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Abstract

Certifying the robustness of Deep Neural Net-
works (DNNs) is very important in safety-critical
domains. Randomized Smoothing (RS) has been
recently proposed as a scalable, model-agnostic
method for robustness verification, which has
achieved excellent results and has been extended
for a large variety of adversarial perturbation sce-
narios. However, a hidden cost in RS is dur-
ing interference, since it requires passing tens-
of-thousands perturbed samples through the DNN
in order to perform the verification. In this work,
we try to address this challenge, and explore what
it would take to perform RS much faster, per-
haps even in real-time, and what happens as we
decrease the number of samples by orders of mag-
nitude. Surprisingly, we find that the performance
reduction in terms of average certified radius is
not too large, even if we decrease the number
of samples by two orders of magnitude, or more.
This could possibly pave the way even for real-
time robustness certification, under suitable set-
tings. We perform a detailed analysis, both theo-
retically and experimentally, and show promising
results on the standard CIFAR-10 and ImageNet
datasets.

1. Introduction & Related Work
Deep Neural Networks (DNNs) have achieved impressive
results in many tasks, such as image and speech recog-
nition (Krizhevsky et al., 2017; Graves et al., 2013), lan-
guage (Brown et al., 2020), or game playing (Silver et al.,
2018). Despite that, applying DNNs in safety-critical do-
mains remains challenging.

One part of the challenge is the lack of robustness: namely,
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it’s well known that slight, imperceptible perturbations on
DNN inputs can drastically change the prediction outcome -
these are the so-called adversarial examples (Szegedy et al.,
2013). After empirical adversarial defences turned out to
be broken by stronger attacks (Athalye et al., 2018), the
researchers’ focus shifted on methods for robustness certifi-
cation: namely to prove that no adversarial examples exist
within a certain region around the input, typically relying on
Formal Methods (Wong & Kolter, 2018; Gehr et al., 2018).

Recently, Randomized Smoothing (RS) has emerged as a
scalable approach for robustness certification (Cohen et al.,
2019). RS has been afterwards extended in many ways
(Salman et al., 2019; Yang et al., 2020), and applied to
many different perturbation scenarios, such as geometric
transformations (Fischer et al., 2020) and more. While much
more efficient than other certification approaches, in order
to certify robustness with RS, it’s required to pass multiple
perturbed versions of the input through the DNN (noisy
samples), typically in the tens or hundreds of thousands.

In this work, we want to investigate what happens if we
reduce this number of samples. Counter-intuitively, we find
that the effect of this reduction on the average certified ra-
dius that RS achieves is much more minimal that expected;
for example, reducing the number of samples by 100× de-
creases the average certified radius just by 50%. This opens
up interesting possibilities, perhaps even performing robust-
ness certification in real-time, which we explore. We ap-
ply our approach on the standard CIFAR-10 and ImageNet
datasets, and we additionally perform a detailed theoretical
analysis.

A related work we identified in the literature is (Chen et al.,
2022), where the authors determine the minimum number of
samples such that the RS robustness radius at a point doesn’t
drop more than an allowed value. However, this is different
from our case, where the number of samples is constrained
from the beginning. Moreover, the authors of (Chen et al.,
2022) determine the sample number in an algorithmic way,
and give no closed-form formula or analysis of the result.

2. Preliminaries: Randomized Smoothing
Let f : Rd → [K] be a classifier mapping inputs x ∈ Rd

into K classes. In RS, f is replaced with the following
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Algorithm 1 RS Certification
Input: point x, classifier f , σ, n, a
Output: class cA and certified radius R of x
sample n noisy samples x′

1, ...,x
′
n ∼ N(x, σ2I)

get majority class cA = argmaxy
∑n

i=1 1[f(x
′
i) = y]

counts(cA)←
∑n

i=1 1[f(x
′
i) = cA]

p̄A ← LowerConfBound(counts(cA), n, a) {compute
probability lower bound}
if p̄A ≥ 1

2 then
return cA, σΦ

−1(p̄A)
else

return ABSTAIN
end if

classifier:

g(x) = argmaxyP [f(x+ z) = y], z ∼ N(0, σI) (1)

That is, g perturbs the input x with noise z that follows an
isotropic Gaussian distribution N(0, σI), and returns the
class A that gets the majority vote, i.e. the one that f is
most likely to return on the perturbed inputs.

