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Abstract— In transformer-based methods for point cloud
instance segmentation, bipartite matching is used to establish
one-to-one correspondences between predictions and ground
truths. However, in early training stages, matches can be
unstable and inconsistent between epochs, requiring the model
to frequently adjust its learning path, thus reducing the quality
of model convergence. To address this challenge, we propose
the contrastive mask denoising transformer for 3D instance
segmentation, which utilizes a mask denoising module to guide
the model towards a more stable optimization path in early
training stages. Furthermore, we introduce a multi-pattern-
aware query selection module to assist the model learn multiple
patterns at one position such that clustered objects can be
discerned. In addition, the proposed modules are “plug and
play”, which can easily be integrated into transformer-based
architectures. Experimental results on ScanNetv2 dataset show
that the proposed modules improve the performance of multiple
pipelines, notably achieving +1.0 mAP on the main pipeline.

I. INTRODUCTION

3D instance segmentation can enhance machines’ spatial
awareness and elevate automation efficiency, thereby demon-
strating the vast potential for applications across fields such
as robotics, autonomous driving, and augmented reality [1].
Contrary to the structured nature of 2D images, 3D point
clouds are made up of numerous sparse and disorganized
points. As a result, achieving precise instance masks in
such cluttered and unstructured point clouds is a highly
challenging task for 3D point cloud segmentation.

Classical methods for 3D point cloud segmentation [2,
3, 4, 5, 6] often rely on many hand-crafted components
[7], preventing end-to-end training. Detection transformer
(DETR) introduced the use of a set-based global loss that
forces unique predictions via bipartite matching, effectively
establishing an end-to-end 2D object detection pipeline and
providing new directions for subsequent research [8]. Many
researchers followed DETR to further improve its perfor-
mance [9, 10, 11, 12, 13], and recently, it has been adapted
to solve the challenging 3D instance segmentation task [14,
15].

Although DETR-like architectures have the advantage in
streamlining the training process, they have some mutual
shortcomings: 1) In the bipartite matching process [16, 17],
inaccurate initial matches can lead to incorrect feedback,
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Fig. 1: The mAP curves of different models during
early training stages. We evaluate the models every 16
epochs. With the contrastive denoising module, our model’s
performance improved by 2.8 and 4.6, respectively, compared
to the other two models at 64 epochs.

which in turn can negatively impact the learning path of
the model and hinder performance improvements. 2) The
queries for predicting instances are learnable or set to 0
vectors, which does not fully exploit prior information such
as point cloud features. Furthermore, the architecture lacks
a mechanism to effectively handle situations where multiple
objects occupy nearby locations in one scene.

Regarding 2D object detection task, numerous efforts
have been made to address the aforementioned issues from
various perspectives [18, 19]. However, for 3D detection and
segmentation tasks, DETR-like models are in their nascent
stage with limited works focusing on further optimizing these
issues.

To address these two issues, we propose the contrastive
mask denoising transformer (MaDFormer) for 3D instance
segmentation. Our approach uses an auxiliary mask denois-
ing task to tackle the mismatches caused by inaccurate
predictions in early training stages and guide the model
towards a better learning path. Simultaneously, we propose a
multi-pattern-aware query selection module to fully leverage
the backbone features during query initialization, improving
the prediction results in early training stages. Additionally,
to tackle the issue of identifying clustered objects near the
same spatial location in one scene, we introduce multiple
patterns for the query, which further enhances the model’s
accuracy for complex environments.

As shown in Fig. 1, in the early training stages, the mAP
of our method is significantly improved compared to exist-
ing transformer-based methods. Moreover, experiments show
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that our approach can effectively enhance the performance
of DETR-like transformer models, achieving performance
improvements of +0.9 and +1.0 mAP on different pipelines,
respectively [14, 20].
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Fig. 2: The overall architecture of MaDFormer. We use
n groups of noised queries as the input queries of the
denoising-part, including both positive noise and negative
noise. Simultaneously, we repeat selected queries for m times
as input queries of matching-part, where m refers to the
number of patterns. An attention mask is used to ensure there
is no information leakage between these two parts.

The main contributions of this paper are summarized as
follows:

1) We propose a contrastive mask denoising module to
improve the accuracy of bipartite matching during the
early training stages and enhance the final perfor-
mance.

2) We design a multi-pattern-aware query selection mod-
ule, further enhancing the model’s ability to recognize
complex scenes.

