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Abstract

In this paper, we study the changes in the atten-001
tion behavior of large language models (LLMs)002
when used to understand natural conversa-003
tions between humans (human-human conver-004
sations). By analyzing metrics such as atten-005
tion distance, dispersion, and interdependency006
across these domains, we highlight the unique007
challenges posed to LLMs by conversational008
data. Our findings reveal that while language009
models exhibit domain-specific attention be-010
haviors, there is a significant gap in their ability011
to specialize in human conversations. Through012
detailed attention entropy analysis and t-SNE013
visualizations, we demonstrate the need for014
models trained with diverse, high-quality con-015
versational data to enhance understanding and016
generation of human-like dialogue.017

1 Introduction018

Understanding natural language is a cornerstone019

of artificial intelligence, with transformer-based020

large language models (LLMs) representing a sig-021

nificant leap forward in this effort (Vaswani et al.,022

2017; Minaee et al., 2024). These models have023

shown remarkable proficiency across a range of lin-024

guistic tasks, yet their performance varies widely025

across different types of data. Domain-specialized026

LLMs have shown greater effectiveness than gen-027

eral LLMs in various specialized settings such as028

code (Rozière et al., 2024; Li et al., 2023), math029

(Azerbayev et al., 2024), finance (Wu et al., 2023),030

and medicine (Labrak et al., 2024; Nazi and Peng,031

2023). However, there has been less focus on natu-032

ral human-human conversations, which embody a033

rich collection of nuances, contexts, and unspoken034

cues (Tur and Hakkani-Tür, 2011). We perform a035

comprehensive analysis of how transformer-based036

LLMs – embodied in this work by the LLaMa-2037

13b (Touvron et al., 2023b) model – process and038

interpret human conversations in relation to other039

data such as web content, code, and mathematical 040

texts. 041

Formal "textbook" conversations – such as those 042

taught in classroom settings to analyze conversa- 043

tional structures – do not typically exhibit the same 044

characteristics as speakers engaged in speaking and 045

communicating naturally (Rings, 1986). Spoken 046

conversations are spontaneous; and to operate ef- 047

fectively in conversations, the knowledge of the 048

participating entity has to stretch far beyond mere 049

awareness of sounds and words. As a result of 050

years of evolution and social environments where 051

the use of language in conversation is practiced 052

daily, humans can structure and build conversa- 053

tions appropriate to any situation without much 054

formal training, and adapt to changing norms with 055

time (Pridham, 2013). These emergent traits are not 056

prevalent or immediately apparent in documents 057

or articles which constitute a large portion of web 058

data; or in other domain-specific corpora like code. 059

In this work, we begin by analyzing the pro- 060

portion of authentic human-human conversations 061

in the web data used to (pre)train state-of-the-art 062

LLMs. Our analysis finds that authentic human 063

conversations are rare in occurrence on the web, 064

and the vast majority of “conversation data” merely 065

refers to textbook conversations. Our investigation 066

centers on three key aspects: attention distance, dis- 067

persion, and interdependency within different data 068

domains. Through quantitative analysis of atten- 069

tion entropy and qualitative inspections of attention 070

patterns, we seek to understand the intricacies of 071

model behavior across domains. We also employ 072

t-SNE visualizations to compare the hidden state 073

representations of language models when exposed 074

to different types of data, allowing us to visually 075

assess how domain-specific characteristics are en- 076

coded within models, offering insights into their 077

ability to distinguish and adapt to varied linguistic 078

challenges. 079
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2 Human-Human Conversations080

