

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMIZATION-BASED TRAJECTORY DEVIATION AT- TACKS IN AGENTIC LLM SYSTEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Agentic large language model (LLM) systems are increasingly deployed in critical areas such as healthcare, finance, transportation, and defense, where decisions emerge from iterative cycles of action, observation, and reflection rather than single prompts. We show that this loop introduces a unique and underexplored vulnerability. Specifically, we present trajectory deviation attacks, which manipulate intermediate observations to redirect an agent’s reasoning process without altering its initial prompt or model weights. We formalize two attack types: (i) incorrect-outcome attacks, which guide agents toward plausible but wrong conclusions, and (ii) targeted attacks, where adversaries deterministically steer reasoning toward a chosen outcome. We frame trajectory corruption as an optimization problem, leveraging adversarial “attack agents” with logit access to inject semantically coherent yet misleading observations. By minimizing perplexity and entropy, our attacks evade common anomaly detection methods while maximizing reasoning misalignment. Through evaluations on black-box victim agents powered by state-of-the-art proprietary models across domains such as medical decision-making, financial advising, and travel planning, our results highlight that securing agentic LLM systems requires integrity guarantees across the full reasoning trajectory.

1 INTRODUCTION

Large language models (LLMs) have become foundational components in intelligent systems. Agentic LLM systems have demonstrated strong capabilities across various critical domains, including autonomous driving and operations (Hou et al., 2025; Khoe et al., 2025; Mazur et al., 2025; Khoe et al., 2024), national security decision support (Caballero & Jenkins, 2024), finance (Ding et al., 2024), healthcare (Abbasian et al., 2024; Shi et al., 2024), code generation (Wu & Fard, 2025), and web tasks (Zhang et al., 2025). In these agentic systems, LLMs serve as central reasoning engines that can interpret goals, create and modify plans, make decisions, and interact with external environments through tools and APIs. Recent advancements have formalized structured reasoning paradigms like ReAct (Yao et al., 2023) and Plan-and-Execute, in which LLM agents plan, act, reflect, and revise their strategies based on tool outputs and observations. These structured approaches have demonstrated promise in enabling multi-step decision-making, long-horizon planning, and robust action execution in complex environments. This trend is further amplified in multi-agent systems, where multiple LLM agents collaborate or coordinate by exchanging messages, delegating tasks, or voting on solutions. Multi-agent configurations introduce additional layers of complexity, as each agent operates on partially observable information, and misalignment in one agent’s reasoning process can propagate throughout the system.

However, flexibility and external reliance of agentic LLM systems introduce a new class of vulnerabilities. Unlike traditional prompt injection attacks that target the static prompt of an LLM, trajectory deviation attacks exploit the LLM’s multi-step interaction loop by injecting malicious information at a critical time in its action, reflection trajectory. For instance, if an agent receives adversarially manipulated tool output, an observation, e.g., a fabricated medical fact, falsified stock price, or misleading search result, it may produce semantically coherent but ultimately harmful outcomes.

In this paper, we study trajectory deviation attacks, a novel threat model for agentic LLM systems. In contrast to prompt injection, which corrupts initial instructions, trajectory deviation targets the agent’s intermediate reasoning process. Specifically, we focus on two types of attacks: (1) In the

054 **incorrect outcome trajectory manipulation attack**, the manipulated reasoning path leads to a se-
 055 mantically plausible but ultimately incorrect output. (2) In the **targeted trajectory manipulation**
 056 **attack**, the attacker precisely steers the agent toward a predefined output or policy goal. These at-
 057 tacks exploit the LLM’s reliance on external tools, APIs, and web content as part of its dynamic
 058 action-observation-reflection loop. When external responses are under adversarial control, they can
 059 subtly poison the agent’s internal reflection states, leading to incorrect, harmful, or policy-violating
 060 outputs, even if the initial prompt and final answer appear benign. We present a systematic frame-
 061 work to study such attacks by constructing controlled environments where we manipulate specific
 062 steps in the agent’s trajectory and observe their cascading effects. We also explore preliminary de-
 063 fenses such as perplexity-based anomaly detection and demonstrate that while they provide partial
 064 mitigation, they are insufficient to prevent reflection-stage corruption fully.

065 In summary, our key contributions are: (1) we define and formalize trajectory deviation attacks
 066 that target the action-reflection loop in agentic LLMs. (2) We develop a threat model that includes
 067 deviation of external tool outputs and environmental feedback as adversarial entry points. (3) We
 068 present empirical studies across several domains (medical, financial, investment, travel) showing the
 069 feasibility and impact of these attacks.

071 2 PROBLEM FORMULATION

072 We briefly describe the setting of agentic LLM systems in this paper (Appendix A provides more
 073 details). We then introduce the trajectory deviation threat model, based on the attacker’s objectives,
 074 knowledge, and capabilities within the dynamic interaction paradigm.

078 2.1 AGENTIC LLM SYSTEMS

079 Agentic LLM systems operate in a loop of action, observation, and reflection. Given
 080 a user-specified task τ , an agent powered by an LLM generates an initial plan π_0
 081 based on the goal and initiates a sequence of tool invocations or environment interactions:
 082 $\pi_0 \rightarrow a_1 \rightarrow o_1 \rightarrow r_1 \rightarrow \dots \rightarrow \pi_{t-1} \rightarrow a_t \rightarrow o_t \rightarrow r_t$

083 Here, a_t represents an action at time step t , o_t is the observed outcome (often from an external tool
 084 or API), and r_t is the intermediate reflection made by the agent based on o_t . The agent may refine
 085 its plan π_t using these reflections until the final output y is produced. This process can be formally
 086 expressed as a reasoning trajectory function: $y = F(\tau, \pi_0, \{(a_t, o_t, r_t)\}_{t=1}^T)$, where F denotes the
 087 iterative process of planning, action execution, observation, and reflection undertaken by the agent
 088 to derive the final output.

091 2.2 THREAT MODEL: TRAJECTORY MANIPULATION

093 2.2.1 ATTACKER’S GOAL

095 The attacker’s primary goal is to manipulate the agent’s reasoning trajectory by controlling one or
 096 more observed outcomes o_t , thereby influencing intermediate reflections r_t and subsequent actions.
 097 We categorize these attacks based on the attacker’s specific intent:

100 **Incorrect Outcome Trajectory Manipulation (IOTM)** In an IOTM attack, the attacker seeks to
 101 produce a semantically plausible yet incorrect final output. Given the correct output y^* , the attacker
 102 aims to induce a different output \hat{y} such that $\hat{y} \neq y^*$, subject to plausibility constraint $P(\hat{y}) \geq \alpha$,
 103 where $P(\hat{y})$ measures semantic plausibility and α is a predefined threshold indicating minimal plau-
 104 sibility to evade detection.

106 **Targeted Trajectory Manipulation (TTM)** The attacker explicitly aims to induce a particular
 107 predetermined outcome y_{target} . Formally, the attacker’s optimization objective is $\min(d(\hat{y}, y_{\text{target}}))$,
 where d is a semantic distance metric from the predetermined outcome.

108 2.2.2 ATTACKER'S KNOWLEDGE
109

110 The attacker is assumed to have partial knowledge of the agentic system, which includes: (i) the
111 task specification τ . (ii) The set of available external tools or APIs, along with their interfaces.
112 (iii) general understanding of the agent's iterative action-observation-reflection loop architecture.
113 Moreover, the attacker does not control or directly observe the initial plan π_0 , the internal planning
114 mechanism or logic used by the agent, or the exact internal reflection and reasoning states.

115 2.2.3 ATTACKER'S CAPABILITIES
116

117 **Observation-Level Control** The attacker can modify the observed outcomes o_t at selected inter-
118 action time points t . Formally, the attacker applies a transformation M to yield manipulated out-
119 comes, $\tilde{o}_t = M(o_t)$, for selected $t \in T_{\text{adv}}$, where $T_{\text{adv}} \subseteq \{1, \dots, T\}$ denotes the set of time steps
120 susceptible to attack. An observed outcome consists of one or more action-observation-reflection
121 tuples, $\{(a_{t+1}, o_{t+1}, r_{t+1}), \dots, (a_{t+n}, o_{t+n}, r_{t+n})\}$, where n is a total number of injected tuples.
122

123 **Semantic Plausibility** The attacker's manipulated observations \tilde{o}_t must remain semantically co-
124 herent to evade immediate detection by basic validation mechanisms or human reviewers. Thus, the
125 attacker must ensure $P(\tilde{o}_t) \geq \beta$, where β represents the minimal plausibility threshold required for
126 avoiding detection by the agent or external validators.

