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Abstract

Hopfield networks are widely used in neuroscience as simplified theoretical models
of biological associative memory. The original Hopfield networks store memories
by encoding patterns of binary associations, which result in a synaptic learning
mechanism known as Hebbian learning rule. Modern Hopfield networks can
achieve exponential capacity scaling by using highly non-linear energy functions.
However, the energy function of these newer models cannot be straightforwardly
compressed into binary synaptic couplings and it does not directly provide new
synaptic learning rules. In this work we show that generative diffusion models can
be interpreted as energy-based models and that, when trained on discrete patterns,
their energy function is equivalent to that of modern Hopfield networks. This
equivalence allows us to interpret the supervised training of diffusion models as
a synaptic learning process that encodes the associative dynamics of a modern
Hopfield network in the weight structure of a deep neural network. Accordingly, in
our experiments we show that the storage capacity of a continuous modern Hopfield
network is identical to the capacity of a diffusion model. Our results establish
a strong link between generative modeling and the theoretical neuroscience of
memory, which provide a powerful computational foundation for the reconstructive
theory of memory, where creative generation and memory recall can be seen as
parts of a unified continuum.

1 Introduction

In psychology and neuroscience, associative memory is defined as the ability to recall associations
between items such as, for example, different sensory patterns (Squire et al.| |1993;|Mayes et al., [2007).
An episodic memory, such as the memory of your first day of primary school, is often conceptualized
as a constellation of associations between the desperate sensory and conceptual elements that were
"activated" when the memory was first formed (Tulving} |2002). The recall of a memory can then be
seen as a form of pattern completion, where the initial (possibly random) activation of a few of the
elements (e.g. the smell of a pencil) triggers the re-activation of the other associated elements, leading
to the re-activations of the elements forming the original memory (Mace and Clevinger, [2019). In the
human brain, associations between two items can be represented by synaptic connections between
neurons. The simplest way to learn these binary associations is to strengthen the synaptic coupling
between two neurons every time they are simultaneously active. This is known as Hebbian learning
and it is still central to our understanding of synaptic plasticity in biological neural networks (Hebb),
2005}, [Sejnowski and Tesaurol [1989). Hopfield networks have been developed to formalize this form
of associative memory in a simplified distributed artificial neural system (Hopfield, 1982). We will
denote the activity of the D memory units with a vector x(t) = (z1(¢), ...,z p(t)). In the original
works, these neural activities where assumed to be binary variables (z;(t) € {—1, 1}), respectively
denoting states of rest and states of firing. The dynamic of a Hopfield network is regulated by the
update equation: z;(¢+dt) = [sign (W)]; , where IV is a real-valued symmetric matrix of synaptic
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couplings (weights) with null diagonal (W}; = 0, V). It can be show that this update rule decreases
monotonically the following energy function: u(x) = =’ Wa , and it will therefore converge to
one of its local minima. These local minima can then be used to encode memories, which can be
retrieved through the Hopfield dynamics if initialized in an incomplete or perturbed version of the
memory state. The simplest way to encode memories in the coupling matrix is to use the Hebb’s rule
of association, which in its simplest form is W, = S~ _, yj(.")y,(cn) where {y™M) ... y", ... y"}
is a set of NV "experienced" patterns of neural activity. A pattern is considered to be successfully
stored if it is a stable fixed-point of the discrete dynamics. If the patterns are random, it can be
proven that the storage capacity of Hopfield nets scales as D /4 log, D (Abu-Mostafa and Jacques,
1985)). The storage capacity of Hopfield-like networks can be increased by including non-linear
mappings F'(+) in its energy function (Krotov, [2023; Krotov and Hopfield, [2016; |Demircigil et al.,
2017). The general form for the energy of a (discrete) modern Hopfield network can be written

asu(xz) =h (ZN F (wTy")) , where h(-) is an arbitrary differentiable and strictly monotonic

n=1

function, which does not affect the location and stability of the local minima. This expression reduces
to the standard Hopfield energy for F/(x) = 22 and h(x) = x. However, it is possible to achieve
much higher theoretical capacity by using more complex functions. For example, a modern Hopfield
network with F'(z) = e can store up to 2P/2 pinary patterns (Demircigil et al., [2017). These
associative networks have been recently generalized to have continuous dynamics. If the activation
vector is continuous, the energy function needs to include a regularization term to enforce stability.
For example, (Ramsauer et al.| 2021)) proposed the use of an energy function of the form