3) Our method can be used as a plug-and-play module
in transformer-based models to further enhance their
performance. By integrating our proposed modules into
existing state-of-the-art transformer-based models for
3D instance segmentation, we achieve superior results
with an increase in mAP by +1.0 on ScanNetv2 dataset.

II. RELATED WORK

A. 3D Instance Segmentation

Classic methods. In 3D point cloud segmentation, classic
approaches typically fall into two categories: proposal-based
[21, 22, 2, 23] and grouping-based [24, 4, 25, 26] methods.
Most of the proposal-based methods predict instance masks
by generating 3D bounding boxes. Grouping-based methods
first aggregate the points that have similar features into
groups and then refine the prediction in a top-down [27]
way. These approaches have achieved remarkable results and
played dominant roles in the task for a long time. However,
these two types of methods have obvious drawbacks: they
usually require many hand-crafted components and complex
post-processing steps [28], and the quality of the intermediate
results greatly affects the final segmentation results.

Transformer-Based Methods. Several works attempt to ap-
ply the transformer architecture to 3D point cloud segmenta-
tion tasks [29]. Point Transformer [30] and point cloud trans-
former [31] made the first attempts to introduce the trans-
former layer and attention module to 3D segmentation tasks
and achieved significant progress. Subsequently, Mask3D
[15] and SPFormer [14] achieve superior results, utilizing the
end-to-end training pipeline based on transformer structures
adapted from Mask2Former [32]. Specifically, SPFormer
[14] proposes using superpoint as an intermediate structure,
combining the advantages of both bottom-up and top-down
approaches in the transformer architecture. MAFT [20], an
extension of SPFormer [14], proposes replacing the initial
mask attention with a center regression task to improve
convergence speed. QueryFormer [33] proposes adjusting the
query distribution, to optimize the coverage and repetition
rates of queries. Although existing methods have proposed
several different solutions to refine queries through the de-
coder, they have not fully utilized the prior information in
the backbone features, nor have they adequately considered
the situation where multiple objects are present at close
positions.

B. 2D Vision Transformer

Transformer-based models can flexibly capture global in-
formation and long-range relations within a scene using
the attention mechanism [34], whereby they have gradually
become the mainstream frameworks in the 2D vision field
[35, 36, 37]. Subsequently, DETR and its variants [8, 11,
19], with the distinctive end-to-end training feature, have
been extensively applied in tasks such as 2D instance seg-
mentation, object detection, and panoptic segmentation. As
DETR-like models evolve, they have also revealed several
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new challenges, such as high memory consumption and slow
convergence. To address these issues, Deformable DETR [9]
proposes to improve the algorithm’s efficiency by concentrat-
ing the attention modules on a limited number of important
sampling points near a reference point. To solve the issue
of ambiguous query meanings in DETR that are difficult
to optimize, Anchor DETR [13] uses fixed anchor points
to initialize queries so that the queries can focus on the
objects near the anchor point. DN-DETR [10] and DINO [18]
use auxiliary denoising tasks to solve the problem of slow
convergence and unstable bipartite matching. By introducing
noised ground truth labels and bounding boxes as denoising-
part queries, the model learns to reconstruct objects without
bipartite matching as an auxiliary task, making relative offset
learning in decoder easier [10]. In addition, negative query
denoising has been proposed to train the model to predict “no
object” if the noise is large, further enhancing the stability
of bipartite matching [18]. To unify the modeling framework
for object detection and segmentation in 2D, MaskFormer
[38], Mask2Former [32], OneFormer [39], and MaskDINO
[40] have further modified the DETR framework, making the
models compatible with multiple tasks. Though many studies
focus on DETR-like models for 2D tasks, their applications
to 3D tasks have not been fully investigated yet.

Inspired by the works for 2D tasks, we analyze the
drawbacks of the current 3D instance segmentation models.
Specifically, we explore the instability of bipartite match-
ing and ambiguous query meanings and thereby propose a
contrastive mask denoising module and a multi-pattern-aware
query selection module to enhance the model’s performance.

III. METHODS

A. Overview

The architecture of our proposed model is shown in Fig. 2.
We adopt MAFT [20] as our baseline model, which uses
a sparse U-Net feature backbone and superpoint-pooling
layer to extract and aggregate features, followed by query
decoders and prediction heads to predict masks and labels.
To address the challenge of bipartite matching instability and
the difficulty of multiple objects in one region, we propose a
mask denoising module to guide the model towards a more
stable optimization path in early training stages and a multi-
pattern-aware query selection module to help predict multiple
objects at one position.