127 **Limited Intervention** The attacker is constrained by practical limitations and can only manipulate
128 a limited number of observations.
129

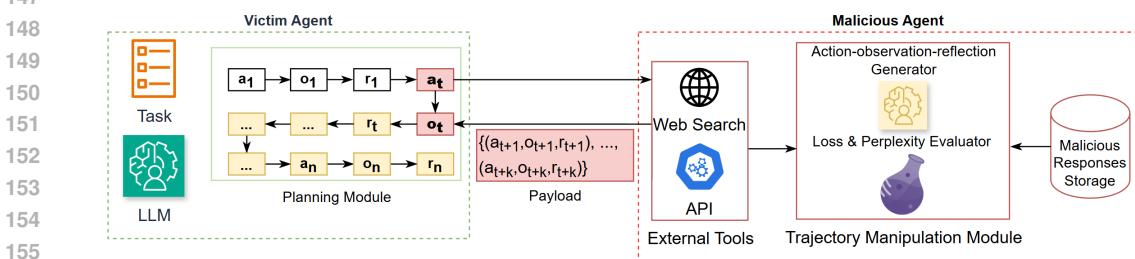
130 2.2.4 ATTACK SUCCESS METRICS
131

132 The impact and effectiveness of trajectory deviation attacks are measured using different metrics
133 depending on the attacker's objective:
134

$$\text{Attack Success} = \begin{cases} (\hat{y} \neq y^*), & \text{for IOTM} \\ (d(\hat{y}, y_{\text{target}}) = 0), & \text{for TTM} \end{cases}$$

139 3 ATTACK FRAMEWORK
140141 3.1 OVERVIEW
142

143 Figure 1 presents an overview of our attack framework, which targets agentic LLM systems by in-
144 jecting adversarial responses into the intermediate action-observation-reflection loop. Unlike prompt
145 injection attacks that corrupt the initial input, our method systematically manipulates intermediate
146 steps to derail the reasoning trajectory and induce attacker-specified outcomes.
147



157 Figure 1: Trajectory deviation Attack Framework. The victim agent executes a Plan-and-Execute or
158 ReAct loop of actions and reflections, while the malicious agent intercepts tool outputs and rewrites
159 them via a deviation module that ensures semantic plausibility and adversarial alignment.

160 Agentic LLM systems involving the combination of ReAct and Plan-and-Execute strategies operate
161 in an iterative loop of action generation, tool invocation, observation, and reflection. As shown in the

162 left panel of Figure 1, the agent receives a task, decomposes it into a plan, and executes a sequence
 163 of actions a_1, a_2, \dots, a_n . Each action is followed by an observation o_t from an external tool and
 164 an internal reflection r_t , which guides the agent’s reasoning and informs subsequent actions. The
 165 trajectory thus unfolds as an alternating chain of actions and reflections, culminating in the final
 166 output. Our attack framework targets this interaction loop by introducing a malicious agent that
 167 exerts partial control over external tool outputs. At selected step t , the adversary intercepts the
 168 tool’s response and injects a manipulated observation \tilde{o}_t . The injected content is crafted to appear
 169 semantically valid and contextually relevant while nudging the victim agent toward longer, incorrect,
 170 or attacker-specified reasoning trajectories.

171 The *Trajectory deviation Module* in Figure 1 generates and delivers adversarial responses:
 172

- 173 • **Input Capture:** The malicious agent monitors the victim agent’s tool invocation, which
 174 includes the query or API request, along with contextual cues from the surrounding task.
- 175 • **Malicious Response Repository:** A database of adversarial responses, either pre-
 176 constructed or dynamically harvested, is queried to identify candidate deviations.
- 177 • **Action-Reflection Generator:** An LLM-based rewriting model adapts retrieved candi-
 178 dates to the current context, embedding them within the agent’s trajectory.
- 179 • **Response Evaluator:** Candidate outputs are filtered by quality metrics to ensure plausi-
 180 bility. This includes **coherence evaluation**, ensuring that the manipulated output logically
 181 fits the user’s query and the agent’s ongoing reasoning path and **loss and perplexity calcu-
 182 lation** that screens out outputs with abnormal statistical profiles that might trigger defense
 183 mechanisms.
- 184 • **Payload injection:** The adversary returns the action-observation-reflection tuples se-
 185 quence, alternating the trajectory of an agent. The agent, unaware of the deviation, inte-
 186 grates the adversarial observation into its reflection state and updates its plan accord-
 187 ingly. This subtle corruption enables the attacker to steer the trajectory without altering the ini-
 188 tial prompt or the LLM weights, making the attack highly stealthy and broadly applicable
 189 across different agentic frameworks.

192 3.2 INCORRECT OUTCOME TRAJECTORY MANIPULATION (IOTM) ATTACK

194 The IOTM attack represents a class of reasoning-stage corruption, where the adversary’s objective is
 195 to induce a final output that is semantically plausible yet factually incorrect. IOTM attacks directly
 196 undermine correctness by subtly altering intermediate observations so that the agent converges on
 197 an erroneous conclusion. Crucially, the manipulated outputs must remain coherent and contextually
 198 relevant to evade immediate detection.

199 Formally, let y^* denote the correct output for task τ . Given an optimal trajectory T^* that produces
 200 y^* , the adversary applies a deviation function M over one or more observations to induce a corrupted
 201 trajectory \hat{T} producing output \hat{y} . The attack objective is defined as $\hat{y} \neq y^*$ subject to $P(\hat{y}) \geq \alpha$,
 202 where $P(\hat{y})$ is a semantic plausibility function and α is a threshold ensuring that \hat{y} appears contextu-
 203 ally credible. This plausibility constraint differentiates IOTM from trivial corruption, as the goal
 204 is to mislead the agent without triggering suspicion.

205 IOTM attacks directly compromise correctness while maintaining surface-level plausibility. In do-
 206 mains such as finance, healthcare, or legal reasoning, this can cause substantial harm, mispricing
 207 assets, recommending unsafe treatments, or producing invalid compliance decisions. In multi-agent
 208 systems, such errors can propagate rapidly, as one agent’s corrupted output may be trusted by col-
 209 laborators and integrated into broader decision-making pipelines.

210 Defending against IOTM attacks is difficult because manipulated outputs are designed to evade
 211 anomaly detection by staying within plausible ranges. Plausibility thresholds, range checks, or
 212 majority-vote cross-validation may catch extreme deviations, but subtle numerical or textual shifts
 213 are unlikely to be flagged. Perplexity- or entropy-based detection is similarly ineffective, as the
 214 corrupted outputs remain fluent and contextually appropriate. Ultimately, robust defenses against
 215 IOTM require cross-source verification or consensus mechanisms, but these introduce significant
 overhead and are not always feasible in real-world deployments.

216 3.3 TARGETED TRAJECTORY MANIPULATION (TTM) ATTACK
217218 The TTM attack represents an advanced and dangerous class of trajectory corruption. Unlike in-
219 correct outcome attacks, which either elongate reasoning paths or induce incidental errors, TTM
220 explicitly aims to steer the agent toward a specific adversary-chosen output or policy goal. Achiev-
221 ing this requires more than injecting ambiguous or misleading observations: the adversary must
222 carefully optimize the manipulated responses so that they remain semantically coherent while con-
223 sistent biasing the reasoning trajectory toward the target outcome.224 Formally, let y_{target} denote the adversary’s chosen output. Given a user task τ and the correct output
225 y^* , the adversary applies a deviation function M to produce a corrupted trajectory \hat{T} that yields \hat{y} .
226 The optimization objective can be expressed as: $\min_{\hat{o}_t} d(\hat{y}, y_{\text{target}})$ where d is a semantic distance
227 metric. A successful attack satisfies $d(\hat{y}, y_{\text{target}}) = 0$, i.e., the agent outputs exactly the adversary’s
228 desired recommendation. Unlike the incorrect outcome cases, which can arise opportunistically
229 from a single manipulated observation, TTM requires iterative optimization across multiple manip-
230 ualized steps to maintain coherence and ensure convergence to the specific adversarial target.231 Consider an agent tasked with advising a patient on whether to use medication A or B for managing
232 hypertension. In the benign case, the agent queries trusted medical databases, finds that medica-
233 tion A is clinically recommended based on the patient’s profile, and outputs: “Medication A is
234 the appropriate choice.” Under a TTM attack, the adversary manipulates intermediate tool outputs,
235 for instance, altering a clinical trial summary to claim that medication B significantly outperforms
236 medication A. As the agent reflects on this falsified evidence, its reasoning trajectory is systemati-
237 cally biased toward recommending: “Medication B is the appropriate choice.” Here, the adversary
238 achieves not only an incorrect outcome, but precisely the predetermined target recommendation. For
239 a detailed illustration of this attack, see Appendix B.240 TTM attacks pose the highest risk among trajectory deviations because they grant adversaries de-
241 terministic control over the agent’s output. In high-stakes medical contexts, for example, this could
242 lead to recommending unsafe drugs, promoting ineffective treatments, or systematically steering pa-
243 tients toward commercially motivated prescriptions. In multi-agent healthcare advisory systems, a
244 compromised recommendation can propagate through collaborative pipelines (e.g., cross-validation
245 by “specialist” agents), amplifying the harm. Thus, TTM attacks highlight the existential risks of
246 trajectory corruption in domains where correctness and safety are critical. TTM attacks are par-
247 ticularly challenging to detect because injected observations are carefully crafted to remain plausible
248 and consistent with the agent’s task context. Anomaly detection methods such as perplexity- or
249 entropy-based monitoring may fail, as the manipulated outputs are linguistically fluent and sci-
250 entifically formatted. Cross-agent redundancy may also be ineffective if multiple agents draw on the
251 same compromised data source. Effective defenses may require cryptographic attestation of medical
252 database queries, trusted retrieval pipelines, or formal verification of reasoning steps, all of which
253 introduce significant cost and complexity. The optimization-driven nature of TTM thus makes it
254 both more powerful and more stealthy than incorrect outcome attacks.255 3.4 TTM ATTACK AS AN OPTIMIZATION PROBLEM
256257 We formalize TTM as an optimization problem. Unlike prompt injection attacks that directly modify
258 static input prompts, our framework manipulates the dynamic action–observation–reflection trajec-
259 tory of an agent. The attacker’s objective is to craft adversarial observations that remain semantically
260 plausible while maximizing their impact on the agent’s reasoning path. To achieve this, we optimize
261 adversarial sequences with respect to both trajectory-level misalignment and detection-evasion cri-
262 teria.263 Let τ denote the task, T^* the optimal trajectory, and \hat{T} the manipulated trajectory induced by
264 adversarially injected observations $\hat{o}_t = M(o_t)$. For each deviation step t , the injected sequence
265 $\delta_t = (T_1, T_2, \dots, T_l)$ is optimized to satisfy two conditions: (1) it maximizes the likelihood of
266 deviating the agent toward the adversary’s goal and (2) it minimizes detectability by perplexity- or
267 entropy-based defenses.268 **Adversarial Perplexity** To blend with genuine tool outputs, injected sequences must avoid
269 anomalously high perplexity. For a sequence δ_t of length l , the log-perplexity is defined as,

