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ABSTRACT

Transformer-based models have emerged as popular choices for the multivariate
long-term time-series forecasting problem due to their ability to capture long-
term dependencies. However, current transformer-based models either overlook
crucial mutual dependencies among channels or fail to capture various temporal
patterns across different scales. To fill the gap, we propose a novel model called
MGTST (Multi-scale and cross-channel Gated Time-Series Transformer). In this
model, we introduce three innovative designs, including Parallel Multi-Scale Ar-
chitecture (PMSA), Temporal Embedding with Representation Tokens (TERT),
and Cross-Channel Attention and Gated Mechanism (CCAGM). In addition, we
introduce Channel Grouping (CG) to mitigate channel interaction redundancy
for datasets with a large number of channels. The experimental results demon-
strate that our model outperforms both channel-dependent (CD) and channel-
independent (CI) baseline models on seven widely used benchmark datasets, with
performance improvement ranging from 1.5 percent to 41.9 percent when com-
pared to the current state-of-the-art models in terms of forecasting accuracy.

1 INTRODUCTION

Time-series forecasting is a vital task in time-series analysis, as it involves predicting future observa-
tions based on historical time-series data. Accurate predictions are crucial for real-life applications
such as weather forecasting (Murphy, 1993), traffic forecasting (Lana et al., 2018), and stock price
forecasting (Mondal et al., 2014). Multivariate long-term time-series forecasting (MLTSF) is an
even more complex and meaningful task, requiring models to predict the relatively long-term future
of the time series with multiple variables. For instance, accurately forecasting weather conditions
across multiple locations for the upcoming week enables collaborative precautions against extreme
weather events. Deep learning models (Tokgöz & Ünal, 2018; Xue et al., 2019; Li et al., 2019) have
emerged as highly effective tools in the realm of MLTSF. Among them, transformer-based models
have emerged as highly promising approaches for time-series forecasting, primarily due to their ex-
ceptional ability to capture long-term temporal dependencies (Vaswani et al., 2017). Furthermore,
several transformer-based models are proposed to reduce computational complexity (Zhou et al.,
2021) or enhance forecasting accuracy (Wu et al., 2021).

Despite these advancements, the current performance of transformer models in MLTSF still falls
short of expectations. One prominent limitation pertains to the inadequate modeling of cross-
channel dependencies, which refers to the interrelationships among different variables that have
the potential to enhance prediction accuracy. Existing transformer-based models often adopt the
channel embedding strategy, which embeds multiple channels at the same time point into a vec-
tor representation. This approach yields inferior performance compared to even rudimentary linear
models (Zeng et al., 2023). One potential explanation is that this approach is sensitive to the distri-
bution shift between the training set and the test set (Han et al., 2023). Furthermore, certain recent
works have neglected cross-channel dependencies altogether (Nie et al., 2022; Wu et al., 2022).
Nevertheless, we contend that the performance of current transformer-based MLTSF models can be
improved by adequately modeling cross-channel dependencies. Figure 1 shows two channels which
correspond to the occupancy rates in two locations. The presence of cross-channel dependencies is
evident through the asynchronism between them, where the peaks in channel 6 lead those in channel
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(a) Cross-channel dependency (b) Multi-scale dependency

Figure 1: Visualization of Cross-channel dependency and Multi-scale temporal dependency in Traffic dataset

1. Ineffectual modeling of such correlations significantly impacts forecasting results and leads to
sub-optimal performance. In this paper, we categorize models with explicit channel dependencies
as channel-dependent (CD) models. Conversely, models without channel dependencies are referred
to as channel-independent (CI) models.

Another challenge encountered in transformer-based MLTSF models pertains to fixed-scale aware-
ness. In this context, the term ‘scale’ denotes the size of the elementary units when processing a time
series. Previous models typically employ a fixed scale for these units (Nie et al., 2022; Wu et al.,
2021; Zhou et al., 2022). However, by adhering to a fixed scale, these models fail to capture various
dependency patterns inherent within the data. As depicted in Figure 1, larger scales exhibit long-
term patterns, while smaller scales reveal short-term patterns within the historical horizon. Thus,
we posit that by adequately modeling the temporal dependencies of variables across different scales,
it is possible to achieve improved performance. Recent works such as Crossformer (Zhang & Yan,
2022) and Scaleformer (Shabani et al., 2022) explored the potential of multi-scale frameworks for
MLTSF. However, the sequential architectures that representations at larger scales are constructed
based on the results from smaller scales in these models are susceptible to error accumulation at
each scale, resulting in inferior performance when compared to fixed-scale models.

To fill these gaps, we propose MGTST which considers the multi-scale dependency and cross-
channel dependency simultaneously. Specifically, MGTST introduces Temporal Embedding with
Representation Tokens (TERT), a technique that partitions and projects the original time-series data
into temporal embedding tensors. The tensor incorporates appended representation tokens to effec-
tively capture the representation of channels or features within the time series. A temporal attention
mechanism is employed to capture temporal dependencies. Subsequently, Cross-Channel Attention
and Gated Mechanism (CCAGM) is applied to capture cross-channel dependencies by means of
a self-attention mechanism between the representation tokens and dot-product operations between
tokens and embedding tensors. Channel Grouping (CG) is included to group the representation to-
kens, thereby confining the range of interactions and reducing interaction redundancy. Moreover,
MGTST incorporates Parallel Multi-Scale Architecture (PMSA), which involves the use of differ-
ent patch lengths and stride lengths at each scale to generate temporal embedding tensors of varying
scales. These tensors are then concatenated and projected to generate the output. The contributions
of this paper can be summarized as follows:

1) We propose MGTST, a transformer-based model that leverages cross-channel dependency learn-
ing and multi-scale dependency learning in a unified framework.

2) We propose a channel grouping strategy aimed at reducing interaction redundancy. Through
this strategy, we demonstrate that conducting channel interactions within a local range yields more
effective results compared to interactions across the global range.