Surprisingly, if pA ≥ 0.5 is the probability of the majority
class A, then g is robust around x, with a robustness radius
of:

R = σΦ−1(pA) (2)

where Φ−1 is the inverse of the normal cumulative distribu-
tion function (CDF). The intuition is that a slight perturba-
tion on x can change the output of f arbitrarily, but not the
one of g - since g relies on a distribution of points around x,
and a small shift cannot change a distribution much. This is
the crucial fact where RS resides.

Finally, notice that finding the precise value of pA is not
possible; however, a lower bound p̄A can be estimated by
Monte Carlo sampling with high degree of confidence, as
shown in algorithm 1 (Cohen et al., 2019). Yet, the samples
required to do so are typically around 10.000 − 100.000,
which makes real-time robustness verification impossible.

3. Methodology & Experiments
To inspect the influence of sample number on the average
certified radius, we run experiments on CIFAR10 and Ima-
geNet, where we vary the sample numbers. We work with
the code-base of (Cohen et al., 2019), using their pre-trained
models. The results for CIFAR-10 can be seen in fig 1, and
for ImageNet in fig 2.

We observe that the reduced sample sizes do not decrease
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Figure 1. Average certified radius for each noise level σ and sample
number n on CIFAR-10, for the models of (Cohen et al., 2019)
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Figure 2. Average certified radius for each noise level σ and sample
number n on ImageNet, for the models of (Cohen et al., 2019)

the average certified radius R̄ as much as expected: for
example, in the case of CIFAR-10, a 10× decrement (from
10.000 to 1000) reduces R̄ by only around 20% across noise
levels σ. Moreover, a 100× decrement reduces R̄ by only
50%. Similarly for the case of ImageNet, a reduction of n
from 100.000 to 100 reduces R̄ by merely 50%!

Moreover, the decrement of R̄ due to the reduced sample
size could even be remedied via improvements in the train-
ing process of RS. To showcase this, we also run tests on
the improved RS models of (Salman et al., 2019), where
the authors come up with several ideas on how to train
models such that they can obtain better certified radii. The
results are shown in fig 3 for CIFAR-10, and in fig 4 in the
Appendix for ImageNet.

As we can see, the overall dependency of R̄ in terms of
n is similar as before. However, for any given n and σ,
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Figure 3. Average certified radius for each noise level σ and sample
number n on CIFAR-10, for the best models of (Salman et al.,
2019)
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Figure 4. Average certified radius for each noise level σ and sample
number n on ImageNet, for the best models of (Salman et al., 2019)

the approach of (Salman et al., 2019) demonstrates a larger
certified radius. This shows that the reduction due to n
could be compensated by improving RS training. Indeed,
we see that R̄ at n = 100 for (Salman et al., 2019) in the
case of CIFAR-10 is roughly equal to the one of (Cohen
et al., 2019) at n = 10.000! In the case of ImageNet, we
can also observe an improvement, but not that large.

The previous results could perhaps even open-up the possi-
bility of performing RS robustness certification in real-time.
Consider for example an application such as autonomous
driving (AD): there, each frame has to be processed as soon
as it’s captured, since results such as object detection need to
be obtained immediately. Hence, such applications operate
essentially with a batch size b = 1. However, maybe a larger
batch B could be processed by the GPU within the real-time
constraints imposed by the use-case. This additional, ”un-

used” batch size could perhaps be used to perform RS in
real-time! As we show before, this comes at a cost of a
reduced R̄, yet this reduction is mild.

To further inspect this possibility, we benchmark a 3080
NVIDIA GPU in order to determine the maximum batch
size B a model can process before violating the real-time
constraint. For that, we set a maximum processing time of
t = 1/25s = 40ms, which is the time between two frames
in standard video. The results for CIFAR-10 and ImageNet
models are shown in fig. 5. As we see, CIFAR-10 allows
B’s of up to 200 and more, which would make real-time
RS possible. However, the situation for a ResNet50 model
on ImageNet is different, where B remains at around 15
for full-resolution images, or around 80 for half-resolution.
Based on the results of fig. 2, this would lead to a larger
reduction of R̄, of around 80%.
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Figure 5. Benchmark of an NVIDIA 3080 GPU on the CIFAR-10
ResNet-110 and ImageNet ResNet-50 models of (Cohen et al.,
2019). For ImageNet, we also measure performance on half-
resolution images. The horizontal red line indicates the 40ms
assumed real-time threshold.

