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Abstract

Pre-trained transformers are often fine-tuned to aid clinical decision-making using
limited clinical notes. Model interpretability is crucial, especially in high-stakes
domains like medicine, to establish trust and ensure safety, which requires hu-
man engagement. We introduce SUFO, a systematic framework that enhances
interpretability of fine-tuned transformer feature spaces. SUFO utilizes a range
of analytic and visualization techniques, including Supervised probing, Unsuper-
vised similarity analysis, Feature dynamics, and Outlier analysis to address key
questions about model trust and interpretability. We conduct a case study inves-
tigating the impact of pre-training data where we focus on real-world pathology
classification tasks, and validate our findings on MedNLI. We evaluate five 110M-
sized pre-trained transformer models, categorized into general-domain (BERT,
TNLR), mixed-domain (BioBERT, Clinical BioBERT), and domain-specific (Pub-
MedBERT) groups. Our SUFO analyses reveal that: (1) while PubMedBERT,
the domain-specific model, contains valuable information for fine-tuning, it can
overfit to minority classes when class imbalances exist. In contrast, mixed-domain
models exhibit greater resistance to overfitting, suggesting potential improvements
in domain-specific model robustness; (2) in-domain pre-training accelerates feature
disambiguationE]during fine-tuning; and (3) feature spaces undergo significant
sparsification during this process, enabling clinicians to identify common outlier
modes among fine-tuned models as demonstrated in this paper. These findings
showcase the utility of SUFO in enhancing trust and safety when using transformers
in medicine, and we believe SUFO can aid practitioners in evaluating fine-tuned
language models for other applications in medicine and in more critical domainsﬂ

1 Introduction

Pre-trained transformer models achieve state-of-the-art performance on a range of natural language
processing (NLP) tasks [1} 2]. As a consequence, we have witnessed their increasing adoption in
the medical domain [3| 4]]. While they achieve strong empirical performance, little is understood

"We refer to the clustering of the feature space according to the labels of the input datapoint.
2All code is available at https://github.com/adelaidehsu/path_model_evaluation
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about how they obtain these results or when they lead to unreliable performance. In these critical
applications, interpretability of the predictions is indispensable for building trust in these models
for medical personnel and patients alike. In this paper, we propose a systematic framework that
provides a practical pipeline for analyzing and interpreting models fine-tuned for particular prediction
tasks, focusing on important questions: model suitability for a task, feature space evolution during
fine-tuning, and interpretation of fine-tuned features and failure modes. Our framework leverages a
suite of analytic and visualization techniques to interpret the feature space of a fine-tuned model.

We use SUFO to comprehensively investigate the effects of pre-training data distributions for a real-
world pathology report dataset, and further support our findings with a public clinical dataset, MedNLI.
We evaluate five pre-trained transformer models (Appendix [A.T.T) of the same size but differing in pre-
training corpora (general-domain/mixed-domain/domain-specific) on our five tasks (Appendix [A.T.2).
In this setting, SUFO helps study the following instantiations of its general targets: (1) how much does
in-domain pre-training help? (Section[3)? (2) what changes in the feature space during fine-tuning to
have led to the differences in model performance (Section E])? (3) how do we interpret the fine-tuned
feature space and analyze their failure modes (Sections [5)?

We call our approach SUFO and explain below where the name SUFO stands for by making the
corresponding letters bold. Each component of SUFO was chosen to yield complementary insights
into each of these questions. Firstly, Supervised probing evaluates model features by directly using
them for prediction with minimal fine-tuning and sheds light on the suitability of certain pre-trained
model for a target task. We show that although pre-trained features in a domain-specific model may
contain the most useful information, a domain-specific model can overfit to minority classes after
fine-tuning, when class imbalance exists, while mixed-domain pre-trained models are more robust.

Secondly, Unsupervised similarity analysis and Feature Dynamics visualization study the evolution
of the learned feature spaces through fine-tuning and qualitatively disambiguate these models both
through their speed of convergence and the degree to which they deviate from the pre-trained initial-
ization. We find the benefit of in-domain pre-training is manifested in faster feature disambiguation;
however, the key determinants of model performance are the closeness of pre-training and target
tasks and a diverse pre-training data source enabling more robust textual modeling.

Finally, through the substantial sparsification of feature spaces induced by fine-tuning, Qutlier
analysis allows for a deeper understanding of the failure modes of these models. We observe that
models pre-trained with in-domain data discover a more diverse set of challenging/erroneous reports
as determined by a domain expert than a general-domain model. SUFO may inform the practical
use of these models by aiding in the selection of an appropriate pre-trained model, a quantitative
and qualitative evaluation of these models through fine-tuning, and finally, an understanding of their
failure modes for more reliable deployment.

