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ABSTRACT

We study differentially private (DP) algorithms for recovering clusters in well-
clustered graphs, which are graphs whose vertex set can be partitioned into a small
number of sets, each inducing a subgraph of high inner conductance and small
outer conductance. Such graphs have widespread application as a benchmark in
the theoretical analysis of spectral clustering. We provide an efficient (ϵ,δ)-DP
algorithm tailored specifically for such graphs. Our algorithm draws inspiration
from the recent work of Chen et al. [NeurIPS’23], who developed DP algorithms
for recovery of stochastic block models in cases where the graph comprises ex-
actly two nearly-balanced clusters. Our algorithm works for well-clustered graphs
with k nearly-balanced clusters, and the misclassification ratio almost matches the
one of the best-known non-private algorithms. We conduct experimental evalua-
tions on datasets with known ground truth clusters to substantiate the prowess
of our algorithm. We also show that any (pure) ϵ-DP algorithm would result in
substantial error.

1 INTRODUCTION

Graph Clustering is a fundamental task in unsupervised machine learning and combinatorial opti-
mization, relevant to various domains of computer science and their diverse practical applications.
The goal of Graph Clustering is to partition the vertex set of a graph into distinct groups (or clus-
ters) so that similar vertices are grouped in the same cluster while dissimilar vertices are assigned to
different clusters.

There exist numerous notions of similarity and measures of evaluating the quality of graph cluster-
ings, with conductance being one of the most extensively studied (see e.g. (Kannan et al., 2004;
Von Luxburg, 2007; Gharan & Trevisan, 2012)). Formally, let G = (V,E) be an undirected graph.
For any vertex u ∈ V , its degree is denoted by dG(u), and for any set S ⊆ V , its volume is
volG(S) =

∑
u∈S dG(u). For any two subsets S, T ⊂ V , we define E(S, T ) to be the set of edges

between S and T . For any nonempty subset C ⊂ V , the outer conductance and inner conductance
are defined by

Φout(G,C) :=
|E(C, V \ C)|

volG(C)
, Φin(G,C) := min

S⊆C,volG(S)≤ volG(C)

2

Φout(C, S)

Intuitively, if a vertex set C has low outer conductance, then it has relatively few connections to
the outside, and if it has high inner conductance, then it is well connected inside. Based on this
intuition, Gharan & Trevisan (2014) introduced the following notion of well-clustered graphs. A
k-partition of a graph G = (V,E) is a family of k disjoint vertex subsets C1, . . . , Ck of V such
that the union ∪k

i=1Ci = V . If there is some constant c ∈ (0, 1] such that for every i ∈ [k],
volG(Ci) ≥ cvolG(G)

k = 2cm
k is satisfied, we call the k-partition {Ci}i∈[k] c-balanced.

Definition 1.1 (Well-clustered graph). Given parameters k ≥ 1, ϕin, ϕout ∈ [0, 1], a graph G =
(V,E) is called (k, ϕin, ϕout)-clusterable if there exists a k-partition {Ci}i∈[k] of V such that for
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all i ∈ [k], Φin(G,Ci) ≥ ϕin and Φout(G,Ci) ≤ ϕout. Furthermore, if {Ci}i∈[k] is c-balanced,
G = (V,E) is called c-balanced (k, ϕin, ϕout)-clusterable.

If a k-partition {Ci}i∈[k] satisfies the above two conditions on the inner and outer conductances,
then we call the partition a ground truth partition of G. Gharan & Trevisan (2014) give a simple
polynomial-time spectral algorithm to approximately find such a partitioning. Since then, a plethora
of works has focused on extracting the cluster structure of such graphs with spectral methods (see
Section 1.1). For example, Czumaj et al. (2015); Peng et al. (2015); Chiplunkar et al. (2018);
Peng (2020); Gluch et al. (2021) used well-clustered graphs as a theoretical arena to gain a better
understanding of why spectral clustering is successful. They showed that variants of the widely used
spectral clustering give a good approximation of the optimal clustering in a well-clustered graph.

In this paper, we study differentially private (DP) (see Definition 2.1 for the formal definition) al-
gorithms for recovering clusters in well-clustered graphs. DP algorithms aim to enable statistical
analyses of sensitive information on individuals while providing strong guarantees that no infor-
mation of any individual is leaked (Dwork et al., 2006). Given the success of spectral methods
for clustering graphs in non-private settings, surprisingly little is known about differentially private
spectral clustering. Finding ways to leverage these methods in a privacy-preserving way gradually
bridges differential privacy and an area of research with many deep structural results and a strong
toolkit for graphs. In this line of research, we obtain the following result.
Theorem 1. Let G = (V,E) be a c-balanced (k, ϕin, ϕout)-clusterable graph with its ground truth
partition {Ci}i∈[k], where ϕout

ϕ2
in
= O(k−4). Then, there exists an algorithm that, for any c, k, ϕin, ϕout

and graph G with n vertices and m ≥ n · ϕ4
in

ϕ2
out
· log(2/δ)

ϵ2 edges that satisfies the preceding properties,

outputs a k-partition {Ĉi}ki=1 such that

volG(Ĉi△Cσ(i)) = O

(
k4

c2
· ϕout

ϕ2
in

)
· volG(Cσ(i)), for any i ≤ k

with probability 1 − exp(−Ω(n)), where σ is a permutation over [k] := {1, . . . , k}. Moreover, the
algorithm is (ϵ, δ)-DP for any input graph with respect to edge privacy and runs in polynomial time.

For a more general trade-off between the parameters ϵ, δ and the misclassification ratio of our al-
gorithm, we refer to Lemma 4.3. We stress that the privacy guarantee of our algorithms holds for
any input graph, and in particular, it does not depend on a condition that the graph is clusterable. In
the non-private setting, the best-known efficient algorithms achieve O(k3 · ϕout/ϕ

2
in) misclassifica-

tion ratio (for general well-clustered graphs) under the assumption that1 ϕout/ϕ
2
in = O(k−3) (Peng

et al., 2015). Thus, for balanced well-clustered graphs, our private algorithm almost matches the
best-known non-private one in terms of approximate accuracy or utility.

Our private mechanism is inspired by the recent work of Chen et al. (2023). We design a simple
Semi-Definite Program (SDP) and run spectral clustering on a noisy solution. To analyze our al-
gorithm, we extend the notion of strong convexity and prove the stability of the SDP. This allows
us to show that the solution of the SDP has small sensitivity. In differential privacy, sensitivity is
a measure of how much a function’s value changes for small, but arbitrary and possibly adversar-
ial changes in the data. For the non-private SDP solution, we show that applying classical privacy
mechanisms and spectral clustering yields a differentially private clustering algorithm. Based on the
analysis by Peng et al. (2015), we prove that our differentially private clustering algorithm achieves
an approximate accuracy that nearly matches the non-private version. Furthermore, we remark that
Chen et al. (2023) give a DP algorithm for recovery of stochastic block model (SBM) in cases where
the graph comprises exactly two nearly-balanced clusters. Our algorithm achieves a similar approx-
imation accuracy to their weak recovery and supports k clusters.