Finally, note that the presented use-case above is a bit unre-
alistic: even if we operate at batch size b = 1 in a use-case
like AD, the GPU capabilities will not be left un-utilized:
for example, in AD they will be used to process multiple
frames from different viewpoints at each time step. Hence,
our assumption that b can be increased up to B is a bit naive;
yet, our results show that a mild level of parallelization
could still lead to similar conclusions.

3.1. Theoretical Analysis

To better understand the results found in the experimental
section, we attempt to theoretically investigate the effect of
sample size on the average certified radius R̄. By making a
series of approximations, in an effort to reach a closed-form
formula, we obtain the following results:
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Proposition 3.1. Suppose we perform Monte-Carlo sam-
pling in order to estimate a lower bound for p̄A with con-
fidence at least 1− a as described in (Cohen et al., 2019).
Then, if the true probability is p0 and we use n samples, p̄A
is approximately:

p̄A ≈ p0 − za

√
p0(1− p0)

n
(3)

where p0 is the true probability of A, and za is the 1− a/2
quantile of the normal CDF. Similarly, the certified radius
at that point is approximately equal to:

R(p0, n, a, σ) ≈ σΦ−1

(
p0 − za

√
p0(1− p0)

n

)
(4)

Proposition 3.2. The certified radius R(p0, n, a, σ) of
Proposition 3.1 satisfies the following approximate formula:

R(p0, n, a, σ) ≈ 5.063σ[p0.1350 − (1− p0)
0.135−

0.135
za√
n
(p−0.365

0 (1− p0)
1/2 + p

1/2
0 (1− p0)

−0.365)]

(5)

Proposition 3.3. Assume that the true probability p0 of
the majority class A follows a uniform distribution in the
interval [0.5, 1) across input points x. Then, the drop of the
average certified radius R̄ using n samples from the ideal
case of n =∞ is approximately equal to:

R̄(n, a, σ)

R̄(∞, a, σ)
≈ 1− 2

za√
n

(6)

The proofs are given in the Appendix. In fig. 6 we plot the
approximation of eq. 6 for a = 0.001.

We see that the obtained curve roughly captures the depen-
dency of R̄(n,a,σ)

R̄(∞,a,σ)
we observed in the experiments. First,

the radius drop is independent of the noise level σ; indeed,
in the experiments we found approximately the same radius
reduction across sigmas for each dataset. Second, we ob-
serve that the reduction of R̄(n, a, σ) from n = 10.000 to
n = 1.000 is around ≈ 85%, which is what we see in the
experiments. Similarly, the formula shows that there’s little
difference for n = 10.000 and n = 100.000 also in agree-
ment with the observations. On the other hand, the predicted
reduction as we shift n from 10.000 to 100 is around 37%,
which is a bit smaller to the one we saw in experiments.

However, these deviations are to be expected, since Proposi-
tion 3.3 relies on the simplifying assumption that the prob-
ability distribution of p0 (the majority class probability) is
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Figure 6. Plots of eq. 6 as a function of n, for a = 0.001

uniform in [0.5, 1]. This is a strong simplification: while
the PDF of p0 is indeed skewed towards 1, it’s by no means
uniform; it varies strongly for different datasets and models,
and we couldn’t identify a well-known family of distribu-
tions (for example Gaussians) that captures its behavior.
Moreover, an additional detail is that in the cases where
the model fails to predict correctly, the certified radius is 0;
this again depends on the specific model and dataset. Thus,
computing the value of R̄(n, a, σ) a-priori is not possible.
However, eq. 6 seems to capture the general behavior. In
fig. 13 in the Appendix, we plot the histograms of p0 for
various models and datasets.