3) With intensive empirical analysis, we show that our model outperforms both CD and CI models
in terms of prediction accuracy, and achieves lower FLOPs and Params in practice compared with
current transformer models.
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2 RELATED WORK

Transformer-based models for MLTSF. Recent research efforts have been dedicated to enhancing
transformer-based models for MLTSF. Informer (Zhou et al., 2021) reduces the time complexity
by introducing ProbSparse self-attention, resulting in a computational complexity of O(LlogL),
where L represents the input length. Autoformer (Wu et al., 2021) replaces traditional dot-product
attention with series-wise auto-correlation attention and proposes a seasonal-trend decomposition
method based on the temporal characteristics of MLTSF. FEDformer (Zhou et al., 2022) incorpo-
rates Fourier analysis into the model, leveraging its properties to further enhance forecasting ac-
curacy. However, these transformer models all adopt the channel embedding strategy which limits
their performance. PatchTST (Nie et al., 2022) bridges this gap by introducing the temporal embed-
ding strategy, which transforms independent channel sequences into embedding tensors, achieving
state-of-the-art performance. Nevertheless, the exploration of cross-channel dependency and multi-
scale frameworks remains relatively limited in the existing works. To incorporate the cross-channel
dependency, Crossformer (Zhang & Yan, 2022) utilizes a two-stage attention mechanism to capture
both temporal and channel dependencies. CARD (Xue et al., 2023) further tackles the overfitting
concerns by integrating a dynamic projection module into the model. However, these models achieve
inferior performance compared to PatchTST (Nie et al., 2022), indicating the inadequate modeling of
cross-channel dependencies. Targeting the multi-scale frameworks, HUTFormer (Shao et al., 2023)
and Crossformer (Zhang & Yan, 2022) both use the sequential architecture to generate multi-scale
representations. Scaleformer (Shabani et al., 2022) extends the fixed-scale average pooling to multi-
scales. Nevertheless, these multi-scale models exhibit sub-optimal performance when compared
to state-of-the-art fixed-scale models. This performance discrepancy can be attributed to the error
accumulation in the sequential architecture. To properly model the multi-scale and cross-channel
dependencies, MGTST incorporates PMSA and CCAGM to mitigate the error accumulation.

Non-Transformer based models for MLTSF. Recurrent neural network(RNN) is one of the major
deep learning models used in time-series forecasting tasks. Leveraging their sequential structure,
RNN demonstrates the ability to capture the temporal dynamics and causal properties inherent in
time-series data. However, the efficacy of RNNs for long time-series forecasting is hindered by
the issue of error accumulation, resulting in suboptimal performance (Li & Yang, 2021). Con-
versely, Multilayer Perceptrons (MLPs) represent another prevalent class of deep learning models
for MLTSF. The inherent simplicity of the MLP architecture improves computational efficiency
during both model training and inference stages. Notably, several MLP-based models have been
proposed, exhibiting competitive performance compared to transformer-based counterparts (Zeng
et al., 2023; Das et al., 2023; Li et al., 2023). Despite the effectiveness of MLPs in MLTSF, achiev-
ing further performance improvements with such models remains challenging. The most advanced
transformer-based models still outperform non-transformer-based models.

Representation token. The [CLS] token, originally introduced in Bert (Devlin et al., 2018), has
emerged as a symbolic representation token in the field of deep learning. Its incorporation offers
notable advantages, such as an initialization with zero bias and the ability to aggregate comprehen-
sive information, thereby rendering it an effective representation of a sentence. This concept has
been further extended by Vision Transformer (Dosovitskiy et al., 2020) to capture the representation
of images. Inspired by these foundational works, we introduce a representation token to represent
each channel in the time series. To the best of our knowledge, this is the first work to introduce the
representation token to a transformer-based model in multivariate time series forecasting tasks. By
incorporating these tokens, we reduce the computational cost associated with cross-channel inter-
action and enhance the accuracy of forecasting. This novel idea distinguishes our approach from
previous work, such as the study conducted by (Zhang & Yan, 2022). Our empirical results demon-
strate the effectiveness of representation tokens in improving forecasting accuracy.

3 MODEL ARCHITECTURE

The MLTSF problem can be formulated as follows: given the historical observations of the time
series X1:T ∈ RT×M , the goal is to predict the future values XT+1:T+τ ∈ Rτ×M , where T is the
length of the observations, τ is the length of the predictions (generally longer than 48), and M >
1 is the number of channels. The model architecture of MGTST is depicted in Figure 2. MGTST
adopts the Parallel Multiple-Scale Architecture. At each scale, it takes XT+1:T+τ ∈ Rτ×M as
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Figure 2: Visualization of model structure

Figure 3: Different schemes of Multi-Scale Architecture

the input and transforms the input into the temporal embedding tensor X ∈ RM× (N+1)×D, where
N =

Linput−Lpatch

Sstride
+ 1. This is done through the Temporal Embedding with Representation

Tokens module. Then the temporal embedding tensor is fed into temporal attention to extract the
temporal information. Through the Cross-Channel Attention and Gated Mechanism module,
representation tokens T ∈ RM×1×D undergo the self-attention mechanism and dot product oper-
ation with temporal embedding tensor to extract cross-channel dependency. For the dataset with
many channels, we employ the Channel Grouping module to reduce interaction redundancy. Fi-
nally, outputs from each scale are concatenated and fed into the predictor for generating prediction
Xprediction ∈ RM×Loutput , where Loutput is the output length.

3.1 PARALLEL MULTI-SCALE ARCHITECTURE

Figure 3a) illustrates the Parallel Multi-Scale Architecture in MGTST. A hyperparameter k deter-
mines the number of scales. At each scale, the patch length is calculated as Lpatch = L0 ∗ i and
the stride length is calculated as Sstride = S0 ∗ i, where L0 represents the initial patch length, S0

represents the initial stride length, and i represents the index of the scale. The outputs of each scale
{Xscale

i } (i ∈ [1, k]) are concatenated for prediction:

X̂ = [Xscale
0 ,Xscale

1 , ...,Xscale
n ] (1)
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Figure 4: Different schemes of embedding

Figure 5: Cross-channel attention and Gated mechanism

The parallel multi-scale architecture used in MGTST (Figure 3a) offers advantages over the se-
quential multi-scale architecture employed in Crossformer (Figure 3b). With parallel multi-scale
architecture, MGTST avoids error accumulation and achieves superior performance.

3.2 TEMPORAL EMBEDDING WITH REPRESENTATION TOKENS

Figure 4a) illustrates the Temporal Embedding with Representation Tokens module. Initially, an
input tensor A ∈ RM×Linput is partitioned into P patches using a moving kernel given the patch
length Lpatch and the stride length Sstride, where Linput is the length of the input. Patches can be
represented by X ∈ RM×N×Lpatch , where N =

Linput−Lpatch

Sstride
+ 1. The objective of patching is

twofold: capturing local semantic information and reducing the computational complexity associ-
ated with the self-attention mechanism. Subsequently, a representation token T ∈ RM×1×Lpatch is
randomly initialized and concatenated with the patches, increasing the patch number to N + 1. In
order to project the patches into a temporal embedding space, a linear projection layer is applied,
transforming the tensor into [T,X] ∈ RM× (N+1)×D, where D signifies the dimensionality of the
hidden space. A positional embedding tensor E ∈ RM× (N+1)×D is added to the temporal embed-
ding tensor, leading to the temporal tensor representation X̂ = [T,X]+E, where X̂ ∈ RM× (N+1)×D.