2 Related Work

Language models (LMs) performance on clinical tasks Prior work has noted the benefits of
including biomedical data in the pre-training corpora [3} 5H7]], and the nuances of when and how to
include such data [8]]. Yet, a comprehensive analysis of the impact of these choices on transformer
features remains elusive, and our work aims to provide this understanding to offer improved prescrip-
tive recommendations for practitioners. In concurrent work, Kefeli and Tatonetti [9] released a model
fine-tuned with ClinicalBERT on pathology reports for primary Gleason score extractionsE] Tai et al.
[LO] adapts BERT to the medical domain by adding a domain-specific embedding layer and extending
the vocabulary. Domain-specific models [11-H14] are proposed to further mitigate the problem of
distribution shifts [[15] with pre-training using biomedical data only. These models have shown
improved performances on biomedical benchmarks [16], and many clinical tasks spanning from
medical abstraction [17], drug-target interaction identification [18]), to clinical classifications [19} 20];
however, their vulnerability regarding grammatical mistakes is also discussed [21H23]].

Feature analysis in LMs Most prior works have focused on token feature analysis in unsupervised
LM encoders. Supervised probing models are widely used in such works to test features for linguistic
phenomena [24H26] and syntactic structure [27]]. With increased flexibility, unsupervised techniques
are also proposed to investigate features in the same encoders. SV-CCA [28]], a form of canonical

3This concurrent model isn’t included in our evaluation due to time constraints before submission deadlines.



correlation analysis, is used in a cross-temporal feature analysis for learning dynamics [29]], while PW-
CCA [30], an improved version of SV-CCA, is used to analyze transformer features under different
pre-training objectives [31]. RSA [32] is increasingly used, such as in investigating the sensitivity
of features to context [33], and the correspondence of natural language features to syntax [34]]. In
addition to the works performed on unsupervised LMs, our work builds on a line of recent works
focusing on the fine-tuning effect on BERT for NLP tasks. Peters et al. [35] discussed the choice of
adaptation methods based on the performance of task-specific probing models at various layers. van
Aken et al. [36] interpreted question-answering models through cluster analysis. Structural probing,
RSA and layer ablations are also used in investigating the fine-tuning process of BERT [37]], and
correlating features of a fine-tuned BERT to fMRI voxel features [38].

Our work improves upon feature analysis since it integrates feature analyses to enable enhanced
interpretability of the fine-tuned feature spaces of transformer, and provides insights into the impact
of pre-training data. This integrated feature analysis pipeline SUFO allows a clearer window through
which the inner workings of fine-tuned LMs become more accessible to domain experts such as
clinicians. Such domain expert engagements are indispensable for building trust in LMs and ensuring
their safety in medicine. See Appendix for a full description of our experimental setup.

3 How much does in-domain pre-training help?

In this section, we discuss realistic scenarios when in-domain pretraining E] benefits, and more
importantly, hinders, downstream task performances by analyzing performance of the pre-trained
models under two most common forms of adaptation: fine-tuning and supervised probing.

3.1 Model performance: fine-tuning

We show the fine-tuned model performance on pathology reports in Table|l} The models have gener-
ally comparable performance on Path-SG, Path-MS, and Path-SV; however, they are distinguished
by their performance on Path-PG, where serious data imbalance exists. In Path-PG, BioBERT and
Clinical BioBERT still obtain relatively high accuracies, > 93%, while classifying both majority and
minority classes well (see Table[A2]|for per-class accuracy). The general-domain models, BERT and
TNLR, having accuracies 86% and 76% on Path-PG, show inferior performance to the mixed-domain
models. Yet surprisingly, PubMedBERT, as a domain-specific model, also does poorly on Path-PG
by performing close to the general-domain models. Specifically, we find that while PubMedBERT
does well on the majority classes, it struggles with the minority one.

To investigate whether this finding extends outside of our pathology report dataset, we evaluated the
fine-tuning performance of PubMedBERT and Clinical BioBERT on MedNLI, where we simulated
three scenarios of different class distributions: Balanced, Imbalanced (simulating class distribution in
Path-SG), and Highly Imbalanced (simulating class distribution in Path-PG), and report the results in
Table@ In the Balanced set, PubMedBERT can outperform Clinical BioBERT. However, Clinical
BioBERT outperforms PubMedBERT in the Highly Imbalanced set due to PubMedBERT’s inability
to classify one of the minority groups well, while in the Imbalanced set, both yield comparable
performance, corroborating our finding on the pathology reports. Hence, for the feature analyses in
the following sections, we will focus on the pathology report dataset.

3.2 Model performance: supervised probing

Supervised probing, where we freeze the pre-trained weights, and only train the last linear layer, is
a measure of how much useful information for a downstream task is contained in the pre-trained
features [36, 35,137, 27]. We report the supervised probing performance on pathology reports in
Table For comparison, we provide baseline results on a randomly initialized BERT (Random-
BERT). This normalization is necessary as even random features often perform well in probing
methods. [39,40]. Among all, PubMedBERT achieves the highest average score while the mixed-
domain models and BERT, come second with average scores close to PubMedBERT, and TNLR
obtains the lowest average score failing to even beat the baseline.