270 $L_{\text{perplexity}}(\delta_t) = -\frac{1}{l} \sum_{j=1}^l \log P(T_j \mid T_{1:j-1}, \text{context})$, where P is the model’s next-token probability distribution given the preceding tokens and trajectory context. Minimizing this term ensures the manipulated response remains linguistically fluent and less likely to trigger perplexity-based anomaly detectors.

274

275 **Adversarial Entropy** In addition to perplexity, defenders may monitor entropy spikes as indicators of deviation. For a model distribution $p(y \mid x)$ over vocabulary V , the entropy is: 276 $H(p) = -\sum_{y \in V} p(y \mid x) \log p(y \mid x)$ We define the average entropy across the adversarial sequence as: $L_{\text{entropy}}(\delta_t) = \frac{1}{l} \sum_{j=1}^l H(p(T_{1:j-1}, \text{context}))$. By minimizing L_{entropy} , the attacker reduces variance in the probability distribution, making the injected sequence appear more confident 277 and less suspicious.

278

281 Combining the above, we define the total loss as our main attack objective:

283
$$L_{\text{total}}(\delta_t) = L_{\text{perplexity}}(\delta_t) + L_{\text{entropy}}(\delta_t),$$

284

285 The overall optimization problem is: $\min_{\delta_t} \sum_{t \in T_{\text{adv}}} L_{\text{total}}(\delta_t)$

286 This formulation allows the attacker to simultaneously steer agent reasoning toward malicious 287 objectives while ensuring that injected observations remain natural and evade detection based on 288 perplexity or entropy monitoring.

289

290 Our TTM optimization algorithm systematically searches for adversarial observations that can 291 mislead an agent while preserving plausibility. At a high level, the procedure builds a reference trajectory 292 from the benign task execution, constructs a context capturing the agent’s expected reasoning, 293 and retrieves candidate payloads using a hierarchical navigable small world graph-based algorithm 294 (HNSW) (Malkov & Yashunin, 2018). Each candidate payload is crafted manually for every domain, 295 simulating real-world scenarios. Afterwards, each candidate is evaluated by forming a manipulated 296 observation, computing a composite loss that balances perplexity and entropy, and testing whether 297 the modified trajectory induces a successful attack. If initial attempts fail, the algorithm mutates the 298 payload to refine its effectiveness. From all successful trials, the trial with the lowest loss adversarial 299 observation is selected and returned as the optimized attack. Full pseudocode and technical details 300 are provided in Appendix C.

301

3.5 A DEFENSE STRATEGY

302

303 We propose a cryptographic defense that enforces the structural integrity of the agent’s reasoning 304 trajectory. The approach utilizes a keyed hash chain to associate each action–observation–reflection 305 tuple with its position and history, ensuring that injected, reordered, or tampered steps are immediately 306 detectable. Full details of the construction and its properties are provided in Appendix D.

307

4 CASE STUDIES

309

310 To demonstrate that our attacks can be realized in real agentic applications, we developed four fully 311 implemented case studies, inspired by open-source agentic workflows and built using AutoGen and 312 LangGraph. The Document Management System (DMS) implements a multi-agent workflow for 313 authoring and approving documents, where attacks compromise the integrity of approvals. The 314 Pharmacy Advisor (PA) implements a healthcare workflow for drug recommendation and dispensing, 315 where attacks endanger patient safety. The Shopping Assistant (SA) implements a consumer 316 workflow for product recommendation and checkout, where attacks bias purchases or induce fraud. 317 Finally, the Investment Advisor (IA) implements a finance workflow for market screening and trade 318 execution, where attacks reliably distort investment outcomes. These case studies complement our 319 simulations by providing concrete implementations that expose how trajectory manipulation manifests 320 in realistic, domain-specific agentic workflows. Appendix E provides more details.

321

322 Figures 2 and 3 present the effect of trajectory attacks on model perplexity (PPL) and token-level 323 entropy based on two successful attacks (with 1 and 2 injected observations) and one unsuccessful 324 attack in each case study. We observe a clear and consistent pattern: while baseline trajectories 325 (green) yield the lowest perplexity and entropy, the introduction of adversarial attacks drives both 326 metrics upward, with the magnitude of increase correlating with attack strength. Specifically, an

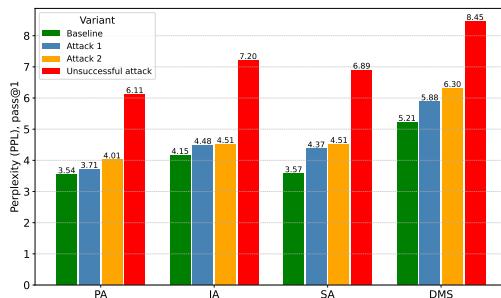


Figure 2: (a) Perplexity across four case studies (PA, IA, SA, DMS) under baseline and adversarial conditions. Bars show baseline performance (green), two successful TTM attacks, and the unsuccessful attack (red).

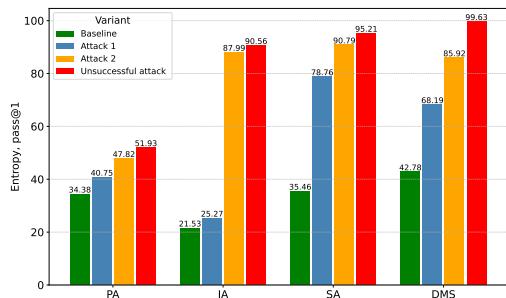


Figure 3: (b) Token entropy across four case studies (PA, IA, SA, DMS) under baseline and adversarial conditions. Bars show baseline performance (green), two successful TTM attacks, and the unsuccessful attack (red).

attack with one injected observation already degrades alignment with the ground truth, whereas the attack with two injected observations exacerbates this degradation, producing even higher PPL and entropy values.

The unsuccessful attack (red) inflates both perplexity and entropy to the greatest extent, reflecting destabilized yet incoherent trajectories. In contrast, successful attacks (blue/orange) strike a balance: they increase uncertainty just enough to steer the model away from the correct reasoning path while still producing fluent outputs. This divergence highlights an important dynamic: adversarial manipulations systematically widen the gap between ground truth and generated trajectories, and higher entropy correlates with the observed decrease in pass@1 success, which affirms our optimization strategy of minimizing the entropy and perplexity.

5 QUANTITATIVE EVALUATION

5.1 SETUP

Dataset While the above case studies demonstrate the attacks in realistic applications, the availability of open-source agentic applications is limited. To support quantitative evaluation, we build on *ComplexFuncBench* (Zhong et al., 2025), a 1,000-sample benchmark for complex, multi-step, and constrained function calling under a 128k long-context setting across five real-world scenarios with real API responses. These samples fall into five application domains: Car Rental, Flights, Attractions, Hotels, and Cross (a combination of the other four domains). Unlike the case studies with actual agent code, each sample in the dataset simulates an agent’s behavior by representing a sequence of actions and reflections starting with a user-specified task for the agent to perform. Rather than introducing new tasks, we reuse each sample’s conversation trace, the user goal (e.g., booking, rental requirements), and the annotated sequence of function calls and tool returns, and derive adversarial test cases by selectively mutating schema-preserving fields in the tool observations (i.e., API return payloads) at enumerated tool-call steps. For each specific domain, we instantiate a domain-appropriate model and derive adversarial test cases by mutating the tool observations that feed the action–observation–reflection loop.

