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Abstract

In this paper, we study the changes in the atten-
tion behavior of large language models (LLMs)
when used to understand natural conversa-
tions between humans (human-human conver-
sations). By analyzing metrics such as atten-
tion distance, dispersion, and interdependency
across these domains, we highlight the unique
challenges posed to LLMs by conversational
data. Our findings reveal that while language
models exhibit domain-specific attention be-
haviors, there is a significant gap in their ability
to specialize in human conversations. Through
detailed attention entropy analysis and t-SNE
visualizations, we demonstrate the need for
models trained with diverse, high-quality con-
versational data to enhance understanding and
generation of human-like dialogue.

1 Introduction

Understanding natural language is a cornerstone
of artificial intelligence, with transformer-based
large language models (LLMs) representing a sig-
nificant leap forward in this effort (Vaswani et al.,
2017; Minaee et al., 2024). These models have
shown remarkable proficiency across a range of lin-
guistic tasks, yet their performance varies widely
across different types of data. Domain-specialized
LLMs have shown greater effectiveness than gen-
eral LLMs in various specialized settings such as
code (Roziere et al., 2024; Li et al., 2023), math
(Azerbayev et al., 2024), finance (Wu et al., 2023),
and medicine (Labrak et al., 2024; Nazi and Peng,
2023). However, there has been less focus on natu-
ral human-human conversations, which embody a
rich collection of nuances, contexts, and unspoken
cues (Tur and Hakkani-Tiir, 2011). We perform a
comprehensive analysis of how transformer-based
LLMs — embodied in this work by the LLaMa-2
13b (Touvron et al., 2023b) model — process and
interpret human conversations in relation to other

data such as web content, code, and mathematical
texts.

Formal "textbook" conversations — such as those
taught in classroom settings to analyze conversa-
tional structures — do not typically exhibit the same
characteristics as speakers engaged in speaking and
communicating naturally (Rings, 1986). Spoken
conversations are spontaneous; and to operate ef-
fectively in conversations, the knowledge of the
participating entity has to stretch far beyond mere
awareness of sounds and words. As a result of
years of evolution and social environments where
the use of language in conversation is practiced
daily, humans can structure and build conversa-
tions appropriate to any situation without much
formal training, and adapt to changing norms with
time (Pridham, 2013). These emergent traits are not
prevalent or immediately apparent in documents
or articles which constitute a large portion of web
data; or in other domain-specific corpora like code.

In this work, we begin by analyzing the pro-
portion of authentic human-human conversations
in the web data used to (pre)train state-of-the-art
LLMs. Our analysis finds that authentic human
conversations are rare in occurrence on the web,
and the vast majority of “conversation data” merely
refers to textbook conversations. Our investigation
centers on three key aspects: attention distance, dis-
persion, and interdependency within different data
domains. Through quantitative analysis of atten-
tion entropy and qualitative inspections of attention
patterns, we seek to understand the intricacies of
model behavior across domains. We also employ
t-SNE visualizations to compare the hidden state
representations of language models when exposed
to different types of data, allowing us to visually
assess how domain-specific characteristics are en-
coded within models, offering insights into their
ability to distinguish and adapt to varied linguistic
challenges.



2 Human-Human Conversations

The majority of human-human conversations are
conducted in spoken language rather than via writ-
ten texts. Natural human conversation is an in-
teractive exchange between two or more people,
with a format that can be one-on-one or between
multiple people. Examples of such interactions
include chats between family or friends, at work,
or in the public domain; and can be conducted ei-
ther face-to-face or virtually. Conversations, how-
ever, are far more than just the words that they
are made up of (Pridham, 2013). The textual rep-
resentation of a spoken conversation misses sig-
nificant information from the speech and visual
channels/modalities. Speech contains information
about the speaker in terms of their emotions, in-
telligence, age, psychological traits, etc. (Spirina
et al., 2016). The combination of information in
visual and speech channels is manifested through
body language and gestures and their intensities;
and prosodic features such as speed, intonation,
speed, amplitude, silence, and laughter. However,
the textual representation of spoken language con-
tributes primarily to the meaning and knowledge of
the thought in the exchange, while indirectly mod-
eling subtle cues from the speech and visual modal-
ities. Understanding conversation in its complete
sense requires understanding the purpose behind
the words and the situational, emotional, social, and
contextual understanding established in the conver-
sation and their evolution until a specific point in
the conversation (Pridham, 2013).