*In-domain pre-training includes both mixed and domain-specific pre-training, as long as biomedical data is
included in the pre-training data.



Table 1: F1 test set performance over 3 runs. BioBERT and Clinical BioBERT perform the best on
average, while PubMedBERT struggles when serious data imbalance present.

Models Path-PG Path-SG Path-MS Path-SV Average
BERT 0.858 (0.16)  0.975(0.02) 0.957 (0.01) 0.908 (0.03) 0.924
TNLR 0.763 (0.18)  0.995 (0.01)  0.963 (0.01) 0.932(0.01) 0.913
BioBERT 0.933(0.04) 0.991 (0.01) 0.959 (0.01) 0.915(0.02) 0.950
Clinical BioBERT  0.959 (0.03)  0.992 (0.01) 0.964 (0.01) 0.920 (0.01)  0.959
PubMedBERT 0.770 (0.12)  0.984 (0.01) 0.970 (0.01) 0.928 (0.01) 0.913

3.3 Discussion on effect of in-domain pre-training data

The results in Subsections and [3.2] demonstrate some subtle effects of in-domain pre-training
data when it brings performance gain. That is, even under different degrees of class imbalance,
if pre-training data is diverse enough to ensure robustness, the gain persists. PubMedBERT is
shown to contain much useful information for our tasks in its pre-trained features, possibly due to
its domain-specific pre-training; however, it suffers from instability in predicting the minority class
after fine-tuning. Mixed-domain models, such as BioBERT and Clinical BioBERT, not only show
good performance on supervised probing, but also perform well after fine-tuning. The benefits of
their mixed-domain pre-training are two-fold: first, pre-training on biomedical datasets allows for
better domain-specific features more amenable to performance improvements through fine-tuning,
and second, the incorporation of general-domain corpus makes them more resistant to overfitting.

4 What happens during fine-tuning?

In Sec[3] we observe how fine-tuning affects PubMedBERT’s suitability for pathology classification
tasks, indicating significant feature space changes. Here, we examine these changes across layers
and over time. We start by using unsupervised similarity analysis to measure neural representation
content similarity [41] across layers. Additionally, we explore feature dynamics through cluster
analysis, examining feature disambiguation’s structure and evolution across both time and layers.
Our work stands out as the first to conduct such extensive cluster analysis on text features, in contrast
to previous studies that often focus solely on cross-layer or cross-temporal analysis [36,31].

4.1 Unsupervised representational similarity analysis (RSA): changes in the feature space
after fine-tuning

RSA is an unsupervised technique for measuring the similarity of two different feature spaces given a
set of control stimuli. It was first developed in neuroscience [32]], and has been increasingly used
to analyze similarity between neural network activations [37, 33} 134]. To conduct RSA, a common
set of n samples is used to create two sets of features from two models separately. For each feature
set, a pairwise similarity matrix in R™*" is calculated with a defined distance measure. The final
similarity score between the two feature spaces is computed as the Pearson correlation between the
flattened upper triangular sections of the two pairwise similarity matrices. In our work, we sample
random reports (n = 1000) from our dataset for each of the four tasks as the control stimuli. We
extract activations of corresponding encoder layers at the classification token from the two versions,
e.g. pre-trained vs. fine-tuned, of each model as the feature sets to compare, in an effort to examine
the layer-wise change brought by the fine-tuning process. We use Euclidean distance as the defined
distance measure to calculate the pairwise similarity matrix.

Results Figure[AT|shows our RSA results comparing the pre-trained and fine-tuned versions of
the models. In the figure, lower values imply greater change relative to the pre-trained model. We
observe a few common trends across all tasks. First, the changes generally arise in the middle layers
of the network, and increase in the layers closer to the loss, with little change observed in the layers
closest to the input, possibly due to vanishing gradient. Second, Clinical BioBERT on average has the
smallest change across layers, or retains the most pre-trained information, while TNLR undergoes the
most drastic reconfiguration, suggesting Clinical BioBERT having the pre-trained data distribution
more aligned to our target task which are less distorted during fine-tuning, while that of TNLR is the



most distanﬂ On average, BERT, BioBERT and PubMedBERT show moderate reconfiguration in
the layers, which especially indicates the versatility of BERT’s feature space for its ability to match
models pre-trained using in-domain data with relatively little reconfiguration.

4.2 Feature dynamics: cluster analysis across layer and time

We employ PCA to study feature dynamics in the models, assessing their structure and evolution dur-
ing fine-tuning along two axes: layer and time. We determine whether feature disambiguation aligns
with layers displaying the most change as discussed in Subsection4.1] evaluating the practicality of
this change for the tasks. Feature sets for this experiment consist of activations from corresponding
encoder layers at the classification token across all 25 checkpoints.

