
Under review as submission to TMLR

Deep Kernel Learning of Nonlinear Latent Force Models

Anonymous authors
Paper under double-blind review

Abstract

Scientific processes are often modelled by sets of differential equations. As datasets grow,1

individually fitting these models and quantifying their uncertainties becomes a computa-2

tionally challenging task. Latent force models offer a mathematically-grounded balance be-3

tween data-driven and mechanistic inference in such dynamical systems, whilst accounting4

for stochasticity in observations and parameters. However, the required derivation and com-5

putation of the posterior kernel terms over a low-dimensional latent force is rarely tractable,6

requiring approximations for complex scenarios such as nonlinear dynamics. In this paper,7

we overcome this issue by posing the problem as learning the solution operator itself to a8

class of latent force models, thereby improving the performance and scalability of these mod-9

els. This is achieved by employing a deep kernel along with a meta-learned embedding of10

the output functions. Finally, we demonstrate the ability to extrapolate a solution operator11

trained on simulations to real experimental datasets, as well as scaling to large datasets.12

1 Introduction13

Differential equations are mathematical models that describe the change of a function with respect to one14

or more variables, such as time. They play a central role in the natural and social sciences, providing a15

way to model and understand complex systems and phenomena, such as the growth and decline of pop-16

ulations (Burghes, 1975), morphogenesis (Turing, 1990), the dynamics of biochemical reactions (Thomas17

et al., 1976; Schoeberl et al., 2002; Barenco et al., 2006), and so on. They provide a rigorous, well-studied,18

and mathematically grounded method of making historic and future predictions in complex systems. In19

a machine learning context, the modelling power of differential equations make them excellent inductive20

biases. A popular method of incorporating these equations within a Bayesian machine learning setting is21

the latent force model (LFM), introduced by Lawrence et al. (2006) to model a network of genes regulated22

by a common protein. LFMs assume that the underlying dynamics of a system can be modelled in terms of23

a low-dimensional latent force, typically with a Gaussian process prior, within a system of differential equa-24

tions. The involvement of a non-parametric Gaussian process within an interpretable parametric system25

results in a powerful framework for drawing mechanics-constrained inferences in noisy, high-dimensional,26

and nonlinear dynamics. It has since been extended to embryogenesis (López-Lopera et al., 2019), where the27

latent force represents mRNA concentration; patient interventions (Cheng et al., 2020), with latent forces28

corresponding to different treatments; and movement segmentation (Alvarez et al., 2010b). However, there29

are significant computational challenges hindering the usability of these models on large datasets.30

Inferring the latent force requires computing the posterior distribution, the covariance functions of which31

are determined by the differential equations describing the model dynamics. These are analytically tractable32

only for a small set of scenarios. The remaining cases, typically nonlinear dynamical systems, requires33

some approximation for the posterior. There are various approximations, such as using an ODE or PDE34

solver (Moss et al., 2021), deep GPs (McDonald & Álvarez, 2021), and filtering (Hartikainen & Sarkka,35

2012; Ward et al., 2020). Crucially, however, these existing works operate on small datasets—often a single36

parameterisation—not considering the scaling of the approach to multiple independent tasks of the same37

LFM. How do we extend the original model considering one network of genes to many thousands? Currently,38

important use-cases such as fitting multiple ODEs (Santra, 2018) or performing Bayesian model selection39

in dynamical models (Babtie et al., 2014) with LFMs are too costly. Increasingly large datasets are only40

underlining the importance of solving the challenge of scaling up LFMs to work in the multi-task setting.41

1



Under review as submission to TMLR

In this paper, we propose a novel method addressing these scalability issues, resulting in 250x to 15, 000x42

faster latent force inferences when compared with existing approximations. We propose a deep learning43

approach to solve a general class of LFMs, avoiding differential equation solving steps and variational ap-44

proximations by instead learning the dynamics in a deep kernel (Wilson et al., 2016). Our framework makes45

use of neural network representations of sets, such as the Transformer (Vaswani et al., 2017) and the Fourier46

neural operator (Li et al., 2020), in order to produce a function embedding for each task. Given a task47

consisting of only the input mesh, for example time, and the observed functions’ embedding, our model48

infers the associated latent force with Gaussian process conditioning. This makes our approach much faster49

than training an LFM on individual tasks. This method can model complex nonlinear dynamics and pro-50

vides solutions even to multivariate problems such as partial differential equations which were previously51

computationally infeasible for large datasets.52

2 Preliminaries53

Gaussian processes Gaussian processes are stochastic processes often used as priors for latent functions54

in Bayesian machine learning models that map from inputs x ∈ RD to predictions f(x) ∈ R. A GP prior55

f ∼ GP(m(x), κ(x, x′)) (1)

is described by its mean function m(x) and its kernel function κ(x, x′). The mean function is usually set to56

0 for standardised data. The kernel function may have a set of hyper-parameters θ, such as the lengthscale57

l in an RBF kernel, kRBF(x, x′) = exp(− l
2∥x− x′∥2). Under this prior, any finite collection of points f(X)58

for inputs X = [x1, x2, . . . , xN ]⊤ is normally distributed: f ∼ N (m(X), κ(X, X)). In this paper, we denote59

the covariance Kff = κ(X, X). With a Gaussian likelihood for observations y, meaning y ∼ N (f, σ2), the60

posterior distribution for training data X, y is analytically tractable and given by61

f |y ∼ N
(

κ(x, X)[κ(X, X) + σ2I]−1y, κ(x, x′)− κ(x, X)[κ(X, X) + σ2I]−1κ(X, x′)
)

.