Compared to the temporal embedding in PatchTST (Figure 4b), MGTST incorporates representation
tokens to capture channel-specific information and facilitate cross-channel interaction. Autoformer
adopts the channel embedding strategy (Figure 4c) to encode multiple channels into a vector rep-
resentation, which has been demonstrated to be less effective than the temporal embedding strat-
egy (Nie et al., 2022).

3.3 CROSS-CHANNEL ATTENTION AND GATED MECHANISM

Figure 5 illustrates the Cross-Channel Attention and Gated Mechanism module. The cross-channel
attention mechanism operates on the representation tokens. Representation token T ∈ RM×1×D is
updated by a standard transformer module:

Q = Fq(T),K = Fk(T),V = Fv(T) (2)

T̂ = BatchNorm(T +Multihead(Q,K,V)) (3)
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T = (T̂ +MLP (T̂)) (4)

where Q,K,V ∈ RM×1×D denote the query, key, and value, and Fq,Fk,Fv : D −→ D are
linear projections. Nhead heads split the Q,K,V as collections of Qi,Ki,Vi, where Qi,Ki,Vi

∈ RM×1×dhead , dhead= D
Nhead

.

Subsequently, the representation token T undergoes a projection to a dimension of N and is then
multiplied with the temporal embedding. This operation yields the adjusted temporal representation
for a single scale, denoted as Xscale ∈ RM×N×D :

Xscale = Sigmoid(L(T)) ∗ X (5)

where L : D −→ N is a linear projection, D is the hidden dimension, N is the number of patches,
and Sigmoid denotes the sigmoid activation function.

3.4 CHANNEL GROUPING

For datasets with a large number of channels, Channel Grouping module is employed to mitigate
redundancy in channel interaction. The first step involves separating the representation tokens into
G groups. Subsequently, we perform cross-channel attention within each group to facilitate the
localized modeling of channel interactions:

Tgroup
i = [Ti∗s,Ti∗s+1...T(i+1)∗s] (6)

where S is the size of each group. For the first G − 1 group, Si = ⌊MG ⌋. For the last group,
S−1 = M − (G− 1) ∗ ⌊MG ⌋. After local channel interaction, groups are gathered and sent into the
gated mechanism module.

4 EXPERIMENT

4.1 MULTIVARIATE LONG-TERM FORECASTING

Datasets. We evaluate MGTST on common datasets (Nie et al., 2022) covering various applications,
including Electricity Transformer Temperature (ETTh1, ETTh2, ETTm1, and ETTm2), Weather,
Traffic, and Electricity. The details of the datasets are provided in Appendix A.1.1.

Baselines. We compare the proposed model with 6 state-of-the-art baselines from both channel-
dependent(CD) and channel-independent(CI) categories, including 1) Crossformer (Zhang & Yan,
2022)(CD), 2) Autoformer (Wu et al., 2021)(CD), 3) PatchTST (Nie et al., 2022)(CI), 4) DLin-
ear (Zeng et al., 2023)(CI), 5) TimesNet (Wu et al., 2022)(CI), and 6) Client (Gao et al., 2023)(CD).

Parameter setting. We adopt two settings for MGTST in the experiment. The one with the input
length of 336 (MGTST-336) is to compare with other models and the one with the input length of
512 (MGTST-512) is to explore the potential of our model. For a fair comparison, we keep the same
input length of 336 for all models. The effect of input length is discussed in Section 4.3. More
details about hyperparameter settings can be found in the Appendix A.1.4.

Evaluation Metrics. For details about Evaluation Metrics, see Appendix A.1.5

Results. The prediction results of all models are summarized in Table 1. In general, our model
outperforms all CD and CI models. Specifically, MGTST-336 outperforms PatchTST, the best CI
model, by 1.5 % on MSE and 1 % on MAE, demonstrating its superior performance and effec-
tiveness of incorporating cross-channel and multi-scale dependencies. It outperforms Client, the
current best CD model, by 7.9 % on MSE and 5.3 % on MAE, which indicates both CCAGM
and PMSA are more suitable cross-channel mechanism and multi-scale architecture when com-
pared to previous work for MLTSF tasks. Furthermore, MGTST-512 attains a 2.5 % reduction on
MSE and 1 % on MAE compared to PatchTST, and attains an 8.8 % reduction on MSE and 5.3
% on MAE compared to Client. The consistency of MGTST across different random seeds can
be observed due to its low standard deviation. The code to reproduce our results is available at:
https://anonymous.4open.science/r/MGTST-4860
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Table 1: Multivariate long sequence time-series forecasting results in seven datasets. Bold/underline denotes the best/second result. The
Average denotes the average of results for each model (four cases). For each setting, we report the average performance of 4 runs with different
seeds with the standard deviation. We use four forecasting window lengths of h ∈ {96, 192, 336, 720} and a look-back window length of
l = 336 in our experiments.

Models MGTST-336 MGTST-512 PatchTST Crossformer DLinear Autoformer TimesNet Client
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.372 0.394 0.376 0.404 0.376 0.401 0.394 0.421 0.376 0.399 0.512 0.497 0.459 0.461 0.398 0.414
±0.001 ±0.000 ±0.003 ±0.003 ±0.003 ±0.003 ±0.001 ±0.001 ±0.006 ±0.006 ±0.025 ±0.017 ±0.020 ±0.010 ±0.002 ±0.001

192 0.418 0.422 0.403 0.421 0.412 0.420 0.426 0.442 0.418 0.427 0.493 0.495 0.477 0.471 0.450 0.450
±0.002 ±0.002 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.018 ±0.016 ±0.017 ±0.012 ±0.009 ±0.004 ±0.001 ±0.001

336 0.420 0.429 0.399 0.425 0.427 0.433 0.453 0.465 0.453 0.465 0.507 0.505 0.483 0.475 0.471 0.466
±0.001 ±0.001 ±0.000 ±0.001 ±0.005 ±0.004 ±0.007 ±0.004 ±0.019 ±0.016 ±0.048 ±0.029 ±0.016 ±0.008 ±0.001 ±0.001

720 0.432 0.455 0.431 0.458 0.445 0.463 0.543 0.541 0.478 0.494 0.597 0.567 0.534 0.512 0.492 0.496
±0.001 ±0.001 ±0.001 ±0.001 ±0.008 ±0.006 ± 0.080 ±0.051 ±0.009 ±0.008 ±0.030 ±0.022 ±0.025 ±0.011 ±0.001 ±0.001