Results We provide test set feature dynamics for the models in Appendix including results
from Path-PG and Path-MS as representatives of tasks with varying label numbers, as we note
consistent outcomes across all four tasks. When comparing feature dynamics to RSA results in
Subsection[4.T] we find that changes in layers measured through RSA generally correspond to valuable
information for target tasks as feature disambiguation in layers often aligns with significant drops in
RSA scores across all five models. The feature dynamics of TNLR is generally the most dissimilar
with the rest. For example, in Path-PG, TNLR disambiguates the minority class, 5, first starting in
layer 4, and then the majority classes, 3 and 4, starting in layer 7; however, we observe the opposite
behavior in the remaining BERT-based models, where they disambiguate the majority class before the
minority class. We suspect this difference results from the pre-training objectives and self-attention
mechanisms. Examining the feature dynamics through time, we do see models leveraging in-domain
pre-training, such as BioBERT, Clinical BioBERT, and PubMedBERT, disambiguate faster than
general-domain models. In Path-PG, in-domain models start to disambiguate the classes at around
epoch 6, while BERT and TNLR do so around epoch 9. Overall, Clinical BioBERT requires the
fewest change in layers and less training epochs to disambiguate the features well. The mixing of
classes shown in PubMedBERT’s scatterplots on Path-PG, which was not observed in its train set
feature dynamics, corroborates the overfitting problem that we see in its fine-tuning performance.
From the result, we argue that in-domain pre-training reduces the required fine-tuning epochs, but
the quality of final feature disambiguation determining a model’s performance is dependent on the
closeness of pre-training and target tasks, and the model’s resistance against overfitting, exemplified
by Clinical BioBERT’s fast and clear feature disambiguation.

5 Interpretation of the fine-tuned feature space

In this section, we perform outlier analysis on the fine-tuned final layer classification token feature
spaces of the models, yielding insights into their failure modes. We find the feature spaces undergo
extensive sparsification through fine-tuning (see Appendix [A.9), enabling us to leverage this structure
to identify outliers and solicit expert evaluation to determine the causes of this behavior. We
demonstrate that different pre-trained models exhibit qualitative differences in their outlier modes
and SUFO provides useful practical insight into the behavior of these models under fine-tuning.

5.1 Outlier extraction

To extract outliers, we construct clusters of the training selﬂ on the two-dimensional singular subspace
of the feature space. We observe a strong clustering phenomenon where most samples cluster
based on their labels (see Figure[I). The main difficulties in extracting these clusters are that the
one-dimensional projections onto PC1 and PC2 often exhibit significant differences in scale and
distribution across the four tasks (Figure and furthermore, the cluster structure itself is also
correspondingly different (Figure [Tb) across tasks. To address this, we first independently extract
clusters for the one-dimensional projections onto PC1 (either 2 or 3 depending on the number of labels)
and PC2 (either 1 or 3). This produces intervals {I; 1 }.-% and {I; 2 };"% where my,mg € [3] for PCI1
and PC2 respectively. The clusters in the top-2 singular subspace are obtained by taking the cross
product of all pairs of 1-dimensional clusters to obtain m x ms rectangles {I; 1 x I <72}i€[m1]’je[m2}.

3See Appendix for a quantitative definition of the closeness between pre-training data and target data.
We choose the training set here to ensure there are a sufficient number of datapoints to reliably recover the
PCs. This, however, limits our ability to examine the test set generalization of the models.
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Figure 1: Illustration of clustering algorithm: fine-tuned BERT on Path-PG. (a) The projection onto
the first two PCs. (b) A similar projection for Path-SV. Notice that the scales of the two PCs are
drastically different and a naive clustering based on the Euclidean metric may not capture the variation
in PC2. (c) The 3 clusters obtained from the projection onto PC1 with each red bar denoting the
boundaries of a single cluster. (d) 3 clusters similarly obtained on PC2. (e) The final set of 3 clusters
obtained by forming all possible combinations of clusters from (c) and (d) and selecting the 3 largest.

From these, the 2 or 3 (again depending on the number of labels) rectangles with the most datapoints
are selected to obtain the final set of 2-dimensional clusters (represented by the red rectangles in
Figure[Ie). This process is illustrated in Figure[I] Finally, we extract as outliers all reports which do
not fall into any of the clusters.

5.2 Domain Expert Evaluation

After extracting these outliers, we solicited feedback from a domain expert (a clinician in Urology) to
attempt to explain their behavior. They were asked whether an outlier report would be challenging
for human classification, and if so, explain why. The models were then compared on this feedback.

Common outlier modes We identified the following common outlier modes from our expert feed-
back. Here, we restrict to the reports identified as being difficult to classify by our expert, henceforth
referred to as Hard Outliers: (1) Wrongly labeled reports, (2) Inconsistent reports, (3) Multiple
Sources of Information, (4) Not reported or truncated report, and (5) Boundary reports. (full definition
in Table [A6). The main difference between models is their sensitivity to truncated/unreported (4)
instances (see Hard Outliers distributions in Table[A7). Clinical BioBERT and PubMedBERT identify
more instances where the target label is not present than BERT, BioBERT, and TNLR. Hence, the
sparsified feature spaces of PubMedBERT and Clinical BioBERT allow for improved detection of
missing medical information in the pathology reports. We believe the two models extract more com-
prehensive features that better model the medical data than their general counterparts. On the other
hand, features extracted by PubMedBERT are less robust leading to overfitting during fine-tuning.
We attribute the inferior performance of the other mixed-domain model, BioBERT, compared to
Clinical BioBERT to the lack of clinical data in its pre-training corpus.