N
u(z,f) = B log (Z eﬁm”"> +lz)2/2 (1)
n=1

where [ is a positive-valued parameter. We omitted the terms that are additive constant in « since they
do not change the fixed-points and the resulting dynamics. [Krotov and Hopfield (2021) showed that
this dynamics can be expressed in terms of biologically plausible binary association between latent
neurons, in a way that is similar to the architecture of a restricted Boltzmann machine |[Fischer and
Igel| (2012). Unfortunately, in these models, the numerical values of the patterns directly determine
the synaptic straights between latent and observable neurons. This implies that the patterns need
to be stored in memory instead of being converted into distributed synaptic patterns. In this sense,
modern Hopfield network offer a model of memory recall but do not provide insight into learning
and memory storage in the brain.

Generative diffusion models are defined in terms of a noise-injection process that gradually turns
the training data into pure noise (Sohl-Dickstein et al.|[2015;S. et al.| 2021} |Song et al.,[2021)). To
be consistent with the notation used in continuous Hopfield model, we deviate from the diffusion
modeling literature by writing this process in reversed time, with the noiseless data corresponding to
a final time 7. In this notation, the diffusive dynamics being determined by the following backward
recursive equation: x(t — dt) = x(t) + ov/dte; , where o determines the standard deviation of the
noise injected at time ¢ and €, follows a standard normal distribution. This is known as the variance
exploding equation in the generative diffusion modeling literature (S. et al.,[2021)). For d¢ — 0, it
possible to show that, given a final density pr(x), the noise-injection process can be inverted by the
forward equation

x(t+dt) = (t) + 0° Vg log pi (x(t))dt + oV/dte, . @)

where pr(x(t)) is the marginal distribution of the noise-injection process at time ¢. This process
can then be used for generative modeling if we choose pr(z) to be given by a target data source
¢(y). This allow us to define a stochastic process that turns an initial noise state into synthetic data.
Since the noise-injection process is a simple Brownian motion, we can write down the conditional
density exactly as p(z(t) | z(to)) = N (x(t); x(to), (t — to)o?), this allows us to write the marginal
lz—yll3

\/ﬁ{ 2T—1)0? . This formula involves an average over
the distribution of the data, which is usually not available in a generative modeling task. However,
assuming that we can sample from a dataset y(», ... yM )}, we can train a feedforward neural
network s(x(t), t; W), parameterized by the synaptic weights W, to approximate the score function
Ve logpi(x(t)). The network can be trained by minimizing a denoising loss (Song et al.,|2021).

density as follows p;(z) = E, [
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Figure 1: Visualization of the dynamics of a) a model trained as a generative model (semantic
memory) and b) a model trained to retain an episodic memory

2 The equivalence between diffusion models and modern Hopfield networks

We can now show that, when used for storing discrete patterns, the dynamics of generative diffusion

models minimizes the energy function of continuous modern Hopfield networks. The first step is to

formulate the deterministic dynamics of the model as the negative gradient of an energy function:

x(t +dt) = x(t) — Vgu(zx,t)dt + ov/dte; . As noted in (Raya and Ambrogioni, [2023), the energy
_ ==yl

function is u(x, t) = —o?log pi(x) = —o% log Ey {e 2(T=04? | 4 ¢, where ¢ does not depend on x

and can therefore be omitted without affecting the dynamics. In order to establish a link between the
diffusion model and Hopfield networks, we can now assume that the data source is a finite collection
of IV patterns that we wish to store as memories. This lead to the energy

1 N l=—wml2
u(x,t) = —o?log Ni e 2T-vs2 | | 3)
n=1

If we now assume that the patterns are normalized (||y||§ = 1), by expanding the square in the
exponent and omitting constant additive terms, we obtain