E
T

T
h2

96 0.276 0.337 0.265 0.331 0.274 0.335 0.752 0.588 0.292 0.356 0.497 0.520 0.376 0.415 0.322 0.368
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.046 ±0.019 ±0.007 ±0.008 ±0.052 ±0.034 ±0.023 ±0.014 ±0.004 ±0.003

192 0.336 0.379 0.326 0.374 0.338 0.378 0.889 0.686 0.374 0.411 0.532 0.545 0.419 0.443 0.403 0.420
±0.002 ±0.001 ±0.003 ±0.002 ±0.001 ±0.002 ±0.051 ±0.022 ±0.017 ±0.011 ±0.048 ±0.029 ±0.012 ±0.007 ±0.007 ±0.004

336 0.326 0.383 0.323 0.381 0.328 0.380 0.944 0.723 0.432 0.450 0.692 0.616 0.399 0.436 0.441 0.450
±0.001 ±0.002 ±0.002 ±0.001 ±0.002 ±0.002 ±0.101 ±0.054 ±0.036 ±0.019 ±0.174 ±0.065 ±0.009 ±0.006 ±0.020 ±0.011

720 0.384 0.423 0.371 0.418 0.377 0.420 1.271 0.866 0.602 0.549 0.986 0.709 0.451 0.468 0.475 0.475
±0.013 ±0.009 ±0.001 ±0.001 ±0.002 ±0.002 ±0.226 ±0.092 ±0.022 ±0.009 ±0.307 ±0.113 ±0.007 ±0.004 ±0.016 ±0.008

E
T

T
m

1

96 0.284 0.337 0.283 0.338 0.290 0.341 0.305 0.359 0.300 0.344 0.494 0.483 0.315 0.367 0.306 0.352
±0.002 ±0.001 ±0.001 ±0.001 ±0.002 ±0.001 ±0.002 ±0.002 ±0.001 ±0.003 ±0.019 ±0.017 ±0.011 ±0.010 ±0.004 ±0.003

192 0.322 0.363 0.325 0.365 0.331 0.368 0.357 0.399 0.335 0.366 0.535 0.502 0.375 0.397 0.341 0.368
±0.001 ±0.001 ±0.001 ±0.001 ±0.004 ±0.002 ±0.004 ±0.004 ±0.001 ±0.002 ±0.043 ±0.021 ±0.012 ±0.005 ±0.003 ±0.002

336 0.357 0.384 0.355 0.383 0.365 0.390 0.438 0.452 0.375 0.393 0.540 0.510 0.403 0.418 0.375 0.388
±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.013 ±0.011 ±0.006 ±0.009 ±0.031 ±0.011 ±0.007 ±0.002 ±0.002 ±0.002

720 0.410 0.415 0.414 0.417 0.416 0.422 0.563 0.530 0.433 0.430 0.539 0.512 0.461 0.450 0.432 0.419
±0.004 ±0.002 ±0.005 ±0.001 ±0.002 ±0.001 ±0.007 ±0.006 ±0.013 ±0.015 ±0.015 ±0015 ±0.009 ±0.003 ±0.002 ±0.001

E
T

T
m

2

96 0.161 0.249 0.162 0.252 0.164 0.254 0.276 0.355 0.166 0.258 0.288 0.363 0.187 0.273 0.171 0.260
±0.001 ±0.001 ±0.001 ±0.002 ±0.001 ±0.001 ±0.025 ±0.016 ±0.002 ±0.005 ±0.006 ±0.005 ±0.004 ±0.002 ±0.004 ±0.004

192 0.217 0.289 0.217 0.289 0.220 0.292 0.436 0.490 0.229 0.306 0.345 0.395 0.250 0.319 0.227 0.297
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.040 ±0.027 ±0.006 ±0.006 ±0.021 ±0.019 ±0.008 ±0.004 ±0.010 ±0.005

336 0.273 0.325 0.266 0.321 0.275 0.328 0.798 0.642 0.296 0.357 0.467 0.468 0.299 0.348 0.285 0.334
±0.003 ±0.002 ±0.001 ±0.001 ±0.002 ±0.002 ±0.063 ±0.039 ±0.009 ±0.009 ±0.053 ±0.024 ±0.007 ±0.006 ±0.011 ±0.006

720 0.360 0.380 0.349 0.377 0.364 0.382 1.760 1.018 0.424 0.433 0.492 0.462 0.393 0.403 0.378 0.393
±0.004 ±0.002 ±0.003 ±0.003 ±0.002 ±0.001 ±0.139 ±0.060 ±0.025 ±0.015 ±0.072 ±0.026 ±0.010 ±0.006 ±0.004 ±0.002

E
le

ct
ri

ci
ty

96 0.127 0.221 0.127 0.221 0.129 0.222 0.146 0.251 0.139 0.237 0.206 0.320 0.180 0.286 0.132 0.227
±0.001 ±0.001 ±0.000 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.011 ±0.010 ±0.003 ±0.002 ±0.001 ±0.001

192 0.146 0.238 0.146 0.239 0.148 0.240 0.167 0.270 0.152 0.249 0.217 0.331 0.230 0.322 0.153 0.247
±0.001 ±0.001 ±0.000 ±0.001 ±0.001 ±0.001 ±0.005 ±0.005 ±0.000 ±0.000 ±0.007 ±0.006 ±0.023 ±0.016 ±0.001 ±0.002

336 0.163 0.256 0.161 0.256 0.164 0.258 0.192 0.294 0.168 0.267 0.223 0.336 0.238 0.329 0.169 0.265
±0.001 ±0.001 ±0.001 ±0.000 ±0.001 ±0.001 ±0.004 ±0.003 ±0.000 ±0.000 ±0.004 ±0.003 ±0.023 ±0.015 ±0.001 ±0.001

720 0.200 0.289 0.196 0.288 0.203 0.291 0.258 0.349 0.202 0.300 0.253 0.355 0.285 0.364 0.210 0.301
±0.001 ±0.001 ±0.001 ±0.001 ±0.004 ±0.001 ±0.003 ±0.003 ±0.000 ±0.000 ±0.015 ±0.010 ±0.005 ±0.007 ±0.002 ±0.002

W
ea

th
er

96 0.144 0.193 0.142 0.192 0.150 0.198 0.147 0.212 0.175 0.237 0.297 0.373 0.186 0.245 0.165 0.216
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.005 ±0.015 ±0.015 ±0.007 ±0.006 ±0.001 ±0.001