6 Conclusions

In this work, we developed SUFO, a systematic pipeline to shed light on the fine-tuned feature spaces
of transformers for increased interpretability by domain practitioners, helping ensure trust in and



safety of LMs in critical application domains such as medicine. In our case study investigating the
impact of pre-training data, we reveal the robustness of mixed-domain models under substantial class
imbalance, that in-domain pre-training helps faster feature disambiguation and improved identification
of missing medical information, validated by an expert evaluation. While this work represents a step
toward transparent LMs in medicine, it is limited in scale and focused on clinical classification tasks.
Generalizing these findings to broader clinical tasks and models requires further research.
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A Appendix

A.1 Experimental Setup
A.1.1 Pre-trained Models

We evaluate five 110M-sized[|encoder-based [f|transformer [42] models commonly used in clinical
classifications. Here we describe the models, with an emphasis on their differences in pre-training
objectives and categories of pre-training corpora.

General-domain: BERT and TNLR The popular BERT [[1] architecture is based on bidirectional
transformer encoder [42]. BERT is pre-trained on masked language-modeling (MLM) and next
sentence prediction tasks, with a general-domain corpus (3.3B words) from BooksCorpus [43]]
and English Wikipedia. We use BERTgasg with 12 layers and 12 attention heads, and the uncased
WordPiece [44]] tokenization since prior work [[11] has established that case does not have a significant
impact on biomedical downstream tasks. The Turing Natural Language Representation (TNLR)
model [45] we use has the same architecture and vocabulary as BERT. They do differ, however, in
their pre-training objectives, self-attention mechanism, and data as TNLR is trained using constrained
self-attention with a pseudo-masked language modeling (PMLM) [45] task on a more diverse general-
domain corpus (160GB) that additionally includes OpenWebTex{’| CC-News [46], and Stories [47].

Mixed-domain: BioBERT and Clinical BioBERT BioBERT [7]] and Clinical BioBERT [i6] are
categorized as mixed-domain pre-trained models because they are pre-trained with biomedical data
on top of a general-domain corpus. The version we use is obtained via continual pre-training from
BERT by training on PubMed abstracts (4.5B) for additional steps. Clinical BioBERT is the result of
continual pre-training from BioBERT by training additionally on MIMIC-III clinical notes (0.5B) to
be more tailored for clinical tasks. The two models share the same vocabulary and architecture as
BERT.

Domain-specific: PubMedBERT PubMedBERT [11] was proposed to mitigate the shortcomings
in BERT’s vocabulary as it cannot represent biomedical terms in full, which was found to possibly
hinder the performance of general-domain and mixed-domain models on downstream biomedical
tasks [16} 10} [15]. Hence, this model is trained from scratch using PubMed abstracts (3.1B) only,
resulting in a more specialized vocabulary for biomedical tasks. We use the uncased version of
PubMedBERT with the same architecture as BERT.

Remark on differences in pre-training objectives and data The pre-training objectives and data
sizes are similar for all the BERT-based models and we do not expect these differences to impact our
findings. While TNLR has a different objective and self-attention mechanism which could confound
our analysis, we find that the quantitative and qualitative behavior observed in its analysis in relation
to the mixed and domain-specific models are similar to BERT, the other general-domain model. Thus,
we believe that our conclusions are applicable to TNLR despite these differences.

A.1.2 Fine-tuning Data

Prostate Cancer Pathology Reports We collected a corpus of 2907 structured pathology reports
with data elements extracted from a set of free-text reports following a previously proposed prepro-
cessing pipeline [48]. The corpus includes pathology reports for patients that had undergone radical
prostatectomy for prostate cancer at the University of California, San Francisco (UCSF) from 2001
to 2018. This study was conducted under an institutional review board (IRB) approval. The reports
contain an average of 471 tokens. For each document, we focus on the following 4 pathologic data
elements: primary Gleason grade (Path-PG), secondary Gleason grade (Path-SG), margin status
for tumor (Path-MS), and seminal vesicle invasion (Path-SV), and formed 4 classification tasks
correspondingly. (Detailed description in Appendix [A.Z) For Path-PG and Path-SG, there are 5 labels

"Models exhibit only small changes in vocabulary sizes (28996-30522) and the 110M parameter counts
include the sizes of the word embeddings.

8We focus our discussion on strictly encoder-based transformers by not considering transformers in other
architectures (i.e. decoder-only, encoder-decoder) to avoid introducing extra confounding factors.