3.2. Potential Applications

We think that being able to do robustness estimation with
less samples can have multiple applications in AI Safety
and beyond. For example, applications such as Automated
Driving or Robotics, it might be beneficial to be able to per-
form robustness certification at run-time. Moreover, during
DNN training or in scenarios such as learning from human
feedback (Christiano et al., 2017), one could also consider
the robustness of the different preferences: being able to es-
timate the robustness radius via less samples could improve
the training process.

4. Conclusion
In this work, we try to address the large number of samples
required for RS-based robustness certification, and investi-
gate what happens as the number of samples gets reduced
by orders of magnitude. Unexpectedly, we find that the
resulting reduction in the average certified radius is much
milder than expected. This could perhaps even open-up
the possibility of performing RS certification in real-time,
under specific settings. We also analyze the phenomenon
theoretically, and our findings align with the experiments.
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Moreover, another interesting finding is that the loss of cer-
tified radius from reducing the sample numbers can be par-
tially compensated by improving the training of RS models,
as we found in the experiments. This opens an interesting
path for future work: namely, is it possible to train RS mod-
els in such a way that the required number of samples for
certification becomes lower? And how efficient would that
be? We plan to investigate these questions next.
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A. Additional results
Here, we plot the results of section 3, but now we plot the average certified radius R̄ as a function of the number of samples
n used for certification. This can show the dependency of R̄ with n more clearly.
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Figure 7. Average certified radius for each noise level σ and sample number n on CIFAR-10, for the models of (Cohen et al., 2019)

B. Deferred Proofs
Proof. (Proposition 3.1) Consider a binomial Random Variable (RV) X ∼ Bin(p0), with probability p0. Suppose we draw
n i.i.d. samples X1, X2, ..., Xn from Bin(p0), and consider the percentage of successes, X̄ = 1

n (X1 + ...+Xn). X̄ will
have a mean of µx̄ = E[X] = p0, and standard deviation:

V ar[X̄] = V ar[
1

n
(X1 + ...+Xn)] =

1

n2
(V ar[X1] + ...+ V ar[Xn])⇔

V ar[X̄] =
1

n2
· nV ar[X] =

V ar[X]

n
=

p0(1− p0)

n
⇔

σX̄ =
√
V ar[X̄] =

√
p0(1− p0)

n
,

since V ar[X̄] = p0(1− p0) for a binomial RV X ∼ Bin(p0), and X1, ..., Xn are i.i.d.

Now, due to the Central Limit Theorem (CLT), X̄ = 1
n (X1 + ...+Xn) will approximately follow a Normal distribution

with parameters µx̄ and σx̄; for for n ≥ 30, this approximation will be very accurate. Therefore, the measured success
probability, X̄ , will lie with probability 1− a in the following interval:

X̄ ∈ [µx̄ − zaσx̄, µx̄ + zaσx̄]⇔

X̄ ∈ [p0 − za

√
p0(1− p0)

n
, p0 + za

√
p0(1− p0)

n
]

(7)
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Figure 8. Average certified radius for each noise level σ and sample number n on ImageNet, for the models of (Cohen et al., 2019)

where za = Φ−1(1− a/2) is the 1− a/2 quantile of the Normal distribution N(0, 1). For example, for the typical value of
a = 0.001 we have za = Φ−1(0.9995) = 3.2905.

On the other hand, the Clopper-Pearson interval method used in RS will also return an 1−a confidence interval [plow, phigh]
for the true success probability p0, given X̄ and n. The difference is that the Clopper-Pearson interval relies on the true,
Beta distribution and is exact, while the Gaussian interval of eq. 7 is approximate and doesn’t necessarily satisfy the
1 − a confidence level. Nevertheless, for n ≥ 30, the approximation is very close, and we can approximate the interval
[plow, phigh] with the one of eq. 7. Hence, the lower bound for the success probability p0 will be, in expectation (Thulin,
2014):

plow ≈ p0 − za

√
p0(1− p0)

n
:= p̄(n, a) (8)

So, as the number of samples is reduced from n to n′ < n, the drop on the lower bound success probability will be:

p̄(n, a)− p̄(n′, a) = za
√
p0(1− p0) ·

(
1√
n′
− 1√

n

)
(9)

Finally, according to (Cohen et al., 2019), the certified radius at a point x satisfies R ≥ σΦ−1(p̄), where p̄ is a lower bound
for the success probability of the correct class, that holds with confidence 1− a. Therefore, the certified radii we get using n
samples will be:

R(p0, n, a, σ) ≈ σΦ−1

(
p0 − za

√
p0(1− p0)

n

)
(10)

if p0 − za

√
p0(1−p0)

n ≥ 1
2 , and 0 otherwise (since in that case the class doesn’t have the majority). As the average certified

7
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Figure 9. Average certified radius for each noise level σ and sample number n on CIFAR-10, for the best models of (Salman et al., 2019)

radius R̄ is computed as an average over many samples, we expect the approximations above to be quite precise for this
purpose.