2.1 Characteristics of Human Conversations

Human-human conversations are distinguished by
several key characteristics:

Interactivity: Unlike static web data, human con-
versations are highly interactive, with participants
actively responding to and building upon each
other’s contributions. This interactivity involves
turn-taking, feedback signals (e.g., nodding, "uh-
huh"), and adjustments in discourse based on the
other participants’ responses.

Contextuality: Conversations are deeply embed-
ded in specific contexts, which include physical
surroundings, social relationships, cultural back-
grounds, and the participants’ shared history. This
context influences not only the content but also
the form of the conversation, including language
choice, tone, and register. In contrast, domains like
code or mathematics are characterized by a high

level of abstraction, process, and standardization,
where context plays a minimal role in the interpre-
tation of the data.

Adaptability: Participants in a conversation con-
tinually adjust their speech based on immediate
feedback from their interlocutors. This adaptabil-
ity covers a wide range of aspects, from changing
topics smoothly to modifying speech patterns for
clarity or emphasis. Such dynamic adjustments are
specific to human interactions and are not found in
structured data domains like code, where the syntax
and semantics follow rigid, predefined rules.

Emotional and Psychological Dimensions: Con-
versations convey not just factual information but
also emotional and psychological states. Through
tone, pace, volume, and choice of words, speakers
can express a wide range of emotions and attitudes.
These nuanced emotional layers add depth to hu-
man conversations that are typically absent in other
data domains, where emotional expressiveness is
either irrelevant or vastly simplified.

2.2 Human Conversation Data on the Web

The majority of the content on the internet is in
the form of articles, documents, blogs, and fo-
rums where information is structured. Authentic
human conversations are drastically less in propor-
tion to written content in the web data. It has been
challenging to find authentic human-human conver-
sation data publicly that can be used for training
models due to copyright, privacy, and intellectual
property concerns. We analyze the web data from
CommonCrawl (Common Crawl, 2023) dumps for
human conversation data and the types of conver-
sations in Table 1. We randomly sample a sub-
set of the dump and deduplicate it so that it can
be used to approximate the data distribution be-
tween human conversations versus the rest of the
data. We fine-tune a BERT (Devlin et al., 2018)
model for document classification using ~194K
samples containing human conversations and non-
conversational documents in equal amounts. We
find that natural human conversations are rare in the
web domain: even accounting for the upper-bound
4-0.0043% error from Table 1, such conversations
only account for a maximum of ~ 0.0128% of the
total data.

3 Related Work

Recent studies have shown the intricate ways in
which various models, including Transformers and



Type Percentage Err.
Written/Documents 99.9915%  +0.0043%
Human Conversations 0.00849%  +0.0043%

Table 1: Distribution between Human Conversations
and Written/Document data in CommonCrawl.

recurrent neural networks, encode dependency rela-
tions within texts (Hewitt and Manning, 2019; Ra-
ganato and Tiedemann, 2018). Transformer models
have been found to most effectively capture de-
pendency relations within their middle layers (Liu
etal., 2019).

Analysis of the attention distance within decoder-
only transformer models (Vig and Belinkov, 2019)
has provided evidence supporting the hypothesis
that deeper layers capture longer-distance relation-
ships. This is a measurement of the mean distance
spanned by attention for each head; and is calcu-
lated as the average distance between token pairs
in all samples in the dataset, weighted by attention
between the tokens:
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The exploration of attention dispersion and entropy
as measures of how attention is distributed across
tokens offers additional insights into the mecha-
nisms through which models understand and pro-
cess patterns in language:

Entropy, (z;) = Za” ) log(ai j(z)) (2)

This body of work sets a context for our inves-
tigation into the unique characteristics of human-
human conversations, comparing these dynamics
against the backdrop of general web corpora, in-
cluding articles, blogs, forums, and specialized do-
mains such as mathematics and programming. Un-
derstanding the nuances of how models encode
dependency relations and manage attention across
different types of text is crucial in distinguishing
the specifics of human conversational patterns.