?skylion007.github.io/OpenWebTextCorpus
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available: [null, 2, 3, 4, 5], with null denoting an undecided Gleason score, often due to
previous treatment effects. We exclude reports with null and 2 Gleason scores under a doctor’s
suggestion as the two labels account for only 1.3% and 0.07% of the corpus, and are rarely graded
in practice. [T_G] After the removal, the distribution of labels 3, 4, and 5 in Path-PG is 67%, 30%, and
3% respectively, while in Path-SG it is 39%, 53%, and 8%. Both Path-MS and Path-SV are binary
classification tasks, with only two labels: [positive, negative]. The distribution of positive
and negative in Path-MS is 26% and 74%, while in Path-SV is 13% and 87%. Our pathology reports
dataset is not publicly available due to the protected patient information in the dataset; however, we
provide a few anonymized report samples in Appendix as illustration.

MedNLI To support the generalizability of our conclusions, we additionally report the fine-tuning
results of the models on a publicly available clinical dataset, MedNLI [49]. The objective of MedNLI
is to determine if a given clinical hypothesis can be inferred from a given premise, and the dataset
is labelled with three classes [contradiction, entailment, neutral]. We (non-uniformly)
sample subsets of 6990 samples from MedNLI which reflect the different class distributions observed
in the pathology report extraction tasks.

A.1.3 Fine-tuning

We fine-tune the models to perform single-label classification for all tasks. We add a linear layer
followed by a softmax function to the model output on the classification token. The datasets are
divided into 71% training, 18% validation, and 11% test, with label distribution in each set resembling
the distribution in the full datasets. Best model checkpoints are selected based on validation set
performances, and are used in all experiments. For pathology reports, we evaluate the models against
macro F1 as each class accounts for equal importance, while we report accuracy for MedNLI. We
set the encoder sequence length to 512 tokens for pathology reports, and 256 tokens for MedNLI,
which allows us to encode the full length of the majority of the datasets. Note that random weighted
sampling was implemented for all tasks during fine-tuning to tackle the data imbalance.

Prostate Cancer Pathology Reports We use consistent fine-tuning hyperparameters for all models
and all the four tasks, as we observe the validation set performance is not very sensitive to hyper-
parameter selection (less than 1% F1 performance change). We use an AdamW optimizer with a
7.6 x 1079 learning rate, 0.01 weight decay, and a 1 x 10~ epsilon. We also adopt a linear learning
rate schedule with a 0.2 warm-up ratio. We fine-tune for a maximum of 25 epochs with a batch size
of 8 and evaluate every 50 steps on the validation set. Each model is fine-tuned on a single NVIDIA
Tesla K80 GPU, and average fine-tuning time is around 3 hours.

MedNLI We use consistent fine-tuning hyperparameters for all models, as we observe the validation
set performance is not very sensitive to hyperparameter selection (less than 1% accuracy change).
We use an AdamW optimizer with a per-layer learning rate decay schedule (1 x 10~% as the starting
learning rate, and 0.8 as the decay factor), 0 weight decay, 1 x 10~ epsilon, and a 0.1 warm-up ratio.
We fine-tune for a maximum of 10 epochs with a batch size of 32 and evaluate every epoch on the
validation set. Each model is fine-tuned on a single NVIDIA GeForce GTX TITAN X GPU, and the
fine-tuning time on average is less than 1 hours.

"Previously we tried to include Gleason scores null and 2 in the fine-tuning, but found none of the models
could classify any of the two classes well due to their extremely small sample sizes. It didn’t seem reasonable to
discuss the models’ performance on these two classes given that they couldn’t even learn well.
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A.2 Description of extracted pathologic data elements

Table A1: Description of the 4 extracted pathologic data elements.

Data elements

Description

Primary Gleason grade

Secondary Gleason grade

Margin status for tumor

Seminal vesicle invasion

A whole number from 1 to 5 representing the primary score given
to a specimen based on the Gleason grading system to measure
tumor aggressiveness.

A whole number from 1 to 5 representing the secondary score
given to a specimen based on the Gleason grading system to
measure tumor aggressiveness.

To evaluate surgical margins, the entire prostate surface is inked
after removal. The surgical margins are designated as "negative"
if the tumor is not present at the inked margin, and "positive" if
tumor is present.

Invasion of tumor into the seminal vesicle. It is marked as "nega-
tive" if no invasion is present in the seminal vesicle, and "positive"
if invasion is present.

A.3 Anonymized pathology

* synoptic comment

report samples

for prostate tumors " 1. type of tumor

adenocarcinoma small acinar type. " 2. location of tumor : both
lobes. 3. estimated volume of tumor : 3. 5 ml. 4. gleason
score : 4 + 3 =7. 5. estimated volume > gleason pattern 3

2 ml. 6. involvement of capsule : present ( e. g. slide b6

). 7. extrapros
excision margins

tatic extension : mnot identified. 8. status of
for tumor : negative. status of excision margins

for benign prostate glands : positive ( e. g. slide b4 ). 9.

involvement of se

minal vesicle : not identified. 10. perineural

infiltration : present ( e. g. slide b1l ). " 11. prostatic
intraepithelial neoplasia ( pin ) : present high - grade (e. g
" slide b4 ). 12. ajcc / uicc stage : pt2cnxmx ; stage ii if

no metastases are
final diagnosis
prostatic tissue.

prostatic adenocarcinoma " gleason score 4 + 3 = 7 ; see comment.

