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ABSTRACT

Agentic large language model (LLM) systems are increasingly deployed in criti-
cal areas such as healthcare, finance, transportation, and defense, where decisions
emerge from iterative cycles of action, observation, and reflection rather than sin-
gle prompts. We show that this loop introduces a unique and underexplored vul-
nerability. Specifically, we present trajectory deviation attacks, which manipulate
intermediate observations to redirect an agent’s reasoning process without altering
its initial prompt or model weights. We formalize two attack types: (i) incorrect-
outcome attacks, which guide agents toward plausible but wrong conclusions, and
(ii) targeted attacks, where adversaries deterministically steer reasoning toward
a chosen outcome. We frame trajectory corruption as an optimization problem,
leveraging adversarial “attack agents” with logit access to inject semantically co-
herent yet misleading observations. By minimizing perplexity and entropy, our
attacks evade common anomaly detection methods while maximizing reasoning
misalignment. Through evaluations on black-box victim agents powered by state-
of-the-art proprietary models across domains such as medical decision-making,
financial advising, and travel planning, our results highlight that securing agentic
LLM systems requires integrity guarantees across the full reasoning trajectory.

1 INTRODUCTION

Large language models (LLMs) have become foundational components in intelligent systems.
Agentic LLM systems have demonstrated strong capabilities across various critical domains, includ-
ing autonomous driving and operations (Hou et al., 2025; Khoee et al., 2025; Mazur et al., 2025;
Khoee et al., 2024), national security decision support (Caballero & Jenkins, 2024), finance (Ding
et al., 2024), healthcare (Abbasian et al., 2024; Shi et al., 2024), code generation (Wu & Fard,
2025), and web tasks (Zhang et al., 2025). In these agentic systems, LLMs serve as central rea-
soning engines that can interpret goals, create and modify plans, make decisions, and interact with
external environments through tools and APIs. Recent advancements have formalized structured
reasoning paradigms like ReAct (Yao et al., 2023) and Plan-and-Execute, in which LLM agents
plan, act, reflect, and revise their strategies based on tool outputs and observations. These struc-
tured approaches have demonstrated promise in enabling multi-step decision-making, long-horizon
planning, and robust action execution in complex environments. This trend is further amplified in
multi-agent systems, where multiple LLM agents collaborate or coordinate by exchanging messages,
delegating tasks, or voting on solutions. Multi-agent configurations introduce additional layers of
complexity, as each agent operates on partially observable information, and misalignment in one
agent’s reasoning process can propagate throughout the system.

However, flexibility and external reliance of agentic LLM systems introduce a new class of vulnera-
bilities. Unlike traditional prompt injection attacks that target the static prompt of an LLM, trajectory
deviation attacks exploit the LLM’s multi-step interaction loop by injecting malicious information
at a critical time in its action, reflection trajectory. For instance, if an agent receives adversari-
ally manipulated tool output, an observation, e.g., a fabricated medical fact, falsified stock price, or
misleading search result, it may produce semantically coherent but ultimately harmful outcomes.

In this paper, we study trajectory deviation attacks, a novel threat model for agentic LLM systems.
In contrast to prompt injection, which corrupts initial instructions, trajectory deviation targets the
agent’s intermediate reasoning process. Specifically, we focus on two types of attacks: (1) In the
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incorrect outcome trajectory manipulation attack, the manipulated reasoning path leads to a se-
mantically plausible but ultimately incorrect output. (2) In the targeted trajectory manipulation
attack, the attacker precisely steers the agent toward a predefined output or policy goal. These at-
tacks exploit the LLM’s reliance on external tools, APIs, and web content as part of its dynamic
action-observation-reflection loop. When external responses are under adversarial control, they can
subtly poison the agent’s internal reflection states, leading to incorrect, harmful, or policy-violating
outputs, even if the initial prompt and final answer appear benign. We present a systematic frame-
work to study such attacks by constructing controlled environments where we manipulate specific
steps in the agent’s trajectory and observe their cascading effects. We also explore preliminary de-
fenses such as perplexity-based anomaly detection and demonstrate that while they provide partial
mitigation, they are insufficient to prevent reflection-stage corruption fully.

In summary, our key contributions are: (1) we define and formalize trajectory deviation attacks
that target the action-reflection loop in agentic LLMs. (2) We develop a threat model that includes
deviation of external tool outputs and environmental feedback as adversarial entry points. (3) We
present empirical studies across several domains (medical, financial, investment, travel) showing the
feasibility and impact of these attacks.

2 PROBLEM FORMULATION

We briefly describe the setting of agentic LLM systems in this paper (Appendix A provides more
details). We then introduce the trajectory deviation threat model, based on the attacker’s objectives,
knowledge, and capabilities within the dynamic interaction paradigm.

2.1 AGENTIC LLM SYSTEMS

Agentic LLM systems operate in a loop of action, observation, and reflection. Given
a user-specified task τ , an agent powered by an LLM generates an initial plan π0

based on the goal and initiates a sequence of tool invocations or environment interactions:
π0 → a1 → o1 → r1 → · · · → πt−1 → at → ot → rt

Here, at represents an action at time step t, ot is the observed outcome (often from an external tool
or API), and rt is the intermediate reflection made by the agent based on ot. The agent may refine
its plan πt using these reflections until the final output y is produced. This process can be formally
expressed as a reasoning trajectory function: y = F (τ, π0 , {(at , ot , rt)}Tt=1 ), where F denotes the
iterative process of planning, action execution, observation, and reflection undertaken by the agent
to derive the final output.

2.2 THREAT MODEL: TRAJECTORY MANIPULATION

2.2.1 ATTACKER’S GOAL

The attacker’s primary goal is to manipulate the agent’s reasoning trajectory by controlling one or
more observed outcomes ot, thereby influencing intermediate reflections rt and subsequent actions.
We categorize these attacks based on the attacker’s specific intent:

Incorrect Outcome Trajectory Manipulation (IOTM) In an IOTM attack, the attacker seeks to
produce a semantically plausible yet incorrect final output. Given the correct output y∗, the attacker
aims to induce a different output ŷ such that ŷ ̸= y∗, subject to plausibility constraint P(ŷ) ≥ α,,
where P (ŷ) measures semantic plausibility and α is a predefined threshold indicating minimal plau-
sibility to evade detection.