To complement our results, we conduct an experimental evaluation on datasets with known ground
truth clusters to substantiate the prowess of our algorithm. Furthermore, we show that any (pure)
ϵ-DP algorithm entails substantial error in its output (see Appendix D).
Theorem 2 (informal). Any algorithm for the cluster recovery of well-clustered graphs with failure

probability η and misclassification rate ζ cannot satisfy ϵ-DP for ϵ <
2 ln( 1

9eζ )

d on d-regular graphs.

1Strictly speaking, Peng et al. (2015) stated their result in terms of a so-called quantity Υ, which can be
lower bounded by ϕ2

in/ϕout by higher Cheeger inequality (Lee et al., 2014).
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This lower bound implies that, e.g., there is no ϵ-DP algorithm for ϵ ∈ Ω(1) that misclassifies only
a constant fraction of the input. On the other hand, Theorem 1 confirms the existence of such an
algorithm for (ϵ, δ)-DP.

1.1 RELATED WORK

Our results combine spectral clustering and differential privacy. After Dwork et al. (2006) system-
atically introduced the notion of differential privacy, various clustering objectives have been studied
in this regime. Differentially private metric clustering (e.g., k-clustering) was studied in Nissim
et al. (2007); Wang et al. (2015); Huang & Liu (2018); Shechner et al. (2020); Ghazi et al. (2020).
Correlation Clustering with differential privacy has been the subject of more recent works, e.g., Bun
et al. (2021); Liu (2022); Cohen-Addad et al. (2022). In machine learning, the SBM and mixture
models are used to model and approximate properties of real graphs. Differentially private recovery
of these graphs or their properties has been studied in Hehir et al. (2022); Mohamed et al. (2022);
Chen et al. (2023); Seif et al. (2023).

Spectral methods for graphs have a long track of research that started before differential privacy was
widely studied. One of the first theoretical analyses of these methods appeared in Spielman & Teng
(1996), followed by several others, e.g., Von Luxburg (2007); Gharan & Trevisan (2014); Peng et al.
(2015); Kolev & Mehlhorn (2016); Dey et al. (2019); Mizutani (2021). Indeed, there has been a
long line of research aiming at designing efficient algorithms for extracting clusters with small outer
conductance (and with high inner conductance) in a graph (Spielman & Teng, 2004; Andersen et al.,
2006; Gharan & Trevisan, 2012; Zhu et al., 2013). Privacy-preserving spectral methods have been
studied rather recently (Wang et al. (2013); Arora & Upadhyay (2019); Cui et al. (2021)).

For well-clustered graphs, spectral clustering is the most commonly used and effective algorithm,
which operates in the following two steps: (1) construct a spectral embedding, mapping vertices into
a k-dimensional real space. (2) use k-means or other algorithms to cluster the points in Euclidean
space. Spectral clustering has been applied in many fields and has achieved significant results (Alpert
& Yao, 1995; Shi & Malik, 2000; Ng et al., 2001; Malik et al., 2001; Belkin & Niyogi, 2001; Liu &
Zhang, 2004; Zelnik-Manor & Perona, 2004; White & Smyth, 2005; Von Luxburg, 2007; Wang &
Dong, 2012; Taşdemir, 2012; Cucuringu et al., 2016).

2 PRELIMINARIES

We use bold symbols to represent vectors and matrices. For vectors u,v, we define ⟨u,v⟩ :=

u⊤v =
∑

i uivi. We denote by ∥u∥1 :=
∑

i|ui|, ∥u∥2 :=
√∑

i u
2
i its ℓ1 norm and ℓ2 norm,

respectively. For matrices A and B, define ⟨A,B⟩ :=
∑

i,j AijBij . Denote by ∥A∥2 the spectral
norm of A. Denote by ∥A∥F the Frobenius norm of A. A matrix A is said to be positive semidefinite
if there is a matrix V such that A = V ⊤V , denoted as A ⪰ 0. Note that Aij = vi · vj , where vi

is the i-th column of V and A is known as the Gram matrix of these vectors vi, i ∈ [n]. For n ≥ 1,
let [n] = {1, . . . , n}. Let Diag(a1, a2, · · · , an) be the diagonal matrix with a1, a2, · · · , an on the
diagonal. We denote N

(
0, σ2

)m×n
as the distribution over Gaussian matrices with m × n entries,

each having a standard deviation σ. For an n ×m matrix M , we define the vectorization of M as
the (n×m)-dimensional vector whose entries are the entries of M arranged in a sequential order.

In this paper, we assume that G = (V,E) is an undirected graph with |V | = n vertices, |E| = m
edges. For a nonempty subset S ⊂ V , we define G[S] to be the induced subgraph on S and
we denote by G{S} the subgraph G[S], where self-loops are added to vertices v ∈ S such that
their degrees in G and G{S} are the same. For any two sets X and Y , the symmetric differ-
ence of X and Y is defined as X△Y := (X \ Y ) ∪ (Y \ X). For graph G = (V,E), let
DG := Diag(dG(v1),dG(v2), · · · ,dG(vn)). We denote by AG the adjacency matrix and by LG

the Laplacian matrix where LG := DG − AG. The normalized Laplacian matrix of G is defined
by LG := D

−1/2
G LGD

−1/2
G .

Differential Privacy We consider edge-privacy and call two graphs G = (V,E) and G′ = (V ′, E′)
neighboring if it holds that V = V ′ and |(E \ E′) ∪ (E′ \ E)| ≤ 1. The definition of differential
privacy is as follows:
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Definition 2.1 (Differential privacy). A randomized algorithm M is (ϵ, δ)-differentially private if for
all neighboring graphs G and G′ and all subsets of outputs S, Pr[M(G) ∈ S] ≤ e−ϵ ·Pr[M(G′) ∈
S] + δ, where the probability is over the randomness of the algorithm.

DP mechanisms typically achieve privacy by adding noise, where the magnitude of the noise de-
pends on the sensitivity of the function.

Definition 2.2 (Sensitivity of a function). Let f : D → Rd with domain D be a function. The
ℓ1-sensitivity and ℓ2-sensitivity of f are defined respectively as

∆f,1 := max
Y ,Y ′∈D

Y ,Y ′ are neighboring

∥f(Y )− f(Y ′)∥1 ∆f,2 := max
Y ,Y ′∈D

Y ,Y ′ are neighboring

∥f(Y )− f(Y ′)∥2 .

Gaussian mechanism is one of the most widely used mechanisms in differential privacy.