As shown in Fig. 2, given a point cloud, our model
first extracts spatial features using the U-Net backbone.
The superpoint-pooling layer then aggregates point-wise fea-
tures into superpoint features F ∈ Rm×d and yields the
corresponding positions P ∈ Rm×3 for each superpoint,
where m is the number of superpoints. Subsequently, the
query decoder utilizes the superpoint features to update the
queries iteratively via masked cross-attention with superpoint
features. Apart from the N matching-part queries Qm ∈
RN×d from the baseline, we include n denoising-part queries

Qdn ∈ Rn×d, which are concatenated with Qm for iterative
update in the decoder and final loss computation. These
denoising-part queries are generated based on noised ground-
truth labels and positions, guiding the model to stabilize
bipartite matching via auxiliary noised-object reconstructing
tasks. Importantly, we introduce noised ground truth masks
Mdn for the denoising-part queries to better feed the ground-
truth information into the decoder for instance segmentation
task. Besides, the matching-part queries are selected from the
superpoint features with different strategies as better priors,
and multiple patterns for each selected feature are used to
predict clustered objects at one position.

B. Contrastive Mask Denoising Module

The slow convergence problem of DETR-like models
persists in SPFormer and MAFT. One reason for slow
convergence is that the bipartite matching component nec-
essary for end-to-end training is discrete and stochastic in
nature, leading to unstable matching, especially in the early
training stages [10]. This means that a query can be matched
with different objects from epoch-to-epoch such that the
optimization process is ambiguous and inconsistent.

Following these works in 2D object detection task [10,
18, 40], we propose a contrastive mask denoising module to
stabilize the bipartite matching for 3D instance segmentation
task. This module mainly consists of three components.

1) The first component includes several groups of
denoising-part queries. Each group has n positive
queries Qpos

dn ∈ Rn×d and n negative queries Qneg
dn ∈

Rn×d. For a scene with n ground truth instances
I1, I2, ..., In, the i-th denoising-part query is generated
based on the label Li and the position Pi of the instance
Ii. The label noise is introduced by randomly changing
the label to any label with a probability of λ1. Another
hyperparameter, λ2, controls the positional noise scale.
For positive queries, the positional noise is introduced
by randomly shifting the position Pi within the range
±(λ2

2 wi,
λ2

2 hi,
λ2

2 li), where wi, hi, li are the width,
height, and depth of the bounding box of Ii; for negative
queries, the positional noise is introduced similarly but
using a noise scale of 2λ2.

2) The second component is a set of denoising-part cross-
attention masks Mdn, and each mask corresponds to
a denoising-part query. For the i-th positive query, the
positive mask is generated based on the instance mask of
Ii. The mask noise is introduced by randomly flipping
the positions where the instance exists with a probability
of λ3, which essentially corrupts the ground truth mask,
and randomly flipping the positions where the instance
doesn’t exist with a probability of λ3

2 . By setting a small
value for λ3, such a flipping scheme can ensure that
most of the mask information is retained. For the i-
th negative query, the negative mask is also generated
based on the instance mask of Ii, and the mask noise
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Fig. 3: Our framework is based on MAFT, (a) is the network architecture of MAFT and (b) is ours. The orange parts are
our improvements.

is introduced in the same way but using a noise scale
of 2λ3.

3) The third component is a self-attention mask Msa for
both denoising-part and matching-part queries. Since
the denoising-part queries are derived from ground
truth, we should ensure that no information is leaked
from denoising-part queries to matching-part queries.
Besides, it should also be ensured that different groups
of denoising queries do not share information such
that the reconstruction of one group is standalone. This
can be achieved by introducing an attention mask in
the self-attention module, which resembles the case
where attention masks are used to mask future tokens
to maintain causality in sequence generation tasks [41].
Assuming we have k groups denoising-part queries,
and each group contains all the noised ground truth
objects in the scene, so the total number of queries is
W = k× 2n+N , where n is the number of objects in
the scene and N is the number of matching-part queries.
Therefore, as shown in Fig. 2, if the first k × 2n rows
and columns are denoising-part, Msa = [mij ]W×W is
of size W ×W , and the entries of Msa are given by

mij =

 1, if j < k × 2n and ⌊ i
2n⌋ ≠ ⌊ j

2n⌋
1, if j < k × 2n and i ≥ k × 2n
0, otherwise

, (1)

where mij = 1 means the i-th query is masked from
attending to the j-th query, while mij = 0 indicates no
masking.