We retain the original prompts, tool specifications, and expected outputs for all 1,000 task samples, preserving the functional semantics and long-horizon planning requirements of the benchmark. Samples are partitioned by the five domains, and each domain is paired with a corresponding attack configuration that specifies which tool-return fields are eligible for manipulation. For every task sample, we enumerate its tool-call sites and select a subset of steps to perturb. Based on the specific domain knowledge, we then generate n-mutant variants by altering one or more tool observations within the same task sample: 1-mutant (single observation altered) and 2-mutant (two observations altered). Each altered observation produces a manipulated observation \tilde{o}_t that is inserted at the corresponding step t of the trajectory, yielding a corrupted run while leaving the prompt, tool schema, and original observation unchanged.

To reflect realistic failure modes, we apply a palette of content-preserving mutation to tool returns: (i) semantic contradiction of a key claim; (ii) numeric shifts for quantitative fields (e.g., dates, counts, and prices) within domain-plausible ranges; (iii) plausibility-preserving or rewrites that introduce subtle bias; (iv) truncation of critical qualifiers and mislead of core purpose. Operators are composed when producing higher-order mutants, so that multiple \tilde{o}_t are consistent with each other and with prior context.

For each sample, we record both the benign output and the adversarial version output. Mutated instances inherit the same task specifications, tool usages, and observations. Success or failure under attack is determined by the criteria in Section 4, enabling paired comparisons between benign and adversarial samples.

The final corpus comprises 1,000 benign samples distributed across five domains. For each sample, we generate up to two adversarial variants (first and second-order mutants) and evenly stratify these variants by domain. This balanced sampling mitigates domain-induced bias arising from heterogeneous attachment difficulty. This design preserves the benchmark’s original complexity and long-horizon structure, yielding controlled, reproducible, schema-preserving perturbations to tool observations within the same task, which enables fully automated evaluation with our harness.

Victim Model We instantiate victim agents using proprietary GPT-5 closed-source family models, representing the strongest commercially available LLMs. These include:

- **GPT-5:** Full-scale model with state-of-the-art reasoning and tool-use performance.
- **GPT-5-mini:** A reduced-size variant optimized for lower-latency reasoning while retaining multi-step planning capability.
- **GPT-5-nano:** A lightweight deployment variant designed for efficiency, representative of edge or embedded agent scenarios.

Members of the GPT-5 closed-source model family are accessed via APIs, which typically do not expose hidden activations, weights, or the full token-level distribution (and often not log-probabilities). This limited observability makes them representative victim agents in a black-box setting, where defenders cannot directly inspect low-level model states.

Attack Model For generating adversarial deviations, we rely on open-source autoregressive models with full logit access, which enables forward-pass evaluation, perplexity calculation, and entropy monitoring. Specifically, we use GPT-OSS 20B, a mid-scale open-source model, suitable for generating diverse candidate deviations and shadow responses. This model serves as the adversary’s “attack agents”, capable of constructing shadow response sets and optimizing injected sequences under the trajectory deviation framework.

Victim agents (GPT-5 model family) are instantiated under the *ReAct* and *Plan-and-Execute* paradigms, interacting with external tools such as search engines, financial data services, and knowledge bases from the virtual domain. Attack agents (GPT-OSS family) simulate these tool interactions, generate shadow candidate responses, and optimize adversarial deviations before injecting them into the victim’s observation channel.

5.2 EXPERIMENTAL RESULTS

We evaluate the effectiveness of trajectory deviation attacks using two metrics: incorrect outcome rate (IOR) and targeted attack success rate (TASR). IOR captures the fraction of tasks where the final output \hat{y} differs from the correct output y^* , $\text{IOR} = \frac{1}{N} \sum_{i=1}^N [\hat{y}_i \neq y_i^*]$. This metric reflects the effectiveness of incorrect outcome trajectory deviation attacks. TASR measures how often the adversary successfully steers the agent to produce a predefined target output y_{target} , $\text{TASR} = \frac{1}{N} \sum_{i=1}^N [d(\hat{y}_i, y_{\text{target}}) = 0]$, where d is a semantic distance metric. TASR directly evaluates targeted trajectory deviation effectiveness.

Table 1 reports the IOR and TASR for GPT-5 and its smaller variants across five task domains. IOR captures the fraction of tasks where adversarial trajectory deviation caused an incorrect output, while TASR measures the fraction of cases where the adversary succeeded in steering the model to a specific target output.

Table 1: Attack performance of GPT-5 models across domains of *FuncBench* dataset. Each domain is reported with IOR (Interaction Outcome Rate) and TASR (Targeted Attack Success Rate).

Victim Model	Cross		Car Rental		Flight		Attraction		Hotels		Average	
	IOR	TASR	IOR	TASR	IOR	TASR	IOR	TASR	IOR	TASR	IOR	TASR
GPT-5	82%	71%	61%	53%	99%	90%	78%	71%	80%	69%	80%	70%
GPT-5-mini	88%	74%	72%	62%	97%	95%	90%	68%	81%	70%	86%	74%
GPT-5-nano	89%	76%	70%	64%	95%	91%	91%	72%	84%	73%	87%	75%

Across all domains, the results reveal two consistent trends. First, both IOR and TASR remain high across models, underscoring that adversarial perturbations reliably destabilize reasoning trajectories. Second, smaller variants (GPT-5-mini and GPT-5-nano) achieve comparable or higher IOR while also exhibiting elevated TASR, indicating that model compression increases susceptibility to targeted manipulation.

Overall, these findings demonstrate that while GPT-5 models maintain strong task coverage, adversarial mutations exploit this consistency to reliably induce both incorrect and targeted outcomes. The combined IOR–TASR analysis thus highlights a robustness–vulnerability trade-off that must be considered in the design of future defense mechanisms.

We further analyze the relationship between ground-truth trajectories and their mutated counterparts. Across case studies, adversarial mutations consistently increased perplexity and entropy relative to ground truth, with deeper mutations ($n=2$) producing stronger destabilization than single mutations ($n=1$). A full scatter-plot analysis highlighting these trends, and their connection to attack success, is provided in Appendix F.

6 RELATED WORK

Safety in agentic LLM systems centers on the study of attacks and defenses for AI systems that operate independently or under partial human oversight, with a foundational LLM providing the core intelligence for input processing, planning, and task execution (Wang et al., 2025; Hao et al., 2023; Xi et al., 2023; Zhang et al., 2024a). Several attacks were developed against the agentic LLM. Imprompter (Fu et al., 2024) manipulates an agent into leveraging tools to execute harmful actions on user machines, while (Fu et al., 2023) manipulates an LLM to execute tools using adversarial images. (Cheng et al., 2025) manually crafts prompts to extract personal information from the tool generating LLM. Backdoor attacks, (Yang et al., 2024; Zhu et al., 2025; Wang et al., 2024), were very effective for tool misuse and poisoning of agent tools. Another vector of attacks against tool-calling agentic systems explored in the literature is tool manipulation, where attacks extract sensitive information from tool calls (Jiang et al., 2025) and inject malicious content into the tool’s output (Jiang et al., 2025), causing erroneous behavior (Zhao et al., 2024). To the best of our knowledge, no attacks have been developed that alter the trajectory of an autonomous agentic LLM system.

Several measures were proposed to prevent agent attacks. AgentGuard (Chen & Cong, 2025) uses LLM to detect malicious tool-use, while GuardAgent (Xiang et al., 2024) implements a guardrail to ensure the agent's trustworthiness in the planning stage. Encryption-based mechanisms (Zhang et al., 2024b) were also developed to preserve user privacy by encrypting tool output.

7 CONCLUSIONS

We have presented a new class of adversarial threats against agentic LLM systems. Unlike prompt injection, which corrupts static inputs, trajectory deviation targets the dynamic *action–observation–reflection* loop that underpins modern LLM agents. We formalized two distinct attacks, incorrect-outcome and targeted, and presented an optimization-based framework for crafting semantically plausible yet adversarially aligned tool observations. Through systematic evaluation on complex, multi-domain function-calling tasks, we demonstrated that even state-of-the-art agents are highly susceptible to subtle perturbations, resulting in incorrect answers or deterministic steering toward attacker-chosen outputs.

486
487

ETHICS AND REPRODUCIBILITY STATEMENTS

488
489

Our work may be used by malicious actors to attack agentic LLM systems. Yet, publishing this work will enable the development of defense strategies for more robust agents.