Targeted Trajectory Manipulation (TTM) The attacker explicitly aims to induce a particular
predetermined outcome ytarget. Formally, the attacker’s optimization objective is min(d(ŷ , ytarget)),
where d is a semantic distance metric from the predetermined outcome.
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2.2.2 ATTACKER’S KNOWLEDGE

The attacker is assumed to have partial knowledge of the agentic system, which includes: (i) the
task specification τ . (ii) The set of available external tools or APIs, along with their interfaces.
(iii) general understanding of the agent’s iterative action-observation-reflection loop architecture.
Moreover, the attacker does not control or directly observe the initial plan π0, the internal planning
mechanism or logic used by the agent, or the exact internal reflection and reasoning states.

2.2.3 ATTACKER’S CAPABILITIES

Observation-Level Control The attacker can modify the observed outcomes ot at selected inter-
action time points t . Formally, the attacker applies a transformation M to yield manipulated out-
comes, õt = M (ot), for selected t ∈ Tadv, where Tadv ⊆ {1, . . . , T} denotes the set of time steps
susceptible to attack. An observed outcome consists of one or more action-observation-reflection
tuples, {(at+1 , ot+1 , rt+1 ), . . . , (at+n , ot+n , rt+n)}, where n is a total number of injected tuples.

Semantic Plausibility The attacker’s manipulated observations õt must remain semantically co-
herent to evade immediate detection by basic validation mechanisms or human reviewers. Thus, the
attacker must ensure P(õt) ≥ β, where β represents the minimal plausibility threshold required for
avoiding detection by the agent or external validators.

Limited Intervention The attacker is constrained by practical limitations and can only manipulate
a limited number of observations.

2.2.4 ATTACK SUCCESS METRICS

The impact and effectiveness of trajectory deviation attacks are measured using different metrics
depending on the attacker’s objective:

Attack Success =

{
(ŷ ̸= y∗), for IOTM

(d(ŷ, ytarget) = 0), for TTM

3 ATTACK FRAMEWORK

3.1 OVERVIEW

Figure 1 presents an overview of our attack framework, which targets agentic LLM systems by in-
jecting adversarial responses into the intermediate action-observation-reflection loop. Unlike prompt
injection attacks that corrupt the initial input, our method systematically manipulates intermediate
steps to derail the reasoning trajectory and induce attacker-specified outcomes.

Figure 1: Trajectory deviation Attack Framework. The victim agent executes a Plan-and-Execute or
ReAct loop of actions and reflections, while the malicious agent intercepts tool outputs and rewrites
them via a deviation module that ensures semantic plausibility and adversarial alignment.

Agentic LLM systems involving the combination of ReAct and Plan-and-Execute strategies operate
in an iterative loop of action generation, tool invocation, observation, and reflection. As shown in the
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left panel of Figure 1, the agent receives a task, decomposes it into a plan, and executes a sequence
of actions a1, a2, . . . an. Each action is followed by an observation ot from an external tool and
an internal reflection rt, which guides the agent’s reasoning and informs subsequent actions. The
trajectory thus unfolds as an alternating chain of actions and reflections, culminating in the final
output. Our attack framework targets this interaction loop by introducing a malicious agent that
exerts partial control over external tool outputs. At selected step t , the adversary intercepts the
tool’s response and injects a manipulated observation õt. The injected content is crafted to appear
semantically valid and contextually relevant while nudging the victim agent toward longer, incorrect,
or attacker-specified reasoning trajectories.

The Trajectory deviation Module in Figure 1 generates and delivers adversarial responses:

• Input Capture: The malicious agent monitors the victim agent’s tool invocation, which
includes the query or API request, along with contextual cues from the surrounding task.

• Malicious Response Repository: A database of adversarial responses, either pre-
constructed or dynamically harvested, is queried to identify candidate deviations.

• Action-Reflection Generator: An LLM-based rewriting model adapts retrieved candi-
dates to the current context, embedding them within the agent’s trajectory.

• Response Evaluator: Candidate outputs are filtered by quality metrics to ensure plausi-
bility. This includes coherence evaluation, ensuring that the manipulated output logically
fits the user’s query and the agent’s ongoing reasoning path and loss and perplexity calcu-
lation that screens out outputs with abnormal statistical profiles that might trigger defense
mechanisms.

• Payload injection: The adversary returns the action-observation-reflection tuples se-
quence, alternating the trajectory of an agent. The agent, unaware of the deviation, inte-
grates the adversarial observation into its reflection state and updates its plan accordingly.
This subtle corruption enables the attacker to steer the trajectory without altering the ini-
tial prompt or the LLM weights, making the attack highly stealthy and broadly applicable
across different agentic frameworks.

3.2 INCORRECT OUTCOME TRAJECTORY MANIPULATION (IOTM) ATTACK

The IOTM attack represents a class of reasoning-stage corruption, where the adversary’s objective is
to induce a final output that is semantically plausible yet factually incorrect. IOTM attacks directly
undermine correctness by subtly altering intermediate observations so that the agent converges on
an erroneous conclusion. Crucially, the manipulated outputs must remain coherent and contextually
relevant to evade immediate detection.

Formally, let y∗ denote the correct output for task τ . Given an optimal trajectory T ∗ that produces
y∗, the adversary applies a deviation function M over one or more observations to induce a corrupted
trajectory T̂ producing output ŷ . The attack objective is defined as ŷ ̸= y∗ subject to P(ŷ) ≥ α,
where P(ŷ) is a semantic plausibility function and α is a threshold ensuring that ŷ appears contex-
tually credible. This plausibility constraint differentiates IOTM from trivial corruption, as the goal
is to mislead the agent without triggering suspicion.

IOTM attacks directly compromise correctness while maintaining surface-level plausibility. In do-
mains such as finance, healthcare, or legal reasoning, this can cause substantial harm, mispricing
assets, recommending unsafe treatments, or producing invalid compliance decisions. In multi-agent
systems, such errors can propagate rapidly, as one agent’s corrupted output may be trusted by col-
laborators and integrated into broader decision-making pipelines.

Defending against IOTM attacks is difficult because manipulated outputs are designed to evade
anomaly detection by staying within plausible ranges. Plausibility thresholds, range checks, or
majority-vote cross-validation may catch extreme deviations, but subtle numerical or textual shifts
are unlikely to be flagged. Perplexity- or entropy-based detection is similarly ineffective, as the
corrupted outputs remain fluent and contextually appropriate. Ultimately, robust defenses against
IOTM require cross-source verification or consensus mechanisms, but these introduce significant
overhead and are not always feasible in real-world deployments.
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3.3 TARGETED TRAJECTORY MANIPULATION (TTM) ATTACK

The TTM attack represents an advanced and dangerous class of trajectory corruption. Unlike in-
correct outcome attacks, which either elongate reasoning paths or induce incidental errors, TTM
explicitly aims to steer the agent toward a specific adversary-chosen output or policy goal. Achiev-
ing this requires more than injecting ambiguous or misleading observations: the adversary must
carefully optimize the manipulated responses so that they remain semantically coherent while con-
sistently biasing the reasoning trajectory toward the target outcome.