Moreover the marginal likelihood has a closed form expression enabling optimising the kernel hyper-62

parameters θ by maximising the marginal likelihood using gradient-based optimisation and is given by63

p(y) = N (y |0, κ(X, X) + σ2I). (2)

Deep Kernel Learning Deep kernel learning as presented by Wilson et al. (2016) constitutes an attempt64

to combine the representation learning capabilities of deep neural networks with the non-parametric nature65

of Gaussian processes. A neural network is used to map an input x into a latent space yielding a vector66

NN(x) ∈ RD. This representation is then fed into a base kernel κ(·, ·) (such as an RBF kernel) to yield the67

covariance between inputs κ(NN(x), NN(x′)).68

Latent Force Models LFMs incorporate explicit dynamics of differential equations in the kernel functions69

of Gaussian processes (GPs) in order to infer latent forcing terms (Lawrence et al., 2006; Alvarez et al.,70

2009). The latent force captures the underlying process and structure in the data, while being unobserved71

and shared amongst the outputs. The differential equation, g, parameterised by Θ, enforces a mechanistic72

relationship between the vector-valued output function, h(x) ∈ RP , and an unobserved, scalar-valued latent73

force, f(x) ∈ R, with D-dimensional input x ∈ RD. This input is often time but can be any variable. An74

ordinary differential equation (ODE) involves derivatives of a function of one independent variable, describing75

how this function changes (D = 1). A partial differential equation (PDE) involves derivatives with respect76

to multiple variables, used to model multi-dimensional phenomena like heat and fluid dynamics (D > 1).77

An LFM can be defined with either, for example78

dh(x)
dx

= gΘ
(
x, h, G(f(x))

)
, (3)

or equivalently for a PDE. The force can be transformed by some response function G(·). A GP prior is79

assigned to the latent force, f ∼ GP(0, κ(x, x′)), which naturally accounts for biological noise and enables80

2



Under review as submission to TMLR

Figure 1: Schematic of DKLFM. First, a dataset of latent force tasks is created by sampling the latent force
and differential equation parameters and solving the forward solution. The simulated functions are embedded
by aggregating the output state of an encoder. A deep kernel is learned to represent the convolution operator
of an arbitrary LFM. For training tasks, the model minimises the loss in Equation 6 with access to simulated
latent force data. For test tasks, the latent force is unobserved and inferred via the cross-covariance only, as
in a typical LFM scenario. The diagram shows one task; in reality, we train over batches of tasks.

non-linear expressivity through kernels. Some LFM literature considers multiple forces but we do not cover81

this due to the identifiability issues they pose. An analytical expression for the covariance between outputs,82

Khh, is possible under the necessary condition that G is a linear operator. In these cases, maximum marginal83

likelihood yields the differential equation parameters and inference can be carried out with standard posterior84

GP identities (see Rasmussen & Williams (2005)). Approximations are required where G is non-linear.85

3 Deep Kernel Learning of Latent Force Models86

In this section, we present the Deep Kernel Latent Force Model (DKLFM): a novel approach to multi-task87

dynamical modelling. We first detail the problem setting and derive our objective function, and finally88

discuss any design choices in our approach.89

3.1 Model Formulation90

The model setup is summarised in Figures 1 and 2, illustrating the generative process. Our input x is91

transformed by the latent force f , which is further manipulated by a set of differential equations to yield the92

output functions h. We aim to solve the inverse problem of inferring f given noisy observations of h. We93

start by illustrating our approach with a model used later in this paper (Barenco et al., 2006). The time94

derivative of the mRNA, h(x), for P genes is related to its regulating transcription factor protein, f(x) by95

dh(x)
dx

= gΘ
(
x, h, G(f(x))

)
=
basal rate︷︸︸︷

b +s

response︷ ︸︸ ︷
G(f(x))−

decay term︷ ︸︸ ︷
c h(x) , (4)

where x ∈ R1 is time and b, s, c ∈ RP
+ are the base transcription rates, sensitivities to the transcription factor,96

and decay rates of the P genes respectively. G is a function, for example a nonlinearity enforcing positivity97

or a saturation term enforcing limits on the latent force. The ODE parameters are thus Θ = {b, s, c}.98

At training time, we assume a simulated dataset of N tasks, each consisting of a different latent force99

function and setting of parameter values. The n-th task is the set {Xn, Yn, fn}, where Xn ∈ RT ×D denotes100

T observed D-dimensional input points, e.g. temporal (D = 1) and spatio-temporal (D > 1). We have101

noisy observations, Yn ∈ RT ×P , of the P -dimensional solutions to the differential equation at each of these102

T input points. The solutions are assumed to follow the GP h with realisations hn where the P dimensions103

are flattened. The observations Yn are similarly condensed into the blocked vector yn. Since we carry out104

training on a simulated dataset generated by the LFM, we also have access to latent force observations,105

fn ∈ RT . For clarity, we henceforth omit the subscript task index and it can be assumed that we are dealing106

with each task independently. These tasks are split into train and test sets. At inference time, our objective107

is to infer the latent force and the model makes use only of the output function observations.108

3



Under review as submission to TMLR

x f h y

Figure 2: Graphical model illustrating the generative process from latent forces to output functions.