Finally, the analysis conducted in this paper is
similar in spirit to the work in the mutlilingual
(large) language model (MLLM) community on
the effect of using models trained on higher re-
source languages and datasets with data from lower
resource settings. In one effort (Joshi et al., 2020),
the authors identify the lack of linguistic diversity

when training models — similar to the lack of diver-
sity in data type when training LLMs, which is the
focus of our present study; while in another (Rust
et al., 2021), a detailed empirical analysis is pro-
vided to show the differences between different
languages. We take inspiration from these efforts
for our attention-centric study of language models
and the content used to train them.

4 Analysis

4.1 Attention Distance Difference

Analyzing the difference between the attention dis-
tances as defined in Equation (1) can provide a
better way to gain insights into how language mod-
els form relationships, especially longer-distance
relationships in deeper layers by focusing on the
difference between attention distances.

Given two domains, D1 and Do, with their re-
spective sets of texts X D1 and X P2, the attention
distance for each domain is calculated as:
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(3)
for k = 1,2, where «; ;(x) is the attention weight
from token 7 to token j in text z, and |z| is the
length of text x.

The difference in attention distance between the
two domains can then be defined as:

AD, =D - D" (4)

This measure, AD,, quantifies the difference in
how attention spans across tokens vary between
the two domains, providing insights into the struc-
tural differences in how information is processed
and dependencies are captured in texts from D;
compared to Ds.

By analyzing AD, we can find insights into
domain specificity in transformer models by under-
standing how transformer models adapt their atten-
tion mechanism to structural and contextual differ-
ences between various domains. We can also iden-
tify if models tend to focus on closer or more dis-
tant token relationships when dealing with human-
human conversations as opposed to more structured
and document-oriented content. Positive values of
difference in attention distance indicate that the at-
tention distance in the second domain is longer than
the first domain, whereas negative values indicate
that it is shorter. Positive differences in the middle
and end layers indicate more complex relationships



requiring longer dependencies, and positive differ-
ences in the initial layers indicate longer syntactic
and semantic relationships in the sequence tokens.

4.2 Attention Dispersion

We also calculate the entropy of the attention distri-
bution based on Equation (2) to measure the atten-
tion dispersion. This provides insights into how
domain-specific characteristics and the model’s
training influence its learning and processing strate-
gies. High entropy is not always desirable, as it is
indicative of a lack of focus or understanding. Sim-
ilarly, very low entropy might suggest overfitting to
specific tokens or phrases, potentially reducing the
model’s ability to generalize across varied inputs
within the domain. We perform a comparison of at-
tention dispersion between domains to understand
the robustness of the model’s understanding of a
domain.

High Entropy Domain: A higher entropy in the
attention distribution of a domain means that the
model finds the information in that domain more
uniformly informative or relevant, without spe-
cific tokens or phrases standing out as significantly
more important than others. This suggests that the
domain is more complex or less familiar to the
model, leading it to distribute its attention more
evenly rather than clearly identifying key informa-
tion. This would also indicate more variety and
ambiguity in how information is presented, requir-
ing broader focus to capture the necessary context
for understanding.

Low Entropy Domain: Domains with lower en-
tropy in the attention distribution indicate that the
model is focusing its attention more narrowly on
specific tokens. This suggests that the model has
learned to identify key tokens or phrases that are
particularly informative or relevant for understand-
ing or performing tasks in such a domain. The
domain is more structured or contains clearer cues
that the model can exploit to make predictions or
understand content. It also reflects a higher level
of familiarity or specialization of the model in this
domain, allowing it to more effectively pinpoint
the most relevant information.

4.3 Interdependency Analysis

Analyzing interdependencies between various as-
pects of text from different domains provides in-
sights into underlying structures, patterns, and dy-
namics of information in domains such as commu-
nication, written documents, and code. We devise

a novel metric — the Interdependency Factor (IF) —
to quantify the degree of interdependency between
various aspects of the data, as long as they can be
modeled in a graph as nodes along with directed
edges between them. This is intended to indicate
the overall complexity of the domain along specific
aspects. Aspect in this context refers to any derived
or absolute representation in a sequence. In this
analysis, we use a tokenized representation of text
in the domain. However, it can be useful to use
higher-level segmentation such as themes that can
be common across different domains. When this is
not possible or the dependency is modeled at more
granular levels by systems such as language mod-
els, a lower-level representation (such as tokens)
can be used, where the weights on the edges are
attention values (Vig and Belinkov, 2019) between
the tokens modeled by the transformer (Vaswani
et al., 2017) language model layers.