192 0.187 0.235 0.187 0.235 0.195 0.241 0.194 0.261 0.215 0.274 0.390 0.438 0.233 0.280 0.208 0.255
±0.001 ±0.001 ±0.002 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.038 ±0.030 ±0.011 ±0.007 ±0.004 ±0.004

336 0.238 0.275 0.236 0.274 0.247 0.282 0.245 0.306 0.261 0.312 0.425 0.450 0.277 0.307 0.254 0.290
±0.001 ±0.002 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.003 ±0.001 ±0.003 ±0.031 ±0.025 ±0.012 ±0.007 ±0.003 ±0.002

720 0.310 0.329 0.304 0.326 0.317 0.333 0.319 0.360 0.325 0.366 0.513 0.485 0.342 0.351 0.324 0.336
±0.001 ±0.003 ±0.001 ±0.001 ±0.001 ±0.001 ±0.005 ±0.004 ±0.005 ±0.006 ±0.061 ±0.033 ±0.003 ±0.002 ±0.002 ±0.002

tr
af

fic

96 0.361 0.250 0.364 0.253 0.366 0.249 0.496 0.280 0.410 0.281 0.667 0.406 0.599 0.327 0.365 0.264
±0.001 ±0.001 ±0.001 ±0.001 ±0.000 ±0.001 ±0.001 ±0.001 ±0.000 ±0.000 ±0.025 ±0.019 ±0.004 ±0.002 ±0.002 ±0.002

192 0.384 0.260 0.380 0.261 0.385 0.259 0.513 0.288 0.421 0.286 0.663 0.405 0.617 0.337 0.390 0.275
±0.002 ±0.001 ±0.001 ±0.001 ±0.002 ±0.003 ±0.004 ±0.002 ±0.000 ±0.000 ±0.011 ±0.010 ±0.007 ±0.006 ±0.001 ±0.001

336 0.400 0.269 0.391 0.268 0.398 0.265 0.538 0.300 0.435 0.295 0.644 0.391 0.628 0.343 0.407 0.285
±0.003 ±0.003 ±0.002 ±0.001 ±0.001 ±0.001 ±0.004 ±0.003 ±0.000 ±0.000 ±0.026 ±0.015 ±0.005 ±0.004 ±0.003 ±0.003

720 0.436 0.290 0.437 0.294 0.440 0.293 0.747 0.409 0.465 0.314 0.652 0.401 0.729 0.391 0.442 0.303
±0.005 ±0.005 ±0.002 ±0.002 ±0.011 ±0.012 ±0.002 ±0.003 ±0.000 ±0.000 ±0.009 ±0.010 ±0.091 ±0.045 ±0.002 ±0.004

Average 0.302 0.324 0.298 0.324 0.306 0.327 0.520 0.448 0.334 0.352 0.488 0.459 0.387 0.376 0.328 0.343

4.2 ABLATION STUDY

In this section, we undertake an empirical investigation to assess the effects of PMSA and CCAGM
in the context of MGTST. To isolate the influence of PMSA, we conduct an ablation experiment by
setting the scale number to 1, thereby removing the multi-scale functionality. Similarly, to evaluate
the impact of CCAGM, we perform another ablation experiment where we exclude CCAGM. The
results of these ablation experiments are presented in Table 2. Upon careful analysis of the find-
ings, the following key observations emerge: 1) The inclusion of both PMSA and CCAGM yields
significant performance improvements, this highlighting the significance of capturing multi-scale
dependencies and cross-channel dependencies to the forecasting performance. 2) The combination
of PMSA and CCAGM demonstrates a synergistic effect, resulting in further performance gains
compared to the utilization of either mechanism in isolation.

4.3 SENSITIVITY STUDY

In this section, we conduct a comprehensive study to investigate the impact of multiple hyperparam-
eters on MGTST. We analyze the effects of channel group sizes, input lengths, scale numbers,
and stride lengths. The experiment on channel group sizes is performed on the Traffic dataset,
given its largest number of channels, while the experiment on input lengths and scale numbers is
conducted on the ETTm1 dataset. Regarding input lengths (Figure 6a), we observe a positive cor-
relation between input length and forecasting accuracy. However, improvements in accuracy are
not significant beyond an input length of 512. For scale numbers (Figure 6b), manipulating the
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Table 2: Ablation study on PMSA and CCAGM with MGTST. We use four forecasting window lengths L ∈ 96, 192, 336, 720 for all
benchmarks with a look-back window length of 336. The best prediction results are in bold and the second best are in underline. The Average
denotes the average result on all datasets for each model.

Models MGTST
- CCAGM - PMSA - both original

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.361 0.388 0.367 0.394 0.366 0.393 0.370 0.393
192 0.406 0.414 0.409 0.418 0.410 0.420 0.419 0.423
336 0.429 0.438 0.423 0.427 0.429 0.436 0.420 0.429
720 0.433 0.455 0.437 0.465 0.462 0.473 0.431 0.455

E
T

T
h2

96 0.280 0.337 0.275 0.338 0.276 0.336 0.275 0.335
192 0.353 0.386 0.335 0.379 0.344 0.383 0.339 0.381
336 0.336 0.381 0.326 0.384 0.335 0.384 0.327 0.383
720 0.383 0.422 0.378 0.422 0.379 0.422 0.377 0.419

E
T

T
m

1 96 0.286 0.338 0.291 0.342 0.299 0.348 0.284 0.336
192 0.325 0.364 0.331 0.366 0.338 0.370 0.325 0.364
336 0.361 0.385 0.365 .387 0.376 0.393 0.358 0.384
720 0.408 0.414 0.420 0.418 0.429 0.422 0.408 0.414

E
T

T
m

2 96 0.165 0.254 0.164 0.254 0.166 0.255 0.163 0.251
192 0.220 0.291 0.221 0.294 0.224 0.297 0.217 0.289
336 0.274 0.326 0.277 0.332 0.283 0.336 0.273 0.325
720 0.360 0.380 0.370 0.389 0.360 0.385 0.350 0.378

E
le

ct
ri

ci
ty 96 0.135 0.229 0.133 0.228 0.139 0.234 0.128 0.221

192 0.150 0.243 0.149 0.242 0.153 0.246 0.147 0.238
336 0.166 0.260 0.165 0.259 0.168 0.263 0.164 0.256
720 0.204 0.292 0.203 0.291 0.207 0.296 0.199 0.288