We assign a GP prior to f and use a Gaussian likelihood, i.e.109

f ∼ GP(mf (·), κf (·, ·)), (prior)
y ∼ N (h, σ2I), (likelihood)

where mf is the mean function of the GP prior for which we learn a constant output, and κf is the kernel.110

For each task, the distribution over output realisations h is implicitly determined via their joint distribution111

with the latent function outputs, f . In practice we make a modelling assumption that this joint is multivariate112

Gaussian. Inferences are then made using GP conditioning on the output observations for test tasks. This113

results in the joint distribution114 [
f
h

]
∼ N

([
µf

µh

]
,

[
Kff Kfh

Khf Khh

])
, (joint)

where the mean vectors and covariance matrices are obtained as described below. This assumption of a115

multivariate Gaussian joint distribution holds only for linear transformations of the latent force (i.e. where116

G is a linear function). Nevertheless, we demonstrate in Section 4.3 that this approximation yields strong117

quantile similarities to the true empirical distribution even for nonlinear transformations.118

Deep kernels In an LFM, the kernel function is derived from solving a set of differential equations. In119

the case of a general non-linear equation, the kernel has no closed-form solution. We instead approximate120

the kernel with a neural network of sufficient capacity, mapping the inputs to latent representation vectors121

of size Ld before feeding them into a base kernel, κ : RLd × RLd → R (Wilson et al., 2016). This base122

kernel provides an additional inductive bias, for example ensuring smoothness in the latent space with an123

RBF kernel or periodicity with a periodic kernel. To map to this latent space, we construct two separate124

networks NNf : RD+Lr → RLd , NNh : RD+Lr → RLd for the latent and output functions respectively, where125

Lr is the size of the task representation, r ∈ RP ×Lr , discussed further in the next section. We also need126

a common network, NNc : RLd → RLd , which maps both representations onto the same latent space. This127

common network helps to obtain an informative cross-covariance between latent force and output functions:128

we need to map both to a common latent space. For simplicity, we select a simple MLP for all networks.129

We found that incorporating skip connections greatly improved the performance whilst reducing overfitting.130

To illustrate for task n, the cross-function covariances, Kfh and Khh, are computed as follows. The deep131

kernel receives a concatenation of the task representation with the inputs, zn = rn ⊕ xn,132

Kfh = κ (NNc(NNf (zn)), NNc(NNh(z′
n))) , Khh = κ (NNc(NNh(zn)), NNc(NNh(z′

n))) . (5)

The same concatenation occurs for the latent covariance Kff and for the mean functions, e.g. µf = mf (zn).133

The covariance matrices are therefore of shape Kff ∈ RT ×T , Kfh ∈ RT ×T ·P , and Khh ∈ RT ·P ×T ·P .134

In some experiments, particularly periodic scenarios, it helped to concatenate the input mesh after applying135

the neural network. This granted the periodic kernel access to both the latent vector and input mesh. For136

example, based on Equation 5, Kfh = κperiodic (xn ⊕NNc(NNf (zn)), xn ⊕NNc(NNh(z′
n))) .137

The deep kernel weights and the base kernel and mean function hyperparameters are optimised jointly by138

maximising the marginal likelihood of the output functions and latent force. This has the closed form:139

p(y, f) =
∫

p(y, f , h) dh =
∫

p(y|h)p(h|f)p(f) dh

= p(f)
∫
N (y |h, σ2I)N (h |µh|f , Kh|f ) dh

= N (f |µf , Kff )N (y |µh|f , Kh|f + σ2I). (6)

4



Under review as submission to TMLR

where in practice the negative log marginal likelihood is minimised and140

logN (y |µh|f , Kh|f + σ2I) = −1
2(y − µh|f )T (Kh|f + σ2I)−1(y − µh|f )− 1

2 log |Kh|f + σ2I|

Here, µh|f and Kh|f are defined as141

µh|f = µh + Khf K−1
ff f , (7)

Kh|f = Khh −Khf K−1
ff Kfh. (8)

At inference time, we receive an arbitrary input x∗. At these input locations, we define f∗ as the inferred142

and unobserved latent force using the posterior predictive distribution, defined by143

µf∗|y = µf∗ + Kf∗hK−1
hh y, (9)

Kf∗|y = Kf∗f∗ −Kf∗hK−1
hh Khf∗. (10)

Note that we are using exact GP inference in this approximate model. If the input space is very large, then144

the matrix inversion can become computationally challenging and a variational approximation may be easily145

interchanged here. We will now discuss specific components of the model in more detail.146

3.2 Task Representation147

The generative process relies on both the latent force and a set of task-specific parameters relating to the148

dynamics equations, such as reaction and decay rates. By tweaking these parameters, it is possible that149

latent forces from different tasks could produce the same or similar output functions. Moreover, tasks on the150

same input mesh would result in identical covariance matrices, limiting cross-task utility. The GP therefore151

needs access to a task representation in order to generalise across tasks. We denote this rn = emb(xn, yn),152

defined by emb : RP ×T → RP ×Lr , where the embedding size, Lr, is a hyper-parameter and each of the P153

output functions are treated independently. Note that it does not observe any latent force data. Instead,154

this representation is used by the deep kernel to learn the relationship between the output functions and155

the latent force in its latent space. This separates inference of latent forces from the dynamics parameters,156

whilst enabling the task representation to be computed for tasks where no latent force observations exist.157

This embedding must contain the dynamics information usually captured by the differential equations and158

their parameters, and should be invariant to input resolution in order to maintain the flexibility of Gaussian159

processes. This also enables super-resolution inference; test cases can be at an arbitrary resolution higher160

than the training data, as we demonstrate in Section 4.2. To that end, we explored two different encoders161

in our research: a Fourier neural operator (Li et al., 2020) and a Transformer (Vaswani et al., 2017).162

The Fourier neural operator is effectively an MLP in the Fourier domain, and was originally developed163

to solve partial differential equations (PDEs) due to the intricate relationship between differential calculus164

and Fourier analysis, their mesh-invariance, and fast solving speeds. However, a severe limitation is that165

the Fourier transform requires the input to be a regularly spaced. On the other hand, the Transformer is166

invariant to resolution and regularity of observations. We implemented the decoder only consisting of a linear167

layer followed by self-attention layers. Sinusoidal positional encoding enables the modelling of an irregular168

mesh. The weights are trained by maximising the marginal likelihood in Equation 6.169