Lemma 2.3 (Gaussian mechanism). Let f : D → Rd with domain D be an arbitrary d-dimensional

function. For 0 < ϵ , δ ≤ 1, the algorithm that adds noise scaled to N
(
0,

∆2
f,2·2 log(2/δ)

ϵ2

)
to each of

the d components of f is (ϵ, δ)-DP.

k-means and spectral clustering Given a set of n points F1, . . . ,Fn ∈ Rk, the objective of k-
means problem is to find a k-partition of these points, C = {C1, C2, . . . , Ck}, such that the sum
of squared distances between each data point and its assigned cluster center (i.e., the average of
all points in the cluster) is minimized. This optimization problem can be formally expressed as

argminC
∑k

i=1

∑
u∈Ci

∥∥∥u− 1
|Ci|

∑
x∈Ci

x
∥∥∥2
2
. It is known there exist polynomial time algorithms

that approximate the optimum of the k-means within a constant factor (see e.g. Kanungo et al.
(2002); Ahmadian et al. (2019)).

Peng et al. (2015) proved the approximation ratio of spectral clustering when eigenvectors satisfy
certain properties. They showed the following lemma, whose proof is sketched in Appendix B.

Lemma 2.4 (Peng et al. (2015)). Let G = (V,E) be a graph and k ∈ N. Let F : V → Rk be the
embedding defined by F (u) = 1√

dG(u)
·(f1(u), · · · ,fk(u))

⊤, where {fi}ki=1 is a set of orthogonal

bases in Rn. Let {Si}ki=1 be a k-partition of G, and {ḡi}ki=1 be the normalized indicator vectors

of the clusters {Si}ki=1, where ḡi(u) =
√

dG(u)
volG(Si)

if u ∈ Si, and ḡi(u) = 0 otherwise. Suppose

there is a threshold θ ≤ 1
5k , such that for each i ∈ [k], there exists a linear combination of the

eigenvectors ḡ1, · · · , ḡk with coefficients β(i)
j : ĝi = β

(i)
1 ḡ1 + · · · + β

(i)
k ḡk, and for each i ∈ [k],

∥fi − ĝi∥2 ≤ θ.

Let KMEANS be any algorithm for the k-means problem in Rk with approximation ratio APT. Let
{Ai}ki=1 be a k-partition obtained by invoking KMEANS on the input set {F (u)}u∈V . Then, there
exists a permutation σ on {1, . . . , k} such that volG(Ai△Sσ(i)) = O(APT · k2 · θ2)volG(Sσ(i))
holds for every i ∈ [k].

3 STABILITY OF GENERALIZED STRONGLY CONVEX OPTIMIZATION

The following is a generalization of a result in Chen et al. (2023) whose proof is deferred to Ap-
pendix C. It shows that if the objective function of an SDP is generalized strongly convex (see Def-
inition C.2) for some diagonal matrices D1 and D2, then the ℓ2-sensitivity of the scaled solution
can be bounded by the ℓ1-sensitivity of the objective function.

Lemma 3.1 (Stability of strongly-convex optimization). Let Y be a set of databases. Let K(Y)
be a family of closed convex subsets of Rm parameterized by Y ∈ Y and let F(Y) be a family
of functions fY : K(Y ) → R , parameterized by Y ∈ Y , such that: (1) for adjacent databases
Y, Y ′ ∈ Y , and X ∈ K(Y ) there exist X′ ∈ K(Y ′) ∩ K(Y ) satisfying |fY (X)− fY ′(X′)| ≤ α
and |fY ′(X′)− fY (X

′)| ≤ α . (2) fY is (κ,D1,D2)-strongly convex in X ∈ K(Y ) for some
diagonal matrices D1 and D2. Then for Y, Y ′ ∈ Y , X̂ := argminX∈K(Y ) fY (X) and X̂ ′ :=

argminX′∈K(Y ′) fY ′(X′) , it holds
∥∥∥D1X̂D2 −D1X̂

′D2

∥∥∥2
F
≤ 12α

κ .

4



Published as a conference paper at ICLR 2024

4 PRIVATE CLUSTERING FOR WELL-CLUSTERED GRAPHS

In this section, we present our DP algorithm for a well-clustered graph and prove Theorem 1.

4.1 THE ALGORITHM

For a c-balanced (k, ϕin, ϕout)-clusterable graph G = (V,E) with a ground truth partition {Ci}i∈[k],
we set b = 1

m2

∑
i,j∈[k],i̸=j volG(Ci)volG(Cj) = 1 − 1

2m2

∑
i∈[k] volG(Ci)

2. Specifically, if all
clusters have the same volume, then b = k−1

k .

We make use of the following SDP (1) to extract the cluster structure of G. Note that the SDP
assumes the knowledge of the parameter b, which has also been used in previous work (e.g., Guédon
& Vershynin (2016)).

SDP (1)

min
∑

(u,v)∈E

∥ū− v̄∥22 +
2
∑

u,v∈V

⟨ū, v̄⟩2dG(u)dG(v)

λm

s.t.
∑

u,v∈V

(
∥ū− v̄∥22dG(u)dG(v)

)
≥ 2bm2

⟨ū, v̄⟩ ≥ 0, for all u, v ∈ V

∥ū∥22 = 1, for all u ∈ V

SDP (2)

min ⟨LG,X⟩+ n

λm
∥D1/2

G XD
1/2
G ∥2F

s.t. ⟨DGLKV DG,X⟩ ≥ bm2

n

X ⪰ 0,X ≥ 0,Xii =
1

n
,∀i

Intuitively, the SDP ensures a significant sum of vector distances for all pairs of vertices, and the
objective is to minimize the vector distances between endpoints of all edges, thereby achieving a
configuration where inter-class vector distances are large and intra-class vector distances are small.

Let X be 1
n times the Gram matrix of these vector v̄1, v̄2, · · · , v̄n (i.e., Xi,j = 1

n · v̄i · v̄j), LKV

be the Laplacian of the complete graph on set V . Let X ≥ 0 denote that all entries of X are
non-negative. It is easy to see that the SDP (1) can be equivalently written in the form of SDP (2).

Define a domain D as D :=
{
X ∈ Rn×n

∣∣∣ ⟨DGLKV DG,X⟩ ≥ bm2

n ,X ⪰ 0 ,X ≥ 0 ,Xii =
1
n ,∀i

}
.

Then the optimal solution of this SDP can be expressed as

X̂ := argmin
X∈D

⟨LG,X⟩+ n

λm
∥D1/2

G XD
1/2
G ∥2F.

Now we are ready to describe our algorithm whose pseudo-code is given in Algorithm 1. That
is, we first solve the aforementioned SDP to obtain a solution X1 and then we add Gaussian
noise to a scaled version of X1, denoted by X2. We then find the first k eigenvectors of X2

and obtain the corresponding spectral embedding {F (u)}u∈V and then apply the approximation
algorithm KMEANS on the embedding and output the final k partition (of the vertex set V ).

Algorithm 1: Private Clustering
Input: Graph G = (V,E), ε, δ

Output: A k-partition {Ĉi}i∈[k]

1 Let X1 := argminX∈D⟨LG,X⟩+ n
λm∥D1/2

G XD
1/2
G ∥2F.

2 Let X2 := nD
1/2
G X1D

1/2
G +W , where W ∼ N

(
0, 24 (λ+ 3)m · log(2/δ)

ϵ2

)n×n

.