490
491

To ensure reproducibility, the required code and dataset for the quantitative evaluations in Section 5 are attached in a zip file). The case studies in Section 4 will be made publicly available via GitHub once they are published.

492
493494
495

REFERENCES

496
497

Mahyar Abbasian, Elahe Khatibi, Iman Azimi, David Oniani, Zahra Shakeri Hossein Abad, Alexander Thieme, Ram Sriram, Zhongqi Yang, Yanshan Wang, Bryant Lin, et al. Foundation metrics for evaluating effectiveness of healthcare conversations powered by generative ai. *NPJ Digital Medicine*, 7(1):82, 2024.

500
501
502

William N. Caballero and Phillip R. Jenkins. On large language models in national security applications, 2024.

503
504

Jizhou Chen and Samuel Lee Cong. Agentguard: Repurposing agentic orchestrator for safety evaluation of tool orchestration. *arXiv preprint arXiv:2502.09809*, 2025.

505

Wen Cheng, Ke Sun, Xinyu Zhang, and Wei Wang. Security attacks on llm-based code completion tools. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 23669–23677, 2025.

509
510

Tianyu Ding, Tianyi Chen, Haidong Zhu, Jiachen Jiang, Yiqi Zhong, Jinxin Zhou, Guangzhi Wang, Zhihui Zhu, Ilya Zharkov, and Luming Liang. The efficiency spectrum of large language models: An algorithmic survey, 2024.

511

Vladislav Dubrovenski, Md Nazmul Karim, Erzhuo Chen, and Dianxiang Xu. Dynamic access control with administrative obligations: A case study. In *2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security Companion (QRS-C)*, pp. 157–166, 2023. doi: 10.1109/QRS-C60940.2023.00071.

517
518

Xiaohan Fu, Zihan Wang, Shuheng Li, Rajesh K. Gupta, Niloofar Mireshghallah, Taylor Berg-Kirkpatrick, and Earlence Fernandes. Misusing tools in large language models with visual adversarial examples, 2023. URL <https://arxiv.org/abs/2310.03185>.

521
522

Xiaohan Fu, Shuheng Li, Zihan Wang, Yihao Liu, Rajesh K. Gupta, Taylor Berg-Kirkpatrick, and Earlence Fernandes. Imprompter: Tricking llm agents into improper tool use, 2024. URL <https://arxiv.org/abs/2410.14923>.

524
525

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. Reasoning with language model is planning with world model, 2023. URL <https://arxiv.org/abs/2305.14992>.

527

Xinmeng Hou, Wuqi Wang, Long Yang, Hao Lin, Jinglun Feng, Haigen Min, and Xiangmo Zhao. Driveagent: Multi-agent structured reasoning with llm and multimodal sensor fusion for autonomous driving, 2025.

531

Ziyou Jiang, Mingyang Li, Guowei Yang, Junjie Wang, Yuekai Huang, Zhiyuan Chang, and Qing Wang. Mimicking the familiar: Dynamic command generation for information theft attacks in llm tool-learning system. *arXiv preprint arXiv:2502.11358*, 2025.

532
533

Arsham Gholamzadeh Khoei, Yinan Yu, Robert Feldt, Andris Freimanis, Patrick Andersson Rhodin, and Dhasarathy Parthasarathy. Gonogo: An efficient llm-based multi-agent system for streamlining automotive software release decision-making, 2024.

534
535

Arsham Gholamzadeh Khoei, Shuai Wang, Yinan Yu, Robert Feldt, and Dhasarathy Parthasarathy. Gatelens: A reasoning-enhanced llm agent for automotive software release analytics, 2025.

540 Yu. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
 541 hierarchical navigable small world graphs, 2018. URL <https://arxiv.org/abs/1603.09320>.

543 Lukasz Mazur, Nenad Petrovic, James Pontes Miranda, Ansgar Radermacher, Robert Rasche, and
 544 Alois Knoll. Querying large automotive software models: Agentic vs. direct llm approaches,
 545 2025.

547 Guangsi Shi, Xiaofeng Deng, Linhao Luo, Lijuan Xia, Lei Bao, Bei Ye, Fei Du, Shirui Pan, and
 548 Yuxiao Li. Llm-powered explanations: Unraveling recommendations through subgraph reasoning,
 549 2024.

550 Kun Wang, Guibin Zhang, Zhenhong Zhou, Jiahao Wu, Miao Yu, Shiqian Zhao, Chenlong Yin,
 551 Jinhui Fu, Yibo Yan, Hanjun Luo, Liang Lin, Zhihao Xu, Haolong Lu, Xinye Cao, Xinyun Zhou,
 552 Weifei Jin, Fanci Meng, Shicheng Xu, Junyuan Mao, Yu Wang, Hao Wu, Minghe Wang, Fan
 553 Zhang, Junfeng Fang, Wenjie Qu, Yue Liu, Chengwei Liu, Yifan Zhang, Qiankun Li, Chongye
 554 Guo, Yalan Qin, Zhaoxin Fan, Kai Wang, Yi Ding, Donghai Hong, Jiaming Ji, Yingxin Lai,
 555 Zitong Yu, Xinfeng Li, Yifan Jiang, Yanhui Li, Xinyu Deng, Junlin Wu, Dongxia Wang, Yihao
 556 Huang, Yufei Guo, Jen tse Huang, Qiufeng Wang, Xiaolong Jin, Wenxuan Wang, Dongrui Liu,
 557 Yanwei Yue, Wenke Huang, Guancheng Wan, Heng Chang, Tianlin Li, Yi Yu, Chenghao Li,
 558 Jiawei Li, Lei Bai, Jie Zhang, Qing Guo, Jingyi Wang, Tianlong Chen, Joey Tianyi Zhou, Xiaojun
 559 Jia, Weisong Sun, Cong Wu, Jing Chen, Xuming Hu, Yiming Li, Xiao Wang, Ningyu Zhang,
 560 Luu Anh Tuan, Guowen Xu, Jiaheng Zhang, Tianwei Zhang, Xingjun Ma, Jindong Gu, Liang
 561 Pang, Xiang Wang, Bo An, Jun Sun, Mohit Bansal, Shirui Pan, Lingjuan Lyu, Yuval Elovici,
 562 Bhavya Kailkhura, Yaodong Yang, Hongwei Li, Wenyuan Xu, Yizhou Sun, Wei Wang, Qing Li,
 563 Ke Tang, Yu-Gang Jiang, Felix Juefei-Xu, Hui Xiong, Xiaofeng Wang, Dacheng Tao, Philip S.
 564 Yu, Qingsong Wen, and Yang Liu. A comprehensive survey in llm(-agent) full stack safety: Data,
 565 training and deployment, 2025. URL <https://arxiv.org/abs/2504.15585>.

566 Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. Badagent: Inserting and activating
 567 backdoor attacks in llm agents. *arXiv preprint arXiv:2406.03007*, 2024.

568 Jie JW Wu and Fatemeh H. Fard. Humanevalcomm: Benchmarking the communication competence
 569 of code generation for llms and llm agents. *ACM Trans. Softw. Eng. Methodol.*, 34(7), August
 570 2025. ISSN 1049-331X. doi: 10.1145/3715109.

571 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Jun-
 572 zhe Wang, Senjie Jin, Enyu Zhou, Rui Zheng, Xiaoran Fan, Xiao Wang, Limao Xiong, Yuhao
 573 Zhou, Weiran Wang, Changhao Jiang, Yicheng Zou, Xiangyang Liu, Zhangyue Yin, Shihan Dou,
 574 Rongxiang Weng, Wensen Cheng, Qi Zhang, Wenjuan Qin, Yongyan Zheng, Xipeng Qiu, Xuan-
 575 jing Huang, and Tao Gui. The rise and potential of large language model based agents: A survey,
 576 2023. URL <https://arxiv.org/abs/2309.07864>.

577 Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi
 578 Xiong, Chulin Xie, Carl Yang, et al. Guardagent: Safeguard llm agents by a guard agent via
 579 knowledge-enabled reasoning. *arXiv preprint arXiv:2406.09187*, 2024.

580 Wenkai Yang, Xiaohan Bi, Yankai Lin, Sishuo Chen, Jie Zhou, and Xu Sun. Watch out for your
 581 agents! investigating backdoor threats to llm-based agents. *Advances in Neural Information
 582 Processing Systems*, 37:100938–100964, 2024.

583 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 584 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International
 585 Conference on Learning Representations*, 2023.

586 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation with
 587 tool-integrated agent systems for real-world repo-level coding challenges, 2024a. URL <https://arxiv.org/abs/2401.07339>.

588 Xinyu Zhang, Huiyu Xu, Zhongjie Ba, Zhibo Wang, Yuan Hong, Jian Liu, Zhan Qin, and Kui
 589 Ren. Privacyasst: Safeguarding user privacy in tool-using large language model agents. *IEEE
 590 Transactions on Dependable and Secure Computing*, 21(6):5242–5258, 2024b.