4 Experiments170

In this section we investigate the performance of DKLFM on two ODE-based LFMs and one PDE-based171

LFM. Given that this is the first multi-task model for latent force models, we analyse the performance on172

real, experimentally-derived datasets not in the synthetic training distribution. We compare our approach173

with two models from the literature on solving latent force problems. Alfi is a variational approximation174

with a strong mechanistic prior, meaning the model is constrained by the differential equations. For linear175

g, Alfi resorts to the exact solution. The DeepLFM involves dynamics-informed random features which are176

5



Under review as submission to TMLR

Train task
O

ut
pu

ts
La

te
nt

fo
rc

e
m

R
N

A
co

un
t

m
R

N
A

co
un

t

Time

Time

Test tasks

Figure 3: Training and test transcriptional regulation tasks. Notice that even for test tasks, the learned
variance encapsulates most ground truth. Test tasks do not have access to latent force data.

m
R

N
A

co
un

t

Outputs Latent force

Time Time

(a) DKLFM infers the protein concentration of tran-
scription factor p53. The ground truth was published
by Barenco et al. (2006). The model was trained only
on simulations of Equation 4.

P
re

y

P
re

da
to

r

Outputs Latent force

Time Time

(b) DKLFM infers the predator-prey relationship in a
Lotka-Volterra setup. The model has only been trained
within the time range denoted by the grey shading, and
extrapolates the periodic nature beyond.

Figure 4: DKLFM extrapolation in both tasks and input domain.

composed with each layer. This results in only a mid-strength mechanistic prior, since the deep representation177

is not fully constrained by dynamics. Our approach has a weak mechanistic prior since it is not encoded178

directly into the model, but rather it is learnt.179

4.1 Nonlinear Ordinary Differential Equations180

The first ODE model is the similar to the original application of latent force models (Lawrence et al., 2006):181

the biological process of transcriptional regulation. We validate additionally on experimentally-derived data182

from Barenco et al. (2006), where cancer cells were subject to ionising radiation and the concentration of183

mRNA was measured via microarray at different timepoints. The data contains transcript counts for five184

targets of the transcription factor p53 over seven timepoints and three replicates. We also consider the paired185

Lotka-Volterra equations, which govern predator-prey dynamics and exhibit periodic solutions.186

Latent Force Setup The transcriptional regulation task is defined by the ODE in Eq. 4, where the187

exact solution is only tractable when the response function is the identity. In this case, we set G to the188

softplus function, G(f(x)) = log(1+exp(f(x))), to ensure positive protein abundance. We start by sampling189

parameters for Equation 4 from an empirical distribution of parameters learnt by running the Alfi (Moss190

et al., 2021) latent force inference package on the p53 network of genes experimentally measured by Barenco191

et al. (2006). Next, the latent force is sampled from a GP prior with RBF kernel, and the ODE is solved192

numerically using any differentiable solver, yielding a single task.193

The Lotka-Volterra tasks are defined by the equations:194

du(x)
dx

= αu(x)− βu(x)v(x) dv(x)
dx

= γu(x)v(x)− δv(x), (11)

6



Under review as submission to TMLR

Table 1: Comparison to baseline models for the transcriptional regulation ODE and the the reaction diffusion
PDE. For the DKLFM, we train on a dataset of 256 and 384 tasks for the ODE and PDE tasks respectively.
Alfi and DeepLFM optimise each task independently. Results are averaged over 20 instances. DKLFM-
a is an ablation the common component of the deep kernel is removed by setting NNc to the identity.
DKLFM-b is an ablation of the Fourier embeddings, replacing them with a 4-layer MLP. Training was on
an NVIDIA GeForce RTX 4090 GPU. Due to the differentiable PDE-solving package used by Alfi not being
GPU-compatible, the PDE tasks were fit on an AMD Ryzen 5600x CPU. NLL is the negative log-likelihood,
and the time column corresponds to the inference time per-task.

TASK MODEL MSE ↓
(LATENT)

MSE ↓
(OUTPUT)

NLL ↓ TIME (s) ↓ MECHANISTIC

ODE Alfi (exact) 0.117 0.0155 −1.29 3.27 Strong
ODE DeepLFM - 0.0332 1.42 12.6 Mid
ODE DKLFM 0.108 0.0028 −2.39 1.18 × 10−2 Weak
ODE DKLFM-a 0.898 0.0027 8.64 1.01 × 10−2 Weak
ODE DKLFM-b 0.321 0.0075 −2.07 9.21 × 10−3 Weak
PDE Alfi (approx) 0.0886 0.0215 −0.727 > 600 Strong
PDE DeepLFM - 0.356 0.547 96.7 Mid
PDE DKLFM 0.131 1.92 × 10−7 −1.96 0.0523 Weak
PDE DKLFM-a 0.998 3.01× 10−6 −0.799 0.0606 Weak

where u(x) and v(x) are prey and predator populations respectively as a function of time, with growth rates195

α and γ, and decay rates β and δ. We use a periodic kernel for κ in Eq. 5 for this task in order to capture the196

periodic nature of the Lotka-Volterra solutions, thus improving temporal extrapolation. We assume that we197

seek to infer the predator concentration from the abundance of prey; i.e., we take the predator population to198

be the latent force. We simulated a dataset of Lotka-Volterra solutions corresponding to different sampled199

rates, α, β ∼ U(0.5, 1.5), using a 4th-order Runge-Kutta solver. This is a slightly different regime to the200

transcriptional regulation model, where a Gaussian process was sampled for each datapoint. In this case, we201

validate our model’s ability to infer a latent force that was not explicitly generated by a Gaussian process.202