3 Let f1,f2, ...,fk be the k eigenvectors of X2 corresponding to the first k smallest eigenvalues.
4 Let F : V (G) → Rk, where F (u) = dG(u)

−1/2(f1(u),f2(u), ...,fk(u))
⊤.

5 Apply KMEANS(F (u), u ∈ V ) and let Ĉ1, . . . , Ĉk be the output sets.

4.2 PROOF OF THEOREM 1

Privacy of the algorithm
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Lemma 4.1 (Stability). Let f(G,X) = ⟨LG,X⟩ + n
λm

∥∥∥D1/2
G XD

1/2
G

∥∥∥2
F

, and let g(G) =

nD
1/2
G (argminX∈D f(G,X))D

1/2
G . The ℓ2-sensitivity ∆g,2 ≤

√
24 (λ+ 3)m.

Proof. For two adjacent graphs G,G′, we have ∥LG − LG′∥1,∗ ≤ 4, where ∥LG − LG′∥1,∗ is ℓ1
norm of the vectorizations of the matrix. And according to the range of X that X ⪰ 0,Xii =

1
n ,

we have maxi,j Xij ≤ 1
n . Thus, |⟨LG,X⟩ − ⟨LG′ ,X⟩| ≤ 4

n .

Without loss of generality, let G′ have one more edge (u∗, v∗) than G. In this case,∣∣∣∣∥∥∥D1/2
G XD

1/2
G

∥∥∥2
F
−
∥∥∥D1/2

G′ XD
1/2

G′

∥∥∥2
F

∣∣∣∣ =∑
u,v

X2
uv |dG(u)dG(v)− dG′(u)dG′(v)|

≤ 1

n2

∑
u,v

|dG(u)dG(v)− dG′(u)dG′(v)| ≤ 1

n2

(
4 + 4

∑
u

dG(u)

)

≤ 8m+ 4

n2
≤ 12m

n2

So f has ℓ1-sensitivity 4
n + 12m

λnm with respect to G.

Next, we prove that f(G,X) is ( 2n
λm ,D

1/2
G ,D

1/2
G )-strongly convex with respect to X . The gradient

∇f(G,X) = LG + 2n
λmD

1/2
G XD

1/2
G . Let X,X′ ∈ K then

f(G,X′) = ⟨LG,X′⟩+ n

λm

∥∥∥D1/2
G X′D

1/2
G

∥∥∥2
F

= ⟨LG,X′⟩+ n

λm

∥∥∥D1/2
G X′D

1/2
G −D

1/2
G XD

1/2
G

∥∥∥2
F

− n

λm

∥∥∥D1/2
G XD

1/2
G

∥∥∥2
F
+

2n

λm
⟨D1/2

G XD
1/2
G ,D

1/2
G X′D

1/2
G ⟩

= ⟨LG,X⟩+ ⟨LG,X′ −X⟩+ n

λm

∥∥∥D1/2
G XD

1/2
G

∥∥∥2
F

+
2n

λm
⟨D1/2

G XD
1/2
G ,D

1/2
G X′D

1/2
G −D

1/2
G XD

1/2
G ⟩+ n

λm

∥∥∥D1/2
G X′D

1/2
G −D

1/2
G XD

1/2
G

∥∥∥2
F

≥ f(G,X) + ⟨LG,X′ −X⟩+ 2n

λm
⟨D1/2

G XD
1/2
G ,X′ −X⟩+ n

λm

∥∥∥D1/2
G X′D

1/2
G −D

1/2
G XD

1/2
G

∥∥∥2
F

= f(G,X) + ⟨∇f(G,X),X′ −X⟩+ n

λm

∥∥∥D1/2
G X′D

1/2
G −D

1/2
G XD

1/2
G

∥∥∥2
F

That is f(G,X) is ( 2n
λm ,D

1/2
G ,D

1/2
G )-strongly convex with respect to X .

By Lemma 3.1,
∥∥∥ g(G)

n − g(G′)
n

∥∥∥2
F
≤ 24(λ+3)m

n2 . So the ℓ2-sensitivity ∆g,2 ≤
√

24 (λ+ 3)m.

Lemma 4.2 (Privacy). The Algorithm 1 is (ϵ, δ)-DP.

Proof. Consider X2 in the algorithm as a function of G. According to Lemma 4.1, we can get that
the ℓ2-sensitivity of X2 is not greater than

√
24(λ+ 3)m. Combining with Lemma 2.3, we get that

the algorithm achieves (ϵ, δ)-DP.

Utility of the algorithm

Lemma 4.3 (Utility). Suppose that ϕout
ϕ2

in
= O(c2k−4), λ ∈ [Ω(k4c−2ϕ−2

in ), O( mc2ϵ2

nk4 log(2/δ) )]. For any

c-balanced (k, ϕin, ϕout)-clusterable graph, let {Ĉi}ki=1 be a k-partition obtained by the Algorithm 1
(which invokes a k-means algorithm KMEANS with an approximation ratio APT). Then, there
exists a permutations σ on {1, . . . , k} such that

volG(Ĉi△Cσ(i)) ≤ O

(
APT · k

4

c2
·
(
ϕout +

1
λ

ϕ2
in

+ λ
n

m

log(2/δ)

ϵ2

))
volG(Cσ(i))

with probability 1− exp(−Ω(n)).

6



Published as a conference paper at ICLR 2024

Note that Theorem 1 follows by choosing a constant-approximation k-means algorithm KMEANS

(so that APT = O(1)) and setting λ =
√

mϵ2

n log(2/δ) and letting m ≥ n · ϕ4
in

ϕ2
out

· log(2/δ)
ϵ2 .

To prove Lemma 4.3, we need the following lemma.
Lemma 4.4. Consider the SDP (1), if the input graph G = (V,E) is a c-balanced (k, ϕin, ϕout)-
clusterable graph, the solution satisfies

∑
u,v∈Ci

(
∥ū− v̄∥22dG(u)dG(v)

)
≤ mvolG(Ci) ·

ϕout +
16
λ

ϕ2
in

, ∀i ∈ [k]

∑
u∈Ci,v∈Cj ,i̸=j

(
∥ū− v̄∥22dG(u)dG(v)

)
≥ m2

(
2b−

ϕout +
16
λ

ϕ2
in

)
.

Proof. As G = (V,E) is a c-balanced (k, ϕin, ϕout)-clusterable graph, there exists a c-balanced
partitioning {Ci}i∈[k] of V and, for all i ∈ [k], Φin(G,Ci) ≥ ϕin and Φout(G,Ci) ≤ ϕout.

For 1 ≤ i ≤ k, we have Φout(G,Ci) =
|E(Ci,V−Ci)|

volG(Ci)
≤ ϕout. Summing it yields

∑k
i=1 |E(Ci, V −

Ci)| ≤ ϕout ·
∑k

i=1 volG(Ci) = ϕout · volG(V ) = 2ϕoutm. So the number of edges between clusters
in G is not greater than ϕoutm.