W
ea

th
er 96 0.157 0.204 0.152 0.203 0.172 0.221 0.143 0.193

192 0.200 0.245 0.196 0.244 0.214 0.256 0.187 0.236
336 0.249 0.282 0.246 0.282 0.260 0.291 0.238 0.278
720 0.318 0.331 0.317 0.334 0.328 0.340 0.314 0.333

tr
af

fic

96 0.375 0.256 0.390 0.266 0.390 0.268 0.371 0.255
192 0.392 0.263 0.404 0.271 0.404 0.271 0.387 0.262
336 0.405 0.269 0.416 0.278 0.424 0.289 0.400 0.268
720 0.437 0.290 0.444 0.295 0.447 0.300 0.430 0.286

Average 0.306 0.326 0.307 0.328 0.313 0.333 0.301 0.324

scale number does not significantly affect prediction accuracy when the forecasting horizon is 96.
However, as the horizon lengthens, an increase in scale number consistently reduces the MSE until
reaching a saturation point at a scale number of 3. The experiment on channel group size (Figure
6c) shows that increasing the group size decreases MSE, indicating improved performance through
limited channel interaction. The optimal group size is approximately 30, beyond which further in-
creases in group size lead to performance decline. Lastly, Figure 6d illustrates that increasing stride
length increases MSE, particularly for longer forecasting lengths.

(a) Input length (b) Scale number

(c) Group size (d) Stride length

Figure 6: Sensitivety analysis of the four hyperparameters in MGTST.
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Table 3: Computational complexity of transformer-based model per layer. T indicates the length of input. D indicates the number of channels.
Lseq indicates the stride length of patch.

Models Encoder layer decoder layer
Transformer (Vaswani et al., 2017) O(T 2) O(τ(τ + T ))

Informer (Zhou et al., 2021) O(T log T ) O(τ(τ + log T ))
FEDformer (Zhou et al., 2022) O(T ) O(T2 + τ))

Autoformer (Wu et al., 2021) O(T log T ) O((T2 + τ) log(T2 + τ)))

Crossformer (Zhang & Yan, 2022) O( D
L2

seq
T 2) O( D

Lseq
τ(τ + T ))

PatchTST (Nie et al., 2022) O( D
L2

seq
T 2)

MGTST (ours) O( D
L2

seq
T 2 +D2)

Table 4: FLOPs and Params for each model in default setting on weather dataset.

Models MGTST PatchTST Crossformer DLinear Autoformer TimesNet Client
Metrics FLOPs Params FLOPs Params FLOPs Params FLOPs Params FLOPs Params FLOPs Params FLOPs Params

W
ea

th
er 96 3.48 0.38 46.35 0.91 157.03 11.07 0.17 1.35 363.79 10.60 330.46 1.32 2.73 1.01

192 4.26 0.68 47.74 1.43 109.64 11.08 0.347 2.71 409.86 10.60 397.25 1.35 2.90 1.08
336 5.44 1.11 49.82 2.20 78.75 11.10 0.60 4.75 478.96 10.60 515.85 1.40 3.16 1.17
720 8.58 2.28 55.37 4.27 141.02 11.10 1.31 10.31 663.22 10.60 794.13 1.53 3.86 1.43

4.4 COMPUTATIONAL EFFICIENCY ANALYSIS

Theoretical complexity analysis per layer is conducted on typical transformer-based time-series
models, and the results are presented in Table 3. Both MGTST and PatchTST (Nie et al., 2022) are
encoder-only models, rendering the decoder complexity omittable. The complexity can be reduced
by increasing the stride length, denoted as Lseq . However, the performance of the models also varied
across different stride lengths according to Section 4.3. Thus, enhancing speed by augmenting the
stride length is impractical due to the detrimental impact on accuracy.

Furthermore, we compare the running time for different models with the default settings correspond-
ing to the results in Table 1. The batch size for each model is modified to 128, as it has a minimal
impact on forecasting accuracy but exerts a substantial influence on computational complexity. Two
complexity metrics, namely floating point operations per second (FLOPs) and the number of pa-
rameters (Params), are employed for evaluation. The observed result is shown in Table 4. Notably,
the FLOPs of MGTST rank as the third lowest among all models, while the Params associated
with MGTST are the lowest. The reduction of model parameters in MGTST is accomplished by
diminishing the dimension of the latent space and the depth of the model.

The assessment also considers the impact of different components on the complexity. We leave the
detailed discussion in Section A.5. In summary, the multi-scale architecture is found to contribute
the most to the complexity.

5 CONCLUSION AND FUTURE WORK

In light of the significance of multivariate long-term forecasting, we introduce MGTST, a novel
transformer-based model that incorporates PMSA and CCAGM to capture the temporal dependency
across different scales and cross-channel dependencies effectively. Furthermore, we propose a CG
strategy that reduces channel interaction redundancy and enhances overall performance. Through
empirical evaluation, we demonstrate the superiority of our model over six state-of-the-art models,
including both channel-dependent and channel-independent models, achieving an average improve-
ment in mean squared error (MSE) ranging from 1.5 percent to 41.9 percent. Nevertheless, the
multi-scale strategy applied in the proposed framework is resource-consuming compared to other
components since the number of patches increases along with the number of scales. A potential ap-
proach to mitigate this issue is to handle each scale in a distributed manner. Therefore, embedding
tensors with different scale can be processed in parallel.
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A APPENDIX

A.1 EXPERIMENT DETAILS

A.1.1 DATA DESCRIPTION

The detailed descriptions of the data are as follows: 1) ETT (Electricity Transformer Temperature)
contains 2-year data from two separate Chinese countries (Zhou et al., 2021). ETTh indicates the
ETT data with a granularity of 1-hour-level and ETTm indicates the ETT data with a granularity of
15-minutes-level. The raw data contains seven features including the oil temperature and six power
load features. 2) Electricity contains hourly electricity consumption from 321 customers (Trindade,
2015). 3) Weather dataset contains 21 meteorological indicators in Germany (jena, 2020). 4) Traf-
fic contains the road occupancy rates from 862 sensors on San Francisco freeways. The channel
numbers and timesteps of each dataset are described in Table 5. For the ETT dataset, we divide the
raw data into the training/validation/testing parts following a ratio of 0.6/0.2/0.2. For the others, we
apply a ratio of 0.7/0.1/0.2 to remain consistent with previous works.

Table 5: Channel numbers and timesteps of each dataset.

Datasets Weather Traffic Electricity ETTh1 ETTh2 ETTm1 ETTm2
Channel numbers 21 862 321 7 7 7 7

Timesteps 52696 17544 26304 17420 17420 69680 69680

A.1.2 EVALUATION METRICS

A.1.3 BASELINE DETAILS

In this section, we summarize the state-of-the-art models that have been compared with MGTST in
previous experiments.