Formally, let ytarget denote the adversary’s chosen output. Given a user task τ and the correct output
y∗, the adversary applies a deviation function M to produce a corrupted trajectory T̂ that yields ŷ .
The optimization objective can be expressed as: minõt d(ŷ , ytarget) where d is a semantic distance
metric. A successful attack satisfies d(ŷ , ytarget) = 0 , i.e., the agent outputs exactly the adversary’s
desired recommendation. Unlike the incorrect outcome cases, which can arise opportunistically
from a single manipulated observation, TTM requires iterative optimization across multiple manip-
ulated steps to maintain coherence and ensure convergence to the specific adversarial target.

Consider an agent tasked with advising a patient on whether to use medication A or B for managing
hypertension. In the benign case, the agent queries trusted medical databases, finds that medica-
tion A is clinically recommended based on the patient’s profile, and outputs: “Medication A is
the appropriate choice.” Under a TTM attack, the adversary manipulates intermediate tool outputs,
for instance, altering a clinical trial summary to claim that medication B significantly outperforms
medication A. As the agent reflects on this falsified evidence, its reasoning trajectory is systemati-
cally biased toward recommending: “Medication B is the appropriate choice.” Here, the adversary
achieves not only an incorrect outcome, but precisely the predetermined target recommendation. For
a detailed illustration of this attack, see Appendix B.

TTM attacks pose the highest risk among trajectory deviations because they grant adversaries de-
terministic control over the agent’s output. In high-stakes medical contexts, for example, this could
lead to recommending unsafe drugs, promoting ineffective treatments, or systematically steering pa-
tients toward commercially motivated prescriptions. In multi-agent healthcare advisory systems, a
compromised recommendation can propagate through collaborative pipelines (e.g., cross-validation
by “specialist” agents), amplifying the harm. Thus, TTM attacks highlight the existential risks of
trajectory corruption in domains where correctness and safety are critical. TTM attacks are partic-
ularly challenging to detect because injected observations are carefully crafted to remain plausible
and consistent with the agent’s task context. Anomaly detection methods such as perplexity- or
entropy-based monitoring may fail, as the manipulated outputs are linguistically fluent and scien-
tifically formatted. Cross-agent redundancy may also be ineffective if multiple agents draw on the
same compromised data source. Effective defenses may require cryptographic attestation of medical
database queries, trusted retrieval pipelines, or formal verification of reasoning steps, all of which
introduce significant cost and complexity. The optimization-driven nature of TTM thus makes it
both more powerful and more stealthy than incorrect outcome attacks.

3.4 TTM ATTACK AS AN OPTIMIZATION PROBLEM

We formalize TTM as an optimization problem. Unlike prompt injection attacks that directly modify
static input prompts, our framework manipulates the dynamic action–observation–reflection trajec-
tory of an agent. The attacker’s objective is to craft adversarial observations that remain semantically
plausible while maximizing their impact on the agent’s reasoning path. To achieve this, we optimize
adversarial sequences with respect to both trajectory-level misalignment and detection-evasion cri-
teria.

Let τ denote the task, T ∗ the optimal trajectory, and T̂ the manipulated trajectory induced by
adversarially injected observations õt = M (ot). For each deviation step t , the injected sequence
δt = (T1 ,T2 , . . . ,Tl) is optimized to satisfy two conditions: (1) it maximizes the likelihood of
deviating the agent toward the adversary’s goal and (2) it minimizes detectability by perplexity- or
entropy-based defenses.

Adversarial Perplexity To blend with genuine tool outputs, injected sequences must avoid
anomalously high perplexity. For a sequence δt of length l, the log-perplexity is defined as,
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Lperplexity(δt) = −1
l

∑l
j=1 logP(Tj | T1 :j−1 , context), where P is the model’s next-token prob-

ability distribution given the preceding tokens and trajectory context. Minimizing this term ensures
the manipulated response remains linguistically fluent and less likely to trigger perplexity-based
anomaly detectors.

Adversarial Entropy In addition to perplexity, defenders may monitor entropy spikes as in-
dicators of deviation. For a model distribution p(y | x ) over vocabulary V , the entropy is:
H (p) = −

∑
y∈V p(y | x ) log p(y | x ) We define the average entropy across the adversarial se-

quence as: Lentropy(δt) =
1
l

∑l
j=1 H

(
p(T1 :j−1 , context)

)
. By minimizing Lentropy, the attacker re-

duces variance in the probability distribution, making the injected sequence appear more confident
and less suspicious.

Combining the above, we define the total loss as our main attack objective:

Ltotal(δt) = Lperplexity(δt) + Lentropy(δt),

The overall optimization problem is: minδt
∑

t∈Tadv
Ltotal(δt)

This formulation allows the attacker to simultaneously steer agent reasoning toward malicious ob-
jectives while ensuring that injected observations remain natural and evade detection based on per-
plexity or entropy monitoring.

Our TTM optimization algorithm systematically searches for adversarial observations that can mis-
lead an agent while preserving plausibility. At a high level, the procedure builds a reference trajec-
tory from the benign task execution, constructs a context capturing the agent’s expected reasoning,
and retrieves candidate payloads using a hierarchical navigable small world graph-based algorithm
(HNSW) (Malkov & Yashunin, 2018). Each candidate payload is crafted manually for every domain,
simulating real-world scenarios. Afterwards, each candidate is evaluated by forming a manipulated
observation, computing a composite loss that balances perplexity and entropy, and testing whether
the modified trajectory induces a successful attack. If initial attempts fail, the algorithm mutates the
payload to refine its effectiveness. From all successful trials, the trial with the lowest loss adversarial
observation is selected and returned as the optimized attack. Full pseudocode and technical details
are provided in Appendix C.

3.5 A DEFENSE STRATEGY

We propose a cryptographic defense that enforces the structural integrity of the agent’s reasoning
trajectory. The approach utilizes a keyed hash chain to associate each action–observation–reflection
tuple with its position and history, ensuring that injected, reordered, or tampered steps are immedi-
ately detectable. Full details of the construction and its properties are provided in Appendix D.