C. Multi-Pattern-Aware Query Selection Module

Query Initialization. Content queries in previous works
[15, 14, 20] are learnable embeddings or setting as 0 vectors.
These content queries have ambiguous physical meanings,
which are refined by several layers of decoder to capture
information in the scene. Since the final predicted masks
are computed by multiplying the content queries with the

superpoint features, it can be beneficial to use superpoint fea-
tures as better priors to initialize content queries. Specifically,
we propose three methods to initialize matching-part queries
using superpoint features: 1) randomly select N queries;
2) use FPS algorithm to sample N queries based on their
positions; 3) rank all the features based on the objectiveness
score and select top-N queries. In addition, we can initialize
both the positional and the content queries, or only one of
them. The results are shown in Table V.

Multiple Patterns. The positional queries help DETR-like
models to attend to specific positions, but multiple objects
can exist at one position. Therefore, we include a multi-
pattern design for the queries, intended to guide one po-
sitional query to operate in different modes so that different
objects can be distinguished at one position. Specifically,
the original content queries, Qori

c ∈ RNq×d, has only one
pattern. Inspired by [13], we incorporated shared learned
pattern embeddings Qpat ∈ RNp×d to predict multiple
objects for one position, i.e.,

Qpat = Embedding(Np, d), (2)

where Np ≥ 1 is the number of patterns. To match the
dimension, the content queries and the pattern embeddings
are expended such that Qori

c ∈ RNqNp×d and Qpat ∈
RNqNp×d. The final content queries are the summation of the
pattern embedding and the original content queries, which is
given by

Qc = Qori
c +Qpat. (3)

The effective number of queries is Nq × Np; therefore, to
fairly compare the effect of patterns, we need to ensure that
the effective numbers of content queries are consistent.

D. Training and Inference

Bipartite matching is used in DETR-like models to es-
tablish unique predictions for each query and realize end-
to-end training [8]. The key to bipartite matching is the
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matching cost matrix CN×n, where each entry Cij evaluates
the similarity between the i-th predicted instance and the j-th
ground truth. The matching cost is given by

Cij = λCELCE + λDiceLDice + λBCELBCE + λpLp, (4)

where LCE is the cross-entropy loss to supervise classi-
fication, LDice and LBCE are the Dice loss and binary
cross-entropy loss to supervise mask prediction, and Lp

is the L-1 loss to supervise center position. The weights
λCE , λDice, λBCE and λp are set to 0.5, 1.0, 1.0, and 0.5,
respectively. It should be noted that only the matching-part
queries participate in bipartite matching, and the denoising-
part queries make predictions and compute losses directly.
After bipartite matching, the final loss can be computed by

L = Lmatch + Ldn, (5)

where Lmatch = β1LCE + β2LDice + β3LBCE + β4Lp +
β5Ls, Ls is the IoU-aware score loss [14], and Ldn =
γ1Ldn

CE + γ2Ldn
Dice + γ3Ldn

BCE + γ4Ldn
p . The coefficients

are β1 = β4 = β5 = 0.5, β2 = β3 = 1.0, γ1 = 1.3,
γ2 = γ3 = γ4 = 0.4, respectively. In addition, we down-
weight the classification loss of predictions for non-object
by a factor of 10 to account for the class imbalance.

During inference, the contrastive mask denoising branch is
inactive and the matching-parting queries predict N instances
with labels, scores, and masks. These predictions are ranked
by the scores to produce the final top-k instances, eliminating
the need for post-processing steps and ensuring fast inference
speed.

IV. EXPERIMENTS

A. Experimental Settings

Dataset & Metrics
We evaluate our method using the challenging and large-

scale indoor scene dataset ScanNetV2 and S3DIS. Scan-
NetV2 [42] is a representative and widely acknowledged
public dataset, consisting of 25,000 scans from a variety
of indoor settings. We train the model using 1202 training
scenes provided by ScanNet and test the accuracy of the
model using 312 validation scenes. S3DIS [43] dataset con-
tains 271 rooms in 6 areas of three buildings; we evaluated
our model on Area 5. Referring to the previous work,
we adopt mean average precision (mAP) as the primary
evaluation metric for instance segmentation performance.
Specifically, we report mAP, AP50, and AP25 scores on
ScanNetV2 dataset and mAP, AP50 on S3DIS dataset.
Network Architecture

We adopt MAFT [20] as our baseline model, which uses
a five-layer U-Net backbone and a six-layer transformer
decoder, and introduce a contrastive mask denoising module
and a multi-pattern-aware query selection module to optimize
model performance. Fig. 3 provides an intuitive comparison
of our model architecture against the baseline architecture.
The left side of the figure illustrates the structure of the
pipeline, and the right side illustrates our model structure.