1) PatchTST (Nie et al., 2022) groups time-series points into patches. Then it applies patch-wise
attention with Feed Forward Layer to extract information and make predictions. It considers each
channel separately.

2) DLinear (Zeng et al., 2023) decomposes the input into seasonal and trend parts. Then both parts
are processed by a single linear layer and summed up in the output.

3) Crossformer (Zhang & Yan, 2022) adds a cross-attention layer on top of PatchTST. It utilizes the
router mechanism to improve efficiency and performance.

4) Autoformer (Wu et al., 2021) decomposes the input into seasonal and trend parts. Then it applies
attention based on the auto-correlation mechanism which discovers period-based dependency.

5) TimesNet (Wu et al., 2022) extends the analysis of temporal variations into 2D space based on
multiple periods to discover the multi-periodicity.

6) Client (Gao et al., 2023) combines the linear model with the transformer model. The linear model
is used to model the relationship between different time points while the transformer model is used
to model the relationship between different channels.

A.1.4 HYPER-PARAMETER CHOICE AND IMPLEMENTATION DETAILS

In the main experiment, MGTST contains 3 encoder layers for ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2) and 1 encoder layer for other datasets. MGTST uses 4 heads attention for weather
and 8 heads for other datasets. For ETTh1, we set the dimension of latent space D=128 and the
dimension of feedforward layer F=256. For ETTh2, traffic and Electricity, D = 64 and F=128. For
ETTm1, D=16 and F=64. For ETTm2, D=64 and F=64. For weather, D=32 and F=64. We set the
patch length to 16, the stride length to 8, and the dropout rate to 0.3 for all datasets. Group size G =
107 for Electricity and G=30 for Traffic. For other datasets, G=1.

In order to maintain consistency with the original paper, the hyperparameters for the other baseline
models are kept the same, except for the input length which was set to 336. This is motivated by
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Figure 7: A cross-channel attention map.

the aim to ensure a fair and unbiased comparison, as depicted in Figure 6a, where it is demonstrated
that altering the input length has a discernible effect on model performance.

All models are implemented in PyTorch and trained on a NVIDIA A100 GPU with 80GB memory.

A.1.5 EVALUATION METRICS

We use Mean Square Error (MSE) and Mean Absolute error (MAE) for model evaluation:

MAE =
1

L

L∑
k=0

|xt+k − x̂t+k| (7)

MSE =
1

L

L∑
k=0

|xt+k − x̂t+k|2 (8)

where L is the prediction length, xt+k is the ground truth, and x̂t+k is the prediction result.

A.2 VISUALIZATION

In this section, a collection of visualizations encompassing attention maps, temporal forecasting
results, and frequency patterns of forecasting results are presented to provide elucidation on the dis-
cernible dissimilarities among the models. We apply the ETTh1 dataset for all comparisons, with
the input length consistently set to 336 and the output length fixed at 96. It is important to note that
the parameter configuration adheres to the default settings prescribed by the model. For specifica-
tion, see A.1.4. The inclusion of these visualizations serves to show the distinctive characteristics
exhibited by different models and facilitate a more comprehensive understanding of their respective
performances.

A.2.1 ATTENTION MAP

Figure 7 presents a cross-channel attention map and Figure 8 reveals distinct patterns in the attention
maps at varying scales. These divergent patterns suggest that MGTST effectively captures and
incorporates information from different scales and different channels.

A.2.2 TEMPORAL PREDICTION

Figure 9 illustrates the superior forecasting performance of our model over other baseline models.
Notably, MGTST exhibits comparable accuracy in predicting the ground truth values. This visu-
alization serves as evidence of our model’s effectiveness and its ability to generate highly accurate
forecasts when compared to the alternative approaches.
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(a) The attention pattern of scale 1 (b) The attention pattern of scale 2 (c) The attention pattern of scale 3

(d) The attention pattern of scale 4 (e) The attention pattern of scale 5

Figure 8: Attention maps of MGTST with 5 scales.

(a) MGTST (b) PatchTST (c) DLinear (d) Crossformer

(e) Autoformer (f) TimesNet (g) Client

Figure 9: Forecasting visualization of different models.

(a) MGTST (b) PatchTST (c) DLinear (d) Crossformer

(e) Autoformer (f) TimesNet (g) Client

Figure 10: Forecasting visualization of different models in low-frequency domain.

A.2.3 FREQUENCY PATTERN

To fully understand the model difference from other aspects, a frequency pattern analysis is con-
ducted. To enhance clarity, the frequency pattern is divided into two segments: the low-frequency
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domain (ranging from 0 to 100) and the high-frequency domain (ranging from 100 to 361). Figure
10 illustrates that the MGTST model produces a reasonably accurate prediction of the mean value
and successfully captures the third-highest peak in the low-frequency range. Conversely, Figure
11 demonstrates that the forecasting results of the MGTST model exhibit a flat trend in the high-
frequency domain. It is intuitive to infer that high-frequency components represent noise in the time
series and should be avoided when making forecasts.

(a) MGTST (b) PatchTST (c) DLinear (d) Crossformer

(e) Autoformer (f) TimesNet (g) Client

Figure 11: Forecasting visualization of different models in high-frequency domain.

A.3 WORKFLOW

We summarize the workflow as pseudo-code in Algorithm 1, where patchEmbedding denotes
patching, TemporalAttention denotes in channel attention, Grouping denotes channel group-
ing, SpatialAttention denotes cross-channel attention, and FlattenHead denotes multi-Scale
architecture in 2. S, C, and G denote hyperparameters of scale numbers, channel numbers, and
group numbers.

Algorithm 1 MGTST’s workflow
Input : The input MTS history X, the initialized representation token T
Output : The output MTS forecasting Y

1: Xtime, T space ← PatchEmbedding(X̂, T ) ▷ patch embedding
2: for s = 1, 2, 3 · · · S do
3: for c = 1, 2, 3 · · · C do
4: X̂

time

c,s ← TemporalAttention(Xtime
c,s ) ▷ applying temporal attention

5: end for
6: Tspace

s,g ← Grouping(Tspace
s )

7: for g = 1, 2, 3 · · ·G do
8: T̂

space

s,g ← SpatialAttention(Tspace
s,g ) ▷ applying spatial attention

9: end for
10: T̂

space

s ← Concat(T̂
space

s,g )

11: Tweight
s ← LinearProjection(T̂

space

s )

12: Xscale
s ← Sigmoid(Tweight

s ) • X̂
time

c,s ▷ dot product
13: end for
14: Xscale ← Concat(Xscale

s )

15: return Y← FlattenHead(Xscale)
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Table 6: Effects of random seed on MGTST.