The majority of human-human conversations are081

conducted in spoken language rather than via writ-082

ten texts. Natural human conversation is an in-083

teractive exchange between two or more people,084

with a format that can be one-on-one or between085

multiple people. Examples of such interactions086

include chats between family or friends, at work,087

or in the public domain; and can be conducted ei-088

ther face-to-face or virtually. Conversations, how-089

ever, are far more than just the words that they090

are made up of (Pridham, 2013). The textual rep-091

resentation of a spoken conversation misses sig-092

nificant information from the speech and visual093

channels/modalities. Speech contains information094

about the speaker in terms of their emotions, in-095

telligence, age, psychological traits, etc. (Spirina096

et al., 2016). The combination of information in097

visual and speech channels is manifested through098

body language and gestures and their intensities;099

and prosodic features such as speed, intonation,100

speed, amplitude, silence, and laughter. However,101

the textual representation of spoken language con-102

tributes primarily to the meaning and knowledge of103

the thought in the exchange, while indirectly mod-104

eling subtle cues from the speech and visual modal-105

ities. Understanding conversation in its complete106

sense requires understanding the purpose behind107

the words and the situational, emotional, social, and108

contextual understanding established in the conver-109

sation and their evolution until a specific point in110

the conversation (Pridham, 2013).111

2.1 Characteristics of Human Conversations112

Human-human conversations are distinguished by113

several key characteristics:114

Interactivity: Unlike static web data, human con-115

versations are highly interactive, with participants116

actively responding to and building upon each117

other’s contributions. This interactivity involves118

turn-taking, feedback signals (e.g., nodding, "uh-119

huh"), and adjustments in discourse based on the120

other participants’ responses.121

Contextuality: Conversations are deeply embed-122

ded in specific contexts, which include physical123

surroundings, social relationships, cultural back-124

grounds, and the participants’ shared history. This125

context influences not only the content but also126

the form of the conversation, including language127

choice, tone, and register. In contrast, domains like128

code or mathematics are characterized by a high129

level of abstraction, process, and standardization, 130

where context plays a minimal role in the interpre- 131

tation of the data. 132

Adaptability: Participants in a conversation con- 133

tinually adjust their speech based on immediate 134

feedback from their interlocutors. This adaptabil- 135

ity covers a wide range of aspects, from changing 136

topics smoothly to modifying speech patterns for 137

clarity or emphasis. Such dynamic adjustments are 138

specific to human interactions and are not found in 139

structured data domains like code, where the syntax 140

and semantics follow rigid, predefined rules. 141

Emotional and Psychological Dimensions: Con- 142

versations convey not just factual information but 143

also emotional and psychological states. Through 144

tone, pace, volume, and choice of words, speakers 145

can express a wide range of emotions and attitudes. 146

These nuanced emotional layers add depth to hu- 147

man conversations that are typically absent in other 148

data domains, where emotional expressiveness is 149

either irrelevant or vastly simplified. 150

2.2 Human Conversation Data on the Web 151

The majority of the content on the internet is in 152

the form of articles, documents, blogs, and fo- 153

rums where information is structured. Authentic 154

human conversations are drastically less in propor- 155

tion to written content in the web data. It has been 156

challenging to find authentic human-human conver- 157

sation data publicly that can be used for training 158

models due to copyright, privacy, and intellectual 159

property concerns. We analyze the web data from 160

CommonCrawl (Common Crawl, 2023) dumps for 161

human conversation data and the types of conver- 162

sations in Table 1. We randomly sample a sub- 163

set of the dump and deduplicate it so that it can 164

be used to approximate the data distribution be- 165

tween human conversations versus the rest of the 166

data. We fine-tune a BERT (Devlin et al., 2018) 167

model for document classification using ∼194K 168

samples containing human conversations and non- 169

conversational documents in equal amounts. We 170

find that natural human conversations are rare in the 171

web domain: even accounting for the upper-bound 172

+0.0043% error from Table 1, such conversations 173

only account for a maximum of ≈ 0.0128% of the 174

total data. 175

3 Related Work 176

Recent studies have shown the intricate ways in 177

which various models, including Transformers and 178
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Type Percentage Err.