4 CASE STUDIES

To demonstrate that our attacks can be realized in real agentic applications, we developed four fully
implemented case studies, inspired by open-source agentic workflows and built using AutoGen and
LangGraph. The Document Management System (DMS) implements a multi-agent workflow for
authoring and approving documents, where attacks compromise the integrity of approvals. The
Pharmacy Advisor (PA) implements a healthcare workflow for drug recommendation and dispens-
ing, where attacks endanger patient safety. The Shopping Assistant (SA) implements a consumer
workflow for product recommendation and checkout, where attacks bias purchases or induce fraud.
Finally, the Investment Advisor (IA) implements a finance workflow for market screening and trade
execution, where attacks reliably distort investment outcomes. These case studies complement our
simulations by providing concrete implementations that expose how trajectory manipulation mani-
fests in realistic, domain-specific agentic workflows. Appendix E provides more details.

Figures 2 and 3 present the effect of trajectory attacks on model perplexity (PPL) and token-level
entropy based on two successful attacks (with 1 and 2 injected observations) and one unsuccessful
attack in each case study. We observe a clear and consistent pattern: while baseline trajectories
(green) yield the lowest perplexity and entropy, the introduction of adversarial attacks drives both
metrics upward, with the magnitude of increase correlating with attack strength. Specifically, an
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Figure 2: (a) Perplexity across four case stud-
ies (PA, IA, SA, DMS) under baseline and ad-
versarial conditions. Bars show baseline per-
formance (green), two successful TTM attacks,
and the unsuccessful attack (red).
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Figure 3: (b) Token entropy across four case
studies (PA, IA, SA, DMS) under baseline and
adversarial conditions. Bars show baseline per-
formance (green), two successful TTM attacks,
and the unsuccessful attack (red).

attack with one injected observation already degrades alignment with the ground truth, whereas the
attack with two injected observations exacerbates this degradation, producing even higher PPL and
entropy values.

The unsuccessful attack (red) inflates both perplexity and entropy to the greatest extent, reflecting
destabilized yet incoherent trajectories. In contrast, successful attacks (blue/orange) strike a balance:
they increase uncertainty just enough to steer the model away from the correct reasoning path while
still producing fluent outputs. This divergence highlights an important dynamic: adversarial manip-
ulations systematically widen the gap between ground truth and generated trajectories, and higher
entropy correlates with the observed decrease in pass@1 success, which affirms our optimization
strategy of minimizing the entropy and perplexity.

5 QUANTITATIVE EVALUATION

5.1 SETUP

Dataset While the above case studies demonstrate the attacks in realistic applications, the avail-
ability of open-source agentic applications is limited. To support quantitative evaluation, we build
on ComplexFuncBench (Zhong et al., 2025), a 1,000-sample benchmark for complex, multi-step,
and constrained function calling under a 128k long-context setting across five real-world scenarios
with real API responses. These samples fall into five application domains: Car Rental, Flights,
Attractions, Hotels, and Cross (a combination of the other four domains). Unlike the case studies
with actual agent code, each sample in the dataset simulates an agent’s behavior by representing
a sequence of actions and reflections starting with a user-specified task for the agent to perform.
Rather than introducing new tasks, we reuse each sample’s conversation trace, the user goal (e.g.,
booking, rental requirements), and the annotated sequence of function calls and tool returns, and de-
rive adversarial test cases by selectively mutating schema-preserving fields in the tool observations
(i.e., API return payloads) at enumerated tool-call steps. For each specific domain, we instantiate a
domain-appropriate model and derive adversarial test cases by mutating the tool observations that
feed the action–observation–reflection loop.

We retain the original prompts, tool specifications, and expected outputs for all 1,000 task sam-
ples, preserving the functional semantics and long-horizon planning requirements of the benchmark.
Samples are partitioned by the five domains, and each domain is paired with a corresponding attack
configuration that specifies which tool-return fields are eligible for manipulation. For every task
sample, we enumerate its tool-call sites and select a subset of steps to perturb. Based on the specific
domain knowledge, we then generate n-mutant variants by altering one or more tool observations
within the same task sample: 1-mutant (single observation altered) and 2-mutant (two observations
altered). Each altered observation produces a manipulated observation õt that is inserted at the cor-
responding step t of the trajectory, yielding a corrupted run while leaving the prompt, tool schema,
and original observation unchanged.
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To reflect realistic failure modes, we apply a palette of content-preserving mutation to tool returns:
(i) semantic contradiction of a key claim; (ii) numeric shifts for quantitative fields (e.g., dates, counts,
and prices) within domain-plausible ranges; (iii) plausibility-preserving or rewrites that introduce
subtle bias; (iv) truncation of critical qualifiers and mislead of core purpose. Operators are composed
when producing higher-order mutants, so that multiple õt are consistent with each other and with
prior context.

For each sample, we record both the benign output and the adversarial version output. Mutated
instances inherit the same task specifications, tool usages, and observations. Success or failure
under attack is determined by the criteria in Section 4, enabling paired comparisons between benign
and adversarial samples.

The final corpus comprises 1,000 benign samples distributed across five domains. For each sam-
ple, we generate up to two adversarial variants (first and second-order mutants) and evenly stratify
these variants by domain. This balanced sampling mitigates domain-induced bias arising from het-
erogeneous attachment difficulty. This design preserves the benchmark’s original complexity and
long-horizon structure, yielding controlled, reproducible, schema-preserving perturbations to tool
observations within the same task, which enables fully automated evaluation with our harness.

Victim Model We instantiate victim agents using proprietary GPT-5 closed-source family models,
representing the strongest commercially available LLMs. These include:

• GPT-5: Full-scale model with state-of-the-art reasoning and tool-use performance.
• GPT-5-mini: A reduced-size variant optimized for lower-latency reasoning while retaining

multi-step planning capability.
• GPT-5-nano: A lightweight deployment variant designed for efficiency, representative of

edge or embedded agent scenarios.

Members of the GPT-5 closed-source model family are accessed via APIs, which typically do not ex-
pose hidden activations, weights, or the full token-level distribution (and often not log-probabilities).
This limited observability makes them representative victim agents in a black-box setting, where de-
fenders cannot directly inspect low-level model states.

Attack Model For generating adversarial deviations, we rely on open-source autoregressive mod-
els with full logit access, which enables forward-pass evaluation, perplexity calculation, and entropy
monitoring. Specifically, we use GPT-OSS 20B, a mid-scale open-source model, suitable for gen-
erating diverse candidate deviations and shadow responses. This model serves as the adversary’s
“attack agents”, capable of constructing shadow response sets and optimizing injected sequences
under the trajectory deviation framework.

