) demonstrated,
when the number of steps 7" in DDPM goes to infinity, we can transition to continuous time. In this
scenario, the reverse process can be described using a Stochastic Differential Equation (SDE):

aXg (Zm t) — Zy

dz; = [r(t)z; — g (t)sg(z, t)]dt + g(t)dw;, where sg(zs,t) = — %)
t
_ dlogay _ do? dloga;

T(t) - dt and g2(t) - H - dt Ot

with time running backwards from ¢ = 1 to ¢ = 0. This formulation allows us to switch to the
equivalent ODE and to use different SDE and ODE solvers for sampling and density estimation.

Q)

3 NEURAL DIFFUSION MODELS

Diffusion models can be viewed as a special type of hierarchical variational autoencoders, where the
latent variables are inferred using scaling of data points and injecting of Gaussian noise. However, this
formulation limits diffusion models in terms of the flexibility of the latent space, which prevents from
learning more useful distributions for the reverse (generative) process. To overcome this limitation,
we propose a general form of transformations of data that allows to define and learn distributions of
the latent space.
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Table 1: Summary of existing diffusion models as instances of Neural Diffusion Models (NDM). See
extended table in Appendix @

Model Distribution ¢(z¢|]z) = NDM’s F(x,t) Comment

DDPM (Ho et al, 2020) / , )

DDIM (Song etal;2020a) V' (Zf’ X, o0l ) x

Flow Matching OT N ay =1,

(Lipman et al.,[2022) (Zt’ aix, o7 ) x 0t =1—(1— omin)t
VDM af = sigmoid(—y,(t)),
(Kingma et al.,|2021) N(Z aux, of ) x o = sigmoid (v, (t))
Soft Diffusion

(Daras et al.} [2022) N(Zt’ctx st ) Cix o = 1,07 = s¢

LSGM

(Vahdat et al| 2021) N(Z“atE(X)"’?I) EBx) p(alz0) :N(x;“D(ZO)"’Q)

In this section, we introduce the Neural Diffusion Models (NDMs) — a simulation-free framework
that generalises conventional diffusion models. The key idea in NDMs is to apply a time-dependent
transformation F,(x, t) to the data x at each step of forward process before injecting noise. Previous
diffusion models arise as special cases when the data transformation is either linear, time-independent,
or pre-defined non-linear (see Table[I). In contrast, the NDM can work with any time-dependent
transformation of data and may be learned end-to-end. In Section ] we provide experimental results
with F,(x, t) parameterized by neural networks.

3.1 MODEL DEFINITION AND VARIATIONAL OBJECTIVE

We introduce NDMs constructively. First, we define the desired marginal distributions:
ao(mulx) = N (2300, (x,1), 071, ™

where F,(x,t) : R? x [0,T] — R% is a function parameterized by ¢ that applies a time-dependent
transform to the data point x. We adapt the approach from DDIM, as described in Section 2] and
choose the following posterior distribution that satisfies (we provide derivation and proof in

Appendix [A.1):
NG
- (zt — arFy(x, t)) , 6§|tl , (8)

0o (252, %) = N | 255 s Fp(x,5) + .

t
for 0 < s <t < T where 55‘ < af is a design choice. Using this posterior we can define an
implicit forward process according to (I) (see Figure[Tb). This forward process provides access to

both marginal and posterior distributions just like in the DDIM framework (Song et al.,[2020a)). The
corresponding NDM variational objective has the following form:

E

de

T
Dxkr, (%(ZT\X)HP(ZT)) + Z DkrL (qw(zt,l |z¢,%)||po(Z¢—1 \Zt)) —log pe (X|Zo)1 )]

t=1
Lrec

Loprior
Laise

While the objective has the same form as in DDIM , the individual terms are different. If the
transformation F,(x, t) is actually parameterized by learnable parameters ¢, the prior term Lprior
and the reconstruction term L. depend on the parameter  as well. Therefore, in that case these
terms cannot be excluded from the optimization process.
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Algorithm 1 Learning NDM Algorithm 2 Sampling from NDM
Require: ¢(x), F,, X¢ Require: F,, X
for learning iterations do zr ~N(0,1)
x ~q(x),t ~U[1,T],e ~N(0,I) fort=T,...,1do
2z ~ qp(2e[x) X = Xg(2z¢, 1)
L= Erec + Ediff + Eprior Zg_1 ™~ q«p(ztfl‘zta )A()
Gradient step on 6 and ¢ w.r.t. £ end for
end for return z