In fig. 11 we plot the difference of plow as given by the Clopper-Pearson method (drawing n samples with probability p0)
and the approximation of Proposition 3.1 for various values of n and p0, with a = 0.001. As we observe, the deviation is
low even for small n’s.

Next, we can also approximate Φ−1 with a closed-form function, in order to get an approximate closed-form formula for the
radius R(p0, n, a, σ) in eq. 10:

Proof. (Proposition 3.2) The goal here is to make a series of approximations, in order to obtain a closed-form formula
for the certified radius R(p0, n, a, σ). The first step is to replace the inverse normal CDF Φ−1(.) with a closed-form
approximation. From (Shore, 1982) we have the following approximate formula:

xp = Φ−1(p)⇔ 1√
2π

∫ xp

−∞
e−t2/2dt = p⇒

xp ≈
1

0.1975
(p0.135 − (1− p)0.135)

(11)

where the last line in eq. 11 is from (Shore, 1982), where the approximation is valid for 1
2 ≤ p ≤ 1, which is what we need,

since R(p0, n, a, σ) = 0 for p0 < 1
2 .

In fig. 12 we plot the exact values of Φ−1(p) and our approximation for p ∈ [0.5, 1). As we see, the approximation formula
very close to the true values.

Using the approximation of eq. 11 and substituting in eq. 10, we get the following approximation for the certified radius
R(p0, n, a, σ):
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Figure 10. Average certified radius for each noise level σ and sample number n on ImageNet, for the best models of (Salman et al., 2019)

R(p0, n, a, σ) ≈ σΦ−1

(
p0 − za

√
p0(1− p0)

n

)
⇒

R(p0, n, a, σ) ≈ 5.063σ

(p0 − za

√
p0(1− p0)

n

)0.135

−

(
1− p0 + za

√
p0(1− p0)

n

)0.135
 (12)

To further simplify this equation, we’ll apply the binomial theorem, (1 + x)a = 1 + ax+ a(a−1)
2! x2 + ... valid for |x| < 1

on both terms of eq. 12, and keep only the 1st order terms. Doing that, we get:

A =

(
p0 − za

√
p0(1− p0)

n

)0.135

= p0.1350

(
1− za√

n
p
−1/2
0 (1− p0)

1/2

)0.135

⇒

A ≈ p0.1350 (1− 0.135
za√
n
p
−1/2
0 (1− p0)

1/2) = p0.1350 − 0.135
za√
n
p−0.365
0 (1− p0)

1/2

B =

(
1− p0 + za

√
p0(1− p0)

n

)0.135

= (1− p0)
0.135

(
1 +

za√
n
p
1/2
0 (1− p0)

−1/2

)0.135

⇒

B ≈ (1− p0)
0.135(1 + 0.135

za√
n
p
1/2
0 (1− p0)

−1/2) = (1− p0)
0.135 + 0.135

za√
n
p
1/2
0 (1− p0)

−0.365

(13)

Substituting in eq. 12 and combining terms, we finally get:

R(p0, n, a, σ) ≈ 5.063σ

[
p0.1350 − (1− p0)

0.135 − 0.135
za√
n
(p−0.365

0 (1− p0)
1/2 + p

1/2
0 (1− p0)

−0.365)

]
(14)
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Figure 11. Absolute difference of the lower bounds plow computed by Clopper-Pearson and Proposition 3.1 for various values of n and
p0, and a = 0.001.

asd required.