The Interdependency Factor (IF) is defined as
follows: given a dataset of text samples, a set N
represents all identified node candidate labels in
the graph, where each node n; € N represents a
distinct aspect value. To analyze the interdepen-
dencies among these nodes, we construct a directed
graph G = (V, E'), where V' corresponds to the set
of vertices, with each vertex representing a node
in N, and F represents the set of directed edges
between these vertices. Each edge (n;,n;) € £
is associated with a weight w;;, quantifying the
strength or frequency of the transition or relation-
ship from node n; to node n;.

The adjacency matrix A of graph G is defined
such that each element a;; within A corresponds to
the weight w;; of the edge from n; to n;. The In-
terdependency Factor IF is then defined as follows:
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This calculates the I F' by averaging the weights
of all directed edges in the graph, excluding self-
transitions (where ¢ = j). The normalization factor,
|N|? — | N|, accounts for the total number of pos-
sible directed transitions between different nodes,
ensuring that the /F' remains a relevant measure
of interdependency across datasets of varying sizes
and complexities. In cases where the weights are
not available or not computable, 0 and 1 should
be used to indicate the absence and existence of a
dependency between two aspects.



5 Experimental Setup

5.1 Domain Datasets

In our analysis, we focus primarily on English data
across the domains of human-human conversation,
web, and math. Code data is randomly sampled
across a variety of programming languages. We use
1000 samples from each domain in our analysis.

Human-Human Conversations: In our study, a
wide range of real-life natural conversations be-
tween humans across various business and casual
settings is used. Scripted conversations such as
movie scripts, and single-person presentations or
talks are not included. Key aspects such as context
dependencies, emotional expressiveness, idiomatic
usage, and integration of general and localized or
private knowledge are the focus. The data used for
human conversations is a set of real conversations
between people, processed using a conversation in-
telligence platform (omitted for blind review), and
anonymized by replacing PII and PCI information
with synthetic data.

Web Data: Data from the internet containing vari-
ous types of content such as blog posts, news arti-
cles, forums, social media content, etc. is generated
using a randomly sampled subset from the Com-
monCrawl (Common Crawl, 2023). We perform
a preliminary data cleanup to remove unnecessary
HTML tags, and deduplicate to ensure the entries
are unique.

Code: Source code from various programming lan-
guages, each with unique syntax and semantics, is
used. The focus is on the structure and logic ex-
pressed in code, which contrasts with the unstruc-
tured and mostly informal nature of human-human
conversations. The code data is curated from the
GitHub dataset (Codeparrot, 2022).

Mathematics: Mathematical expressions, prob-
lems, and proofs across different fields of math-
ematics make up this domain — derived from the
Proof Pile 2 corpus (Azerbayev et al., 2023) — high-
lighting the abstract, precise, and symbolic charac-
teristics of mathematical communication.

5.2 Language Model

We use a pretrained decoder-only transformer lan-
guage model — LLaMa-2 13b (Touvron et al.,
2023b) — for analyzing attention patterns and em-
beddings at various layers and heads. This model’s
architecture contains 40 layers and 40 attention
heads. Although exact details of the LLaMa-2

model are not indicated in the accompanying tech-
nical report (Touvron et al., 2023b), the model
was trained on data that is similar to the LLLaMa-
1 models (Touvron et al., 2023a). This enables
our assumption that the model was trained on ap-
proximately 82% of data from web dumps from
CommonCrawl and C4, 4.5% of data from the
code domain from GitHub, and 2.5% of data from
ArXiv, which consists of scientific data with some
overlap with math. Apart from the data in the
web corpus, the rest of the data is distributed be-
tween Wikipedia, books, and StackExchange cor-
pora. After adjusting for the web corpus distribu-
tion based on our earlier analysis (c.f. Section 2.2),
the pretraining data of the model is expected to
have between ~ 0.0069618% and ~ 0.010496%
of human-human conversations.