Random seeds 1 42 2021 3407
Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.371 0.394 0.372 0.394 0.373,0.394 0.372 0.394
192 0.415 0.420 0.420 0.424 0.419 0.424 0.419 0.423
336 0.421 0.430 0.421 0.430 0.420 0.428 0.420 0.429
720 0.432 0.457 0.434 0.456 0.431 0.455 0.432 0.455

Table 7: Sensitivity study on reversible instance normalization.

revin original - revin improvement
Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.370 0.393 0.398 0.411 -7.0% -4.3%
192 0.419 0.423 0.446 0.441 -6.0% -4.0%
336 0.420 0.429 0.459 0.449 -8.4% -4.4%
720 0.431 0.455 0.516 0.494 -16.4% -7.8%

E
T

T
h2

96 0.275 0.335 0.590 0.526 -53.3% -36.3%
192 0.339 0.381 0.700 0.581 -51.5% -34.4%
336 0.327 0.383 0.901 0.664 -63.7% -42.3%
720 0.377 0.419 1.192 0.751 -68.3% -44.2%

E
T

T
m

1 96 0.284 0.336 0.288 0.346 -1.3% -2.8%
192 0.325 0.364 0.329 0.373 -1.2% -2.4%
336 0.358 0.384 0.367 0.399 -2.4% -3.7%
720 0.408 0.414 0.427 0.437 -4.4% -5.2%

E
T

T
m

2 96 0.163 0.251 0.193 0.283 -15.5% -11.3%
192 0.217 0.289 0.296 0.377 -26.6% -23.3%
336 0.273 0.325 0.542 0.492 -49.6% -33.9%
720 0.350 0.378 1.736 0.922 -79.8% -59.0%

E
le

ct
ri

ci
ty 96 0.128 0.221 0.132 0.229 -3.0% -3.4%

192 0.147 0.238 0.152 0.250 -3.2% -4.8%
336 0.164 0.256 0.167 0.266 -1.7% -3.7%
720 0.199 0.288 0.216 0.306 -7.8% -5.8%

w
ea

th
er 96 0.143 0.193 0.147 0.206 -2.7% -6.3%

192 0.187 0.236 0.190 0.247 -1.5% -4.4%
336 0.238 0.278 0.242 0.290 -1.6% -4.1%
720 0.314 0.333 0.313 0.351 +0.3% -5.1%

tr
af

fic

96 0.371 0.255 0.464 0.267 -20.0% -4.4%
192 0.387 0.262 0.506 0.277 -23.5% -5.4%
336 0.400 0.268 0.511 0.296 -21.7% -9.4%
720 0.430 0.286 0.568 0.312 -24.2% -8.3%

A.4 ADDITIONAL PARAMETER SENSITIVITY

A.4.1 RANDOM SEEDS

In this section, an analysis is conducted to evaluate the impact of multiple random seeds on the
ETTh1 dataset. Specifically, random seeds of 2021, 3407, 1, and 42 are tested. The results, as
presented in Table 6, indicate that random seeds have a negligible effect on the performance of
MGTST. The observed variance in MSE is approximately 0.65 percent, while the variance in MAE
is approximately 0.42 percent. These findings suggest that the choice of random seed does not
significantly influence the overall performance of the model.

A.4.2 INSTANCE NORMALIZATION

In this section, we conduct a comparative analysis between the results obtained with and without
instance normalization. The findings are summarized in Table 7, which demonstrates that the incor-
poration of instance normalization leads to a substantial reduction in both MSE and MAE. Notably,
as the length of the output increases, the observed improvement in performance becomes more evi-
dent. These results underscore the efficacy of instance normalization in improving the accuracy of
forecasting.

A.5 COMPLEXITY ANALYSIS

We evaluate FLOPs for three variations of MGTST: MGTST without the gate mechanism, MGTST
without the multi-scale architecture, and MGTST without both, in relation to the hidden dimension
D. These variations are evaluated using the weather dataset. As shown in Figure 12, the multi-
scale framework significantly increases the complexity, while the gate mechanism only has a minor
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impact on complexity. Additionally, it is worth noting that the trend of FLOPs with respect to the
hidden dimension D follows a quadratic pattern, aligning with the complexity analysis.

Figure 12: FLOPs of MGTST with different components

A.6 ALTERNATIVE APPROACH FOR MULTI-SCALE ARCHITECTURE

In this section, we propose an alternative architectural framework for simulating multi-scale de-
pendency that incorporates Multiple Multi-head Attention (MMA) layers with varying numbers of
heads, which capture temporal dependencies with diverse levels of granularity. The accompanying
illustration, as depicted in Figure 13, visually represents this architecture. A comparative analy-
sis is conducted between MMA architecture and PMSA. As shown in Table 8, PMSA outperforms
MMA in 26 out of 28 settings across a wide range of 7 datasets. It demonstrates that PMSA is more
effective in capturing multi-scale dependency than MMA.

Figure 13: Illustration of multiscale with multiheads
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Table 8: Empirical results of two multi-scale architectures:MMA and PMSA. Better results are in bold. The experiment uses the same setting
as in Section A.1.4.

Multi-scale architecture MMA PMSA
Metrics MSE MAE MSE MAE

E
T

T
h1

96 0.367 0.394 0.373 0.394
192 407 0.418 0.419 0.424
336 0.426 0.434 0.420 0.428
720 0.455 0.469 0.431 0.455

E
T

T
h2

96 0.276 0.337 0.276 0.337
192 0.338 0.379 0.335 0.378
336 0.330 0.385 0.326 0.384
720 0.381 0.423 0.376 0.417

E
T

T
m

1 96 0.289 0.341 0.286 0.338
192 0.333 0.370 0.323 0.364
336 0.366 0.393 0.358 0.385
720 0.420 0.425 0.410 0.416

E
T

T
m

2 96 0.173 0.281 0.162 0.249
192 0.228 0.298 0.218 0.289
336 0.289 0.339 0.275 0.326
720 0.379 0.395 0.361 0.379

E
le

ct
ri

ci
ty 96 0.130 0.224 0.128 0.221

192 0.151 0.246 0.147 0.238
336 0.166 0.261 0.164 0.256
720 0.206 0.295 0.199 0.288

Tr
af

fic

96 0.383 0.262 0.371 0.255
192 0.391 0.266 0.387 0.262
336 0.411 0.274 0.400 0.268
720 0.440 0.293 0.430 0.286

W
ea

th
er 96 0.158 0.208 0.143 0.193

192 0.199 0.245 0.187 0.236
336 0.253 0.286 0.238 0.278
720 0.320 0.335 0.314 0.333
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