For the standard parameterization of the reverse process through approximate posteriors py(zs|z:) =
Gy (2|24, %9 (24, 1)) the KL divergences in the diffusion term Lq;g are (see Appendix [A.2):

Dict. (a0 (2 20,%) Ipa (2:]20) ) =

1 R ol - 6§\t . 2
e (Fw(x,s) - F¢(xa(zt,t),s)) Ao (Fw(xe(zt,t)J) — F(x, t)) . (10)
st b )

Note a distinction between the objectives of NDM and DDIM here. In the case of DDIM, the
model tries to accurately predict the data point x. In contrast, NDM aims to predict the transformed
data point F,(x, t). Despite this change, NDM’s optimization remains simulation-free, so we can
efficiently train the NDM by sampling time steps and calculating corresponding KL divergences. We
summarise the training and sampling procedures in Algorithms [I[|and 2]

Given that NDM is a generalization of DDIM, we can leverage the same techniques for inference.
Specifically, we can adjust the number of intermediate time steps, the schedule of &?l , as well as
sampling with various dynamics, including a deterministic dynamic corresponding to &g‘t =0.

3.2 CONTINUOUS TIME NDMs

We previously formulated NDMs in the discrete time setting with 7" steps. However, like conventional
diffusion models, we can let the number of steps 1" go to infinity and switch to continuous time. In
this case, the set of time steps {0, 1, ..., 7"} transforms to the range [0, 1] and the diffusion term of
the objective reduces to an expectation over time (see derivation in Appendix [A.4):

1
L iff = E x Eu E Z:|X) "o/
diff q (%) =u(t) =q(z:| )QQ(t)

oy (Fw(x,t) - Fq, (%0 (2, t),t))—i—
2

)

; (85?—%003 - g2<t>> (s6x,20.8) = (%o (21.1),20.1) )

arF,(x,t) —z¢

1
_ 9Bt ) Zp? and s(x,2,t) = e D T )

where r(t

(1) = =2, g
Similar to training a discrete time NDM, we can train a continuous time NDMs by sampling time. In
our experiments we use importance sampling (Song et al.,|2021)) and sample time from a distribution
proportional to g%(t).

Note, that we may not have access to the partial derivative of the transformation F, (-, t) with respect
to t in closed form. However, for any differentiable F,,(-,¢) we can use Jacobian-Vector product
(Hirsch et al., [2012) to obtain this derivative.

The discrete time reverse process also becomes a continuous time process, described by a Stochastic
Differential Equation (SDE). If we parameterize the noise injection in the posterior distribution as
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(b) Top: CIFAR data samples. Bottom: F,(x,T'), transformed data samples.
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Figure 2: Learned transforms for the 2D checkerboard distribution (/eft). Learned transforms for
CIFAR-10 and MNIST (zop right), as well as predictions for MNIST (bottom right). NDM learns
useful forward transformations and more accurately predicts the data from injected noise.

S

72, = 03(1 — e”*~**), we obtain the following SDE (see derivation in Appendix :

dz; = atFw@ze(zt,t),t)w(t)zt;(g%)zr(t)af)s@(zt,t)} dt + g(t)dw,  (12)

F,(x t),t) —
where  sg(z¢,t) = at ¢(X9(Zt27 ).t) Zt (13)
O

By changing the function v, we can obtain different dynamics. In the extreme case where 1, is equal
to a constant we have deterministic dynamics described by an ODE. This enables the use of SDE
or ODE solvers for inference. Moreover, we can estimate densities by considering the model as a
continuous normalizing flow (Chen et al.| 2018)) in the deterministic case.