6 Results

6.1 Attention Distance Difference Analysis

We calculate the mean difference in attention dis-
tances AD,, (c.f. Equation (4)) for each of the
human-human conversations, code, and math do-
mains; and compare each of these in turn against
general web data.

Figure 1: Heatmap of the Attention Distance Difference
matrix (AD,,) calculated for web data against human-
human conversations, code, and math.

Figure 1 shows heatmaps of the Attention Dis-
tance Difference by layer (Y-axis) and head (X-
axis), with one domain fixed as human-human con-
versations, code, and math respectively; and the
other domain as general data from the web. We
find significant differences in attention distances
in deeper layers when comparing human-human
conversations to web data. Higher values in these
layers indicate that human conversations necessi-
tate more robust modeling of long-term contextual
relationships than general web corpora. This is con-
sistent with the nature of human dialogue, where
the flow of information often spans across several
exchanges, requiring the model to maintain context
over extended sequences. The comparison with
code displays a distinctive pattern where higher
attention distances are observed in the initial half



of the layers, suggesting that models capture struc-
tural dependencies effectively in these stages. How-
ever, as we progress into deeper layers, there is a
reduction in these values, which suggests that at-
tention becomes more localized, focusing on closer
contextual relationships. This reflects the structural
and syntactic rigidity inherent in programming lan-
guages, where local context is often sufficient for
understanding many dependencies. Mathematical
texts exhibit a relatively even distribution of atten-
tion distances across layers when compared to web
data. This implies that mathematical texts, with
their symbolic and formulaic nature, require a bal-
anced approach where both local and long-distance
relationships are equally pertinent across all layers
of the model.
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Figure 2: Attention Distance Difference by Layer across

all heads calculated for web data against human-human
conversations (left), code (middle), and math (right).
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Figure 3: Attention Difference by Head across all layers

calculated for web data against human-human conversa-
tions (left), code (middle), and math (right).

D1 Do AD,
Human Conversations Web 10.3855
Code Web 4.6040
Math Web 4.7849

Table 2: Average attention distance difference between
human-human conversations, code, and math domains
with web data. A higher value indicates longer contex-
tual dependencies.

Almost all the layers exhibit approximately
equal differences in attention, with lower differ-
ences manifesting in the final layers (which are typ-
ically optimized for generation) as seen in Figure 2.
Differences in the initial layers are typical across
all domains, as syntactical and semantic modeling

representations of the model are different across
domains. However, more complex relationships
are modeled in the middle layers, where we see sig-
nificantly higher differences for conversation-web,
as compared against code-web and math-web pairs.
When compared by individual head in Figure 3,
the initial heads show very little difference from
the web domain; but the middle heads and heads
towards the end exhibit significant deviation from
the web domain. These differences in the middle
heads are less pronounced in the code and math
domains, which indicates that human-human con-
versation domain modeling tends to have higher
attention distances across most heads when com-
pared to code and math domains.

6.2 Attention Dispersion Analysis

To study the dispersion of attention across domain
data, we calculate the mean attention entropy (c.f.
Equation (2)) and analyze it by layer/head (Fig-
ure 4), as well as by layer alone (Figure 5) and head
alone (Figure 6) across all four domains considered
in this study: general web data, human-human con-
versations, code, and math.

(web)

Figure 4: Heatmap of mean attention entropy for web,
human-human conversations, code, and math domains
respectively.

In Figure 4, the heatmaps represent the entropy
by layer/head for web, human-human conversa-
tions, code, and math domains. Attention disper-
sion is highest in the human-human conversations
domain. This is consistent with the attention dis-
tance difference plot in Figure 1. From layer 22 to
layer 36, entropy is typically lower for web, code,
and math domains; however, the entropy is high in
multiple heads in these layers for human-human
conversations. In the conversation domain, for each



token, the model has to attend strongly to more to-
kens than in the rest of the domains — this indicates
higher complexity for the domain, which leads to
higher attention dispersion in the model while un-
derstanding that domain. It also suggests that the
model is less familiar with the human-human con-
versation domain, which can be explained by the
scarcity of training data in the domain distribu-
tion (c.f. Section 2.2). For web, code, and math
domains in comparison, the entropy is noticeably
lower. This indicates that the model has a more
robust understanding of these domains, and the
model can find an optimal attention strategy, reduc-
ing attention dispersion, which can be explained
by the considerable amount of data from these do-
mains that is reflected in the model’s pretraining
data (c.f. Section 5.2).
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Figure 5: Mean attention entropy by layer across all
heads with first token attention removed for web, human-
human conversations, code, and math domains respec-
tively. Higher values indicate more attention diffusion
in the layer.