N " 2
u(z,t)/0® = —log Z eﬂfpjﬁ’2 + Ntz . “4)
’ — (T —t)2

Finally, if we define 3(t)~! = (T — t)o? and we multiply both sides by 3(¢) !, we obtain

N 2

5(0) ula, 1)/o” = ~3(t) " log (ZJW“) 12l )

n=1

which for a fixed ¢ is identical to the continuous Hopfield network energy in Eq.[I] and it therefore
has the same fixed-point structure at the limit 3 — oo. Note that the scaling factor 3(t)/o? does
not change the fixed-points and their stability as it is a positive constant of . The main difference
between the two approaches is that, in diffusion models, 3(¢) tend to this divergent limit as part of
the denoising dynamics, while the denoising iterations of modern Hopfield networks keep £ fixed.
However, as shown in our experiments, this does not result in meaningful differences as far as (3 is
large enough. While we derived this result assumes normalized patterns, this is not actually necessary

since, for 3(t) — oo, we have that 3(t) tu(x,t)/0® ~ —3 (mTy* + [ly*[l5 + ||ac|\§) where y*

is the pattern that maximizes the quadratic form =7y + Hy||§ As shown by this expression, at
this limit the norm y* only adds an irrelevant constant shift in the energy. The use of diffusion
models as a framework for reconstructive memory is discussed in Supp[A] while the connections with
neuroscience are discussed in Supp[B|
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Figure 2: 1) Median error of exact diffusion model as function of the dimensionality. b) Capacity of
diffusion models and Hopfield networks in log scale. The shaded area denotes the estimated 95%
intervals.

3 Experiments

Denoising task # Patterns  Diffusion Model Classic Hopfield True patterns

10 0.995 0.732 0.893

20 0.991 0.704 0.822

30 0.991 0.715 0.81
Completion task

10 0.996 0.741 0.897

20 0.991 0.707 0.838

30 0.989 0.700 0.795

Table 1: Pearson correlation between output of modern Hopfield network and other models (plus
ground truth pattern) in both denoising and completion experiments.

We tested how the storage capacity of exact diffusion models, trained diffusion models and Hopfield
networks scales as a function of the dimensionality of the input patterns. As first analysis we evaluated
the Pearson correlation coefficient between the output of modern Hopfield iteration and a) a diffusion
model, b) a classical Hopfield network and c) the ground truth pattern. For a given dimensionality
d, n binary patterns y were randomly generated and subsequently corrupted with noise using the
formula g = 6y + /1 — 03¢, where ¢ is a standard Gaussian noise vector. We used a noise level
of § = 0.68. We kept the dimensionality equal to 10 and we evaluated the correlation for 10, 20
and 30 stored patterns. The simulation was repeated 100 times in order to reliably compute the
correlations. The modern Hopfield iterations were implemented as specified in (Ramsauer et al.|
2021)), with 8 = 5 and 150 updates. In order to avoid to have to re-train a neural model hundreds of
times, we used the exact score formula (see SuppC| We used a variance-preserving model as they are
numerically more stable and more widely used Song et al.| (2021}). Table|I| shows that the estimated
Pearson correlations. As expected from our analysis, the correlation between the modern Hopfield
iterations and the diffusion model is extremely close to one. We also performed the same experiments
in a completion task, where the patterns were partially zero-masked instead of being corrupted by
white noise. The binary masks were sampled randomly from a Bernoulli distribution with p = 0.5.
Again, the output of the exact diffusion models correlates almost perfectly with the output of the
modern Hopfield iterations. Next, we estimated the error and capacity of the models. The corrupted
patterns were fed to the algorithms and the results were compared with the original pattern using
the Hamming error. The patterns were considered to be correctly recovered if the error was smaller
than 3%. Fig.[2h shows the error of an exact diffusion model for different numbers of patterns as
function of the dimensionality. For a given noise level and threshold, the capacity was defined as the
maximum number of patterns that can on average be recovered. Fig. Zb shows the estimated capacity
of the exact diffusion model (blue), modern Hopfield network (green), classical Hopfield network
(red) and trained diffusion model (black dots). The details of the experiments are given in Supp. [C}
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A Generative modeling and the reconstructive theory of memory