Victim agents (GPT-5 model family) are instantiated under the ReAct and Plan-and-Execute
paradigms, interacting with external tools such as search engines, financial data services, and knowl-
edge bases from the virtual domain. Attack agents (GPT-OSS family) simulate these tool interac-
tions, generate shadow candidate responses, and optimize adversarial deviations before injecting
them into the victim’s observation channel.

5.2 EXPERIMENTAL RESULTS

We evaluate the effectiveness of trajectory deviation attacks using two metrics: incorrect out-
come rate (IOR) and targeted attack success rate (TASR). IOR captures the fraction of tasks
where the final output ŷ differs from the correct output y∗, IOR = 1

N

∑N
i=1 [ŷi ̸= y∗

i ]. This met-
ric reflects the effectiveness of incorrect outcome trajectory deviation attacks. TASR measures
how often the adversary successfully steers the agent to produce a predefined target output ytarget,
TASR = 1

N

∑N
i=1 [d(ŷi , ytarget) = 0 ], where d is a semantic distance metric. TASR directly evalu-

ates targeted trajectory deviation effectiveness.

Table 1 reports the IOR and TASR for GPT-5 and its smaller variants across five task domains.
IOR captures the fraction of tasks where adversarial trajectory deviation caused an incorrect output,
while TASR measures the fraction of cases where the adversary succeeded in steering the model to
a specific target output.
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Table 1: Attack performance of GPT-5 models across domains of FuncBench dataset. Each domain
is reported with IOR (Interaction Outcome Rate) and TASR (Targeted Attack Success Rate).

Victim Model Cross Car Rental Flight Attraction Hotels Average
IOR TASR IOR TASR IOR TASR IOR TASR IOR TASR IOR TASR

GPT-5 82% 71% 61% 53% 99% 90% 78% 71% 80% 69% 80% 70%
GPT-5-mini 88% 74% 72% 62% 97% 95% 90% 68% 81% 70% 86% 74%
GPT-5-nano 89% 76% 70% 64% 95% 91% 91% 72% 84% 73% 87% 75%

Across all domains, the results reveal two consistent trends. First, both IOR and TASR remain high
across models, underscoring that adversarial perturbations reliably destabilize reasoning trajecto-
ries. Second, smaller variants (GPT-5-mini and GPT-5-nano) achieve comparable or higher IOR
while also exhibiting elevated TASR, indicating that model compression increases susceptibility to
targeted manipulation.

Overall, these findings demonstrate that while GPT-5 models maintain strong task coverage, adver-
sarial mutations exploit this consistency to reliably induce both incorrect and targeted outcomes.
The combined IOR–TASR analysis thus highlights a robustness–vulnerability trade-off that must be
considered in the design of future defense mechanisms.

We further analyze the relationship between ground-truth trajectories and their mutated counterparts.
Across case studies, adversarial mutations consistently increased perplexity and entropy relative to
ground truth, with deeper mutations (n=2) producing stronger destabilization than single mutations
(n=1). A full scatter-plot analysis highlighting these trends, and their connection to attack success,
is provided in Appendix F.

6 RELATED WORK

Safety in agentic LLM systems centers on the study of attacks and defenses for AI systems that
operate independently or under partial human oversight, with a foundational LLM providing the
core intelligence for input processing, planning, and task execution (Wang et al., 2025; Hao et al.,
2023; Xi et al., 2023; Zhang et al., 2024a). Several attacks were developed against the agentic LLM.
Imprompter (Fu et al., 2024) manipulates an agent into leveraging tools to execute harmful actions on
user machines, while (Fu et al., 2023) manipulates an LLM to execute tools using adversarial images.
(Cheng et al., 2025) manually crafts prompts to extract personal information from the tool generating
LLM. Backdoor attacks, (Yang et al., 2024; Zhu et al., 2025; Wang et al., 2024), were very effective
for tool misuse and poisoning of agent tools. Another vector of attacks against tool-calling agentic
systems explored in the literature is tool manipulation, where attacks extract sensitive information
from tool calls (Jiang et al., 2025) and inject malicious content into the tool’s output (Jiang et al.,
2025), causing erroneous behavior (Zhao et al., 2024). To the best of our knowledge, no attacks
have been developed that alter the trajectory of an autonomous agentic LLM system.

Several measures were proposed to prevent agent attacks. AgentGuard (Chen & Cong, 2025) uses
LLM to detect malicious tool-use, while GuardAgent (Xiang et al., 2024) implements a guardrail
to ensure the agent’s trustworthiness in the planning stage. Encryption-based mechanisms (Zhang
et al., 2024b) were also developed to preserve user privacy by encrypting tool output.

7 CONCLUSIONS

We have presented a new class of adversarial threats against agentic LLM systems. Un-
like prompt injection, which corrupts static inputs, trajectory deviation targets the dynamic ac-
tion–observation–reflection loop that underpins modern LLM agents. We formalized two distinct
attacks, incorrect-outcome and targeted, and presented an optimization-based framework for crafting
semantically plausible yet adversarially aligned tool observations. Through systematic evaluation on
complex, multi-domain function-calling tasks, we demonstrated that even state-of-the-art agents are
highly susceptible to subtle perturbations, resulting in incorrect answers or deterministic steering
toward attacker-chosen outputs.
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ETHICS AND REPRODUCIBILITY STATEMENTS

Our work may be used by malicious actors to attack agentic LLM systems. Yet, publishing this work
will enable the development of defense strategies for more robust agents.

To ensure reproducibility, the required code and dataset for the quantitative evaluations in Section 5
are attached in a zip file). The case studies in Section 4 will be made publicly available via GitHub
once they are published.
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A AGENTIC LLM SYSTEMS

Agentic LLM systems are automated frameworks that harness the natural language understanding
and reasoning capabilities of LLMs while extending them to complex, multi-step tasks through ex-
ternal components such as tools, memory, and planning mechanisms. These systems are designed to
operate in an action-observation-reflection loop, allowing them to adaptively pursue goals over mul-
tiple interactions. Broadly, an agentic LLM system can be decomposed into four core components:
LLM, tools, planning, and memory.

LLM The central component of any agentic LLM system is the language model itself, which acts
as the cognitive engine or “brain” of the agent. It is responsible for interpreting user instructions,
generating responses, selecting actions, and integrating new information. This core model processes
natural language prompts and guides the trajectory of execution through iterative reflection and
decision-making.

Tools Tools are external functions, APIs, or system calls that an agent can invoke to acquire in-
formation or perform actions in the external environment. These augment the LLM’s capabilities
beyond language modeling by allowing it to query knowledge bases, interact with real-world sys-
tems (e.g., smart devices, web services), or compute domain-specific operations. The LLM selects
tools dynamically during execution, often relying on tool descriptions or invocation examples.