We also plot the entropy by removing attention
to the first token in sequence, by layers and heads
separately, shown in Figure 5 and Figure 6 respec-
tively. We remove the first token’s entropy because
we find that the model adds redundant attention to
the first token which leads to high entropy, espe-
cially in the first layer. As shown in Figure 5, cer-
tain layers — specifically layers 27 and 29, which
are mid-layers of the model — have significantly
higher mean attention entropy compared to the rest
of the layers for the human-human conversation
domain. A similar pattern can be seen in Figure 6,
where heads 13, 25, and 38 have high entropy. For
web, code, and math domains, such high entropy
is not exhibited by the model, indicating that the
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Figure 6: Mean attention entropy by the head across
all layers with first token attention removed for web,
human-human conversations, code, and math domains
respectively. Higher values indicate more attention dif-
fusion in the head.

model has less familiarity with complex relation-
ships in the human-human conversation domain as
compared to others.

6.3 Attention Interdependency Analysis

We perform interdependency analysis between
human-human conversations and other domains
to gain deeper insight into the underlying struc-
tures that a model needs across these domains. For
human-human conversations and web data, we per-
form analysis using theme segmentation and de-
pendencies between themes within a conversation
or document, as well as a token-level analysis. We
perform only token-level interdependency analysis
for code and math data, as thematic analysis on
these domains does not provide much insight due
to their logical and rule-driven nature. We calcu-
late the average attention matrix across all samples
in the domain averaged across all attention heads
from the middle layer. We calculate I F' for these
domains to understand the overall interdependency
between tokens, with 512 tokens in each sequence
to get a quantitative evaluation of the interdepen-
dency by domain. This is shown in Table 3.

To further analyze the overall attention at each
token, the individual token’s weights can be calcu-
lated by aggregating the attention weights of the
token towards the rest of the tokens as shown in Fig-
ure 7. This provides us insights into how attention
patterns change across the text sequence by domain.
Fluctuations in weight by token index signify fre-
quent changes in overall attention strength, and



Domain OAE IF

Web 0.0083 100.207
Human Conversation 0.0098 141.869
Code 0.0083 106.466
Math 0.0085 110.848

Table 3: Column 2: Overall attention entropy (OAE)
averaged across heads and layers by domain. Column 3:
Interdependency Factor (IF) by domain, calculated for
N = 512 across all samples.

the value of weight indicates the overall strength
of attention, which is an aggregation of attention
values of the token attending to all other tokens.
Note that due to aggregation, the plot in Figure 7
no longer provides us with information about the
global or local interdependencies. Human-human
conversations require higher and longer attention
resulting in higher average weight as compared to
the rest of the domains.
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Figure 7: Normalized attention weights of interdepen-
dencies aggregated by the token for web, human-human
conversations, code, and math domains respectively.

6.4 Language Model Representation

To understand the representation of language mod-
els by domains, we use t-SNE (Van der Maaten and
Hinton, 2008) to visualize and compare the hid-
den state representations of the first, middle, and
last layers of the LLaMa-2 13b model (Touvron
et al., 2023a). Early layers in language models
learn the syntactic and semantic relationships in
the sequences, and in deeper layers complex rela-
tionships are modeled capturing abstract and higher
level understanding (Jawahar et al., 2019; Hao et al.,
2021). In Figure 8, the representation of the first

layer across domains is relatively close, with clear
boundaries in the clusters, given that the semantic
features of most of the language-based domains
are mostly similar. The middle layer representation
shows some overlap in web and code data, but a
clear and quite significant distance between human-
human conversations and math data. We continue
to see a similar pattern in the last layer, with slightly
better separation in web and code while conversa-
tions and math data continue to be distant. This
shows that for a language model trained on a gen-
eral corpus, containing data from various domains,
the domain-specific learnings converge differently.