* synoptic comment
adenocarcinoma.
slides b3 - bb

identified. 13. additional comments : none.
" a. prostate left apical margin : benign
" " b. prostate and seminal vesicles resection

for prostate tumors - type of tumor : small acinar

- location of tumor : - right anterior midgland
. - right posterior midgland : slides b6 - b8.

- left anterior midgland : slides bl2 - bl4. - left posterior

midgland : slide

slides bl6 - bl7 - estimated volume of tumor : 10 cm3. " - gleason
score : 7 ; primary pattern 3 secondary pattern 4. " - estimated
volume > gleason pattern 3 : 40 %. " - involvement of capsule
tumor invades capsule but does not extend beyond " " capsule (
slides b5 b8 b18 ). " - extraprostatic extension : none. - margin
status for tumor negative. - margin status for benign prostate
glands : negative. - high - grade prostatic intraepithelial
neoplasia ( hgpin ) : present ; extensive. - tumor involvement
of seminal vesicle : none. - perineural infiltration : present.
lymph node status none submitted. - ajcc / uicc stage : pt2cnx.
final diagnosis " a. prostate left base biopsy : fibromuscular
tissue no tumor. " " b. prostate radical prostatectomy : " " 1.

s b9 - bll. - left and central bladder bases

prostatic adenocarcinoma gleason grade 3 + 4 score = 7 involving "
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" bilateral prostate negative margins ; see comment. 2. " seminal
vesicles with no significant pathologic abnormality.

A.4 Per-class accuracy on Path-PG and Path-SG

Table A2: Per-class accuracy of the five models on Path-PG and Path-SG, averaged across three runs
(all stds are < 5% so we omit it to save spaces). PubMedBERT performs poorly when classifying
the minority class 5 in the highly imbalanced Path-PG dataset, while it obtains descent performance
across all classes in the slightly more balanced Path-SG dataset.

Path-PG Path-SG
Models \Labels 3 4 5 3 4 5
BERT 099 094 1.00 098 098 0.97
TNLR 097 0.87 1.00 099 099 0.99
BioBERT 099 097 094 099 099 0.99
Clinical BioBERT 099 098 1.00 099 099 0098
PubMedBERT 099 092 067 098 099 097

A.5 Fine-tuning results on MedNLI

Table A3: Per-class accuracy and overall accuracy of PubMedBERT and Clinical
BioBERT on MedNLI across three runs, where three scenarios are evaluated: Balanced
(‘C’E’’N’=34%:33%:33%), Imbalanced (‘C’:’E’:’N’=39%:53%:8%), and Highly Imbalanced
(‘CE’’N’=67%:30%:3%).

Balanced Imbalanced Highly Imbalanced
Clinical Clinical Clinical
Labels \Models PubMedBERT BioBERT PubMedBERT BioBERT PubMedBERT BioBERT
Contradiction "C’)  0.88 (0.03) 0.76 (0.03)  0.76 (0.03) 0.70 (0.02)  0.80 (0.01) 0.79 (0.03)
Entailment CE’) 0.75 (0.02) 0.71 (0.02) 0.71 (0.03) 0.70 (0.02)  0.34 (0.02) 0.62 (0.05)
Neutral ’N”) 0.77 (0.05) 0.72 (0.01) 0.33 (0.16) 0.32(0.01) 0.04 (0.03) 0.04 (0.02)
Accuracy 0.83 (0.01) 0.73 (0.01)  0.70 (0.02) 0.71 (0.01)  0.71 (0.01) 0.76 (0.03)

A.6 Supervised probing results on pathology reports

Table A4: F1 test set performance under supervised probing over 3 runs. PubMedBERT performs the

best, showing its pre-trained feature contains the most useful information for pathology reports.

Models Path-PG Path-SG Path-MS Path-SV Average
BERT 0.371 (0.04) 0.345(0.05) 0.678 (0.03) 0.578 (0.02) 0.493
TNLR 0.271 (0.01)  0.267 (0.06) 0.494 (0.03) 0.481 (0.01) 0.378
BioBERT 0.340 (0.04) 0.327 (0.04) 0.666 (0.03) 0.574 (0.02) 0.477
Clinical BioBERT  0.341 (0.03) 0.336 (0.04) 0.689 (0.02) 0.581 (0.01) 0.487
PubMedBERT 0.387(0.01) 0.327(0.03) 0.687 (0.02) 0.575(0.01) 0.494
Random-BERT 0.339 (0.06)  0.260 (0.09) 0.529 (0.05) 0.555(0.05) 0.421
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A.7 RSA results on pathology reports

Cross Model Comparison - RSA - Primary Gleason Cross Model Comparison - RSA - Secondary Gleason
Model Comparisons Model Comparisons
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Figure Al: Layer-wise RSA comparing the pre-trained and fine-tuned versions of the models across
four pathology classification tasks.