In psychology and neuroscience, an semantic memory system learns the general structure of the
sensory input and discards the idiosyncratic details of individual events. This corresponds to an
energy function where the sum over the patters is replaced by a distribution ¢(y) over all possible
patterns:

i (@,1) = ~0*log. [ ¢ PO @0120ey)ay ©)

In practice, the distribution ¢(y) is often defined on a manifold or some other lower dimensional
structure, leading to a dynamics visualized in Fig[T]a. This is exactly the kind of behavior we expect
from a generative model, initial perturbed states are gradually pushed towards a point on the manifold
of possible patterns. Conversely, the attractor dynamics of Hopfield networks and of the equivalent
diffusion models is visualized in Fig.[Ib, and formalize the concept of a pure episodic memory.
However, modern research on human memory paints a different picture. Real-life episodic memories
are thought to be largely reconstructive, meaning that most of the sensory details are re-created during
recall based on contextual information (Roediger and McDermott, [1995; Hemmer and Steyvers),
2009). For example, the memory of a car crash may evoke the memory of broken glass, although the
windshield was not actually broken during the real event. This suggests that human episodic memory
has a stored lower dimensional "representational core" that does not fully constrains the dynamics of
the system. This can be formalized using a mixture of discrete and continuous distributions:

N
Ure(y) = log (Z B Fn@)—€"13 /9 4 / eﬁ(t)lfn(m)y/2lz¢(y)dy> 7 )

where f, : RP? — R"Y with W < D is a lower dimensional encoding of the state and £ € RW
is a stored lower-dimensional pattern. Since W < D, this energy will only constrain W degrees of
freedom to converge to the pattern while the other degrees of freedom are left free to evolve under
the dynamics determined by the corpus of semantic memory.

A.1 Episodic and semantic training of diffusion models

In a generative diffusion model, the score network is trained by minimizing a denoising autoencoder
loss:

LOW) = Byt [Eagopy (@), y) — s(@ (), W) ] ®)
where e(x(t),y) = x(t) — y is the total noise added to the pattern y up to time ¢.

Minimizing this loss results in a generative model (or equivalently to semantic memory) if y is
sampled from a continuous distribution (possibly defined on a lower-dimensional manifold), while
it results in Hopfield-like episodic memory encoding when each pattern y is (re-)sampled with
finite probability. As stated above, both regimes can be trained simultaneously if y is sampled from



a mixture of continuous and discrete distributions. Finally, he model can be trained on episodic
"representational cores" such as inif y ~ p(& | &), with £ being sampled from a discrete distribution.
In the Discussion section, we briefly outline how this form of training could be implemented in the
brain.

B Diffusion models and the brain

In this paper, we demonstrated that a popular class of modern Hopfield networks with exponential
non-linearities is mathematically equivalent to variance-exploding diffusion models at the limit of
B — oo. In our experiments, we showed that this equivalence holds almost exactly for a finite 3
value and for the more stable variance-preserving models, both with exact and trained score. The
equivalence depends on the fact that the diffusion models are trained on a finite number of discrete
patterns, and in fact the diffusion models can generalize the modern Hopfield energy function to
setting where both episodic memory and semantic memory (i.e. generative manifolds) are jointly
encoded by the dynamics of the same network (see Eq[7). From the point of view of theoretical
neuroscience, this may be used to model the different forms of long-term memory as a result of the
same learning mechanism, in a single distributed neural system.

While generative diffusion models offer an attractive paradigm for modeling memory, imagery
and even perception in the brain, more work needs to be done in order for its components to
be implemented in a biologically plausible way. In particular, it is unlikely that biological neural
networks implement pure noise-injection dynamics. However, the mathematics of generative diffusion
models can be written in term of any stochastic differential equation (S. et al.| 2021, which can be
used to implement more plausible transformation such as, for example, the feedforward perceptual
feature as implemented in the hierarchy of sensory cortical areas (Gii¢li and van Gerven, 2015]).
More fundamentally, it is unclear how the reverse and forward dynamics can be simultaneously
implemented in the brain networks.