In both cases, Gaussian-distributed random noise is added to the latent forces. We generate 500 instances203

and split into training, validation, and test tasks. Figure 3 demonstrates that DKLFM can infer distributions204

over latent forces for the task of transcriptional regulation. We then apply the model trained on the simulated205

dataset to a real microarray dataset from Barenco et al. (2006), and show our inferred transcription factor206

concentration alongside the unobserved ground truth in Figure 4a. Next, we demonstrate the intra-task207

extrapolation in Figure 4b, where the input has been extended into the past and future. Finally, in Table 1,208

we compare our results with closest models from the literature, finding lower errors and computation times.209

4.2 Partial Differential Equations210

PDE-based LFMs are the multivariate extension of ODEs and are significantly harder to solve. This is211

illustrated by the absence of a method capable of exactly solving all classes of PDEs. Numerical solvers212

typically operate on a mesh and thus suffer the curse of dimensionality. Here, demonstrating the flexibility213

of DKLFM, we fit reaction diffusion equations with a very moderate dataset of 384 low-resolution tasks.214

The test tasks can then be inferred at a much higher resolution compared to training time.215

Latent Force Setup Reaction diffusion equations have many uses; in this paper we look at the bio-216

logical process of Drosophila embryogenesis (formation of the fruit-fly embryo). The spatiotemporal RNA217

expression, h(x, t) of gap genes is measured using a reaction diffusion PDE from López-Lopera et al. (2019):218

∂h(x, t)
∂t

= sf(x, t)− λh(x, t) + d
∂2h(x, t)

∂x2 . (12)

7



Under review as submission to TMLR

0.00 0.25 0.50 0.75

-1 0 1 2

-0.4 -0.2 0.0 0.2

-2 -1 0 1 2

-0.5 0.0 0.5

-2 -1 0 1 2

-0.4 -0.2 0.0 0.2 0.4

-3 -2 -1 0 1

-0.5 0.0

-2 -1 0 1

Train task

Time Time Time Time Time

O
bs

er
ve

d
O

ut
pu

ts

Sp
ac

e
Sp

ac
e

Sp
ac

e
Sp

ac
e

Pr
ed

ic
te

d
O

ut
pu

ts
(s

up
er

-r
es

ol
ut

io
n)

G
ro

un
d

Tr
ut

h
La

te
nt

Fo
rc

e
Pr

ed
ic

te
d

La
te

nt
Fo

rc
e

(s
up

er
-r

es
ol

ut
io

n)
Test tasks

Figure 5: DKLFM trained on a synthetic reaction diffusion dataset. The first column is a training example
and the next four are test cases, where the latent force is not observed. The embedding size was increased to
96 to account for the increase in dimensionality. The model was trained with a 21× 21 spatiotemporal grid.
At prediction time, 40 × 40 grid was used to illustrate the super-resolution capability. Each pair of plots
vertically shares the same colorbar to enforce the same scale and accurately demonstrate inference accuracy.

Here, s is the production rate of the driving mRNA, f(x, t) is the latent force, λ is the decay rate and d is219

the diffusion rate. Notice that the latent force is 2-dimensional; DKLFM can take any multivariate input.220

In order to simulate a dataset from Equation 12, we implemented the Green’s function approximation from221

López-Lopera et al. (2019). This approximation gives the full covariance matrix, including cross-covariances222

between latent force and outputs, and is faster in this direction than Alfi. Since the joint covariance matrix is223

singular due to repeated inputs, sampling is implemented using the eigendecomposition rather than Cholesky.224

We generate 448 tasks in this fashion, taking less than two hours on an AMD Ryzen 5600x, of which 384225

are used for training. From an empirical inspection of the gap gene dataset from Becker et al. (2013), we226

uniformly sampled production rates in the range [0.2, 1.0], decay rates in the range [0.01, 0.4], and diffusion227

rates in the range [0.001, 0.1]. For the latent force, we sampled the two lengthscales (corresponding to spatial228

and temporal dimensions) in the range [0.1, 0.4] since both dimensions are normalised to [0, 1].229

We show that we can learn a general solution operator for PDE tasks in Figure 5, invariant to input resolution.230

In Table 1, we show how our framework compares against single-instance models. Alfi tends to obtain very231

accurate results due to backpropagating the loss through the solver. However, DKLFM beats Alfi in output232

8



Under review as submission to TMLR

0 100 200 300 400
Number of training tasks

0.00

0.01

0.02

0.03

0.04

0.05

0.06

O
ut

pu
t 

M
SE

0.1

0.2

0.3

0.4

0.5

0.6

La
te

nt
 M

SE

Output MSE (ours)
Latent MSE (ours)
Output MSE (Alfi)
Latent MSE (Alfi)

Figure 6: We plot MSEs against training dataset size for the genetic regulation LFM. This demonstrates the
point at which it becomes more economical to use DKLFM rather than single-task models. At around 200
instances, the performance of DKLFM matches that of a single-task model optimised by Alfi.