Now let us consider a feasible solution of the SDP (1). For every vertex u in the ℓ-th cluster, assign
unit vector vℓ to ū. We can let v1,v2, . . . ,vk be a set of orthogonal bases, as k ≤ n. For this feasible
solution, the value of the objective function is not greater than ϕoutm ·2+ 2

λm ·
∑

j∈[k] volG(Cj)
2 ≤

2ϕoutm+ 2
λm · volG(G)2 = 2ϕoutm+ 8m

λ .

Thus, for any i ∈ [k], we have
∑

(u,v)∈G{Ci}∥ū − v̄∥22 ≤ 2ϕoutm + 8m
λ . Let µ be the second

eigenvalue of the normalized Laplacian matrix LG{Ci}, we have

µ = volG(Ci) min
{ū}u∈V

∑
(u,v)∈G{Ci}

(
∥ū− v̄∥22

)∑
u,v∈Ci

(∥ū− v̄∥22) dG(u)dG(v)
≥ ϕ2

in

2

So
∑

u,v∈Ci

(
∥ū− v̄∥22dG(u)dG(v)

)
≤ volG(Ci) · 2ϕoutm+ 8m

λ
1
2ϕ

2
in

= volG(Ci) · 4ϕoutm+ 16m
λ

ϕ2
in

=

mvolG(Ci) ·
4ϕout+

16
λ

ϕ2
in

, for all i ∈ [k].

By the definition of the SDP (1), we know that
∑

u,v∈V

(
∥ū− v̄∥22dG(u)dG(v)

)
≥ 2bm2.

Thus,
∑

u∈Ci,v∈Cj ,i̸=j

(
∥ū− v̄∥22dG(u)dG(v)

)
≥ 2bm2 −

∑
i∈[k]

(
mvolG(Ci) ·

4ϕout+
16
λ

ϕ2
in

)
≥

2bm2 −m · 4ϕout+
16
λ

ϕ2
in

∑
i∈[k] volG(Ci) = m2

(
2b− 4ϕout+

16
λ

ϕ2
in

)
.

Lemma 4.5. Consider the setting in Theorem 1 and Algorithm 1, with probability 1− exp(−Ω(n)),

∥X2 −Z∥2 ≤ 2m ·

2

√
ϕout +

4
λ

ϕ2
in

+ 3

√
6(λ+ 3)n

m

log(2/δ)

ϵ2


where Z is a matrix defined as: Zuv =

√
dG(u)dG(v), if u, v are in same cluster; Zuv = 0 if u, v

are in different clusters.

Proof. According to Lemma 4.4, for u, v in same cluster Ci :

∑
u,v∈Ci

(
n
√
dG(u)dG(v)[X1]uv −Zuv

)2
=

∑
u,v∈Ci

(
(n[X1]uv − 1)

2
dG(u)dG(v)

)
≤ 2

∑
u,v∈Ci

(|n[X1]uv − 1|dG(u)dG(v)) =
∑

u,v∈Ci

(
∥ū− v̄∥22dG(u)dG(v)

)
≤ mvolG(Ci) ·

4ϕout +
16
λ

ϕ2
in

7
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For u, v in different clusters :∑
u∈Ci,v∈Cj

i ̸=j

(
n
√
dG(u)dG(v)[X1]uv −Zuv

)2
=

∑
u∈Ci,v∈Cj

i ̸=j

(
(n[X1]uv)

2
dG(u)dG(v)

)

≤
∑

u∈Ci,v∈Cj

i ̸=j

(|n[X1]uv|dG(u)dG(v)) =
1

2

∑
u∈Ci,v∈Cj

i ̸=j

(
2− ∥ū− v̄∥22

)
dG(u)dG(v)

= bm2 − 1

2

∑
u∈Ci,v∈Cj

i ̸=j

(
∥ū− v̄∥22dG(u)dG(v)

)
≤ m2 ·

2ϕout +
8
λ

ϕ2
in

Combing these, we have:
∥∥∥nD1/2

G X1D
1/2
G −Z

∥∥∥
2
≤
∥∥∥nD1/2

G X1D
1/2
G −Z

∥∥∥
F

=

√∑
u,v

(
n
√
dG(u)dG(v)[X1]uv −Zuv

)2
≤ 4m ·

√
ϕout+

4
λ

ϕ2
in

.

Algorithm 1 uses W ∼ N
(
0, 24 (λ+ 3)m · log(2/δ)

ϵ2

)n×n

, and we choose t =
√
n in Lemma A.1,

so with probability 1 − exp(−Ω(n)), ∥X2 −Z∥2 ≤ ∥W ∥2 +
∥∥∥nD1/2

G X1D
1/2
G −Z

∥∥∥
2
≤ 3

√
n ·√

24 (λ+ 3)m · log(2/δ)
ϵ2 + 4m ·

√
ϕout+

4
λ

ϕ2
in

= 2m ·
(
2

√
ϕout+

4
λ

ϕ2
in

+ 3
√

6(λ+3)n
m

log(2/δ)
ϵ2

)
.

Proof of Lemma 4.3. Let γ = 2

√
ϕout+

4
λ

ϕ2
in

+ 3
√

6(λ+3)n
m

log(2/δ)
ϵ2 . According to Lemma 4.5, with

probability 1− exp(−Ω(n)), it holds that ∥X2 −Z∥2 ≤ 2γm.

We denote the eigenvalues of the matrix X2 by µ1 ≥ · · · ≥ µn, with their corresponding orthonor-
mal eigenvectors f1, · · · ,fn. We denote the eigenvalues of the matrix Z by ν1 ≥ · · · ≥ νn,
with their corresponding orthonormal eigenvectors g1, · · · , gn. Let Y = [f1, · · · ,fn],Q =
[g1, · · · , gn], and let A = Diag(µ1, · · · , µn),Λ = Diag(ν1, · · · , νn). Then X2 = Y AY ⊤,Z =
QΛQ⊤ are the eigen-decompositions of X2,Z, respectively. As {g1, · · · , gn} is a set of orthog-
onal bases in Rn, for every i ∈ [n], fi is the linear combination of eigenvector g1, · · · , gn. We
write fi as fi = β

(i)
1 g1 + · · · + β

(i)
n gn, where β

(i)
j ∈ R. By the definition of Z, we know that Z

is composed of k rank-1 matrices of sizes |C1|, |C2|, · · · , |Ck|, respectively. Let these matrices be
M1,M2, · · · ,Mk such that Mi ∈ R|Ci|×|Ci|, for each i ∈ [k]. For each j ∈ [k], note that the
eigenvalues of Mj are volG(Cj), 0, · · · , 0, where the multiplicities of 0 is |Cj | − 1. So we have
νk+1 = · · · = νn = 0, and ν1, · · · , νk are equal to volG(C1), · · · , volG(Ck), respectively, and
νk = mini∈[k] volG(Ci) ≥ 2cm

k .

By Lemma A.2, we have µk ≥ νk − ∥X2 −Z∥2 ≥ 2m
(
c
k − γ

)
.