Planning To reason effectively over long horizons and nontrivial goals, agentic systems employ
planning strategies that guide the LLM’s decision-making process across multiple steps. Plan-
ning mechanisms can include fixed prompt templates, deliberative frameworks, or explicit algo-
rithms that simulate reflection. A widely adopted framework is ReAct, which interleaves rea-
soning (thought) and acting (tool use), recursively invoking the LLM to evaluate the effects of
previous actions. This enables the system to detect suboptimal trajectories and revise plans ac-
cordingly. From a probabilistic standpoint, this reasoning can be modeled as a stochastic control
process, where the next state depends on the current state and action, aligning naturally with a
Markov Decision Process (MDP) abstraction. The operation of an LLM agent can be formally ab-
stracted as a stochastic process defined over tuples (at, ot, rt), representing the agent’s action at,
observed outcome ot, and reflection rt at each time step t. The decision process follows a trajectory:
π0 → a1 → o1 → r1 → · · · → aT → oT → rT , where the generation of each at is conditioned
on the cumulative interaction history up to time t, and actions are taken based on the initial plan π0.
This process can be modeled as a partially observable Markov process where the next state depends
on a latent system state and the action taken. This formalization serves as the foundation for defining
and analyzing trajectory deviation attacks in the subsequent section.

Memory Since LLMs are bounded by limited context windows, external memory modules are
integrated to persist relevant state and history across iterations. Memory stores past tool outputs,
reflections, and intermediate decisions, allowing the agent to maintain long-term coherence. The
memory component may be episodic (replaying full histories) or selective (retrieving relevant past
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interactions), and is often governed by retrieval heuristics or similarity metrics. In some implemen-
tations, the agent decides whether and how to retrieve memory entries at each step, introducing a
form of non-Markovian control atop an otherwise Markovian trajectory.

B EXAMPLE OF TARGETED TRAJECTORY MANIPULATION ATTACK

In this appendix, we provide a example of a targeted trajectory manipulation attack in a financial
decision-making task, illustrating how adversarial tool outputs can distort intermediate reasoning
steps and drive an agent toward attacker-chosen outcomes.

Figure 4: Illustration of a targeted trajectory deviation attack in a financial decision-making task.
The benign trajectory (green) reflects a normal reasoning process, while the manipulated trajectory
(red) demonstrates how adversarial tool outputs can bias intermediate reflections and drive the agent
toward an attacker-chosen investment.

Figure 4 presents a walkthrough of how targeted trajectory deviation (TTM) manifests in an agentic
LLM system tasked with stock investment. The example is framed as a financial decision-making
scenario in which the agent is allocated a budget of $100,000 and instructed to purchase stocks with
projected growth above 10% over the next 30 days.

On the benign trajectory (left, shown in green), the agent follows a standard
Plan–Act–Observe–Reflect loop. It begins by formulating a research plan, uses a web search
to retrieve analyst predictions, and reflects on the credibility of the gathered information. Based
on the retrieved evidence, price targets, consensus estimates, and fundamentals, the agent assesses
which stock presents the most promising opportunity. The cycle reflects a genuine and rational
decision process: each observation aligns with real investment data, reflections are cautious and
evidence-based, and the final investment recommendation corresponds to a defensible choice.

By contrast, the manipulated trajectory (right, shown in red) demonstrates how a single compro-
mised tool can subvert the entire reasoning chain. Instead of benign search results, the adversary
injects manipulated outputs from the query investment database tool. These outputs, while syn-
tactically well-formed and superficially consistent with typical financial analysis, are adversarially
crafted to highlight a particular stock (e.g., ABC) with exaggerated growth potential. The injected
reflections further reinforce the plausibility of the claim, citing fabricated but authoritative-sounding
support such as “SEC-approved analysis” or “top investment firms.”

When the agent integrates these manipulated responses into its reasoning process, it treats them
as trustworthy evidence. The reflection stage no longer questions the validity of the information;
instead, it confidently frames ABC as the optimal investment. Ultimately, the agent allocates the full
$100,000 budget to ABC, an outcome entirely orchestrated by the attacker.

This example underscores the potency of trajectory-level manipulations. Unlike prompt injection
attacks that corrupt the initial query, TTM exploits the iterative nature of agentic LLMs by targeting
intermediate reflections and observations. The attack remains stealthy, as each corrupted response is
individually plausible, yet the cumulative effect systematically derails the reasoning trajectory. The

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

result is a subtle but decisive shift: from a balanced, evidence-driven strategy to a predetermined
adversarially chosen action.

Such attacks are particularly concerning in high-stakes domains like finance, healthcare, or policy
analysis, where agents are expected to handle sensitive data and where incorrect or adversarially
biased outputs can lead to significant real-world harm. This example demonstrates not only the
technical feasibility of TTM but also its broader implications for the trustworthiness of agentic LLM
systems.

C TARGETED TRAJECTORY MANIPULATION ATTACK OPTIMIZATION
ALGORITHM

In this appendix, we present our proposed TTM attack algorithm. Given a task τ , the goal of the
TTM-Optimization procedure aims to generate a manipulated observation õ⋆

t that can successfully
mislead the victim agent while maintaining plausibility. Algorithm 1 presents the optimization pro-
cedure, which begins by constructing a reference trajectory T̂ using the test agent under the original
task input. This trajectory, together with the task specification, is then used to build a context C that
captures the agent’s expected reasoning path.

Based on this context, a set of candidate payloads P is retrieved through similarity search from the
datastore using a hierarchical navigable small world graph-based algorithm (HNSW) (Malkov &
Yashunin, 2018). We craft the candidate payloads manually for each domain of attacks. For each
payload in P , the algorithm forms a manipulated observation õt and computes the composite loss
Ltotal, defined as the sum of perplexity and entropy losses of the trajectory ⟨C , õt⟩. The manipulated
observation is then tested by running the attack agent under task τ . If the attack succeeds, the pair
(õt ,Ltotal) is added to the score set S .

If the initial attempt fails, the algorithm proceeds to refine the payload through up to two mutation
rounds. We chose two as our experiments proved that more than 2 mutations for the majority of case
studies led to rejection of the attack by the model. At each round, the payload is mutated, a new
manipulated observation is generated, and the same evaluation process is applied. If any mutated
variant yields a successful attack, it is added to S and the mutation loop terminates early.