MSE with a greatly reduced computational burden, and using a modest dataset of 384 tasks. DKLFM also233

achieves a competitive error for the latent function.234

4.3 Performance and Approximation Cost235

The utility of LFMs for large scientific datasets is limited by their lengthy training times. In genomics,236

a realistic scenario is where a bioinformatician will want to train an LFM on several thousand genes; for237

example, RNA velocity (La Manno et al., 2018) solves a splicing kinetics ODE on the entire human genome.238

This limits the use of the available approximations. Moreover, the Gaussian joint distribution used in this239

work is a model assumption needing verification. We therefore qualitatively demonstrate the uncertainty in240

our approximated posterior predictive distribution using quantile-quantile plots.241

Our framework, however, solves many LFMs simultaneously rather than optimising a single instance. An242

analysis of the relationship between error and training set size is therefore key to finding the point our error243

rate drops to the level of solving an individual instance. If this point is less than or similar to the number244

of instances in a typical use-case, then it is computationally preferable to generate a simulated dataset of245

this size rather than to train individual LFMs. This is because the training dataset required to reach this246

performance becomes smaller than the evaluation set, making it more time-efficient to use the DKLFM. For247

this study, we compare against Alfi, an accurate nonlinear LFM approximation defined in Moss et al. (2021).248

We chose the ODE task, since the PDE solver in Alfi is too computationally intensive for this comparison.249

In Figure 6, we confirm our hypothesis by plotting the MSE versus dataset size for our model, and horizontal250

lines are the mean MSE for Alfi over a subset of 64 tasks.251

In order to analyse the posterior uncertainty of DKLFM, we use quantile-quantile plots showing samples252

from our posterior compared with real, simulated samples. We do this for three different tasks: 1. the253

nonlinear transcriptional regulation ODE model in Section 4.1; 2) a logistic growth model with a sinusoidal254

nonlinearity; and 3) the reaction-diffusion experiment from Section 4.2. The logistic growth model measures255

the increase of a resource, for example a population or a plant, as it reaches its maximum value. The rate256

of increase in size or quantity of the resource at time x ∈ R1, h(x), is expressed with the ODE257

dh(x)
dx

= rh(x)
(

1− h(x)
K

)
+ βG(f(x)) (13)

where r is the growth rate, K is the carrying capacity (maximum resource size), β is the response factor258

to the temperature, f(x), and G is the cosine function. This equation was chosen since it can result in a259

multi-modal distribution due to the sinusoidal response to temperature. The QQ-plots shown in Figure 7260

demonstrate that our assumption that the output function can be distributed as a multivariate Gaussian261

9



Under review as submission to TMLR

Transcriptomics Growth Reaction Diffusion

Figure 7: Quantile-quantile plots demonstrating the impact of our model approximation of a multivariate
Gaussian join distribution in Section 3.1. We plot sorted samples at various timepoints linearly spaced across
the input domain for three tasks. The transcriptomics task exhibits some deviation from an exact quantile
fit due to the nonlinear transformation of the latent force. The reaction diffusion task involves only linear
transformations of a Gaussian process resulting in a very tight close quantile fit. The logistic growth model
can result in a multimodal (and therefore non-Gaussian) distribution.

leads to robust uncertainty quantification. Even for the edge case of the logistic growth model, the associated262

QQ-plot exhibits a close fit to the unimodal Gaussian distribution.263

5 Related Work264

Differential equation-based inference in dynamical systems with Gaussian processes was introduced in265

Lawrence et al. (2006) and Alvarez et al. (2009). These approaches derive the kernel functions by solv-266

ing the convolution integral of a base kernel with a linear operator corresponding to the ODE solution.267

When the dynamics becomes nonlinear, the Laplace approximation was used for the marginal likelihood.268

The benefit of this approach is that it is entirely non-parametric and enforces strong mechanistic behaviour.269

The primary issue is the requirement of analytically solving the specific ODE, which is not possible for some270

equations. Moreover, the first and second derivatives of the nonlinearity are also required. Also in line with271

this method is the switching LFM (Alvarez et al., 2010a), which segments time and switches between a272

number of latent forces, with only a single force being active in each interval.273

Filtering approaches have also been investigated (Hartikainen & Sarkka, 2012; Särkkä et al., 2018; Ward274

et al., 2020). They typically employ a state-space model for approximating the posterior of a non-linear275

LFM. For example, Ward et al. (2020) use autoregressive flows to construct a joint density of the state276

using variational inference, bypassing complex kernel derivations. This results in a flexible model, scalable277

to multiple latent forces and output functions. However, the model exhibits the over-confidence prevalent in278

such black-box variational approaches.279

Alfi (Moss et al., 2021) avoids the complex derivations of kernel functions by sampling the latent force from280

the GP prior and gradient matching to pre-estimate reasonable parameters. An ODE or PDE solver is then281

used to fine-tune the parameters with the solution of the equations. Backpropagating through a solver is far282

too computationally intensive for a multi-task setting, rendering this approach impractical for large datasets.283

McDonald & Álvarez (2021) tackles non-linear and non-stationary dynamics by constructing a deep GP284

(Damianou & Lawrence, 2013). At each layer, an RBF kernel is convolved with the Green’s function of the285

ODE. This deep representation enables the modeling of a wider range of tasks than a standard LFM. It is,286

however, not directly applicable to PDEs or to a multi-task setting.287

10



Under review as submission to TMLR

There is also an adjacent area of research applying deep kernels for dynamical modelling. For example,288

Botteghi et al. (2022) denoise observations of the output functions via variational autoencoders, and learn289

a neural network representation of dynamics. In addition, Chen et al. (2022) propose a meta-learning290

framework for deep kernels consisting of a bilevel optimisation problem. The inner level consists of learning291

a subset of parameters which are adapted on individual tasks. At the outer level, the remaining subset of292

parameters are trained to yield the best loss on average over training tasks after the inner level is optimised.293

These approaches do not, however, infer latent forces. In this work, we treat the meta-network as an entirely294

separate component which is trained end-to-end with the deep kernel network.295

6 Conclusion296

We have introduced a novel framework for latent force models by leveraging the expressive power of deep297

kernels combined with a learned task representation. Where standard LFMs require an optimisation loop298

to find kernel parameters, our approach only requires GP conditioning on observations at prediction time,299

enabling extremely fast latent force inference. Specifically, this involves inverting a T × T matrix with300