TABLE I: Comparison on ScanNetv2 validation set

Method mAP AP50 AP25

3D-SIS [23] / 18.7 35.7
PointGroup [4] 35.2 57.1 71.4
3D-MPA [21] 35.3 59.1 72.4
DyCo3D [44] 40.6 61.0 72.9
Mask-Group [6] 42.0 63.3 74.0
HAIS [24] 44.1 64.4 75.7
OccuSeg [45] 44.2 60.7 /
SoftGroup [26] 46.0 67.6 67.9
SSTNet [25] 49.4 64.3 74.0
Mask3D [15] 55.2 73.7 82.9
QueryFormer [33] 56.5 74.2 83.3
SPFormer [14] 56.3 73.9 82.9
MAFT [20] 57.9 74.7 84.0
Ours 58.9 76.3 85.1

TABLE II: 3D instance segmentation results on S3DIS Area5

Method mAP AP50

SoftGroup [26] 51.6 66.1
SSTNet [25] 42.7 59.3
Mask3D [15] 56.6 68.4
QueryFormer [33] 57.7 69.9
SPFormer [14] / 66.8
MAFT [20] / 69.1
Ours 58.3 70.1

The components highlighted in orange indicate the modules
we added.
Implementation Details.

We carried out all the experiments on a single RTX 3090.
Following previous works [20, 14], we fixed the length of
the voxel to 0.02 meters and limited the number of points
within a voxel to 250,000. We adopted the AdamW optimizer
and a polynomial scheduler to train the model. For denoising-
part hyperparameters, it is experimentally found that the best
results are achieved when we set the scalar of the denoising
module to 100, and the value of the weight coefficient γ1,
γ2, γ3, γ4 mentioned in Eq.5 to 1.3, 0.4, 0.4, 0.4 respectively.
During the experiment, we noticed that the results of some
existing works show certain degrees of randomness. To
ensure the accuracy of the experimental results, we repeated
the training of these methods 10 times and took the average
performance as the final comparison result.

B. Main Results

As shown in Table I and Table II, our method achieves
state-of-the-art results for 3D point cloud instance segmen-
tation on the validation set of ScanNetV2 and S3DIS Area 5,
showing the generalization ability of our method. Our model
performs well on all the metrics. Notably, our model achieves
58.9 on mAP, which is 1.0 percent higher than baseline [20]
on ScanNetV2 validation set. Regarding AP50 and AP25,
our model also leads with scores of 76.3 and 85.1, with
improvements of at least 1.6 and 1.1 percent compared to
existing methods.
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TABLE III: Ablation study of different modules

Contrastive
Mask

Denoising

Multi-Pattern-Aware
Query Selection

mAP AP50 AP25

Query
Init.

Multiple
Patterns

57.9 74.7 84.0
✓ 58.6 75.5 84.6

✓ 58.0 75.6 84.1
✓ ✓ 58.2 75.7 84.3

✓ ✓ ✓ 58.9 76.3 85.1

TABLE IV: Comparison of early-stage training performance

Method Epochs mAP AP50 AP25

SPFormer 64 48.5 68.4 79
MAFT 64 50.3 68.5 77.9
Ours (without QS module) 64 53.1 71.5 80.5

C. Ablation Study

Ablation
Table III presents the results of comprehensive ablation ex-

periments on ScanNetv2 validation set. The results show that
contrastive mask denoising module and multi-pattern-aware
query selection module can effectively improve the perfor-
mance of the model. By only introducing the contrastive
mask denoising module, the mAP of the model increases
by 0.7. Besides, introducing the multi-pattern-aware query
selection module can increase the mAP by 0.3 as indicated
by the fourth row of Table III. These results demonstrate
the effectiveness of the two modules respectively. The last
row of the table shows that the model performs the best
when these two modules are incorporated simultaneously,
improving the mAP by +1.0. In addition, as shown in the
third row of Table III, removing the multiple patterns in the
query selection module can lead to a decrease in mAP by
0.2, which proves the effectiveness of multiple patterns.
Contrastive Mask Denoising Module

In Table IV, we add the contrastive mask denoising
module to the pipeline for the comparative experiment. The
experimental results show that the denoising module can help
the model learn better results in early training stages and
guide the model towards a more stable optimization path. At
the 64-th epoch, our model improved over SPFormer [14] by
+4.6 mAP and over MAFT [20] by +2.8 mAP, respectively.