4 EXPERIMENTS

We present empirical results for the proposed Neural Diffusion Models with learnable transformations
on a synthetic datasets as well as multiple image datasets. Qualitatively, NDMs learn transformations
that simplify the data distribution, leading to predictions of x that are more aligned with the data.
Quantitatively, NDMs consistently outperform the baseline in terms of likelihood. Moreover, for a
small to medium number of steps, NDMs achieve better image generation quality than DDPM, while
being comparable for a large number of steps. Additionally we provide a proof of concept experiment
that demonstrates the ability of NDMs to learn simple generative trajectories.

4.1 IMPLEMENTATION DETAILS

We demonstrate NDMs with learnable transformations on the MNIST (Deng| 2012), CIFAR-10
(Krizhevsky et al.l 2009), downsampled ImageNet (Deng et al.,[2009; |Chrabaszcz et al.| 2017)) and
CelebA-HQ-256 (Karras et al., [2017) datasets. In all experiments we use same neural network
architectures to parameterize both the generative process and the transformations F,,. In experiments
with images we use the U-Net architecture from Dhariwal & Nichol| (2021)). To ensure consistency
with [Song et al.| (2020bj [2021), we apply horizontal flipping as a data augmentation technique
for training models on CIFAR-10 and ImageNet. Unless otherwise stated, we utilize the DDPM
variance-preserving schedule of noise injection for oy and 2. For density estimation of discrete data
we use uniform dequantization.



Under review as a conference paper at ICLR 2024

Table 2: Summary of our findings for density modeling tasks.

Model CIFAR10 ImageNet32 ImageNet 64
DDPM (Ho et al., 2020) 3.69

Improved DDPM (Nichol & Dhariwal, 2021) 2.94 3.54
VDM (Kingma et al.| 2021) 2.65 3.72 3.40
Score SDE (Song et al., 2020b)) 2.99

Score Flow (Song et al.,[2021) 2.83 3.76

NDM (ours) 2.70 3.55 3.35

Table 3: Generative results on CelebA-HQ-256 for LSGM and NDM with learnable transformations
in the latent space of VAE.

Model NLL| FID]
LSGM (Vahdat et al., 2021) <0.70 7.22
Latent NDM (ours) <0.65 7.18

In the experiments we report negative log-likelihood (NLL) in bits per dimension (BPD), negative
evidence lower bound (NELBO) (9), and sample quality as measured by the Frechet Inception
Distance (FID) (Heusel et al.; 2017). We calculate NLL by integrating the corresponding ODEs using
the RK45 solver from |Dormand & Prince| (1980), and both NLL and NELBO are calculated on test
data. For FID we report the score averaged over 50k images.

In Section [3| we parameterize the reverse process through Xy function. However, in practice we
reparameterize the generative process in terms of prediction of injected noise. For a detailed
description of parameterizations and other experimental details, please refer to Appendix

4.2 LEARNED TRANSFORMATIONS

Let us examine some of the transformations that NDM learns. Figure 2alf2c]illustrates the transforma-
tions that NDM learns for the 2D checkerboard distribution, MNIST, and CIFAR-10 datasets. For the
checkerboard, we observe that I, learns to transform the interleaved pattern into a non-interleaved
one. In the case of the grayscale digits of the MNIST dataset, F, learns to highlight the distinctive
features of the numbers. It thickens the lines and even creates bubbles at the corners. For the color
images of CIFAR-10, I, learns to increase the image contrast. In all cases, our model learns a way
to simplify the data distribution. These transformations may enable the reverse process to transition
more smoothly from simple distributions to complex ones.

Furthermore, we would like to emphasize the difference between the predictions of x that NDM
and DDPM makes. Figure [2d|and Figure shows the predictions X¢(z7,T) generated by NDM
and DDPM models trained on the MNIST dataset. In each case, the model samples from a standard
normal distribution zr ~ N (zr; 0, I) and based on this value tries to predict x. Therefore, we do
not expect these samples to be of high quality. However, as we can see, NDM’s predictions of x are
much more similar to the data distribution than DDPM’s predictions. We attribute this behavior to the
fact that our model aims to predict not the datapoint x, but the transformed datapoint F,(x, t). Thus,
to make better predictions of the transformed datapoint, it may be critical to generate predictions of x
that resemble real data. Any deviation from the x-distribution is exaggerated by the transformation
and thus less likely to happen for NDM’s predictions.