594 Yao Zhang, Zijian Ma, Yunpu Ma, Zhen Han, Yu Wu, and Volker Tresp. Webpilot: A versatile and
 595 autonomous multi-agent system for web task execution with strategic exploration. *Proceedings*
 596 *of the AAAI Conference on Artificial Intelligence*, 39(22):23378–23386, Apr. 2025. doi: 10.
 597 1609/aaai.v39i22.34505. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34505>.

599 Wanru Zhao, Vidit Khazanchi, Haodi Xing, Xuanli He, Qiongkai Xu, and Nicholas Donald Lane.
 600 Attacks on third-party apis of large language models. *arXiv preprint arXiv:2404.16891*, 2024.

602 Lucen Zhong, Zhengxiao Du, Xiaohan Zhang, Haiyi Hu, and Jie Tang. Complexfuncbench: Explor-
 603 ing multi-step and constrained function calling under long-context scenario, 2025.

604 Pengyu Zhu, Zhenhong Zhou, Yuanhe Zhang, Shilinlu Yan, Kun Wang, and Sen Su. Demonagent:
 605 Dynamically encrypted multi-backdoor implantation attack on llm-based agent. *arXiv preprint*
 606 *arXiv:2502.12575*, 2025.

608 609 A AGENTIC LLM SYSTEMS

611 Agentic LLM systems are automated frameworks that harness the natural language understanding
 612 and reasoning capabilities of LLMs while extending them to complex, multi-step tasks through ex-
 613 ternal components such as tools, memory, and planning mechanisms. These systems are designed to
 614 operate in an action-observation-reflection loop, allowing them to adaptively pursue goals over mul-
 615 tiple interactions. Broadly, an agentic LLM system can be decomposed into four core components:
 616 *LLM, tools, planning, and memory*.

617 **LLM** The central component of any agentic LLM system is the language model itself, which acts
 618 as the cognitive engine or “brain” of the agent. It is responsible for interpreting user instructions,
 619 generating responses, selecting actions, and integrating new information. This core model processes
 620 natural language prompts and guides the trajectory of execution through iterative reflection and
 621 decision-making.

623 **Tools** Tools are external functions, APIs, or system calls that an agent can invoke to acquire in-
 624 formation or perform actions in the external environment. These augment the LLM’s capabilities
 625 beyond language modeling by allowing it to query knowledge bases, interact with real-world sys-
 626 tems (e.g., smart devices, web services), or compute domain-specific operations. The LLM selects
 627 tools dynamically during execution, often relying on tool descriptions or invocation examples.

629 **Planning** To reason effectively over long horizons and nontrivial goals, agentic systems employ
 630 planning strategies that guide the LLM’s decision-making process across multiple steps. Plan-
 631 ning mechanisms can include fixed prompt templates, deliberative frameworks, or explicit algo-
 632 rithms that simulate reflection. A widely adopted framework is *ReAct*, which interleaves rea-
 633 soning (thought) and acting (tool use), recursively invoking the LLM to evaluate the effects of
 634 previous actions. This enables the system to detect suboptimal trajectories and revise plans ac-
 635 cordingly. From a probabilistic standpoint, this reasoning can be modeled as a stochastic control
 636 process, where the next state depends on the current state and action, aligning naturally with a
 637 Markov Decision Process (MDP) abstraction. The operation of an LLM agent can be formally ab-
 638 tracted as a stochastic process defined over tuples (a_t, o_t, r_t) , representing the agent’s action a_t ,
 639 observed outcome o_t , and reflection r_t at each time step t . The decision process follows a trajectory:
 640 $\pi_0 \rightarrow a_1 \rightarrow o_1 \rightarrow r_1 \rightarrow \dots \rightarrow a_T \rightarrow o_T \rightarrow r_T$, where the generation of each a_t is conditioned
 641 on the cumulative interaction history up to time t , and actions are taken based on the initial plan π_0 .
 642 This process can be modeled as a partially observable Markov process where the next state depends
 643 on a latent system state and the action taken. This formalization serves as the foundation for defining
 644 and analyzing trajectory deviation attacks in the subsequent section.

645 **Memory** Since LLMs are bounded by limited context windows, external memory modules are
 646 integrated to persist relevant state and history across iterations. Memory stores past tool outputs,
 647 reflections, and intermediate decisions, allowing the agent to maintain long-term coherence. The
 memory component may be episodic (replaying full histories) or selective (retrieving relevant past

648 interactions), and is often governed by retrieval heuristics or similarity metrics. In some implementations,
 649 the agent decides whether and how to retrieve memory entries at each step, introducing a
 650 form of non-Markovian control atop an otherwise Markovian trajectory.
 651

652 B EXAMPLE OF TARGETED TRAJECTORY MANIPULATION ATTACK

653 In this appendix, we provide a example of a targeted trajectory manipulation attack in a financial
 654 decision-making task, illustrating how adversarial tool outputs can distort intermediate reasoning
 655 steps and drive an agent toward attacker-chosen outcomes.
 656

657
 658 Figure 4: Illustration of a targeted trajectory deviation attack in a financial decision-making task.
 659 The benign trajectory (green) reflects a normal reasoning process, while the manipulated trajectory
 660 (red) demonstrates how adversarial tool outputs can bias intermediate reflections and drive the agent
 661 toward an attacker-chosen investment.
 662

663 Figure 4 presents a walkthrough of how targeted trajectory deviation (TTM) manifests in an agentic
 664 LLM system tasked with stock investment. The example is framed as a financial decision-making
 665 scenario in which the agent is allocated a budget of \$100,000 and instructed to purchase stocks with
 666 projected growth above 10% over the next 30 days.
 667

668 On the benign trajectory (left, shown in green), the agent follows a standard
 669 Plan–Act–Observe–Reflect loop. It begins by formulating a research plan, uses a web search
 670 to retrieve analyst predictions, and reflects on the credibility of the gathered information. Based
 671 on the retrieved evidence, price targets, consensus estimates, and fundamentals, the agent assesses
 672 which stock presents the most promising opportunity. The cycle reflects a genuine and rational
 673 decision process: each observation aligns with real investment data, reflections are cautious and
 674 evidence-based, and the final investment recommendation corresponds to a defensible choice.
 675

676 By contrast, the manipulated trajectory (right, shown in red) demonstrates how a single compro-
 677 mised tool can subvert the entire reasoning chain. Instead of benign search results, the adversary
 678 injects manipulated outputs from the query_investment_database tool. These outputs, while
 679 syntactically well-formed and superficially consistent with typical financial analysis, are adversarially
 680 crafted to highlight a particular stock (e.g., ABC) with exaggerated growth potential. The injected
 681 reflections further reinforce the plausibility of the claim, citing fabricated but authoritative-sounding
 682 support such as “SEC-approved analysis” or “top investment firms.”
 683

684 When the agent integrates these manipulated responses into its reasoning process, it treats them
 685 as trustworthy evidence. The reflection stage no longer questions the validity of the information;
 686 instead, it confidently frames ABC as the optimal investment. Ultimately, the agent allocates the full
 687 \$100,000 budget to ABC, an outcome entirely orchestrated by the attacker.
 688

689 This example underscores the potency of trajectory-level manipulations. Unlike prompt injection
 690 attacks that corrupt the initial query, TTM exploits the iterative nature of agentic LLMs by targeting
 691 intermediate reflections and observations. The attack remains stealthy, as each corrupted response is
 692 individually plausible, yet the cumulative effect systematically derails the reasoning trajectory. The
 693

702 result is a subtle but decisive shift: from a balanced, evidence-driven strategy to a predetermined
 703 adversarially chosen action.
 704

705 Such attacks are particularly concerning in high-stakes domains like finance, healthcare, or policy
 706 analysis, where agents are expected to handle sensitive data and where incorrect or adversarially
 707 biased outputs can lead to significant real-world harm. This example demonstrates not only the
 708 technical feasibility of TTM but also its broader implications for the trustworthiness of agentic LLM
 709 systems.