O(T 2) computational complexity. If the input size is too large, a technique such as variational inducing301

points reduces the computational complexity to O(TM2) with M inducing points. DKLFM is therefore an302

exact inference probabilistic model: the first of its kind for learning the approximate solution operator for an303

arbitrary nonlinear LFM. We achieve this by learning a deep kernel corresponding to the differential equation304

by training on a simulated dataset of tasks. The embedding of each task’s observations are interpreted as305

the task representation, containing information such as rate parameters. At test time, this representation is306

combined with an arbitrary input—possibly of higher resolution to the training data—in order to compute307

the latent forces using the Gaussian process conditioned on observations.308

The inference performance of DKLFM is reliant on learning a good cross-covariance between latent forces and309

observations. We hypothesise that this is why this model does not exhibit the tendency for over-confidence310

away from training data in predictions commonly found in deep kernel learning and related approaches. Since311

we learn the same deep kernel over a dataset of tasks, this has proved not to be an issue. We demonstrate312

in two ablations the importance of both the common component of the deep kernel, NNc, as well as the313

Fourier embeddings in learning a good representation of the dynamics.314

Limitations Speed is limited by generating the training dataset; however, this is easily parallelised. More-315

over, as in our PDE experiment, the generative direction, i.e. going from a parameterisation to an instance316

is much faster than the inverse problem of inferring the latent force from the output functions. We envisage317

these models being used analogously to large language models (Shanahan, 2022), where a user can fine-tune318

a pretrained DKLFM to make latent force inferences on their dataset. This would be particularly useful for319

computationally intensive simulations.320

The original LFM is strongly mechanistic, deriving the covariance function from strict dynamics equations.321

While this may be more robust in the presence of lots of noise, it is overly rigid for real-world tasks. Our322

approach is weakly mechanistic: dynamics are not imposed, but rather parametrically learnt from the data323

and paired with a nonparametric GP to condition on unseen data. As with AlphaFold (Jumper et al., 2021),324

combining biophysical priors and data-driven approaches may be more appropriate for complex problems.325

Despite not being an issue for the examples covered in this paper, our model approximation can lead to326

incorrect confidence predictions. Due to modelling the joint as a multivariate Gaussian, and therefore h as327

a GP, the DKLFM theoretically cannot model transformations of the latent force that lead to non-Gaussian328

distributions over the output, h, such as those with multiple modes. However, Section 4.3 shows we still329

obtain close quantile fits even for a multimodal distribution.330

Further work DKLFM explicitly treats the uncertainty in the latent forces and output functions. In an331

active learning context, we can query input points where the output function or latent forces have high-332

uncertainty. This enables experiment design, for example to determine an appropriate coarseness for a333

time-course experiment. Furthermore, we have currently considered one latent force per task. Multiple334

forces lead to identifiability issues, where many combinations of latent forces would solve the same LFM.335

11



Under review as submission to TMLR

References336

Mauricio Alvarez, David Luengo, and Neil D Lawrence. Latent force models. In Artificial Intelligence and337

Statistics, pp. 9–16. PMLR, 2009.338

Mauricio Alvarez, Jan Peters, Neil Lawrence, and Bernhard Schölkopf. Switched latent force339

models for movement segmentation. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel,340

and A. Culotta (eds.), Advances in Neural Information Processing Systems, volume 23. Curran341

Associates, Inc., 2010a. URL https://proceedings.neurips.cc/paper_files/paper/2010/file/342

3a029f04d76d32e79367c4b3255dda4d-Paper.pdf.343

Mauricio Alvarez, Jan Peters, Neil Lawrence, and Bernhard Schölkopf. Switched latent force models for344

movement segmentation. Advances in neural information processing systems, 23, 2010b.345

Ann C Babtie, Paul Kirk, and Michael PH Stumpf. Topological sensitivity analysis for systems biology.346

Proceedings of the National Academy of Sciences, 111(52):18507–18512, 2014.347

Martino Barenco, Daniela Tomescu, Daniel Brewer, Robin Callard, Jaroslav Stark, and Michael Hubank.348

Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome biology, 7:1–18, 2006.349

Kolja Becker, Eva Balsa-Canto, Damjan Cicin-Sain, Astrid Hoermann, Hilde Janssens, Julio R Banga,350

and Johannes Jaeger. Reverse-engineering post-transcriptional regulation of gap genes in drosophila351

melanogaster. PLoS computational biology, 9(10):e1003281, 2013.352

Nicolò Botteghi, Mengwu Guo, and Christoph Brune. Deep kernel learning of dynamical models from high-353

dimensional noisy data. Scientific reports, 12(1):21530, 2022.354

David N Burghes. Population dynamics an introduction to differential equations. International Journal of355

Mathematical Education in Science and Technology, 6(3):265–276, 1975.356

Wenlin Chen, Austin Tripp, and José Miguel Hernández-Lobato. Meta-learning adaptive deep kernel gaussian357

processes for molecular property prediction. arXiv preprint arXiv:2205.02708, 2022.358

Li-Fang Cheng, Bianca Dumitrascu, Michael Zhang, Corey Chivers, Michael Draugelis, Kai Li, and Barbara359

Engelhardt. Patient-specific effects of medication using latent force models with gaussian processes. In360

International Conference on Artificial Intelligence and Statistics, pp. 4045–4055. PMLR, 2020.361