In Appendix [D]we provide additional samples for terminal and intermediate timestaps.

4.3 IMAGE GENERATION

Next, we evaluate NDMs with learnable transformations quantitatively. We train continuous time
NDM on MNIST, CIFAR-10, and downsampled ImageNet datasets. Table @] summarizes our results,
reporting NLL. NDMs demonstrates performance on CIFAR-10 that is comparable with the baselines
and outperforms baselines on ImageNet.
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Table 4: Performance comparison of the DDPM and NDM on CIFAR-10 and ImageNet 32 datasets.
We report FID scores for DDPM-style (FID) and DDIM-style (FID*) sampling procedures.

CIFAR-10 ImageNet 32
Steps Model NLL] NELBOJ FID| FID*| NLL] NELBOJ FID| FID*|
1000 DDPM 3.11 3.18 11.44 13.35 3.89 395  16.18 19.08
NDM 3.02 3.03 11.82 13.79 3.79 3.82 17.02 19.76
10 DDPM 5.02 513 37.83 19.89 6.28 642 5351 26.47
NDM 4.63 474  31.56 22.20 5.81 594 45.38 29.95
1000 —s 10 DDPM 8.78 8.98  43.85 17.73 10.99 11.23  58.35 25.53
NDM 8.58 881 4841 16.96 10.78 11.06 62.12 23.77

Then, we compare NDM with the DDPM baseline on MNIST, CIFAR-10, and ImageNet 32 datasets.
To ensure a fair comparison, when implementing DDPM we use an NDM with fixed identity
transformation F,(x,t) = x. Therefore, we train both models with the same objective and
hyperparameters. The first part of Table 4] summarizes our results, reporting NLL, NELBO (9), and
FID score. NDM demonstrates comparable sample quality with the baseline on all datasets and
consistently outperforms the baseline on NLL and NELBO, especially for smaller numbers of steps.
This improvement may be attributed to NDM’s ability to fit distributions of the forward process and
simplify the denoising task for the reverse process.

We also compare NDM with DDPM in a setup where we train both models with 7" = 1000 steps
and then sample with fewer steps. The second part of Table 4] summarizes our results, which are
consistent with the corresponding numbers of steps used during training. However, in absolute values,
both models show worse performance when we decrease the number of steps, and NDM demonstrates
a more severe degradation. This observation is especially noticeable for small numbers of steps,
such as T' = 10, where NDM has a better FID score than DDPM when trained with 10 steps, but a
worse FID score when the number of steps is decreased from 1000 to 10. From this, we conclude
that although NDM can in principle work with reduced number of steps it is less robust to such
modifications compared to DDPM.

Finally, we demonstrate that NDMs may be successfully combined with LSGM (Vahdat et al.; 2021)).
For this experiment we replaced the linear diffusion in the LSGM baseline for CelebA-HQ-256 with
NDMs featuring the learnable F,. We parameterise I, with the same neural network architecture as
baseline’s architecture for parameterisation of diffusion. Table[3]demonstrates that NDMs have better
likelihood estimation and sample quality.

In Appendix we provide further discussion and in Appendix [D]we provide additional results and
ablation studies.

5 RELATED WORK

NDMs build on diffusion probabilistic models originally proposed by [Sohl-Dickstein et al.| (2015)),
which can be considered as an instance of (hierarchical) variational autoencoders (VAEs) (Kingma
& Welling| 2013 [Rezende et al.,[2014). Recently, the theory of diffusion models was extended to
deterministic sampling (Song et al., 2020a)) and continuous time (Song et al., [ 2020b). These results
allowed to reach impressive performance in image generation tasks (Ho et al. [2020; Song et al.,
2020b; Dhariwal & Nichol, 2021} Kingma et al.| [2021). However, most existing diffusion models
have a significant limitation in that they rely on a pre-specified and simple noise injection process that
is unable to adapt to the specific task or data at hand. To overcome this, researchers have explored
ways to generalize diffusion models.