Written/Documents 99.9915% ±0.0043%
Human Conversations 0.00849% ±0.0043%

Table 1: Distribution between Human Conversations
and Written/Document data in CommonCrawl.

recurrent neural networks, encode dependency rela-179

tions within texts (Hewitt and Manning, 2019; Ra-180

ganato and Tiedemann, 2018). Transformer models181

have been found to most effectively capture de-182

pendency relations within their middle layers (Liu183

et al., 2019).184

Analysis of the attention distance within decoder-185

only transformer models (Vig and Belinkov, 2019)186

has provided evidence supporting the hypothesis187

that deeper layers capture longer-distance relation-188

ships. This is a measurement of the mean distance189

spanned by attention for each head; and is calcu-190

lated as the average distance between token pairs191

in all samples in the dataset, weighted by attention192

between the tokens:193

Dα =

∑
x∈X

∑|x|
i=1

∑i
j=1 αi,j(x) · (i− j)∑

x∈X
∑|x|

i=1

∑i
j=1 αi,j(x)

(1)194

The exploration of attention dispersion and entropy195

as measures of how attention is distributed across196

tokens offers additional insights into the mecha-197

nisms through which models understand and pro-198

cess patterns in language:199

Entropyα(xi) = −
i∑

j=1

αi,j(x) log(αi,j(x)) (2)200

This body of work sets a context for our inves-201

tigation into the unique characteristics of human-202

human conversations, comparing these dynamics203

against the backdrop of general web corpora, in-204

cluding articles, blogs, forums, and specialized do-205

mains such as mathematics and programming. Un-206

derstanding the nuances of how models encode207

dependency relations and manage attention across208

different types of text is crucial in distinguishing209

the specifics of human conversational patterns.210

Finally, the analysis conducted in this paper is211

similar in spirit to the work in the mutlilingual212

(large) language model (MLLM) community on213

the effect of using models trained on higher re-214

source languages and datasets with data from lower215

resource settings. In one effort (Joshi et al., 2020),216

the authors identify the lack of linguistic diversity217

when training models – similar to the lack of diver- 218

sity in data type when training LLMs, which is the 219

focus of our present study; while in another (Rust 220

et al., 2021), a detailed empirical analysis is pro- 221

vided to show the differences between different 222

languages. We take inspiration from these efforts 223

for our attention-centric study of language models 224

and the content used to train them. 225

4 Analysis 226

4.1 Attention Distance Difference 227

Analyzing the difference between the attention dis- 228

tances as defined in Equation (1) can provide a 229

better way to gain insights into how language mod- 230

els form relationships, especially longer-distance 231

relationships in deeper layers by focusing on the 232

difference between attention distances. 233

Given two domains, D1 and D2, with their re- 234

spective sets of texts XD1 and XD2 , the attention 235

distance for each domain is calculated as: 236

D
Dk

α =

∑
x∈XDk

∑|x|
i=1

∑i
j=1 αi,j(x) · (i− j)∑

x∈XDk

∑|x|
i=1

∑i
j=1 αi,j(x)

(3) 237

for k = 1, 2, where αi,j(x) is the attention weight 238

from token i to token j in text x, and |x| is the 239

length of text x. 240

The difference in attention distance between the 241

two domains can then be defined as: 242

∆Dα = D
D1

α −D
D2

α (4) 243

This measure, ∆Dα, quantifies the difference in 244

how attention spans across tokens vary between 245

the two domains, providing insights into the struc- 246

tural differences in how information is processed 247

and dependencies are captured in texts from D1 248

compared to D2. 249

By analyzing ∆Dα we can find insights into 250

domain specificity in transformer models by under- 251

standing how transformer models adapt their atten- 252

tion mechanism to structural and contextual differ- 253

ences between various domains. We can also iden- 254

tify if models tend to focus on closer or more dis- 255

tant token relationships when dealing with human- 256

human conversations as opposed to more structured 257

and document-oriented content. Positive values of 258

difference in attention distance indicate that the at- 259

tention distance in the second domain is longer than 260

the first domain, whereas negative values indicate 261

that it is shorter. Positive differences in the middle 262

and end layers indicate more complex relationships 263
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requiring longer dependencies, and positive differ-264