We apply Theorem A.3 with H = X2, E0 = Y[k], E1 = Y−[k], A0 = A[k], A1 = A−[k],
and H̃ = Z, F0 = Q[k], F1 = Q−[k], Λ0 = Λ[k], Λ1 = Λ−[k], η = |µk − νk+1| = |µk| ≥
2m
(
c
k − γ

)
. Therefore, by Theorem A.3 we have∥∥∥Q⊤
−[k]Y[k]

∥∥∥
2
=
∥∥F⊤

1 E0

∥∥
2
≤
∥∥F⊤

1 (Z −X2)E0

∥∥
2

η
≤

∥X2 −Z∥2
η

≤ γk

c− γk
.

Thus we have
∑n

j=k+1

(
β
(i)
j

)2
=
∥∥∥Q⊤

−[k]fi

∥∥∥2
2
≤
∥∥∥Q⊤

−[k]Y[k]

∥∥∥2
2
≤ γ2k2

(c−γk)2 , for all i ∈ [k].

For all i ∈ [k], let ĝi = β
(i)
1 g1 + · · ·+ β

(i)
k gn, then ∥fi − ĝi∥22 =

∑n
j=k+1

(
β
(i)
j

)2
≤ γ2k2

(c−γk)2 .

Note that our Algorithm 1 invokes KMEANS algorithm on the input set the input set {F (u)}u∈V ,
where F (u) = dG(u)

−1/2(f1(u),f2(u), ...,fk(u))
⊤. By Lemma 2.4, we know that the

8
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output partition {Ĉi}i∈[k] satisfies: volG(Ĉi△Cσ(i)) ≤ APT · k2 γ2k2

(c−γk)2 volG(Cσ(i)) =

O
(
APT · k4

c2 ·
(

ϕout+
1
λ

ϕ2
in

+ λ n
m

log(2/δ)
ϵ2

))
volG(Cσ(i)), for some permutation σ on {1, . . . , k}.

5 EXPERIMENTS

To evaluate the empirical trade-off between privacy and utility of our algorithm, we perform ex-
emplary experiments on synthetic datasets sampled from SBMs. As a baseline, we compare our
algorithm to an approach based on randomized response as described in Mohamed et al. (2022).
The algorithm based on randomized response generates a noisy output by flipping each bit of the ad-
jacency matrix with some probability pRR (for undirected graphs, it flips a single coin for opposing
directed edges). It was shown that randomized response is ϵ-DP for pRR ≥ 1/(1 + eϵ).

Since randomized response is an ϵ-DP algorithm, we are interested in the utility improvement that
we can gain by using (ϵ, δ)-DP when the utility of randomized response becomes insufficient. Our
hypothesis is that when the noise added to the adjacency matrix by randomized response has roughly
the same magnitude as the clustering signal, the output of Algorithm 1 still has significant utility.
In particular, we consider the case where the difference between the empirical probability of intra-
cluster edges and inter-cluster edges after randomized response is only a constant fraction of the
original difference between these probabilities in the vanilla SBM graph.

Implementation. We model the SDP (2) in CVXPY 1.3.2 and use SCS 3.2.3 as SDP solver. We use
NumPy 1.23.5 for numerical computation and scikit-learn 1.3 for an implementation of k-means++.
For our algorithm, we use b = (k−1)/k and λ = c ·

√
mϵ2

n log(2/δ) , where c is a trade-off constant that
we fix for each SBM parameterization before sampling the input datasets. For randomized response,
we replace the objective with argminX∈D⟨LG,X⟩, i.e., we remove the regularizer term, and set
pRR = 1/(1+eϵ). The regularizer facilitates a trivial solution and is not needed because randomized
response is differentially private.

Datasets and setup. We sample datasets from a stochastic block model SBM(n, k, p, q) with k
blocks, each of size n/k, intra-cluster edge probability p and inter-cluster edge probability q. We
consider the sampled graphs as instances of well-clustered graphs. For our experiments, we use
ϵ = 1 and δ = 1/n2. Since pRR = 1/(1 + e) ≈ 0.27, we choose small values of p, q so that
|p − q| = 0.2. For each parameterization, we sample 10 SBM graphs and run each algorithm 100
times to boost the statistical stability of the evaluation. See appendix E for more details.

Parameters RR+SDP Algorithm 1

n k p q c AMI NMI AMI NMI

100 2 0.20 0.00 5e-6 0.10 0.11 0.17 0.19
100 2 0.25 0.05 3.5e-6 0.10 0.11 0.14 0.15
100 2 0.30 0.10 2e-6 0.09 0.10 0.26 0.27
150 3 0.20 0.00 3e-6 0.07 0.08 0.19 0.20
150 3 0.25 0.05 8e-7 0.06 0.06 0.57 0.58
150 3 0.30 0.10 7e-7 0.06 0.07 0.35 0.55

Table 1: Adjusted mutual information (AMI) and V-measure / normalized mutual information (NMI) of RR+SDP and our algorithm. Reported
numbers are median values over 100 runs on the same graph, over 10 different graphs sampled from SBM(n, k, p, q).

Evaluation. The evaluation of the comparison between RR+SDP and Algorithm 1 is shown in
Table 1. We report the median over the repetitions, over the datasets, of the adjusted (AMI) and
the normalized mutual information (NMI) between the ground truth clusters of the SBM model
and the clustering reported by the algorithm as a measure of the mutual dependence between these
two (larger values are better). From the results, we see that the noisy adjacency matrix output by
randomized response obfuscates most of the signal from the original adjacency matrix so that the
solution of the SDP has low utility. On the other hand, we see that the regularizer term in the SDP
and the noise added to the solution recovered significantly more information from the ground truth:
Using Algorithm 1 instead of randomized response can lead to (ϵ, δ)-differentially private solution
with significantly improved quality, and consistently did so in our experiments.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

W.H. and P.P. are supported in part by NSFC grant 62272431 and “the Fundamental Research Funds
for the Central Universities”.

REFERENCES

Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for k-
means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing, 49(4):
FOCS17–97, 2019.

Charles J Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors, the better. In
Proceedings of the 32nd annual ACM/IEEE design automation conference, pp. 195–200, 1995.

Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors. In
2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp. 475–
486. IEEE, 2006.

Raman Arora and Jalaj Upadhyay. On differentially private graph sparsification and applications.
Advances in neural information processing systems, 32, 2019.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

Mark Bun, Marek Elias, and Janardhan Kulkarni. Differentially private correlation clustering. In
International Conference on Machine Learning, pp. 1136–1146. PMLR, 2021.

Hongjie Chen, Vincent Cohen-Addad, Tommaso d’Orsi, Alessandro Epasto, Jacob Imola, David
Steurer, and Stefan Tiegel. Private estimation algorithms for stochastic block models and mixture
models. Advances in Neural Information Processing Systems, 36, 2023.

Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres. Testing
graph clusterability: Algorithms and lower bounds. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pp. 497–508. IEEE, 2018.