Andreas Damianou and Neil D Lawrence. Deep gaussian processes. In Artificial intelligence and statistics,362

pp. 207–215. PMLR, 2013.363

Jouni Hartikainen and Simo Sarkka. Sequential inference for latent force models. arXiv preprint364

arXiv:1202.3730, 2012.365

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn366

Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate protein structure367

prediction with alphafold. Nature, 596(7873):583–589, 2021.368

Gioele La Manno, Ruslan Soldatov, Amit Zeisel, Emelie Braun, Hannah Hochgerner, Viktor Petukhov, Katja369

Lidschreiber, Maria E Kastriti, Peter Lönnerberg, Alessandro Furlan, et al. Rna velocity of single cells.370

Nature, 560(7719):494–498, 2018.371

Neil Lawrence, Guido Sanguinetti, and Magnus Rattray. Modelling transcriptional regulation using gaussian372

processes. Advances in Neural Information Processing Systems, 19, 2006.373

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,374

and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv375

preprint arXiv:2010.08895, 2020.376

Andrés F López-Lopera, Nicolas Durrande, and Mauricio A Alvarez. Physically-inspired gaussian process377

models for post-transcriptional regulation in drosophila. IEEE/ACM transactions on computational biology378

and bioinformatics, 18(2):656–666, 2019.379

12

https://proceedings.neurips.cc/paper_files/paper/2010/file/3a029f04d76d32e79367c4b3255dda4d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/3a029f04d76d32e79367c4b3255dda4d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2010/file/3a029f04d76d32e79367c4b3255dda4d-Paper.pdf


Under review as submission to TMLR

Thomas McDonald and Mauricio Álvarez. Compositional modeling of nonlinear dynamical systems with380

ode-based random features. Advances in Neural Information Processing Systems, 34:13809–13819, 2021.381

Jacob D Moss, Felix L Opolka, Bianca Dumitrascu, and Pietro Lió. Approximate latent force model inference.382

arXiv preprint arXiv:2109.11851, 2021.383

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning (Adaptive384

Computation and Machine Learning). The MIT Press, 2005. ISBN 026218253X.385

Tapesh Santra. Fitting mathematical models of biochemical pathways to steady state perturbation response386

data without simulating perturbation experiments. Scientific Reports, 8(1):11679, 2018.387

Simo Särkkä, Mauricio A Alvarez, and Neil D Lawrence. Gaussian process latent force models for learning388

and stochastic control of physical systems. IEEE Transactions on Automatic Control, 64(7):2953–2960,389

2018.390

Birgit Schoeberl, Claudia Eichler-Jonsson, Ernst Dieter Gilles, and Gertraud Müller. Computational model-391

ing of the dynamics of the map kinase cascade activated by surface and internalized egf receptors. Nature392

biotechnology, 20(4):370–375, 2002.393

Murray Shanahan. Talking about large language models. arXiv preprint arXiv:2212.03551, 2022.394

René Thomas, Anne-Marie GATHOYE, and Lucie Lambert. A complex control circuit: Regulation of395

immunity in temperate bacteriophages. European Journal of Biochemistry, 71(1):211–227, 1976.396

Alan Mathison Turing. The chemical basis of morphogenesis. Bulletin of mathematical biology, 52:153–197,397

1990.398

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,399

and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,400

2017.401

Wil Ward, Tom Ryder, Dennis Prangle, and Mauricio Alvarez. Black-box inference for non-linear latent402

force models. In International Conference on Artificial Intelligence and Statistics, pp. 3088–3098. PMLR,403

2020.404

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P. Xing. Deep kernel learning. In405

Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, volume 51, 2016.406

13



Under review as submission to TMLR

A Appendix407

A.1 Pseudocode408

Algorithm 1 Training procedure of DKLFM
for each task n do

rn ← emb(xn, yn) ▷ Compute representations
zn = rn ⊕ xn ▷ Concatenate inputs
Kff = κ (NNc(NNf (zn)), NNc(NNf (z′

n))) ▷ Latent force covariance
Kfh = κ (NNc(NNf (zn)), NNc(NNh(z′

n))) ▷ Cross-function covariance
Khh = κ (NNc(NNh(zn)), NNc(NNh(z′

n))) ▷ Output covariance
µh|f = µh + Khf K−1

ff f

Kh|f = Khh −Khf K−1
ff Kfh

p(y, f) = N (f |µf , Kff )N (y |µh|f , Kh|f + σ2I)
backpropagate − log p(y, f)

end for

Algorithm 2 DKLFM inference
for each task n do

rn ← emb(xn, yn) ▷ Compute representations
zn = rn ⊕ xn ▷ Concatenate inputs
r∗

n ← emb(x∗
n, y∗

n)
z∗

n = rn ⊕ x∗
n

Khh = κ (NNc(NNh(zn)), NNc(NNh(z′
n))) ▷ Output covariance

Ky∗h = κ (NNc(NNh(z∗
n)), NNc(NNh(z′

n))) ▷ Output covariance
Kf∗h = κ (NNc(NNf (z∗

n)), NNc(NNh(z′
n))) ▷ Cross-function covariance

µf∗|y = µf∗ + Kf∗hK−1
hh y

Kf∗|y = Kf∗f∗ −Kf∗hK−1
hh Khf∗

µy∗|y = µy∗ + Ky∗hK−1
hh y

Ky∗|y = Ky∗y∗ −Ky∗hK−1
hh Khy∗

end for
return N (µf∗|y, Kf∗|y), N (µy∗|y, Ky∗|y)

14


	Introduction
	Preliminaries
	Deep Kernel Learning of Latent Force Models
	Model Formulation
	Task Representation

	Experiments
	Nonlinear Ordinary Differential Equations
	Partial Differential Equations
	Performance and Approximation Cost

	Related Work
	Conclusion
	Appendix
	Pseudocode