ences in the initial layers indicate longer syntactic265

and semantic relationships in the sequence tokens.266

4.2 Attention Dispersion267

We also calculate the entropy of the attention distri-268

bution based on Equation (2) to measure the atten-269

tion dispersion. This provides insights into how270

domain-specific characteristics and the model’s271

training influence its learning and processing strate-272

gies. High entropy is not always desirable, as it is273

indicative of a lack of focus or understanding. Sim-274

ilarly, very low entropy might suggest overfitting to275

specific tokens or phrases, potentially reducing the276

model’s ability to generalize across varied inputs277

within the domain. We perform a comparison of at-278

tention dispersion between domains to understand279

the robustness of the model’s understanding of a280

domain.281

High Entropy Domain: A higher entropy in the282

attention distribution of a domain means that the283

model finds the information in that domain more284

uniformly informative or relevant, without spe-285

cific tokens or phrases standing out as significantly286

more important than others. This suggests that the287

domain is more complex or less familiar to the288

model, leading it to distribute its attention more289

evenly rather than clearly identifying key informa-290

tion. This would also indicate more variety and291

ambiguity in how information is presented, requir-292

ing broader focus to capture the necessary context293

for understanding.294

Low Entropy Domain: Domains with lower en-295

tropy in the attention distribution indicate that the296

model is focusing its attention more narrowly on297

specific tokens. This suggests that the model has298

learned to identify key tokens or phrases that are299

particularly informative or relevant for understand-300

ing or performing tasks in such a domain. The301

domain is more structured or contains clearer cues302

that the model can exploit to make predictions or303

understand content. It also reflects a higher level304

of familiarity or specialization of the model in this305

domain, allowing it to more effectively pinpoint306

the most relevant information.307

4.3 Interdependency Analysis308

Analyzing interdependencies between various as-309

pects of text from different domains provides in-310

sights into underlying structures, patterns, and dy-311

namics of information in domains such as commu-312

nication, written documents, and code. We devise313

a novel metric – the Interdependency Factor (IF) – 314

to quantify the degree of interdependency between 315

various aspects of the data, as long as they can be 316

modeled in a graph as nodes along with directed 317

edges between them. This is intended to indicate 318

the overall complexity of the domain along specific 319

aspects. Aspect in this context refers to any derived 320

or absolute representation in a sequence. In this 321

analysis, we use a tokenized representation of text 322

in the domain. However, it can be useful to use 323

higher-level segmentation such as themes that can 324

be common across different domains. When this is 325

not possible or the dependency is modeled at more 326

granular levels by systems such as language mod- 327

els, a lower-level representation (such as tokens) 328

can be used, where the weights on the edges are 329

attention values (Vig and Belinkov, 2019) between 330

the tokens modeled by the transformer (Vaswani 331

et al., 2017) language model layers. 332

The Interdependency Factor (IF) is defined as 333

follows: given a dataset of text samples, a set N 334

represents all identified node candidate labels in 335

the graph, where each node ni ∈ N represents a 336

distinct aspect value. To analyze the interdepen- 337

dencies among these nodes, we construct a directed 338

graph G = (V,E), where V corresponds to the set 339

of vertices, with each vertex representing a node 340

in N , and E represents the set of directed edges 341

between these vertices. Each edge (ni, nj) ∈ E 342

is associated with a weight wij , quantifying the 343

strength or frequency of the transition or relation- 344

ship from node ni to node nj . 345

The adjacency matrix A of graph G is defined 346

such that each element aij within A corresponds to 347

the weight wij of the edge from ni to nj . The In- 348

terdependency Factor IF is then defined as follows: 349

350

IF =
1

|N |2 − |N |

|N |∑
i=1

|N |∑
j=1,j ̸=i

aij (5) 351

This calculates the IF by averaging the weights 352

of all directed edges in the graph, excluding self- 353

transitions (where i = j). The normalization factor, 354

|N |2 − |N |, accounts for the total number of pos- 355

sible directed transitions between different nodes, 356

ensuring that the IF remains a relevant measure 357

of interdependency across datasets of varying sizes 358

and complexities. In cases where the weights are 359

not available or not computable, 0 and 1 should 360

be used to indicate the absence and existence of a 361

dependency between two aspects. 362
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5 Experimental Setup363