Figure 8: t-SNE plot of the first, middle, and last layers
of the LLaMa-2 13b model by domains.

7 Conclusion

In this study, we examined how transformer-based
language models (using LL.aMa-2 13b as a repre-
sentative) process natural human conversations in
contrast to web content, code, and mathematical
texts. We found a general lack of sufficient repre-
sentation of human-human conversations in web
data, which is the largest constituent of pretrain-
ing data in most current large language models.
Our findings highlight that human-human conver-
sational data challenges a(ny) model into manag-
ing long-term contextual relationships and depen-
dencies across layers. Our analysis motivates the
importance of domain specialization in language
models to enhance their understanding and han-
dling of human conversations; and indicates that
training language models with a vast amount of
high-quality authentic human conversations is an
essential requirement in bridging the gap in model
performance.

8 Limitations

The major limitation of the work presented here
revolves around the number of models used in our
analysis. We used only on a single model — LL.aMa-
2 13b (Touvron et al., 2023b). There are a number
of potential shortcomings that arise from this. First,



while we expect that this model is representative of
most popularly used large language models today
and shares the same fundamental architecture, we
have no way of being completely certain that this
is the case. Second, since there is no reliable pub-
lic information about the exact data that was used
to train this open source model, we were forced
to make certain assumptions around this (see Sec-
tion 5.2).

Another limitation centers around the size of the
datasets that were used to evaluate attention in the
model chosen. In Section 5.1, we report the usage
of 1000 data samples per domain. Which these
data samples were chosen in as representative a
manner as possible — taking care to choose from
various programming languages for code, picking
across different kinds of internet content for web,
etc. — there is no clear way of ensuring that these
are indeed representative of these domains at large.

Finally, we acknowledge the limitation that
while much of our initial motivation is centered
around the rich, multimodal nature of human-
human conversations (which can include text, au-
dio/speech, and visual modalities), in this particular
paper, we are only able to analyse the text based
facets of this domain. Some of this can be ex-
plained by the relative paucity of widely available
multimodal large language models, particularly on
the audio side. However, there have been rapid ad-
vancements in this area as of the time of submitting
this paper, and it presents a very promising and
achievable avenue for future work.
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A Appendix
A.1 Attention Including First Token

As accompaniments to Figure 5 and Figure 6 in
the main body of the paper, we also provide the
corresponding plots without removing attention to
the first token. These are are shown in Figure 9 and
Figure 10 respectively.

Figure 9: Mean attention entropy by layer without re-
moving first token attention for web, human-human
conversations, code, and math domains respectively.

Figure 10: Mean attention entropy by head without
removing first token attention for web, human-human
conversations, code, and math domains respectively.

A.2 Qualitative Analysis

To get an intuitive sense of patterns exhibited by
specific layers and attention heads, we used a few
examples from each domain to visually inspect the
attention dispersion at each token in the example.
Examples for each domain showing the attention
entropy at each token in the example are shown in
Figures 11, 12, 13, and 14. Several heads across
layers show similar attention dispersion across all
domains. However, certain heads show higher at-
tention dispersion in human-human conversations
as compared to other domains. We find that the
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Figure 11: Human-Human Conversation example high-
lighted for mean attention entropy at each token for
layer 34, head 7, showing the high attention diffusion
compared to web, code, and math examples.
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Figure 12: Web data example highlighted for mean
attention entropy at each token for layer 34, head 7.
Attention diffusion is significantly lower as compared to
the human-human conversation as shown in Figure 11.

initial layers have high entropy across all domains,
whereas the middle and last layers have relatively
high entropy in human-human conversations, as
compared to web, code, and math domains also in-
dicated by the attention dispersion analysis results.
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Figure 13: Code example highlighted for mean atten-
tion entropy at each token for layer 34, head 7. Atten-
tion diffusion is significantly lower as compared to the
human-human conversation as shown in Figure 11 and
equivalent to the web example in Figure 12.
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Figure 14: Math example highlighted for mean atten-
tion entropy at each token for layer 34, head 7. Atten-
tion diffusion is significantly lower as compared to the
human-human conversation as shown in Figure 11 and
equivalent to the web example in Figure 12.
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