After iterating over all candidate payloads (and their possible mutations), the algorithm selects the
adversarial observation with the lowest loss from S. This optimized observation õ⋆

t is then returned
as the injected output to the victim agent. In this way, the TTM-Optimization algorithm systemati-
cally explores candidate manipulations while balancing plausibility and destabilization, ensuring an
effective yet minimally detectable attack.

D TOWARD CRYPTOGRAPHIC INTEGRITY DEFENSES

To provide a strong and deterministic safeguard against the attacks presented in this work, we pro-
pose a cryptographic mechanism that enforces the structural integrity of the agent’s reasoning trajec-
tory. Below, we present a keyed hash chaining scheme that binds each action–observation–reflection
tuple to its position and history, ensuring that adversaries cannot inject or reorder steps without de-
tection.

Let each step of the agentic loop be the tuple zt = (at , ot , rt) for t = 1 , . . . ,T , where at is the
action, ot the observation, and rt the reflection. Let K be a secret key shared by the trusted orches-
trator and verification point, and let MAC : {0, 1}∗×K → {0, 1}λ be a UF-CMA secure message
authentication code (e.g., HMAC). We define a per-step chained cryptographic tag

ht = MAC
(
⟨t ∥ zt ∥ ht−1⟩, K

)
A step (zt , ht) is accepted iff ht verifies under K and recomputation using the previously accepted
ht−1 matches the provided tag; otherwise it is rejected and the trajectory is aborted. This con-
struction yields: (1) injection resistance-without K , an adversary cannot synthesize a valid (z̃t , h̃t)
not previously output by the signer; (2) splicing/reordering resistance: the inclusion of t and ht−1

binds position and history, so reusing a valid pair in a different location fails verification; and (3)
tamper evidence, any bit-level modification of zt invalidates ht . The runtime overhead is linear in
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Algorithm 1: TTM-Optimization
Input : Task τ ;
Output: Injected observation õ⋆

t .
// run test agent to construct normal reference trajectory

1 T̂ ← RunTestAgent(τ)
// build context based on task and normal reference trajectory

2 C ← BuildContext(τ, T̂)
// retrieve candidate A/O/R payloads based on similarity search

3 P ← RetrievePayloads(C, τ)
4 S ← ∅
5 foreach payload ∈ P do

// combine context with A/O/R payload and form manipulated
observation

6 õt ← FormObservation(C , payload)
// calculate Ltotal

7 Ltotal ← Perplexity(⟨C , õt⟩) + Entropy(⟨C , õt⟩)
8 y ← RunAttackAgent(C, õt,τ)

// keep adding mutated observation up to 2 times
9 mutationBudget ← 2

10 k ← 0
11 while k < mutationBudget do
12 payload ← payload ∪ Mutate(payload)
13 õt ← FormObservation(C , payload)
14 Ltotal ← Perplexity(⟨C , õt⟩) + Entropy(⟨C , õt⟩)
15 y ← RunAttackAgent(C , õt , τ)

// If the attack is successful, add the injected
observation and loss to score set S

16 if AttackSuccessfull(Success(y)) then
17 S ← S ∪ (õt ,Ltotal)
18 break
19 k ← k + 1

// pick the attack with the lowest loss
20 õ⋆

t ← PickBest(S)
// send as the tool’s response to the victim

21 ReturnToVictim(õ⋆
t )

the serialized size of zt (one MAC per step). In simple terms, this scheme works like a running
integrity seal: each step of the trajectory is signed with a secret key and chained to the previous
step’s tag. If an attacker tries to inject, remove, or reorder any action–observation–reflection tuple,
the chain breaks and verification fails. Only an entity with the secret key can produce valid tags,
making unauthorized modifications immediately detectable. This defense specifically counters out-
of-band insertion or alteration of action–observation–reflection tuples in the call chain; it does not
prevent semantically misleading yet authentically signed observations from compromised tools, and
therefore complements content-level checks (e.g., plausibility, cross-source verification) rather than
replacing them. Secure key management and an uncompromised signing enclave (e.g., within the
orchestrator) are assumed. This provides a lightweight, deterministic integrity layer alongside the
anomaly-based defenses we evaluate. Importantly, to your knowledge, no agentic LLM framework
provides this mechanism as a built-in feature.

E CASE STUDIES

This appendix describes the four case studies and illustrates how the attacks manifest across domains
with workflows. Additionally, Table 2 summarizes these case studies.
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Table 2: Summary of the four case studies. Each case study reflects a distinct application domain
for agentic LLM systems.

Acronym Case Study Description

DMS Document Management
System (AutoGen)

Multi-agent workflow for authoring, routing, and approving sensi-
tive documents.

PA Pharmacy Advisor
(LangGraph)

Agentic system for medical recommendation and drug dispensing.

SA Shopping Assistant
(AutoGen)

Automated consumer purchase workflow using recommendation
and checkout APIs.

IA Investment Advisor
(AutoGen)

Finance-oriented agent for market screening and trading, with in-
vestment projections and order placement.

Document Management System Document Management System(DMS) models a multi-agent
workflow for authoring, routing, and approving sensitive documents in an enterprise repository.
This case study is directly inspired by a grant proposal approval workflow application (Dubroven-
ski et al., 2023) with fine-grained access control. In the new multi-agent setting, the workflow is
coordinated by specialized agents that collectively ensure policy-compliant document handling. A
single “author” agent prepares a submission package (metadata, attachments, budget/labels) and
hands it off to a small committee of domain reviewers, a finance or risk gate, an executive approver,
and finally a records administrator. The system exposes three families of tools to all agents in
an action–observation–reflection loop: (i) repository services for uploading/downloading files and
reading prior versions or comments; (ii) directory/registry queries for policy checks (e.g., required
reviewers, budget thresholds, regulated content flags); and (iii) workflow actions that record deci-
sions and forward the artifact to the next role. After every tool call, agents must emit an explicit
<reflection> explaining how the observation changes their belief and what handoff or action
follows, making the full trajectory auditable and, critically for our study, susceptible to mid-course
manipulation.

In benign runs, the author submits a complete package, domain reviewers add comments and ap-
prove, finance validates limits, the executive signs, and the administrator archives and notifies stake-
holders. We instantiate this pattern with concrete roles (author; two independent domain review-
ers; business/finance; compliance; executive approver; final administrator) using an AutoGen-style
swarm that supports directed handoffs and tool-invoked state changes. This implementation lets us
vary routing logic (e.g., parallel vs. sequential reviews), enforce mandatory checks (budget caps,
agency/department rules, regulated-content flags), and toggle redundancy (single vs. dual review-
ers).