TABLE V: Comparison of different query selection

Type Method mAP
Position Fps 55.3
Position Score 55.7
Position Random 55.7
Position & Content Random 57.6
Position & Content Fps 57.7
Position & Content Score 57.8
Content Score 57.4
Content Random 57.6
Content Fps 58.2

TABLE VI: Comparison of number of patterns

Number of pattern mAP
1 58.0
2 58.2
4 58.0
8 57.9

TABLE VII: Comparison of different pipelines

Method mAP AP50 AP25

SPFormer 56.3 73.9 82.9
MAFT 57.9 74.7 84.0
SPFormer + DN + QS 57.2 74.6 83.4
MAFT + DN + QS 58.9 76.3 85.1

Multi-Pattern-Aware Query Selection Module
Table V shows that different designs of the query selection

(QS) module can impact the performance of the model.
“Query selection type” indicates the queries being selected:
position queries, content queries, or both. In addition, we
adopt three methods for query selection: random selection,
farthest point sampling, or ranking based on the scores.

In our experiments, we observe that schemes that only
select the position queries are generally less effective. The
performance is improved when both position and content
queries are selected. This indicates that the features extracted
by the backbone can provide richer prior information for
query refinement, which improves the final performance of
the model. Most notably, the best result of 58.2 is achieved
when the query selection is only applied to content queries.
This also proves the necessity of using query selection mod-
ule to make full use of the backbone’s feature information
for query initialization. Additionally, we conduct experiments
with different numbers of patterns, as shown in Table VI.
The results indicate that the performance is optimal when the
number of patterns is set to 2, while the effective number of
queries is fixed at 400.

D. Analysis

The experiments from Table I to Table VI prove that
our model can effectively improve performance. In addition,
as a generalizable approach, we expect compatibility and
performance improvement by applying it to other similar
frameworks. To verify this, we choose SPFormer [14], which
also uses the transformer architecture, as another pipeline to
test the effectiveness of our method. Table VII shows that
our method increases mAP by +0.9 for this new pipeline,
which validates that our approach has compatibility and
generalizability to transformer architectures, improving their
performance. Many works focus on how to create a better
model, but few aim to propose a general module that effec-
tively enhances the performance of a certain type of method,
which is a very meaningful endeavor.

Despite our model demonstrating superior segmentation
capabilities, there are still limitations in certain aspects.
Specifically, the performance of the model fluctuates with
different batch sizes and number of queries. This indicates
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that the model is sensitive to the batch size of training,
and the dependence on the number of queries may limit
the adaptability of the model. This is a universal problem
in DETR-like models. Additionally, we achieved 58.2 mAP
when fixing the total number of queries to 400 in our
experiments with multiple patterns, and we observed that
using more queries with multiple patterns can slightly benefit
the final performance but occupy more memory space, which
can hinder training on a single GPU while using contrastive
mask denoising. These aspects reveal potential weaknesses
in the stability and scalability of our model, pointing to-
wards directions for future improvement. In response to
these issues, future research could explore how to further
improve the model’s stability and spatio-temporal efficiency,
aiming to achieve better performance across a wider range
of application scenarios.

V. CONCLUSIONS

In this work, we propose a transformer-based 3D point
cloud instance segmentation model using the contrastive
mask denoising task and the multi-patterns-aware query
selection module, to address the challenge of unstable bi-
partite matching in early training stages and unclear query
physical meaning. The contrastive mask denoising task can
guide the model towards a more stable optimization path
in early training stages. Simultaneously, the multi-pattern-
aware query selection module leverages backbone features,
enabling the model to recognize multiple objects in the same
region with greater precision. The experimental results prove
that our method can effectively enhance the model’s ability
to understand complex scenes. Additionally, our approach is
generalizable and can be integrated into most transformer-
based architectures as a “plug and play” module to enhance
their performance.
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