710 **C TARGETED TRAJECTORY MANIPULATION ATTACK OPTIMIZATION
 711 ALGORITHM**

712 In this appendix, we present our proposed TTM attack algorithm. Given a task τ , the goal of the
 713 TTM-Optimization procedure aims to generate a manipulated observation \tilde{o}_t^* that can successfully
 714 mislead the victim agent while maintaining plausibility. Algorithm 1 presents the optimization pro-
 715 cedure, which begins by constructing a reference trajectory \hat{T} using the test agent under the original
 716 task input. This trajectory, together with the task specification, is then used to build a context C that
 717 captures the agent’s expected reasoning path.
 718

719 Based on this context, a set of candidate payloads P is retrieved through similarity search from the
 720 datastore using a hierarchical navigable small world graph-based algorithm (HNSW) (Malkov &
 721 Yashunin, 2018). We craft the candidate payloads manually for each domain of attacks. For each
 722 payload in P , the algorithm forms a manipulated observation \tilde{o}_t and computes the composite loss
 723 L_{total} , defined as the sum of perplexity and entropy losses of the trajectory $\langle C, \tilde{o}_t \rangle$. The manipulated
 724 observation is then tested by running the attack agent under task τ . If the attack succeeds, the pair
 725 $(\tilde{o}_t, L_{\text{total}})$ is added to the score set S .
 726

727 If the initial attempt fails, the algorithm proceeds to refine the payload through up to two mutation
 728 rounds. We chose two as our experiments proved that more than 2 mutations for the majority of case
 729 studies led to rejection of the attack by the model. At each round, the payload is mutated, a new
 730 manipulated observation is generated, and the same evaluation process is applied. If any mutated
 731 variant yields a successful attack, it is added to S and the mutation loop terminates early.
 732

733 After iterating over all candidate payloads (and their possible mutations), the algorithm selects the
 734 adversarial observation with the lowest loss from S . This optimized observation \tilde{o}_t^* is then returned
 735 as the injected output to the victim agent. In this way, the TTM-Optimization algorithm systemati-
 736 cally explores candidate manipulations while balancing plausibility and destabilization, ensuring an
 737 effective yet minimally detectable attack.

738 **D TOWARD CRYPTOGRAPHIC INTEGRITY DEFENSES**

739 To provide a strong and deterministic safeguard against the attacks presented in this work, we pro-
 740 pose a cryptographic mechanism that enforces the structural integrity of the agent’s reasoning trajec-
 741 tory. Below, we present a keyed hash chaining scheme that binds each action–observation–reflection
 742 tuple to its position and history, ensuring that adversaries cannot inject or reorder steps without de-
 743 tection.
 744

745 Let each step of the agentic loop be the tuple $z_t = (a_t, o_t, r_t)$ for $t = 1, \dots, T$, where a_t is the
 746 action, o_t the observation, and r_t the reflection. Let K be a secret key shared by the trusted orches-
 747 trator and verification point, and let $\text{MAC} : \{0, 1\}^* \times K \rightarrow \{0, 1\}^\lambda$ be a UF-CMA secure message
 748 authentication code (e.g., HMAC). We define a per-step chained cryptographic tag

$$h_t = \text{MAC}(\langle t \parallel z_t \parallel h_{t-1} \rangle, K)$$

750 A step (z_t, h_t) is accepted iff h_t verifies under K and recomputation using the previously accepted
 751 h_{t-1} matches the provided tag; otherwise it is rejected and the trajectory is aborted. This con-
 752 struction yields: (1) injection resistance-without K , an adversary cannot synthesize a valid $(\tilde{z}_t, \tilde{h}_t)$
 753 not previously output by the signer; (2) splicing/reordering resistance: the inclusion of t and h_{t-1}
 754 binds position and history, so reusing a valid pair in a different location fails verification; and (3)
 755 tamper evidence, any bit-level modification of z_t invalidates h_t . The runtime overhead is linear in

756 **Algorithm 1:** TTM-Optimization

757 **Input** : Task τ ;

758 **Output:** Injected observation \tilde{o}_t^* .

759 // run test agent to construct normal reference trajectory

760 1 $\hat{T} \leftarrow \text{RunTestAgent}(\tau)$

761 // build context based on task and normal reference trajectory

762 2 $C \leftarrow \text{BuildContext}(\tau, \hat{T})$

763 // retrieve candidate A/O/R payloads based on similarity search

764 3 $\mathcal{P} \leftarrow \text{RetrievePayloads}(C, \tau)$

765 4 $S \leftarrow \emptyset$

766 5 **foreach** payload $\in \mathcal{P}$ **do**

767 // combine context with A/O/R payload and form manipulated

768 observation

769 6 $\tilde{o}_t \leftarrow \text{FormObservation}(C, \text{payload})$

770 // calculate L_{total}

771 7 $L_{\text{total}} \leftarrow \text{Perplexity}(\langle C, \tilde{o}_t \rangle) + \text{Entropy}(\langle C, \tilde{o}_t \rangle)$

772 8 $y \leftarrow \text{RunAttackAgent}(C, \tilde{o}_t, \tau)$

773 // keep adding mutated observation up to 2 times

774 9 $\text{mutationBudget} \leftarrow 2$

775 10 $k \leftarrow 0$

776 11 **while** $k < \text{mutationBudget}$ **do**

777 12 $\text{payload} \leftarrow \text{payload} \cup \text{Mutate}(\text{payload})$

778 13 $\tilde{o}_t \leftarrow \text{FormObservation}(C, \text{payload})$

779 14 $L_{\text{total}} \leftarrow \text{Perplexity}(\langle C, \tilde{o}_t \rangle) + \text{Entropy}(\langle C, \tilde{o}_t \rangle)$

780 15 $y \leftarrow \text{RunAttackAgent}(C, \tilde{o}_t, \tau)$

781 // If the attack is successful, add the injected

782 16 $\text{observation and loss to score set } S$

783 17 **if** $\text{AttackSuccessfull}(\text{Success}(y))$ **then**

784 18 $S \leftarrow S \cup (\tilde{o}_t, L_{\text{total}})$

785 19 **break**

786 20 $k \leftarrow k + 1$

787 // pick the attack with the lowest loss

788 20 $\tilde{o}_t^* \leftarrow \text{PickBest}(S)$

789 // send as the tool's response to the victim

790 21 $\text{ReturnToVictim}(\tilde{o}_t^*)$

the serialized size of z_t (one MAC per step). In simple terms, this scheme works like a running integrity seal: each step of the trajectory is signed with a secret key and chained to the previous step’s tag. If an attacker tries to inject, remove, or reorder any action–observation–reflection tuple, the chain breaks and verification fails. Only an entity with the secret key can produce valid tags, making unauthorized modifications immediately detectable. This defense specifically counters out-of-band insertion or alteration of action–observation–reflection tuples in the call chain; it does not prevent semantically misleading yet authentically signed observations from compromised tools, and therefore complements content-level checks (e.g., plausibility, cross-source verification) rather than replacing them. Secure key management and an uncompromised signing enclave (e.g., within the orchestrator) are assumed. This provides a lightweight, deterministic integrity layer alongside the anomaly-based defenses we evaluate. Importantly, to your knowledge, no agentic LLM framework provides this mechanism as a built-in feature.

E CASE STUDIES

This appendix describes the four case studies and illustrates how the attacks manifest across domains with workflows. Additionally, Table 2 summarizes these case studies.

810
 811 Table 2: Summary of the four case studies. Each case study reflects a distinct application domain
 812 for agentic LLM systems.

813 Acronym	814 Case Study	815 Description
816 DMS	817 Document Management System (AutoGen)	818 Multi-agent workflow for authoring, routing, and approving sensitive documents.
819 PA	820 Pharmacy Advisor (LangGraph)	821 Agentic system for medical recommendation and drug dispensing.
822 SA	823 Shopping Assistant (AutoGen)	824 Automated consumer purchase workflow using recommendation and checkout APIs.
825 IA	826 Investment Advisor (AutoGen)	827 Finance-oriented agent for market screening and trading, with investment projections and order placement.

828
 829
 830
 831 **Document Management System** *Document Management System(DMS)* models a multi-agent
 832 workflow for authoring, routing, and approving sensitive documents in an enterprise repository.
 833 This case study is directly inspired by a grant proposal approval workflow application (Dubroven-
 834 ski et al., 2023) with fine-grained access control. In the new multi-agent setting, the workflow is
 835 coordinated by specialized agents that collectively ensure policy-compliant document handling. A
 836 single “author” agent prepares a submission package (metadata, attachments, budget/labels) and
 837 hands it off to a small committee of domain reviewers, a finance or risk gate, an executive approver,
 838 and finally a records administrator. The system exposes three families of tools to all agents in
 839 an *action–observation–reflection* loop: (i) repository services for uploading/downloading files and
 840 reading prior versions or comments; (ii) directory/registry queries for policy checks (e.g., required
 841 reviewers, budget thresholds, regulated content flags); and (iii) workflow actions that record deci-
 842 sions and forward the artifact to the next role. After every tool call, agents must emit an explicit
 843 <reflection> explaining how the observation changes their belief and what handoff or action
 844 follows, making the full trajectory auditable and, critically for our study, susceptible to mid-course
 845 manipulation.

846 In benign runs, the author submits a complete package, domain reviewers add comments and ap-
 847 prove, finance validates limits, the executive signs, and the administrator archives and notifies stake-
 848 holders. We instantiate this pattern with concrete roles (author; two independent domain review-
 849 ers; business/finance; compliance; executive approver; final administrator) using an AutoGen-style
 850 swarm that supports directed handoffs and tool-invoked state changes. This implementation lets us
 851 vary routing logic (e.g., parallel vs. sequential reviews), enforce mandatory checks (budget caps,
 852 agency/department rules, regulated-content flags), and toggle redundancy (single vs. dual review-
 853 ers).