A.8 Quantifying the closeness between pre-training data and target data

We use perplexity of pre-trained models on target tasks to define the closeness between pre-training
data and target data. The lower the perplexity means the closer the two data distributions should be.

Table AS: Perplexity of the five models on pathology reports.

. Clinical
BERT TNLR BioBERT BioBERT PubMedBERT
Perplexity 1.111 1.115 1.113 1.110 1.103

A.9 The structure of the fine-tuned feature space

We analyze principle components (PCs) of features in the final layer classification token of the
fine-tuned models. These features are important as they are used directly for prediction, and often
contribute the most to performance in ablation studies [36].

High sparsity We show that the fine-tuned last layer classification token feature space is highly
sparsified. We observe that, for every model across the four pathology tasks, the first two PCs explain
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on average 95% of the variance in the dataset (Figure[AZ)). To understand how the PCs contribute
to model performance, we conduct a PC probing experiment (Figure [A3). In the experiment, we
measure model performance on reconstructed rank-% feature space by projecting onto the bottom &
PCs, with k varying between 1 and 768. In particular, k = 768 corresponds to the full-feature space.
In the PC probing result, we see the first 2 PCs contribute significantly to model performance from
the surge in the performance after adding them back in at kK = 767 and k = 768.
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Figure A2: The first two PCs in the fine-tuned last layer classification token feature spaces of all the
models explain on average 95% of the dataset variance across the 4 tasks.
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A.10 Auxiliary Material for Section[5.2]

Table A6: Description of categories of hard outliers

Category Description

These are reports for which the provided annotation is in-
correct. For example, a report with null Gleason score
corresponding to a scenario where a Gleason score cannot be
assigned is wrongly included with another label.

For these reports, there exists inconsistent declarations of the
target attribute (say, Primary Gleason score) in two different
parts of the report.

These reports contain multiple sources of information which
are composed to produce one final label. One such instance
of such an outlier (for the Secondary Gleason label) con-
tained scores from five tumor nodules which were then com-
bined to give one final composite score. A classifier must
learn to distinguish the true final score from those that were
used to obtain it.

Outlier Category Name
Category
1D
1 Wrongly labeled
report
2 Inconsistent report
3 Multiple Sources of
Information
4 Not reported or

truncated report

These are reports for which the target attribute is either
not reported or the report is truncated before entry into the
database.

5 Boundary reports

These reports feature scenarios where the target attribute is
hard to determine precisely or requires some interpretation
of the provided information. For instance, one such report
presents a Gleason score with a combined value of 7 with
the other information in the report requiring the classifier to
deduce that the Gleason score is 3 + 4.

Table A7: A distribution of Hard Outliers for each model categorized according to the 5 outlier types.

Outlier Type BERT  BioBERT Clinical BioBERT PubMedBERT TNLR
1 0 0 1 1 1
2 0 1 0 1 2
3 2 0 1 1 1
4 0 1 3 5 1
5 4 0 3 3 2
Total 6 2 8 11 7

A.11 Feature dynamics

Here we present comprehensive sets of feature scatterplots along layers 1 to layer 12 (top-down) and
selected epochs in the order of 1,2,3,4,5,6,7,8,9, 10, 15, 20, 25 (left-right) of the 5 models, as we
observe the models typically show the most rapid performance gain from epoch 1 to 10, and marginal
increase afterwards. We include the plots from Path-PG and Path-MS, as representatives of tasks
having different number of labels to save space, but note that we observe similar trend in the results

of all the 4 tasks
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A.11.1 Path-PG
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Figure A8: Path-PG: PubMedBERT
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A.11.2 Path-MS
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Figure Al11: Path-MS: BioBERT

26



Lo = 318501 Lo 1 -2 L= 318003 R [ ST [ T [ e s - Loer =3 poen =25

Hm§ & i- & o & o F ' ui- & o # B o § &

o B o =% B B - .

e G o o G Poh. 9 .,A w Yy
 amezigeans | wedibeanr  lmgadimeas rezitenes mreaiennt | irezigmenns et " e 212
TR S N PR 2.

PR A S T AL . ;

w“ %- e w“ é\ by é\ Jy: .

Layor =31 Fpoch =1 Layor =3 Fpoch =8 Loyer =3 Epach =0

Layer =6 Fpoch - 4

-
i T

Lover =5 Esocn =1

Layor =91 Epoc

Layer = Epoch - 4

NG

Layor =91 Epoch = 20

i

Uy i

Layer =12 Epoen =0 Laver = 21 Epoch = 10

Figure A12: Path-MS: Clinical BioBERT

27



Figure A13: Path-MS: PubMedBERT
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