The denoising loss given by Eq.[8]is somewhat similar to the self-prediction errors used in predictive
coding models (Rao and Ballard, [1999; Spratling, |2017; Millidge et al.,[2021). This opens the door
for potentially fruitful connections with existing predictive models of memory |Stachenfeld et al.
(2017); Barron et al.| (2020). Particularly interesting is the recent use of generative predictive coding
models for associative memory storage Salvatori et al.|(2021), which is also based on a generative
model and has some similarities with the approach discussed here.

The main biological issue with episodic memory as conceptualized in this paper is that it seems
to require the re-sampling of the same events, while in the real world each event can only happen
once. This can be potentially implemented with some form of bootstrap re-sampling, which might
correspond to the replays observed in the hippocampus |[Buhry et al.|(2011).

C Details of the experiments

Binary patterns were generated independently by applying the sign function to standard Gaussian

vectors. To test recovery, we corrupted the patterns using the formula § = 6y + /1 — 6%€, where €
is a standard Gaussian vector. In all the experiments, we used 6§ = 0.68.

We compered the storage and recovery performance of several models. Modern Hopfield network
were implemented with the iterative update given in (Ramsauer et al.l 2021). We set 3 to be equal to
5 and we applied 150 iterations to each noisy pattern.

For reasons of stability, we used variance-preserving diffusion models defined by the following
noise-injection SDE:

dz; = —yxy + ydWy 9
where W, is a standard Wiener process. This is slighly different from the variance-exploding models
discussed in the main text, but it delivers nealy identical results. The diffusion models were used as
denoiser by applying the deterministic ODE dynamics given in (S. et al.,|2021):

dx 1
5 = 3 (@t Valogp(a(t) | (10)
which exactly reproduces the marginal densities of the stochastic dynamics. We integrated the

dynamics using 300 stepos of Euler integration. The initial time was set to match the match level



using the following formula: ¢4, = —~712 log(#), with v = 0.8. This formula implies the use of a
constant noise scheduling with variance equal to 7.

In exact score-based diffusion model, we used the exact formula for the score given the marginal
density:
Viogpy(z) = (& — Yhy(2))/(1 - 07) , (1n

where Y is a matrix having the patterns y’ as columns. The weight vector h, is obtained using the
softmax function:

hy,j(x) = softmax ( =l - yk|f§/(2(1 —07),... )j , (12)

which depends on the correlation between the state  and each of the patterns. This is very similar to
the softmax formula given in the update of modern Hopfield networks, which is unsurprising given
the equivalence of their energy functions.

Learned generative diffusion models used a three layers fully connected architecture with reLu
non-linearities, d input and output units and 80d hidden units in each layer. The time index was
embedded by converting it to ; = exp(—0.5vt) and then by concatenating this value to each layer.
They were trained using the optimizer Adam with base rate 0.001 and fixed batches containing all the
generated patterns.

For the Hopfield and exact models, the capacity was estimated by evaluating the average reconstruc-
tion error in a grid of dimensionalities and number of patters. Given each combination, the error was
computed 140 using randomly sampled patterns. The capacity was then estimated by finding the
maximum number of patterns such that, for a given dimensionality, the average Hamming error did
not exceed a threshold value of 3%. Error intervals were obtained by bootstrap re-sampling of the
error. In order to increase the snd, we smoother both the mean capacity and the bounds by convolving
them with a Gaussian kernel with o = 1.5.

This estimation method would have been too expensive for evaluating the capacity of learned models,
since the network needs to be fully re-trained for any given set of patters.

Instead, for a given dimensionality d, we trained the network with n,4 patterns, where ng4 is the
estimated capacity of the exact score model plus 4. After training we evaluated the error on 30
batches of unseen noise corrupted versions of the training patterns. If the error was below threshold,
we returned ng as the estimated capacity, otherwise, we reduced n4 by one and repeated the treaning
until the error was below threshold. This procedure was repeated 8 times for d equal to 10, 12, 14
and 16.
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