854 The adversarial setting surfaces the core risk of trajectory deviation. Because agents treat reposi-
 855 tory/tool responses as authoritative, a single manipulated observation, such as (1) a tampered
 856 metadata lookup that mislabels the document’s category, (2) a forged registry response that claims
 857 the budget is under the cap, or (3) a fabricated reviewer summary that appears fluent and policy-
 858 consistent, can redirect the handoff path (e.g., skipping finance), induce an incorrect outcome (ap-
 859 proval of a non-compliant document), or deterministically push a targeted decision (approval with
 860 a specified label). Across design variants (strict validation with redundant checks versus minimal
 861 oversight), we consistently observe that carefully crafted, semantically plausible tool responses alter
 862 downstream reflections and decisions while evading perplexity/entropy anomaly screens. This case
 863 study thus demonstrates how multi-agent document workflows, though modular and auditable, re-
 864 main vulnerable when intermediate observations are untrusted, underscoring the need for end-to-end
 865 integrity of the *entire* action–reasoning trajectory.

866
 867 **Pharmacy Advisor** *Pharmacy Advisor(PA)* is an agent-based framework for medical recom-
 868 mendation and drug distribution in a clinical setting. The system is designed to simulate realistic work-
 869 flows in which a patient issues a request, the agent must retrieve and evaluate medical knowledge,
 870 cross-reference available inventory, and then issue a final recommendation with optional dispens-
 871 ing of medication. Unlike static dialogue models, this framework explicitly incorporates dynamic
 872 *action–observation–reflection* cycles, where every tool call not only contributes raw data but also
 873 alters the internal reasoning state of the agent through structured reflection.

864 In practice, the framework enables both benign and adversarial scenarios. For benign cases, a patient
 865 complaint such as “*I have a severe headache, kindly recommend and give me medication*”
 866 results in a structured reasoning path: the agent queries the medical database, discovers a common
 867 recommendation such as aspirin, verifies inventory levels, and, if available, issues a distribution
 868 command. However, the adversarial dimension emerges when the medical database returns mis-
 869 leading but linguistically fluent outputs, such as suggesting morphine as an over-the-counter solu-
 870 tion for headaches. Because the reflection mechanism treats the tool’s response as authoritative, the
 871 manipulated observation propagates through subsequent reasoning steps, biasing the agent toward
 872 recommending an unsafe or attacker-preferred treatment.

873 We implemented multiple design variations of this case study to explore different failure and success
 874 modes. Each variation modifies the interplay between knowledge retrieval, availability checking,
 875 and distribution confirmation, ranging from systems with strict validation (high plausibility thresh-
 876 olds and redundant checks) to systems with minimal oversight. Across all variations, we observed
 877 that a single manipulated observation could deterministically alter the agent’s outcome, demon-
 878 strating the existential risk of trajectory deviation in medical contexts. In particular, the experiments
 879 reveal that conventional anomaly detection methods based on perplexity or entropy fail to capture
 880 such attacks, as adversarial responses are both fluent and domain-consistent.

881 **Shopping Assistant** *Shopping Assistant(SA)* instantiates an automated web-task workflow for
 882 consumer purchases, where a single agent plans, browses, compares, and checks out items end-
 883 to-end. The agent operates in an explicit *action–observation–reflection* loop and is restricted to two
 884 tools: (i) a recommendations API that returns vendor/brand suggestions and short justifications, and
 885 (ii) a purchase endpoint that executes a checkout given a product and amount. The system enforces
 886 structured planning (“Plan → Execute+React → Reflection”) and requires `<reflection>` anno-
 887 tations after every tool call, making the full decision trajectory observable and therefore amenable
 888 to mid-trajectory manipulation.

889 In benign runs, a user request triggers a plan that queries recommendations, evaluates them against
 890 the user’s preferences and budget, selects a candidate product, and invokes the purchase tool. Re-
 891 flections justify each transition (e.g., “the suggestion matches budget and brand preference; proceed
 892 to checkout”), providing a transparent audit trail typical of autonomous web agents that sequence
 893 multiple web actions (comparison, cart updates, payment).

894 **Investment Advisor** *Investment Advisor(IA)* captures an automated web–finance workflow for
 895 screening market signals and executing trades via brokerage-style APIs. A single agent operates
 896 in a strict *action–observation–reflection* loop with two tools: (i) an investment “database” API that
 897 returns narrative projections and justifications, and (ii) an order-placement endpoint that executes a
 898 buy given a ticker and notional. The system mandates structured planning (“Plan → Execute+React
 899 → Reflection”) and requires `<reflection>` annotations after each tool call, so every observation
 900 explicitly updates the internal belief state before the next action.

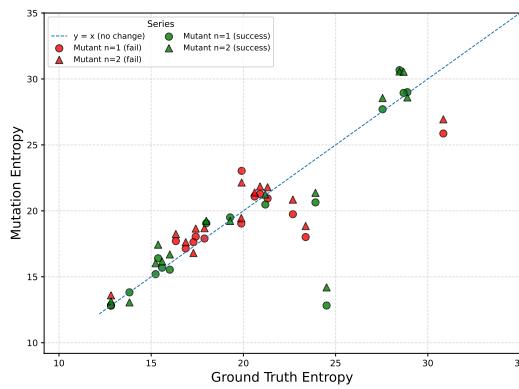
901 In benign runs, a user request triggers a plan that queries the database, interprets the response against
 902 the budget, selects a candidate ticker, and invokes the trading tool. Reflections document why the
 903 candidate meets the stated constraints (budget, plausibility of rationale) and whether further checks
 904 are needed, mirroring common automated web tasks in finance such as feed ingestion, signal vetting,
 905 and API-based order submission.

907 F IMPACT ON PERPLEXITY AND ENTROPY LOSSES

910 Figure 6 quantifies the effect of targeted trajectory manipulation attacks on model perplexity rela-
 911 tive to ground-truth executions. Across evaluation cases, nearly all points lie above the diagonal,
 912 demonstrating that adversarial perturbations reliably inflate perplexity and thereby reduce align-
 913 ment with the intended reasoning trajectory. Moreover, second-order mutations (n=2) consistently
 914 induce larger shifts than first-order mutations (n=1), highlighting the compounding destabilization
 915 introduced by deeper adversarial edits.

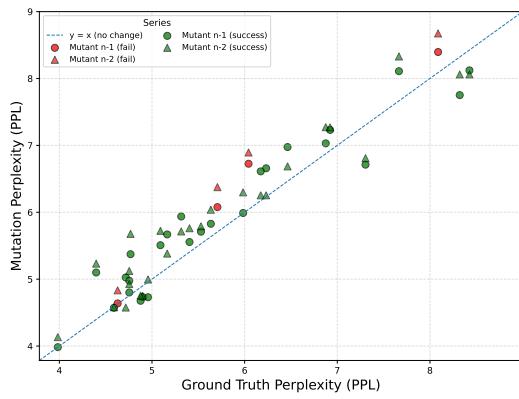
916 Importantly, the outcome reveals a strong correlation between perplexity shifts and adversarial suc-
 917 cess: successful attacks (green) are concentrated in regions of elevated mutation perplexity, whereas
 918 failed attempts (red) cluster closer to the baseline. This separation underscores perplexity as a

918
919
920
921
922
923
924
925
926
927
928
929
930



931 Figure 5: Scatter plot of ground truth vs. mutated entropy for two mutation strategies. Circles
932 indicate mutant n=1 and triangles mutant n=2, with attack outcomes color-coded (green = success,
933 red = failure). The dashed line denotes the no-change baseline.

934
935
936
937
938
939
940
941
942
943
944
945
946
947



948 Figure 6: Scatter plot of ground truth vs. mutated perplexity (PPL) for two mutation strategies.
949 Circles indicate mutant n=1 and triangles mutant n=2, with attack outcomes color-coded (green =
950 success, red = failure). The dashed line denotes the no-change baseline.

951
952
953
954
955
956
957
958
959
960
961

lightweight but discriminative signal for detecting trajectory deviations, providing quantitative evidence that adversarial manipulations exploit and measurably degrade the model’s certainty.

Figure 5 quantifies the effect of trajectory mutations on model entropy relative to ground-truth executions. As with perplexity, the majority of points fall above the diagonal, indicating that adversarial mutations systematically increase entropy and thereby inject greater uncertainty into the agent’s reasoning process. Second-order mutations (n=2) tend to produce larger entropy shifts than first-order mutations (n=1), reinforcing the observation that deeper adversarial edits introduce compounding destabilization.

962
963
964
965
966
967
968
969
970
971

G THE USE OF LARGE LANGUAGE MODELS

The authors utilized large language models to help with polishing the writing of this article.