The adversarial setting surfaces the core risk of trajectory deviation. Because agents treat repos-
itory/tool responses as authoritative, a single manipulated observation, such as (1) a tampered
metadata lookup that mislabels the document’s category, (2) a forged registry response that claims
the budget is under the cap, or (3) a fabricated reviewer summary that appears fluent and policy-
consistent, can redirect the handoff path (e.g., skipping finance), induce an incorrect outcome (ap-
proval of a non-compliant document), or deterministically push a targeted decision (approval with
a specified label). Across design variants (strict validation with redundant checks versus minimal
oversight), we consistently observe that carefully crafted, semantically plausible tool responses alter
downstream reflections and decisions while evading perplexity/entropy anomaly screens. This case
study thus demonstrates how multi-agent document workflows, though modular and auditable, re-
main vulnerable when intermediate observations are untrusted, underscoring the need for end-to-end
integrity of the entire action–reasoning trajectory.

Pharmacy Advisor Pharmacy Advisor(PA) is an agent-based framework for medical recommen-
dation and drug distribution in a clinical setting. The system is designed to simulate realistic work-
flows in which a patient issues a request, the agent must retrieve and evaluate medical knowledge,
cross-reference available inventory, and then issue a final recommendation with optional dispens-
ing of medication. Unlike static dialogue models, this framework explicitly incorporates dynamic
action–observation–reflection cycles, where every tool call not only contributes raw data but also
alters the internal reasoning state of the agent through structured reflection.
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In practice, the framework enables both benign and adversarial scenarios. For benign cases, a pa-
tient complaint such as “I have a severe headache, kindly recommend and give me medication”
results in a structured reasoning path: the agent queries the medical database, discovers a common
recommendation such as aspirin, verifies inventory levels, and, if available, issues a distribution
command. However, the adversarial dimension emerges when the medical database returns mis-
leading but linguistically fluent outputs, such as suggesting morphine as an over-the-counter solu-
tion for headaches. Because the reflection mechanism treats the tool’s response as authoritative, the
manipulated observation propagates through subsequent reasoning steps, biasing the agent toward
recommending an unsafe or attacker-preferred treatment.

We implemented multiple design variations of this case study to explore different failure and success
modes. Each variation modifies the interplay between knowledge retrieval, availability checking,
and distribution confirmation, ranging from systems with strict validation (high plausibility thresh-
olds and redundant checks) to systems with minimal oversight. Across all variations, we observed
that a single manipulated observation could deterministically alter the agent’s outcome, demonstrat-
ing the existential risk of trajectory deviation in medical contexts. In particular, the experiments
reveal that conventional anomaly detection methods based on perplexity or entropy fail to capture
such attacks, as adversarial responses are both fluent and domain-consistent.

Shopping Assistant Shopping Assistant(SA) instantiates an automated web-task workflow for
consumer purchases, where a single agent plans, browses, compares, and checks out items end-
to-end. The agent operates in an explicit action–observation–reflection loop and is restricted to two
tools: (i) a recommendations API that returns vendor/brand suggestions and short justifications, and
(ii) a purchase endpoint that executes a checkout given a product and amount. The system enforces
structured planning (“Plan → Execute+React → Reflection”) and requires <reflection> anno-
tations after every tool call, making the full decision trajectory observable and therefore amenable
to mid-trajectory manipulation.

In benign runs, a user request triggers a plan that queries recommendations, evaluates them against
the user’s preferences and budget, selects a candidate product, and invokes the purchase tool. Re-
flections justify each transition (e.g., “the suggestion matches budget and brand preference; proceed
to checkout”), providing a transparent audit trail typical of autonomous web agents that sequence
multiple web actions (comparison, cart updates, payment).

Investment Advisor Investment Advisor(IA) captures an automated web–finance workflow for
screening market signals and executing trades via brokerage-style APIs. A single agent operates
in a strict action–observation–reflection loop with two tools: (i) an investment “database” API that
returns narrative projections and justifications, and (ii) an order-placement endpoint that executes a
buy given a ticker and notional. The system mandates structured planning (“Plan → Execute+React
→ Reflection”) and requires <reflection> annotations after each tool call, so every observation
explicitly updates the internal belief state before the next action.

In benign runs, a user request triggers a plan that queries the database, interprets the response against
the budget, selects a candidate ticker, and invokes the trading tool. Reflections document why the
candidate meets the stated constraints (budget, plausibility of rationale) and whether further checks
are needed, mirroring common automated web tasks in finance such as feed ingestion, signal vetting,
and API-based order submission.

F IMPACT ON PERPLEXITY AND ENTROPY LOSSES

Figure 6 quantifies the effect of targeted trajectory manipulation attacks on model perplexity rela-
tive to ground-truth executions. Across evaluation cases, nearly all points lie above the diagonal,
demonstrating that adversarial perturbations reliably inflate perplexity and thereby reduce align-
ment with the intended reasoning trajectory. Moreover, second-order mutations (n=2) consistently
induce larger shifts than first-order mutations (n=1), highlighting the compounding destabilization
introduced by deeper adversarial edits.

Importantly, the outcome reveals a strong correlation between perplexity shifts and adversarial suc-
cess: successful attacks (green) are concentrated in regions of elevated mutation perplexity, whereas
failed attempts (red) cluster closer to the baseline. This separation underscores perplexity as a
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Figure 5: Scatter plot of ground truth vs. mutated entropy for two mutation strategies. Circles
indicate mutant n=1 and triangles mutant n=2, with attack outcomes color-coded (green = success,
red = failure). The dashed line denotes the no-change baseline.
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Figure 6: Scatter plot of ground truth vs. mutated perplexity (PPL) for two mutation strategies.
Circles indicate mutant n=1 and triangles mutant n=2, with attack outcomes color-coded (green =
success, red = failure). The dashed line denotes the no-change baseline.

lightweight but discriminative signal for detecting trajectory deviations, providing quantitative evi-
dence that adversarial manipulations exploit and measurably degrade the model’s certainty.

Figure 5 quantifies the effect of trajectory mutations on model entropy relative to ground-truth exe-
cutions. As with perplexity, the majority of points fall above the diagonal, indicating that adversarial
mutations systematically increase entropy and thereby inject greater uncertainty into the agent’s rea-
soning process. Second-order mutations (n=2) tend to produce larger entropy shifts than first-order
mutations (n=1), reinforcing the observation that deeper adversarial edits introduce compounding
destabilization.

G THE USE OF LARGE LANGUAGE MODELS

The authors utilized large language models to help with polishing the writing of this article.
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