5.1 Domain Datasets364

In our analysis, we focus primarily on English data365

across the domains of human-human conversation,366

web, and math. Code data is randomly sampled367

across a variety of programming languages. We use368

1000 samples from each domain in our analysis.369

Human-Human Conversations: In our study, a370

wide range of real-life natural conversations be-371

tween humans across various business and casual372

settings is used. Scripted conversations such as373

movie scripts, and single-person presentations or374

talks are not included. Key aspects such as context375

dependencies, emotional expressiveness, idiomatic376

usage, and integration of general and localized or377

private knowledge are the focus. The data used for378

human conversations is a set of real conversations379

between people, processed using a conversation in-380

telligence platform (omitted for blind review), and381

anonymized by replacing PII and PCI information382

with synthetic data.383

Web Data: Data from the internet containing vari-384

ous types of content such as blog posts, news arti-385

cles, forums, social media content, etc. is generated386

using a randomly sampled subset from the Com-387

monCrawl (Common Crawl, 2023). We perform388

a preliminary data cleanup to remove unnecessary389

HTML tags, and deduplicate to ensure the entries390

are unique.391

Code: Source code from various programming lan-392

guages, each with unique syntax and semantics, is393

used. The focus is on the structure and logic ex-394

pressed in code, which contrasts with the unstruc-395

tured and mostly informal nature of human-human396

conversations. The code data is curated from the397

GitHub dataset (Codeparrot, 2022).398

Mathematics: Mathematical expressions, prob-399

lems, and proofs across different fields of math-400

ematics make up this domain – derived from the401

Proof Pile 2 corpus (Azerbayev et al., 2023) – high-402

lighting the abstract, precise, and symbolic charac-403

teristics of mathematical communication.404

5.2 Language Model405

We use a pretrained decoder-only transformer lan-406

guage model – LLaMa-2 13b (Touvron et al.,407

2023b) – for analyzing attention patterns and em-408

beddings at various layers and heads. This model’s409

architecture contains 40 layers and 40 attention410

heads. Although exact details of the LLaMa-2411

model are not indicated in the accompanying tech- 412

nical report (Touvron et al., 2023b), the model 413

was trained on data that is similar to the LLaMa- 414

1 models (Touvron et al., 2023a). This enables 415

our assumption that the model was trained on ap- 416

proximately 82% of data from web dumps from 417

CommonCrawl and C4, 4.5% of data from the 418

code domain from GitHub, and 2.5% of data from 419

ArXiv, which consists of scientific data with some 420

overlap with math. Apart from the data in the 421

web corpus, the rest of the data is distributed be- 422

tween Wikipedia, books, and StackExchange cor- 423

pora. After adjusting for the web corpus distribu- 424

tion based on our earlier analysis (c.f. Section 2.2), 425

the pretraining data of the model is expected to 426

have between ≈ 0.0069618% and ≈ 0.010496% 427

of human-human conversations. 428

6 Results 429

6.1 Attention Distance Difference Analysis 430

We calculate the mean difference in attention dis- 431

tances ∆Dα (c.f. Equation (4)) for each of the 432

human-human conversations, code, and math do- 433

mains; and compare each of these in turn against 434

general web data. 435

Figure 1: Heatmap of the Attention Distance Difference
matrix (∆Dα) calculated for web data against human-
human conversations, code, and math.

Figure 1 shows heatmaps of the Attention Dis- 436

tance Difference by layer (Y-axis) and head (X- 437

axis), with one domain fixed as human-human con- 438

versations, code, and math respectively; and the 439

other domain as general data from the web. We 440

find significant differences in attention distances 441

in deeper layers when comparing human-human 442

conversations to web data. Higher values in these 443

layers indicate that human conversations necessi- 444

tate more robust modeling of long-term contextual 445

relationships than general web corpora. This is con- 446

sistent with the nature of human dialogue, where 447

the flow of information often spans across several 448

exchanges, requiring the model to maintain context 449

over extended sequences. The comparison with 450

code displays a distinctive pattern where higher 451

attention distances are observed in the initial half 452
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of the layers, suggesting that models capture struc-453

tural dependencies effectively in these stages. How-454

ever, as we progress into deeper layers, there is a455

reduction in these values, which suggests that at-456

tention becomes more localized, focusing on closer457

contextual relationships. This reflects the structural458

and syntactic rigidity inherent in programming lan-459

guages, where local context is often sufficient for460

understanding many dependencies. Mathematical461

texts exhibit a relatively even distribution of atten-462

tion distances across layers when compared to web463

data. This implies that mathematical texts, with464

their symbolic and formulaic nature, require a bal-465

anced approach where both local and long-distance466

relationships are equally pertinent across all layers467

of the model.468

Figure 2: Attention Distance Difference by Layer across
all heads calculated for web data against human-human
conversations (left), code (middle), and math (right).