Vincent Cohen-Addad, Chenglin Fan, Silvio Lattanzi, Slobodan Mitrovic, Ashkan Norouzi-Fard,
Nikos Parotsidis, and Jakub M Tarnawski. Near-optimal correlation clustering with privacy. 35:
33702–33715, 2022.

Mihai Cucuringu, Ioannis Koutis, Sanjay Chawla, Gary Miller, and Richard Peng. Simple and scal-
able constrained clustering: a generalized spectral method. In Artificial Intelligence and Statistics,
pp. 445–454. PMLR, 2016.

Yuyang Cui, Huaming Wu, Yongting Zhang, Yonggang Gao, and Xiang Wu. A spectral clustering
algorithm based on differential privacy preservation. In International Conference on Algorithms
and Architectures for Parallel Processing, pp. 397–410. Springer, 2021.

Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In Proceedings
of the forty-seventh annual ACM symposium on Theory of Computing, pp. 723–732, 2015.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturbation. iii.
SIAM Journal on Numerical Analysis, 7(1):1–46, 1970.

Tamal K Dey, Pan Peng, Alfred Rossi, and Anastasios Sidiropoulos. Spectral concentration and
greedy k-clustering. Computational Geometry, 76:19–32, 2019.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Shayan Oveis Gharan and Luca Trevisan. Approximating the expansion profile and almost opti-
mal local graph clustering. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pp. 187–196. IEEE, 2012.

10



Published as a conference paper at ICLR 2024

Shayan Oveis Gharan and Luca Trevisan. Partitioning into expanders. In Proceedings of the twenty-
fifth annual ACM-SIAM symposium on Discrete algorithms, pp. 1256–1266. SIAM, 2014.

Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Differentially private clustering: Tight approxi-
mation ratios. Advances in Neural Information Processing Systems, 33:4040–4054, 2020.

Grzegorz Gluch, Michael Kapralov, Silvio Lattanzi, Aida Mousavifar, and Christian Sohler. Spec-
tral clustering oracles in sublinear time. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1598–1617. SIAM, 2021.
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A USEFUL TOOLS

The spectral norm of a Gaussian matrix has a high probability upper bound. The following lemma
illustrates this fact.
Lemma A.1 (Concentration of spectral norm of Gaussian matrices). Let W ∼ N (0, 1)m×n. Then
for any t, we have

Pr
(√

m−
√
n− t ≤ σmin(W ) ≤ σmax(W ) ≤

√
m+

√
n+ t

)
≥ 1− 2 exp

(
− t2

2

)
,

where σmin(·) and σmax(·) denote the minimum and the maximum singular values of a matrix,
respectively.

Let W ′ be an n-by-n symmetric matrix with independent entries sampled from N (0, σ2). Then by
the above fact, ∥W ′∥2 ≤ 3σ

√
n with probability at least 1− exp(−Ω(n)).
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When a matrix undergoes a slight perturbation under some conditions, its eigenvalues and eigenvec-
tors do not experience significant changes. Lemma A.2 and Lemma A.3 illustrate this.
Lemma A.2 (Weyl’s inequality). Let A and B be symmetric matrices. Let R = A − B. Let
α1 ≥ · · · ≥ αn be the eigenvalues of A. Let β1 ≥ · · · ≥ βn be the eigenvalues of B. Then for each
i ∈ [n],

|αi − βi| ≤ ∥R∥2 .
Lemma A.3 (Davis-Kahan sin(θ)-Theorem (Davis & Kahan, 1970)). Let H = E0A0E

⊤
0 +

E1A1E
⊤
1 and H̃ = F0Λ0F

⊤
0 + F1Λ1F

⊤
1 be symmetric real-valued matrices with E0,E1 and

F0,F1 orthogonal. If the eigenvalues of A0 are contained in an interval (a, b), and the eigenvalues
of Λ1 are excluded from the interval (a− η, b+ η)for some η > 0, then for any unitarily invariant
norm ∥.∥

∥F⊤
1 E0∥ ≤ ∥F⊤

1 (H̃ −H)E0∥
η

.

B DEFERRED PROOFS FROM SECTION 2

In this section, we give a sketch of the proof of Lemma 2.4 restarted below.
Lemma B.1 (Peng et al. (2015)). Let G = (V,E) be a graph and k ∈ N. Let F : V → Rk be the
embedding defined by F (u) = 1√

dG(u)
·(f1(u), · · · ,fk(u))

⊤, where {fi}ki=1 is a set of orthogonal

bases in Rn. Let {Si}ki=1 be a k-partition of G, and {ḡi}ki=1 be the normalized indicator vectors

of the clusters {Si}ki=1, where ḡi(u) =
√

dG(u)
volG(Si)

if u ∈ Si, and ḡi(u) = 0 otherwise. Suppose

there is a threshold θ ≤ 1
5k , such that for each i ∈ [k], there exists a linear combination of the

eigenvectors ḡ1, · · · , ḡk with coefficients β(i)
j : ĝi = β

(i)
1 ḡ1 + · · · + β

(i)
k ḡk, and for each i ∈ [k],

∥fi − ĝi∥2 ≤ θ.

Let KMEANS be any algorithm for the k-means problem in Rk with approximation ratio APT. Let
{Ai}ki=1 be a k-partition obtained by invoking KMEANS on the input set {F (u)}u∈V . Then, there
exists a permutation σ on {1, . . . , k} such that volG(Ai△Sσ(i)) = O(APT · k2 · θ2)volG(Sσ(i))
holds for every i ∈ [k].

Proof sketch. The following five properties given in Lemma B.2 are five key components proven in
Peng et al. (2015). They start by demonstrating the first property based on the existing conditions.
Then, they provide k centers for spectral embeddings and sequentially prove that all embedded
points concentrate around their corresponding centers, the magnitudes of center vectors, and the
distances. Finally, based on these properties, they establish the fifth one. With this fifth property, we
can directly employ a proof by contradiction to derive our conclusion.

Lemma B.2. Consider the setting in Lemma 2.4, let ζ ≜ 1
10

√
k

, p(i) ≜ 1√
vol(Si)

(
β
(1)
i , . . . , β

(k)
i

)⊤
for i ∈ [k], and COST(C1, · · · , Ck) ≜ minc1,··· ,ck∈Rk

∑k
i=1

∑
u∈Ci

d(u) ∥F (u)− ci∥22 for the
partition C1, · · · , Ck. The following statements hold:

1. For any ℓ ̸= j, there exists i ∈ [k] such that∣∣∣β(i)
ℓ − β

(i)
j

∣∣∣ ≥ ζ ≜
1

10
√
k

2. All embedded points are concentrated around p(i):
k∑

i=1

∑
u∈Si

d(u)
∥∥∥F (u)− p(i)

∥∥∥2
2
≤ kθ2.