Various papers have since proposed ways to speed up sampling from diffusion models. Tachibana
et al.|(2021)) and Liu et al.[(2022a) proposed alternative SDE and ODE solvers. |Xiao et al.|(2021)
proposed replacing simple Gaussian distributions at each generation step with distributions learned
by GANs (Goodfellow et al.,|2014). Some works proposed methods like iterative distillation with a
reduction in the number of steps (Salimans & Hol [2022)) and iterative straightening of trajectories (Liu
et al.}2022bj [Liul 2022). While these methods change the generative process, they are compatible
with NDMs.
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Several papers proposed constructing the process of data corruption not by noise injection, but rather
by blurring (Rissanen et al., 2022} Daras et al., [2022; [Hoogeboom & Salimans, 2022) or through
another linear transformation (Singhal et al., 2023). Another line of work modifies directly the
dynamics of diffusion models through mapping the data into the latent space of VAE (Vahdat et al.|
2021; Rombach et al., 2022)), hierarchical VAE (Gu et al., 2022) or normalizing flow (Kim et al.,
2022) models and then runs standard linear diffusion. As we demonstrate in Tables E], these arise as
distinct special cases of NDMs for specific choices of the transformation F,.

Inspired by diffusion models, several works (Lipman et al., | 2022; |[Neklyudov et al., [2022) have
proposed simulation-free objectives for training continuous normalizing flows. These approaches
are similar to diffusion models as they rely on the idea of reversing a predefined corruption process.
Later, some works (Albergo & Vanden-Eijnden, [2022; [Lee et al., [2023)) extended these ideas and
proposed to learn the forward process. However, although NDMs and these works are similar in
spirit, they differ in that they optimize the forward process specifically to obtain straight generative
trajectories, while in our approach we optimize learnable forward process to minimize variational
bound on NLL, which not necessarily leads to straight generative trajectories.

In another line of works (De Bortoli et al., [2021; |Wang et al., 2021; [Peluchetti), finite-time diffu-
sion constructions were proposed using diffusion bridge theory to address the approximation error
incurred by infinite-time denoising constructions. While such approaches allow learning forward
transformations, they require inferring all latent variables for each optimization step. This limitation
break the simulation-free paradigm and can make these models expensive to train. NDM in contrast
allows learning forward transformations efficiently and simulation-free.

In Appendix [B} we provide further discussion and comparisons with related works.

6 LIMITATIONS

Compared to conventional diffusion models, NDMs with learnable transformations have twice as
many parameters, which results in slower training. Specifically, in experiments on images, NDMs
with learnable transformations take approximately 2.3 times longer than DDPM to train. However, no
additional techniques where necessary to ensure stable training of NDMs. Additionally, in Appendix
D] we provide an ablation study demonstrating that performance improvements are not achieved by
increasing the number of parameters.

Another distinction between NDMs and DDPM is the importantance for NDMs in using the full
objective @) when training the model. A simplified objective, such as Lgimpie used in DDPM, which
measures how well the model predicts injected noise and does not take into account the transformation
F,, can cause the collapse of this transformation to 0. The reason for this is that it becomes trivial to
identify the injected noise through z;.

Finally, unlike conventional diffusion, the generative process of NDMs with learnable transformations
depends on the parameters of the forward process. Therefore, in the case of learnable parameters,
NDMs do not support conditional generation techniques with classifier guidance (Dhariwal & Nichol,
2021). However, we can utilize alternative approaches (Wu et al.l 2023) to enable conditional
generation from NDMs, but we will defer this to future research.

7 CONCLUSION

We introduced Neural Diffusion Models (NDMs), a new class of diffusion models that enables
defining and learning the general forward noising process. First, we showed how to optimize
NDMs using a variational bound in a simulation-free setting. Then, we derived a time-continuous
formulation of NDMs allowing for fast and reliable inference and likelihood evaluation using off-the-
shelf numerial ODE and SDE solvers. Next, we demonstrated how some existing diffusion models
appear as a special cases of NDMs. For NDMs with learnable transformations we studied their utility
on standard image generation benchmarks. NDMs outperforms conventional diffusion models in
terms of likelihood and produces samples of comparable quality.
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