Figure 3: Attention Difference by Head across all layers
calculated for web data against human-human conversa-
tions (left), code (middle), and math (right).

D1 D2 ∆Dα

Human Conversations Web 10.3855
Code Web 4.6040
Math Web 4.7849

Table 2: Average attention distance difference between
human-human conversations, code, and math domains
with web data. A higher value indicates longer contex-
tual dependencies.

Almost all the layers exhibit approximately469

equal differences in attention, with lower differ-470

ences manifesting in the final layers (which are typ-471

ically optimized for generation) as seen in Figure 2.472

Differences in the initial layers are typical across473

all domains, as syntactical and semantic modeling474

representations of the model are different across 475

domains. However, more complex relationships 476

are modeled in the middle layers, where we see sig- 477

nificantly higher differences for conversation-web, 478

as compared against code-web and math-web pairs. 479

When compared by individual head in Figure 3, 480

the initial heads show very little difference from 481

the web domain; but the middle heads and heads 482

towards the end exhibit significant deviation from 483

the web domain. These differences in the middle 484

heads are less pronounced in the code and math 485

domains, which indicates that human-human con- 486

versation domain modeling tends to have higher 487

attention distances across most heads when com- 488

pared to code and math domains. 489

6.2 Attention Dispersion Analysis 490

To study the dispersion of attention across domain 491

data, we calculate the mean attention entropy (c.f. 492

Equation (2)) and analyze it by layer/head (Fig- 493

ure 4), as well as by layer alone (Figure 5) and head 494

alone (Figure 6) across all four domains considered 495

in this study: general web data, human-human con- 496

versations, code, and math. 497

Figure 4: Heatmap of mean attention entropy for web,
human-human conversations, code, and math domains
respectively.

In Figure 4, the heatmaps represent the entropy 498

by layer/head for web, human-human conversa- 499

tions, code, and math domains. Attention disper- 500

sion is highest in the human-human conversations 501

domain. This is consistent with the attention dis- 502

tance difference plot in Figure 1. From layer 22 to 503

layer 36, entropy is typically lower for web, code, 504

and math domains; however, the entropy is high in 505

multiple heads in these layers for human-human 506

conversations. In the conversation domain, for each 507
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token, the model has to attend strongly to more to-508

kens than in the rest of the domains – this indicates509

higher complexity for the domain, which leads to510

higher attention dispersion in the model while un-511

derstanding that domain. It also suggests that the512

model is less familiar with the human-human con-513

versation domain, which can be explained by the514

scarcity of training data in the domain distribu-515

tion (c.f. Section 2.2). For web, code, and math516

domains in comparison, the entropy is noticeably517

lower. This indicates that the model has a more518

robust understanding of these domains, and the519

model can find an optimal attention strategy, reduc-520

ing attention dispersion, which can be explained521

by the considerable amount of data from these do-522

mains that is reflected in the model’s pretraining523

data (c.f. Section 5.2).524

Figure 5: Mean attention entropy by layer across all
heads with first token attention removed for web, human-
human conversations, code, and math domains respec-
tively. Higher values indicate more attention diffusion
in the layer.