Proof. (Proposition 3.3) Here, we make the (simplifying) assumption that the distribution of success probabilities p0 across
input samples x will be uniform in [0.5, 1]. Under this assumption, the average certified radius will be:

R̄(n, a, σ) = 2

∫ 1

p0=0.5

R(p0, n, a, σ)dp0 (15)

since the PDF of p0 is p(p0) = 1
1−0.5 = 2. Substituting eq. 5, we can perform the integration and obtain:

R̄(n, a, σ) = 2

∫ 1

p0=0.5

R(p0, n, a, σ)dp0 ⇔

R̄(n, a, σ) = 10.126σ

∫ 1

p0=0.5

[
p0.1350 − (1− p0)

0.135 − 0.135
za√
n
(p−0.365

0 (1− p0)
1/2 + p

1/2
0 (1− p0)

−0.365)

]
dp0

(16)

The integrals of the form pa0 and (1− p0)
a can be computed easily, while the integrals of the terms pa0(1− p0)

b are integrals
of the Beta function, and can be evaluated numerically. Doing the calculations, we finally get:

R̄(n, a, σ) = σ

(
0.796− 1.603

za√
n

)
(17)

Finally, using that we see that the certified radius drop is independent of σ, and is approximately equal to:
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Figure 12. Plots of Φ−1(p) and our approximation for p ∈ [0.5, 1)

R̄(n, a, σ)

R̄(∞, a, σ)
≈ 1− 2

za√
n

(18)

which is the required formula.

At this point, we have to note that the uniformity assumption of p0 is very naive. However, from the experiments we weren’t
able to identify some well-known probability distribution for p0 (e.g. Gaussian, etc.), although it’s apparent that the values
are skewed towards 1. Some histograms of p0 for different models and datasets, estimated using n = 100.000, are shown in
fig. 13.

C. A remark on the certification algorithm
In this section, we comment on a detail on the RS certification algorithm alg. 1. Namely, alg. 1 uses the same random
samples to both estimate the majority class cA, as well as to estimate the lower bound p̄A. Works such as (Chen et al., 2022)
use the same method.

However, in the work of (Cohen et al., 2019), the certification algorithm is slightly different, as shown in alg. 2.

The difference is that alg. 2 first draws a small number n0 of samples to estimate which is the majority class cA, and then
draws a large number n of additional samples to certify it. On the other hand, alg. 1 uses the same samples to estimate cA
and certify it, in an attempt to further reduce the number of samples.

In order to bridge this discrepancy, we show that both algorithms are equivalent, setting n0 = n.

Lemma C.1. Algorithms alg. 2 and alg. 1 are equivalent when n0 = n.

Proof. We will show that both algorithms behave in the same way for all cases. First, consider the estimation phase: in both
alg. 2 and alg. 1, n0 = n random samples are used to determine cA. Now, we distingusih two cases:
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Figure 13. Plots of histograms and density plots of p0 obtained for different models and datasets, as shown in the figure titles. The values
of p0 we estimated empirically using n = 100.000 samples.

.

Suppose the estimated cA is not equal to the true class y. In that case, the certified radius is 0 in both cases (even if the later
stage returns a positive radius, it’s invalid).

On the other hand, assume that cA = y. Then, the certification phase of alg. 1 is equivalent to the following: given y, certify
it! To do this, alg. 1 uses n random samples. But this is also what alg. 2 does; that is, conditioned that cA is correct, both
algorithms use n random samples to estimate it, and their behavior is equivalent again.

Thus, alg. 2 and alg. 1 are equivalent in all cases.

To verify Lemma C.1 experimentally, we run the experiments one additional time, using alg. 2 with n0 = 100, and found no
noticeable differences.

Algorithm 2 RS Certification (Cohen et al., 2019)
Input: point x, classifier f , σ, n0, n, a
Output: class cA and certified radius R of x
sample n0 noisy samples x′

1, ...,x
′
n0
∼ N(x, σ2I)

get majority class cA = argmaxy
∑n0

i=1 1[f(x
′
i) = y]

sample n noisy samples x′′
1 , ...,x

′′
n ∼ N(x, σ2I)

counts(cA)←
∑n

i=1 1[f(x
′′
i ) = cA]

p̄A ← LowerConfBound(counts(cA), n, a) {compute probability lower bound}
if p̄A ≥ 1

2 then
return cA, σΦ

−1(p̄A)
else

return ABSTAIN
end if
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