3. For every i ∈ [k] that

99

100vol(Si)
≤
∥∥∥p(i)

∥∥∥2
2
≤ 101

100vol(Si)
.
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4. For every i ̸= j, i ∈ [k], it holds that∥∥∥p(i) − p(j)
∥∥∥2
2
≥ ζ2

10min {vol(Si), vol(Sj)}
,

5. Suppose that, for every permutations σ on {1, . . . , k}, there exists i such that
vol
(
Ai△Sσ(i)

)
≥ 2ϵvol

(
Sσ(i)

)
for ϵ ≥ 105·k2θ2, then COST(A1, . . . , Ak) ≥ 10−4·ϵ/k.

C DEFERRED PROOFS FROM SECTION 3

Lemma C.1 (See e.g. (Chen et al., 2023)). Let f : Rm → R be a convex function. Let K ⊆ Rm

be a convex set. Then y∗ ∈ K is a minimizer of f over K if and only if there exists a subgradient
g ∈ ∂f(y∗) such that

⟨y − y∗, g⟩ ≥ 0 ∀y ∈ K.

Since the above lemma is stated as a property of functions of vectors, in the following, we will
treat a matrix as its respective vectorization. Specifically, the vectorization of a m × n matrix A
is the mn × 1 column vector obtained by stacking the columns of the matrix A on top of one
another. The inner product of matrices A and B, as well as the ℓ2 norm of matrix A, are defined
as ⟨A,B⟩ :=

∑
i,j AijBij and ∥A∥2,∗ :=

√∑
i,j A

2
ij , which are the same as the respective inner

product and ℓ2 norm of their vectorizations. Notice that ∥A∥2,∗ = ∥A∥F , which is the Frobenius
norm of the matrix A.

Definition C.2 (Generalized strongly convex function). Let K ⊆ Rm×n be a convex set, f : K → R
be a function, and D1,D2 be diagonal matrices. The function f is called (κ,D1,D2)-strongly
convex if the following inequality holds for all X,X′ ∈ K:

f(X′) ≥ f(X) + ⟨X′ −X,∇f(X)⟩+ κ

2
∥D1X

′D2 −D1XD2∥
2
2,∗

Lemma C.3 (Pythagorean theorem from strong convexity). Let K ⊆ Rm×n be a convex set, f :
K → R be a function. Suppose f is (κ,D1,D2)-strongly convex for some diagonal matrices D1

and D2. Let X∗ ∈ K be a minimizer of f . Then for any X ∈ K, one has

∥D1XD2 −D1X
∗D2∥22,∗ ≤ 2

κ
(f(X)− f(X∗)).

Proof. By the definition of (κ,D1,D2)-strongly convexity, for any subgradient g ∈ ∂f(X∗),

f(X) ≥ f(X∗) + ⟨X −X∗, g⟩+ κ

2
∥D1XD2 −D1X

∗D2∥22,∗ .

By Lemma C.1, there exists a subgradient g ∈ ∂f(X∗) such that ⟨X −X∗, g⟩ ≥ 0. Then the
result follows.

Proof of Lemma 3.1. The proof follows from Lemma C.3 and the proof of Lemma 4.1 in (Chen
et al., 2023).

D LOWER BOUND

In this section, we show that approximation algorithms for recovering the clusters of well-clustered,
sparse graphs cannot satisfy pure ϵ-DP for small error. Given a cluster membership vector u ∈
{−1, 1}n of a graph G = (V,E) that assigns each vertex to one of two clusters (labeled −1 and 1),
and given a ground truth vector uG ∈ {−1, 1}n, we define the misclassification rate err(u,uG) =
errG(u) = (n−min(⟨u,uG⟩, ⟨−u,uG⟩) /(2n). In other words, the misclassification rate is the
minimum number of assignment changes that are required to turn uG into one of u and −u. It is
known that err is a semimetric.

Lemma D.1 (Lemma 5.25, Chen et al. (2023)). For any u,v ∈ {−1, 1}n, err is a semimetric.
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Theorem 3. For ϕin, ϕout ∈ [0, 1], let G be a (2, ϕin, ϕout)-clusterable graph, and let η < 1/2. Then,
any approximate algorithm with failure probability η and misclassification rate ζ cannot satisfy
ϵ-DP for ϵ < 2 ln(1/(9eζ)/d on d-regular graphs.

Proof. We follow a packing argument by Chen et al. (2023). Consider the set S = {p ∈
{−1, 1}n | 1⊤p = 0} equipped with the semimetric err. Let G be a balanced, d-regular,
(2, ϕin, ϕout)-clusterable graph with cluster membership vector xG ∈ S. Let B = B(xG, 8ζ).
Let P = {xG,x1, . . . ,xp} be a maximal 2ζ-packing of B. For every xi ∈ P , there exists a
(2, ϕin, ϕout)-clusterable graph with cluster membership vector xi and errG(xi) ≤ 6ζdn: Since xi

is balanced, the number of vertices j such that (xi)j = −1 and (xG)j = 1 is equal to the number
of vertices j′ such that (xi)j′ = 1 and (xG)j′ = −1. Consider a perfect matching between these
two sets of vertices and, for each matched pair, swap their neighbors in G to obtain Hxi

.

By the maximality of P , we have that B(xG, 6ζ) \ ∪i(B(xi, 4ζ)) = ∅. Otherwise, we could extend
P by xp+1, where xp+1 is an element of the non-empty difference. This would contradict the
maximality of P . Therefore, it follows that

p∑
i=1

|B(xi, 4ζ)| ≥ |B(xG, 6ζ)| ⇒ p ≥ |B(xG, 6ζ)|
|B(xG, 4ζ)|

≥
(
n/2
3ζn

)2(
n/2
2ζn

)2 ≥
( 1
6ζ )

6ζn

( e
4ζ )

4ζn
≥
(

2

18eζ

)2ζn

.

By group privacy and an averaging argument, there exists i ∈ [p] so that

Pr[A(Hxi
) ⊆ B(xi, ζ)] ≤ exp(ϵζnd) Pr[A(GxG

) ⊆ B(xi, ζ)] ≤ exp(ϵζnd)
η

p
.

Now, assume that there is an ζ-approximate, ϵ-DP algorithm with failure probability η. By assump-
tion, 1− η ≤ Pr[A(Hxi

) ⊆ B(xi, ζ)]. Rearranging, we obtain

2 ln
(

1
9eζ

)
d

≤
2ζn ln

(
2

18eζ

)
ζdn

≤
ln(1− η) + ln

(
( 2
18eζ )

2ζn
)
− ln(η)

ζdn
≤ ϵ.

E DETAILS ON EXPERIMENTS

For reference and reproducibility, we provide some observations on the running times and scalability.
The experiments were run on a single Google Cloud n2-standard-128 instance. The CPU time
(single core running time) for one run was about 2 minutes. The number of runs we performed is
100 per input graph, times 10 input graphs, times 6 SBM parameterizations, times 2 algorithms, i.e.,
12,000 runs. The running times roughly scale as follow as a function of the input size: for n = 400
about 12 minutes, for n = 600 about 195 minutes, for n = 800 about 790 minutes.
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