We also plot the entropy by removing attention525

to the first token in sequence, by layers and heads526

separately, shown in Figure 5 and Figure 6 respec-527

tively. We remove the first token’s entropy because528

we find that the model adds redundant attention to529

the first token which leads to high entropy, espe-530

cially in the first layer. As shown in Figure 5, cer-531

tain layers – specifically layers 27 and 29, which532

are mid-layers of the model – have significantly533

higher mean attention entropy compared to the rest534

of the layers for the human-human conversation535

domain. A similar pattern can be seen in Figure 6,536

where heads 13, 25, and 38 have high entropy. For537

web, code, and math domains, such high entropy538

is not exhibited by the model, indicating that the539

Figure 6: Mean attention entropy by the head across
all layers with first token attention removed for web,
human-human conversations, code, and math domains
respectively. Higher values indicate more attention dif-
fusion in the head.

model has less familiarity with complex relation- 540

ships in the human-human conversation domain as 541

compared to others. 542

6.3 Attention Interdependency Analysis 543

We perform interdependency analysis between 544

human-human conversations and other domains 545

to gain deeper insight into the underlying struc- 546

tures that a model needs across these domains. For 547

human-human conversations and web data, we per- 548

form analysis using theme segmentation and de- 549

pendencies between themes within a conversation 550

or document, as well as a token-level analysis. We 551

perform only token-level interdependency analysis 552

for code and math data, as thematic analysis on 553

these domains does not provide much insight due 554

to their logical and rule-driven nature. We calcu- 555

late the average attention matrix across all samples 556

in the domain averaged across all attention heads 557

from the middle layer. We calculate IF for these 558

domains to understand the overall interdependency 559

between tokens, with 512 tokens in each sequence 560

to get a quantitative evaluation of the interdepen- 561

dency by domain. This is shown in Table 3. 562

To further analyze the overall attention at each 563

token, the individual token’s weights can be calcu- 564

lated by aggregating the attention weights of the 565

token towards the rest of the tokens as shown in Fig- 566

ure 7. This provides us insights into how attention 567

patterns change across the text sequence by domain. 568

Fluctuations in weight by token index signify fre- 569

quent changes in overall attention strength, and 570
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Domain OAE IF

Web 0.0083 100.207
Human Conversation 0.0098 141.869
Code 0.0083 106.466
Math 0.0085 110.848

Table 3: Column 2: Overall attention entropy (OAE)
averaged across heads and layers by domain. Column 3:
Interdependency Factor (IF) by domain, calculated for
N = 512 across all samples.

the value of weight indicates the overall strength571

of attention, which is an aggregation of attention572

values of the token attending to all other tokens.573

Note that due to aggregation, the plot in Figure 7574

no longer provides us with information about the575

global or local interdependencies. Human-human576

conversations require higher and longer attention577

resulting in higher average weight as compared to578

the rest of the domains.579

Figure 7: Normalized attention weights of interdepen-
dencies aggregated by the token for web, human-human
conversations, code, and math domains respectively.

6.4 Language Model Representation580

To understand the representation of language mod-581

els by domains, we use t-SNE (Van der Maaten and582

Hinton, 2008) to visualize and compare the hid-583

den state representations of the first, middle, and584

last layers of the LLaMa-2 13b model (Touvron585

et al., 2023a). Early layers in language models586

learn the syntactic and semantic relationships in587

the sequences, and in deeper layers complex rela-588

tionships are modeled capturing abstract and higher589

level understanding (Jawahar et al., 2019; Hao et al.,590

2021). In Figure 8, the representation of the first591

layer across domains is relatively close, with clear 592

boundaries in the clusters, given that the semantic 593

features of most of the language-based domains 594

are mostly similar. The middle layer representation 595

shows some overlap in web and code data, but a 596

clear and quite significant distance between human- 597

human conversations and math data. We continue 598

to see a similar pattern in the last layer, with slightly 599

better separation in web and code while conversa- 600

tions and math data continue to be distant. This 601

shows that for a language model trained on a gen- 602

eral corpus, containing data from various domains, 603

the domain-specific learnings converge differently. 604

Figure 8: t-SNE plot of the first, middle, and last layers
of the LLaMa-2 13b model by domains.

7 Conclusion 605

In this study, we examined how transformer-based 606

language models (using LLaMa-2 13b as a repre- 607

sentative) process natural human conversations in 608

contrast to web content, code, and mathematical 609

texts. We found a general lack of sufficient repre- 610

sentation of human-human conversations in web 611

data, which is the largest constituent of pretrain- 612

ing data in most current large language models. 613

Our findings highlight that human-human conver- 614

sational data challenges a(ny) model into manag- 615

ing long-term contextual relationships and depen- 616

dencies across layers. Our analysis motivates the 617

importance of domain specialization in language 618

models to enhance their understanding and han- 619

dling of human conversations; and indicates that 620

training language models with a vast amount of 621

high-quality authentic human conversations is an 622

essential requirement in bridging the gap in model 623

performance. 624

8 Limitations 625

The major limitation of the work presented here 626

revolves around the number of models used in our 627

analysis. We used only on a single model – LLaMa- 628

2 13b (Touvron et al., 2023b). There are a number 629

of potential shortcomings that arise from this. First, 630
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while we expect that this model is representative of631

most popularly used large language models today632

and shares the same fundamental architecture, we633

have no way of being completely certain that this634

is the case. Second, since there is no reliable pub-635

lic information about the exact data that was used636

to train this open source model, we were forced637

to make certain assumptions around this (see Sec-638

tion 5.2).639

Another limitation centers around the size of the640

datasets that were used to evaluate attention in the641

model chosen. In Section 5.1, we report the usage642

of 1000 data samples per domain. Which these643

data samples were chosen in as representative a644

manner as possible – taking care to choose from645

various programming languages for code, picking646

across different kinds of internet content for web,647

etc. – there is no clear way of ensuring that these648

are indeed representative of these domains at large.649

Finally, we acknowledge the limitation that650

while much of our initial motivation is centered651

around the rich, multimodal nature of human-652

human conversations (which can include text, au-653

dio/speech, and visual modalities), in this particular654

paper, we are only able to analyse the text based655

facets of this domain. Some of this can be ex-656

plained by the relative paucity of widely available657

multimodal large language models, particularly on658

the audio side. However, there have been rapid ad-659

vancements in this area as of the time of submitting660

this paper, and it presents a very promising and661

achievable avenue for future work.662
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A Appendix 811

A.1 Attention Including First Token 812

As accompaniments to Figure 5 and Figure 6 in 813

the main body of the paper, we also provide the 814

corresponding plots without removing attention to 815

the first token. These are are shown in Figure 9 and 816

Figure 10 respectively. 817

Figure 9: Mean attention entropy by layer without re-
moving first token attention for web, human-human
conversations, code, and math domains respectively.

Figure 10: Mean attention entropy by head without
removing first token attention for web, human-human
conversations, code, and math domains respectively.

A.2 Qualitative Analysis 818

To get an intuitive sense of patterns exhibited by 819

specific layers and attention heads, we used a few 820

examples from each domain to visually inspect the 821

attention dispersion at each token in the example. 822

Examples for each domain showing the attention 823

entropy at each token in the example are shown in 824

Figures 11, 12, 13, and 14. Several heads across 825

layers show similar attention dispersion across all 826

domains. However, certain heads show higher at- 827

tention dispersion in human-human conversations 828

as compared to other domains. We find that the 829
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Figure 11: Human-Human Conversation example high-
lighted for mean attention entropy at each token for
layer 34, head 7, showing the high attention diffusion
compared to web, code, and math examples.

Figure 12: Web data example highlighted for mean
attention entropy at each token for layer 34, head 7.
Attention diffusion is significantly lower as compared to
the human-human conversation as shown in Figure 11.

initial layers have high entropy across all domains,830

whereas the middle and last layers have relatively831

high entropy in human-human conversations, as832

compared to web, code, and math domains also in-833

dicated by the attention dispersion analysis results.834

Figure 13: Code example highlighted for mean atten-
tion entropy at each token for layer 34, head 7. Atten-
tion diffusion is significantly lower as compared to the
human-human conversation as shown in Figure 11 and
equivalent to the web example in Figure 12.

Figure 14: Math example highlighted for mean atten-
tion entropy at each token for layer 34, head 7. Atten-
tion diffusion is significantly lower as compared to the
human-human conversation as shown in Figure 11 and
equivalent to the web example in Figure 12.
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